aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/cpufreq/powernow-k8.c
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 05:16:27 -0400
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 05:16:27 -0400
commitee580dc91efd83e6b55955e7261e8ad2a0e08d1a (patch)
treea6f0884e77913df35ae4219fa66fa0c95359c5cf /arch/x86/kernel/cpu/cpufreq/powernow-k8.c
parentc18db0d7e299791c73d4dbe5ae7905b2ab8ba332 (diff)
i386: move kernel/cpu/cpufreq
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/cpu/cpufreq/powernow-k8.c')
-rw-r--r--arch/x86/kernel/cpu/cpufreq/powernow-k8.c1363
1 files changed, 1363 insertions, 0 deletions
diff --git a/arch/x86/kernel/cpu/cpufreq/powernow-k8.c b/arch/x86/kernel/cpu/cpufreq/powernow-k8.c
new file mode 100644
index 000000000000..34ed53a06730
--- /dev/null
+++ b/arch/x86/kernel/cpu/cpufreq/powernow-k8.c
@@ -0,0 +1,1363 @@
1/*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Support : mark.langsdorf@amd.com
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27#include <linux/kernel.h>
28#include <linux/smp.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/cpufreq.h>
32#include <linux/slab.h>
33#include <linux/string.h>
34#include <linux/cpumask.h>
35#include <linux/sched.h> /* for current / set_cpus_allowed() */
36
37#include <asm/msr.h>
38#include <asm/io.h>
39#include <asm/delay.h>
40
41#ifdef CONFIG_X86_POWERNOW_K8_ACPI
42#include <linux/acpi.h>
43#include <linux/mutex.h>
44#include <acpi/processor.h>
45#endif
46
47#define PFX "powernow-k8: "
48#define BFX PFX "BIOS error: "
49#define VERSION "version 2.00.00"
50#include "powernow-k8.h"
51
52/* serialize freq changes */
53static DEFINE_MUTEX(fidvid_mutex);
54
55static struct powernow_k8_data *powernow_data[NR_CPUS];
56
57static int cpu_family = CPU_OPTERON;
58
59#ifndef CONFIG_SMP
60static cpumask_t cpu_core_map[1];
61#endif
62
63/* Return a frequency in MHz, given an input fid */
64static u32 find_freq_from_fid(u32 fid)
65{
66 return 800 + (fid * 100);
67}
68
69
70/* Return a frequency in KHz, given an input fid */
71static u32 find_khz_freq_from_fid(u32 fid)
72{
73 return 1000 * find_freq_from_fid(fid);
74}
75
76/* Return a frequency in MHz, given an input fid and did */
77static u32 find_freq_from_fiddid(u32 fid, u32 did)
78{
79 return 100 * (fid + 0x10) >> did;
80}
81
82static u32 find_khz_freq_from_fiddid(u32 fid, u32 did)
83{
84 return 1000 * find_freq_from_fiddid(fid, did);
85}
86
87static u32 find_fid_from_pstate(u32 pstate)
88{
89 u32 hi, lo;
90 rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
91 return lo & HW_PSTATE_FID_MASK;
92}
93
94static u32 find_did_from_pstate(u32 pstate)
95{
96 u32 hi, lo;
97 rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
98 return (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
99}
100
101/* Return the vco fid for an input fid
102 *
103 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
104 * only from corresponding high fids. This returns "high" fid corresponding to
105 * "low" one.
106 */
107static u32 convert_fid_to_vco_fid(u32 fid)
108{
109 if (fid < HI_FID_TABLE_BOTTOM)
110 return 8 + (2 * fid);
111 else
112 return fid;
113}
114
115/*
116 * Return 1 if the pending bit is set. Unless we just instructed the processor
117 * to transition to a new state, seeing this bit set is really bad news.
118 */
119static int pending_bit_stuck(void)
120{
121 u32 lo, hi;
122
123 if (cpu_family == CPU_HW_PSTATE)
124 return 0;
125
126 rdmsr(MSR_FIDVID_STATUS, lo, hi);
127 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
128}
129
130/*
131 * Update the global current fid / vid values from the status msr.
