diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-12 17:04:23 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@inhelltoy.tec.linutronix.de> | 2007-10-12 17:04:23 -0400 |
commit | 9f75e9b74a45d7d3c343c8979f49d5e6b92bbce3 (patch) | |
tree | ca7115bd03031db131dda5912e2d9cd302046608 /arch/x86/kernel/hpet.c | |
parent | 2f0798a3b1c2155b8f30858e853557aef9da2e4e (diff) |
x86_64: remove now unused code
Remove the unused code after the switch to clock events.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Diffstat (limited to 'arch/x86/kernel/hpet.c')
-rw-r--r-- | arch/x86/kernel/hpet.c | 618 |
1 files changed, 618 insertions, 0 deletions
diff --git a/arch/x86/kernel/hpet.c b/arch/x86/kernel/hpet.c new file mode 100644 index 000000000000..dbe0e1d44113 --- /dev/null +++ b/arch/x86/kernel/hpet.c | |||
@@ -0,0 +1,618 @@ | |||
1 | #include <linux/clocksource.h> | ||
2 | #include <linux/clockchips.h> | ||
3 | #include <linux/delay.h> | ||
4 | #include <linux/errno.h> | ||
5 | #include <linux/hpet.h> | ||
6 | #include <linux/init.h> | ||
7 | #include <linux/sysdev.h> | ||
8 | #include <linux/pm.h> | ||
9 | #include <linux/delay.h> | ||
10 | |||
11 | #include <asm/fixmap.h> | ||
12 | #include <asm/hpet.h> | ||
13 | #include <asm/i8253.h> | ||
14 | #include <asm/io.h> | ||
15 | |||
16 | #define HPET_MASK CLOCKSOURCE_MASK(32) | ||
17 | #define HPET_SHIFT 22 | ||
18 | |||
19 | /* FSEC = 10^-15 NSEC = 10^-9 */ | ||
20 | #define FSEC_PER_NSEC 1000000 | ||
21 | |||
22 | /* | ||
23 | * HPET address is set in acpi/boot.c, when an ACPI entry exists | ||
24 | */ | ||
25 | unsigned long hpet_address; | ||
26 | static void __iomem *hpet_virt_address; | ||
27 | |||
28 | /* Temporary hack. Cleanup after x86_64 clock events conversion */ | ||
29 | #undef hpet_readl | ||
30 | #undef hpet_writel | ||
31 | |||
32 | static inline unsigned long hpet_readl(unsigned long a) | ||
33 | { | ||
34 | return readl(hpet_virt_address + a); | ||
35 | } | ||
36 | |||
37 | static inline void hpet_writel(unsigned long d, unsigned long a) | ||
38 | { | ||
39 | writel(d, hpet_virt_address + a); | ||
40 | } | ||
41 | |||
42 | #ifdef CONFIG_X86_64 | ||
43 | |||
44 | #include <asm/pgtable.h> | ||
45 | |||
46 | static inline void hpet_set_mapping(void) | ||
47 | { | ||
48 | set_fixmap_nocache(FIX_HPET_BASE, hpet_address); | ||
49 | __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); | ||
50 | hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); | ||
51 | } | ||
52 | |||
53 | static inline void hpet_clear_mapping(void) | ||
54 | { | ||
55 | hpet_virt_address = NULL; | ||
56 | } | ||
57 | |||
58 | #else | ||
59 | |||
60 | static inline void hpet_set_mapping(void) | ||
61 | { | ||
62 | hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | ||
63 | } | ||
64 | |||
65 | static inline void hpet_clear_mapping(void) | ||
66 | { | ||
67 | iounmap(hpet_virt_address); | ||
68 | hpet_virt_address = NULL; | ||
69 | } | ||
70 | #endif | ||
71 | |||
72 | /* | ||
73 | * HPET command line enable / disable | ||
74 | */ | ||
75 | static int boot_hpet_disable; | ||
76 | |||
77 | static int __init hpet_setup(char* str) | ||
78 | { | ||
79 | if (str) { | ||
80 | if (!strncmp("disable", str, 7)) | ||
81 | boot_hpet_disable = 1; | ||
82 | } | ||
83 | return 1; | ||
84 | } | ||
85 | __setup("hpet=", hpet_setup); | ||
86 | |||
87 | static int __init disable_hpet(char *str) | ||
88 | { | ||
89 | boot_hpet_disable = 1; | ||
90 | return 1; | ||
91 | } | ||
92 | __setup("nohpet", disable_hpet); | ||
93 | |||
94 | static inline int is_hpet_capable(void) | ||
95 | { | ||
96 | return (!boot_hpet_disable && hpet_address); | ||
97 | } | ||
98 | |||
99 | /* | ||
100 | * HPET timer interrupt enable / disable | ||
101 | */ | ||
102 | static int hpet_legacy_int_enabled; | ||
103 | |||
104 | /** | ||
105 | * is_hpet_enabled - check whether the hpet timer interrupt is enabled | ||
106 | */ | ||
107 | int is_hpet_enabled(void) | ||
108 | { | ||
109 | return is_hpet_capable() && hpet_legacy_int_enabled; | ||
110 | } | ||
111 | |||
112 | /* | ||
113 | * When the hpet driver (/dev/hpet) is enabled, we need to reserve | ||
114 | * timer 0 and timer 1 in case of RTC emulation. | ||
115 | */ | ||
116 | #ifdef CONFIG_HPET | ||
117 | static void hpet_reserve_platform_timers(unsigned long id) | ||
118 | { | ||
119 | struct hpet __iomem *hpet = hpet_virt_address; | ||
120 | struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; | ||
121 | unsigned int nrtimers, i; | ||
122 | struct hpet_data hd; | ||
123 | |||
124 | nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | ||
125 | |||
126 | memset(&hd, 0, sizeof (hd)); | ||
127 | hd.hd_phys_address = hpet_address; | ||
128 | hd.hd_address = hpet; | ||
129 | hd.hd_nirqs = nrtimers; | ||
130 | hd.hd_flags = HPET_DATA_PLATFORM; | ||
131 | hpet_reserve_timer(&hd, 0); | ||
132 | |||
133 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
134 | hpet_reserve_timer(&hd, 1); | ||
135 | #endif | ||
136 | |||
137 | hd.hd_irq[0] = HPET_LEGACY_8254; | ||
138 | hd.hd_irq[1] = HPET_LEGACY_RTC; | ||
139 | |||
140 | for (i = 2; i < nrtimers; timer++, i++) | ||
141 | hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >> | ||
142 | Tn_INT_ROUTE_CNF_SHIFT; | ||
143 | |||
144 | hpet_alloc(&hd); | ||
145 | |||
146 | } | ||
147 | #else | ||
148 | static void hpet_reserve_platform_timers(unsigned long id) { } | ||
149 | #endif | ||
150 | |||
151 | /* | ||
152 | * Common hpet info | ||
153 | */ | ||
154 | static unsigned long hpet_period; | ||
155 | |||
156 | static void hpet_set_mode(enum clock_event_mode mode, | ||
157 | struct clock_event_device *evt); | ||
158 | static int hpet_next_event(unsigned long delta, | ||
159 | struct clock_event_device *evt); | ||
160 | |||
161 | /* | ||
162 | * The hpet clock event device | ||
163 | */ | ||
164 | static struct clock_event_device hpet_clockevent = { | ||
165 | .name = "hpet", | ||
166 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | ||
167 | .set_mode = hpet_set_mode, | ||
168 | .set_next_event = hpet_next_event, | ||
169 | .shift = 32, | ||
170 | .irq = 0, | ||
171 | }; | ||
172 | |||
173 | static void hpet_start_counter(void) | ||
174 | { | ||
175 | unsigned long cfg = hpet_readl(HPET_CFG); | ||
176 | |||
177 | cfg &= ~HPET_CFG_ENABLE; | ||
178 | hpet_writel(cfg, HPET_CFG); | ||
179 | hpet_writel(0, HPET_COUNTER); | ||
180 | hpet_writel(0, HPET_COUNTER + 4); | ||
181 | cfg |= HPET_CFG_ENABLE; | ||
182 | hpet_writel(cfg, HPET_CFG); | ||
183 | } | ||
184 | |||
185 | static void hpet_enable_int(void) | ||
186 | { | ||
187 | unsigned long cfg = hpet_readl(HPET_CFG); | ||
188 | |||
189 | cfg |= HPET_CFG_LEGACY; | ||
190 | hpet_writel(cfg, HPET_CFG); | ||
191 | hpet_legacy_int_enabled = 1; | ||
192 | } | ||
193 | |||
194 | static void hpet_set_mode(enum clock_event_mode mode, | ||
195 | struct clock_event_device *evt) | ||
196 | { | ||
197 | unsigned long cfg, cmp, now; | ||
198 | uint64_t delta; | ||