132 * Returns 1 on error.
133 */
134static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
135{
136 u32 lo, hi;
137 u32 i = 0;
138
139 if (cpu_family == CPU_HW_PSTATE) {
140 rdmsr(MSR_PSTATE_STATUS, lo, hi);
141 i = lo & HW_PSTATE_MASK;
142 rdmsr(MSR_PSTATE_DEF_BASE + i, lo, hi);
143 data->currfid = lo & HW_PSTATE_FID_MASK;
144 data->currdid = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
145 return 0;
146 }
147 do {
148 if (i++ > 10000) {
149 dprintk("detected change pending stuck\n");
150 return 1;
151 }
152 rdmsr(MSR_FIDVID_STATUS, lo, hi);
153 } while (lo & MSR_S_LO_CHANGE_PENDING);
154
155 data->currvid = hi & MSR_S_HI_CURRENT_VID;
156 data->currfid = lo & MSR_S_LO_CURRENT_FID;
157
158 return 0;
159}
160
161/* the isochronous relief time */
162static void count_off_irt(struct powernow_k8_data *data)
163{
164 udelay((1 << data->irt) * 10);
165 return;
166}
167
168/* the voltage stabalization time */
169static void count_off_vst(struct powernow_k8_data *data)
170{
171 udelay(data->vstable * VST_UNITS_20US);
172 return;
173}
174
175/* need to init the control msr to a safe value (for each cpu) */
176static void fidvid_msr_init(void)
177{
178 u32 lo, hi;
179 u8 fid, vid;
180
181 rdmsr(MSR_FIDVID_STATUS, lo, hi);
182 vid = hi & MSR_S_HI_CURRENT_VID;
183 fid = lo & MSR_S_LO_CURRENT_FID;
184 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185 hi = MSR_C_HI_STP_GNT_BENIGN;
186 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187 wrmsr(MSR_FIDVID_CTL, lo, hi);
188}
189
190
191/* write the new fid value along with the other control fields to the msr */
192static int write_new_fid(struct powernow_k8_data *data, u32 fid)
193{
194 u32 lo;
195 u32 savevid = data->currvid;
196 u32 i = 0;
197
198 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
199 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
200 return 1;
201 }
202
203 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
204
205 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207
208 do {
209 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210 if (i++ > 100) {
211 printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
212 return 1;
213 }
214 } while (query_current_values_with_pending_wait(data));
215
216 count_off_irt(data);
217
218 if (savevid != data->currvid) {
219 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
220 savevid, data->currvid);
221 return 1;
222 }
223
224 if (fid != data->currfid) {
225 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
226 data->currfid);
227 return 1;
228 }
229
230 return 0;
231}
232
233/* Write a new vid to the hardware */
234static int write_new_vid(struct powernow_k8_data *data, u32 vid)
235{
236 u32 lo;
237 u32 savefid = data->currfid;
238 int i = 0;
239
240 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
241 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
242 return 1;
243 }
244
245 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
246
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid, lo, STOP_GRANT_5NS);
249
250 do {
251 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252 if (i++ > 100) {
253 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
254 return 1;
255 }
256 } while (query_current_values_with_pending_wait(data));
257
258 if (savefid != data->currfid) {
259 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
260 savefid, data->currfid);
261 return 1;
262 }
263
264 if (vid != data->currvid) {
265 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
266 data->currvid);
267 return 1;
268 }
269
270 return 0;
271}
272
273/*
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
277 */
278static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
279{
280 if ((data->currvid - reqvid) > step)
281 reqvid = data->currvid - step;
282
283 if (write_new_vid(data, reqvid))
284 return 1;
285
286 count_off_vst(data);
287
288 return 0;
289}
290
291/* Change hardware pstate by single MSR write */
292static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
293{
294 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
295 data->currfid = find_fid_from_pstate(pstate);
296 return 0;
297}
298
299/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
300static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
301{
302 if (core_voltage_pre_transition(data, reqvid))
303 return 1;
304
305 if (core_frequency_transition(data, reqfid))
306 return 1;
307
308 if (core_voltage_post_transition(data, reqvid))