199 | |||
200 | switch(mode) { | ||
201 | case CLOCK_EVT_MODE_PERIODIC: | ||
202 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult; | ||
203 | delta >>= hpet_clockevent.shift; | ||
204 | now = hpet_readl(HPET_COUNTER); | ||
205 | cmp = now + (unsigned long) delta; | ||
206 | cfg = hpet_readl(HPET_T0_CFG); | ||
207 | cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | | ||
208 | HPET_TN_SETVAL | HPET_TN_32BIT; | ||
209 | hpet_writel(cfg, HPET_T0_CFG); | ||
210 | /* | ||
211 | * The first write after writing TN_SETVAL to the | ||
212 | * config register sets the counter value, the second | ||
213 | * write sets the period. | ||
214 | */ | ||
215 | hpet_writel(cmp, HPET_T0_CMP); | ||
216 | udelay(1); | ||
217 | hpet_writel((unsigned long) delta, HPET_T0_CMP); | ||
218 | break; | ||
219 | |||
220 | case CLOCK_EVT_MODE_ONESHOT: | ||
221 | cfg = hpet_readl(HPET_T0_CFG); | ||
222 | cfg &= ~HPET_TN_PERIODIC; | ||
223 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
224 | hpet_writel(cfg, HPET_T0_CFG); | ||
225 | break; | ||
226 | |||
227 | case CLOCK_EVT_MODE_UNUSED: | ||
228 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
229 | cfg = hpet_readl(HPET_T0_CFG); | ||
230 | cfg &= ~HPET_TN_ENABLE; | ||
231 | hpet_writel(cfg, HPET_T0_CFG); | ||
232 | break; | ||
233 | |||
234 | case CLOCK_EVT_MODE_RESUME: | ||
235 | hpet_enable_int(); | ||
236 | break; | ||
237 | } | ||
238 | } | ||
239 | |||
240 | static int hpet_next_event(unsigned long delta, | ||
241 | struct clock_event_device *evt) | ||
242 | { | ||
243 | unsigned long cnt; | ||
244 | |||
245 | cnt = hpet_readl(HPET_COUNTER); | ||
246 | cnt += delta; | ||
247 | hpet_writel(cnt, HPET_T0_CMP); | ||
248 | |||
249 | return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0; | ||
250 | } | ||
251 | |||
252 | /* | ||
253 | * Clock source related code | ||
254 | */ | ||
255 | static cycle_t read_hpet(void) | ||
256 | { | ||
257 | return (cycle_t)hpet_readl(HPET_COUNTER); | ||
258 | } | ||
259 | |||
260 | #ifdef CONFIG_X86_64 | ||
261 | static cycle_t __vsyscall_fn vread_hpet(void) | ||
262 | { | ||
263 | return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); | ||
264 | } | ||
265 | #endif | ||
266 | |||
267 | static struct clocksource clocksource_hpet = { | ||
268 | .name = "hpet", | ||
269 | .rating = 250, | ||
270 | .read = read_hpet, | ||
271 | .mask = HPET_MASK, | ||
272 | .shift = HPET_SHIFT, | ||
273 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
274 | .resume = hpet_start_counter, | ||
275 | #ifdef CONFIG_X86_64 | ||
276 | .vread = vread_hpet, | ||
277 | #endif | ||
278 | }; | ||
279 | |||
280 | /* | ||
281 | * Try to setup the HPET timer | ||
282 | */ | ||
283 | int __init hpet_enable(void) | ||
284 | { | ||
285 | unsigned long id; | ||
286 | uint64_t hpet_freq; | ||
287 | u64 tmp, start, now; | ||
288 | cycle_t t1; | ||
289 | |||
290 | if (!is_hpet_capable()) | ||
291 | return 0; | ||
292 | |||
293 | hpet_set_mapping(); | ||
294 | |||
295 | /* | ||
296 | * Read the period and check for a sane value: | ||
297 | */ | ||
298 | hpet_period = hpet_readl(HPET_PERIOD); | ||
299 | if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) | ||
300 | goto out_nohpet; | ||
301 | |||
302 | /* | ||
303 | * The period is a femto seconds value. We need to calculate the | ||
304 | * scaled math multiplication factor for nanosecond to hpet tick | ||
305 | * conversion. | ||
306 | */ | ||
307 | hpet_freq = 1000000000000000ULL; | ||
308 | do_div(hpet_freq, hpet_period); | ||
309 | hpet_clockevent.mult = div_sc((unsigned long) hpet_freq, | ||
310 | NSEC_PER_SEC, 32); | ||
311 | /* Calculate the min / max delta */ | ||
312 | hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | ||
313 | &hpet_clockevent); | ||
314 | hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30, | ||
315 | &hpet_clockevent); | ||
316 | |||
317 | /* | ||
318 | * Read the HPET ID register to retrieve the IRQ routing | ||
319 | * information and the number of channels | ||
320 | */ | ||
321 | id = hpet_readl(HPET_ID); | ||
322 | |||
323 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
324 | /* | ||
325 | * The legacy routing mode needs at least two channels, tick timer | ||
326 | * and the rtc emulation channel. | ||
327 | */ | ||
328 | if (!(id & HPET_ID_NUMBER)) | ||
329 | goto out_nohpet; | ||
330 | #endif | ||
331 | |||
332 | /* Start the counter */ | ||
333 | hpet_start_counter(); | ||
334 | |||
335 | /* Verify whether hpet counter works */ | ||
336 | t1 = read_hpet(); | ||
337 | rdtscll(start); | ||
338 | |||
339 | /* | ||
340 | * We don't know the TSC frequency yet, but waiting for | ||
341 | * 200000 TSC cycles is safe: | ||
342 | * 4 GHz == 50us | ||
343 | * 1 GHz == 200us | ||
344 | */ | ||
345 | do { | ||
346 | rep_nop(); | ||
347 | rdtscll(now); | ||
348 | } while ((now - start) < 200000UL); | ||
349 | |||
350 | if (t1 == read_hpet()) { | ||
351 | printk(KERN_WARNING | ||
352 | "HPET counter not counting. HPET disabled\n"); | ||
353 | goto out_nohpet; | ||
354 | } | ||
355 | |||
356 | /* Initialize and register HPET clocksource | ||
357 | * | ||
358 | * hpet period is in femto seconds per cycle | ||
359 | * so we need to convert this to ns/cyc units | ||
360 | * aproximated by mult/2^shift | ||
361 | * | ||
362 | * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift | ||
363 | * fsec/cyc * 1ns/1000000fsec * 2^shift = mult | ||
364 | * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult | ||
365 | * (fsec/cyc << shift)/1000000 = mult | ||
366 | * (hpet_period << shift)/FSEC_PER_NSEC = mult | ||
367 | */ | ||
368 | tmp = (u64)hpet_period << HPET_SHIFT; | ||
369 | do_div(tmp, FSEC_PER_NSEC); | ||
370 | clocksource_hpet.mult = (u32)tmp; | ||
371 | |||
372 | clocksource_register(&clocksource_hpet); | ||
373 | |||
374 | if (id & HPET_ID_LEGSUP) { | ||
375 | hpet_enable_int(); | ||
376 | /* | ||
377 | * Start hpet with the boot cpu mask and make it | ||
378 | * global after the IO_APIC has been initialized. | ||
379 | */ | ||
380 | hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id()); | ||
381 | clockevents_register_device(&hpet_clockevent); | ||
382 | global_clock_event = &hpet_clockevent; | ||
383 | return 1; | ||
384 | } | ||
385 | return 0; | ||
386 | |||
387 | out_nohpet: | ||
388 | hpet_clear_mapping(); | ||
389 | boot_hpet_disable = 1; | ||
390 | return 0; | ||
391 | } | ||
392 | |||
393 | /* | ||
394 | * Needs to be late, as the reserve_timer code calls kalloc ! | ||
395 | * | ||
396 | * Not a problem on i386 as hpet_enable is called from late_time_init, | ||
397 | * but on x86_64 it is necessary ! | ||
398 | */ | ||
399 | static __init int hpet_late_init(void) | ||
400 | { | ||
401 | if (!is_hpet_capable()) | ||
402 | return -ENODEV; | ||
403 | |||
404 | hpet_reserve_platform_timers(hpet_readl(HPET_ID)); | ||
405 | return 0; | ||
406 | } | ||
407 | fs_initcall(hpet_late_init); | ||
408 | |||
409 | #ifdef CONFIG_HPET_EMULATE_RTC | ||
410 | |||
411 | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET | ||
412 | * is enabled, we support RTC interrupt functionality in software. | ||
413 | * RTC has 3 kinds of interrupts: | ||
414 | * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock | ||
415 | * is updated | ||
416 | * 2) Alarm Interrupt - generate an interrupt at a specific time of day | ||
417 | * 3) Periodic Interrupt - generate periodic interrupt, with frequencies | ||
418 | * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) | ||
419 | * (1) and (2) above are implemented using polling at a frequency of | ||
420 | * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt | ||
421 | * overhead. (DEFAULT_RTC_INT_FREQ) | ||
422 | * For (3), we use interrupts at 64Hz or user specified periodic | ||
423 | * frequency, whichever is higher. | ||
424 | */ | ||
425 | #include <linux/mc146818rtc.h> | ||
426 | #include <linux/rtc.h> | ||
427 | |||
428 | #define DEFAULT_RTC_INT_FREQ 64 | ||
429 | #define DEFAULT_RTC_SHIFT 6 | ||
430 | #define RTC_NUM_INTS 1 | ||
431 | |||
432 | static unsigned long hpet_rtc_flags; | ||
433 | static unsigned long hpet_prev_update_sec; | ||
434 | static struct rtc_time hpet_alarm_time; | ||
435 | static unsigned long hpet_pie_count; | ||
436 | static unsigned long hpet_t1_cmp; | ||
437 | static unsigned long hpet_default_delta; | ||
438 | static unsigned long hpet_pie_delta; | ||
439 | static unsigned long hpet_pie_limit; | ||
440 | |||
441 | /* | ||
442 | * Timer 1 for RTC emulation. We use one shot mode, as periodic mode | ||
443 | * is not supported by all HPET implementations for timer 1. | ||
444 | * | ||
445 | * hpet_rtc_timer_init() is called when the rtc is initialized. | ||
446 | */ | ||
447 | int hpet_rtc_timer_init(void) | ||
448 | { | ||
449 | unsigned long cfg, cnt, delta, flags; | ||
450 | |||
451 | if (!is_hpet_enabled()) | ||
452 | return 0; | ||
453 | |||
454 | if (!hpet_default_delta) { | ||
455 | uint64_t clc; | ||
456 | |||
457 | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | ||
458 | clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; | ||
459 | hpet_default_delta = (unsigned long) clc; | ||
460 | } | ||
461 | |||
462 | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | ||
463 | delta = hpet_default_delta; | ||
464 | else | ||
465 | delta = hpet_pie_delta; | ||
466 | |||
467 | local_irq_save(flags); | ||
468 | |||
469 | cnt = delta + hpet_readl(HPET_COUNTER); | ||
470 | hpet_writel(cnt, HPET_T1_CMP); | ||
471 | hpet_t1_cmp = cnt; | ||
472 | |||
473 | cfg = hpet_readl(HPET_T1_CFG); | ||
474 | cfg &= ~HPET_TN_PERIODIC; | ||
475 | cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | ||
476 | hpet_writel(cfg, HPET_T1_CFG); | ||
477 | |||
478 | local_irq_restore(flags); | ||
479 | |||
480 | return 1; | ||
481 | } | ||
482 | |||
483 | /* | ||
484 | * The functions below are called from rtc driver. | ||
485 | * Return 0 if HPET is not being used. | ||
486 | * Otherwise do the necessary changes and return 1. | ||
487 | */ | ||
488 | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) | ||
489 | { | ||
490 | if (!is_hpet_enabled()) | ||
491 | return 0; | ||
492 | |||
493 | hpet_rtc_flags &= ~bit_mask; | ||
494 | return 1; | ||
495 | } | ||
496 | |||
497 | int hpet_set_rtc_irq_bit(unsigned long bit_mask) | ||
498 | { | ||
499 | unsigned long oldbits = hpet_rtc_flags; | ||
500 | |||
501 | if (!is_hpet_enabled()) | ||
502 | return 0; | ||
503 | |||
504 | hpet_rtc_flags |= bit_mask; | ||
505 | |||
506 | if (!oldbits) | ||
507 | hpet_rtc_timer_init(); | ||
508 | |||
509 | return 1; | ||
510 | } | ||
511 | |||
512 | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, | ||
513 | unsigned char sec) | ||
514 | { | ||
515 | if (!is_hpet_enabled()) | ||
516 | return 0; | ||
517 | |||
518 | hpet_alarm_time.tm_hour = hrs; | ||
519 | hpet_alarm_time.tm_min = min; | ||
520 | hpet_alarm_time.tm_sec = sec; | ||
521 | |||
522 | return 1; | ||
523 | } | ||
524 | |||
525 | int hpet_set_periodic_freq(unsigned long freq) | ||
526 | { | ||
527 | uint64_t clc; | ||
528 | |||
529 | if (!is_hpet_enabled()) | ||
530 | return 0; | ||
531 | |||
532 | if (freq <= DEFAULT_RTC_INT_FREQ) | ||
533 | hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; | ||
534 | else { | ||
535 | clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | ||
536 | do_div(clc, freq); | ||
537 | clc >>= hpet_clockevent.shift; | ||
538 | hpet_pie_delta = (unsigned long) clc; | ||
539 | } | ||
540 | return 1; | ||
541 | } | ||
542 | |||
543 | int hpet_rtc_dropped_irq(void) | ||
544 | { | ||
545 | return is_hpet_enabled(); | ||
546 | } | ||
547 | |||
548 | static void hpet_rtc_timer_reinit(void) | ||
549 | { | ||
550 | unsigned long cfg, delta; | ||
551 | int lost_ints = -1; | ||
552 | |||
553 | if (unlikely(!hpet_rtc_flags)) { | ||
554 | cfg = hpet_readl(HPET_T1_CFG); | ||
555 | cfg &= ~HPET_TN_ENABLE; | ||
556 | hpet_writel(cfg, HPET_T1_CFG); | ||
557 | return; | ||
558 | } | ||
559 | |||
560 | if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | ||
561 | delta = hpet_default_delta; | ||
562 | else | ||
563 | delta = hpet_pie_delta; | ||
564 | |||
565 | /* | ||
566 | * Increment the comparator value until we are ahead of the | ||
567 | * current count. | ||
568 | */ | ||
569 | do { | ||
570 | hpet_t1_cmp += delta; | ||
571 | hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | ||
572 | lost_ints++; | ||
573 | } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0); | ||
574 | |||
575 | if (lost_ints) { | ||
576 | if (hpet_rtc_flags & RTC_PIE) | ||
577 | hpet_pie_count += lost_ints; | ||
578 | if (printk_ratelimit()) | ||
579 | printk(KERN_WARNING "rtc: lost %d interrupts\n", | ||
580 | lost_ints); | ||
581 | } | ||
582 | } | ||
583 | |||
584 | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) | ||
585 | { | ||
586 | struct rtc_time curr_time; | ||
587 | unsigned long rtc_int_flag = 0; | ||
588 | |||
589 | hpet_rtc_timer_reinit(); | ||
590 | |||
591 | if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) | ||
592 | rtc_get_rtc_time(&curr_time); | ||
593 | |||
594 | if (hpet_rtc_flags & RTC_UIE && | ||
595 | curr_time.tm_sec != hpet_prev_update_sec) { | ||
596 | rtc_int_flag = RTC_UF; | ||
597 | hpet_prev_update_sec = curr_time.tm_sec; | ||
598 | } | ||
599 | |||
600 | if (hpet_rtc_flags & RTC_PIE && | ||
601 | ++hpet_pie_count >= hpet_pie_limit) { | ||
602 | rtc_int_flag |= RTC_PF; | ||
603 | hpet_pie_count = 0; | ||
604 | } | ||
605 | |||
606 | if (hpet_rtc_flags & RTC_PIE && | ||
607 | (curr_time.tm_sec == hpet_alarm_time.tm_sec) && | ||
608 | (curr_time.tm_min == hpet_alarm_time.tm_min) && | ||
609 | (curr_time.tm_hour == hpet_alarm_time.tm_hour)) | ||
610 | rtc_int_flag |= RTC_AF; | ||
611 | |||
612 | if (rtc_int_flag) { | ||
613 | rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); | ||
614 | rtc_interrupt(rtc_int_flag, dev_id); | ||
615 | } | ||
616 | return IRQ_HANDLED; | ||
617 | } | ||
618 | #endif | ||