309 return 1;
310
311 if (query_current_values_with_pending_wait(data))
312 return 1;
313
314 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
315 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
316 smp_processor_id(),
317 reqfid, reqvid, data->currfid, data->currvid);
318 return 1;
319 }
320
321 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
322 smp_processor_id(), data->currfid, data->currvid);
323
324 return 0;
325}
326
327/* Phase 1 - core voltage transition ... setup voltage */
328static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
329{
330 u32 rvosteps = data->rvo;
331 u32 savefid = data->currfid;
332 u32 maxvid, lo;
333
334 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
335 smp_processor_id(),
336 data->currfid, data->currvid, reqvid, data->rvo);
337
338 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
339 maxvid = 0x1f & (maxvid >> 16);
340 dprintk("ph1 maxvid=0x%x\n", maxvid);
341 if (reqvid < maxvid) /* lower numbers are higher voltages */
342 reqvid = maxvid;
343
344 while (data->currvid > reqvid) {
345 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
346 data->currvid, reqvid);
347 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
348 return 1;
349 }
350
351 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
352 if (data->currvid == maxvid) {
353 rvosteps = 0;
354 } else {
355 dprintk("ph1: changing vid for rvo, req 0x%x\n",
356 data->currvid - 1);
357 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
358 return 1;
359 rvosteps--;
360 }
361 }
362
363 if (query_current_values_with_pending_wait(data))
364 return 1;
365
366 if (savefid != data->currfid) {
367 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
368 return 1;
369 }
370
371 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
372 data->currfid, data->currvid);
373
374 return 0;
375}
376
377/* Phase 2 - core frequency transition */
378static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
379{
380 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
381
382 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
383 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
384 reqfid, data->currfid);
385 return 1;
386 }
387
388 if (data->currfid == reqfid) {
389 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
390 return 0;
391 }
392
393 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
394 smp_processor_id(),
395 data->currfid, data->currvid, reqfid);
396
397 vcoreqfid = convert_fid_to_vco_fid(reqfid);
398 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
399 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
400 : vcoreqfid - vcocurrfid;
401
402 while (vcofiddiff > 2) {
403 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
404
405 if (reqfid > data->currfid) {
406 if (data->currfid > LO_FID_TABLE_TOP) {
407 if (write_new_fid(data, data->currfid + fid_interval)) {
408 return 1;
409 }
410 } else {
411 if (write_new_fid
412 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
413 return 1;
414 }
415 }
416 } else {
417 if (write_new_fid(data, data->currfid - fid_interval))
418 return 1;
419 }
420
421 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
422 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
423 : vcoreqfid - vcocurrfid;
424 }
425
426 if (write_new_fid(data, reqfid))
427 return 1;
428
429 if (query_current_values_with_pending_wait(data))
430 return 1;
431
432 if (data->currfid != reqfid) {
433 printk(KERN_ERR PFX
434 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
435 data->currfid, reqfid);
436 return 1;
437 }
438
439 if (savevid != data->currvid) {
440 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
441 savevid, data->currvid);
442 return 1;
443 }
444
445 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
446 data->currfid, data->currvid);
447
448 return 0;
449}
450
451/* Phase 3 - core voltage transition flow ... jump to the final vid. */
452static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
453{
454 u32 savefid = data->currfid;
455 u32 savereqvid = reqvid;
456
457 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
458 smp_processor_id(),
459 data->currfid, data->currvid);
460
461 if (reqvid != data->currvid) {
462 if (write_new_vid(data, reqvid))
463 return 1;
464
465 if (savefid != data->currfid) {
466 printk(KERN_ERR PFX
467 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
468 savefid, data->currfid);
469 return 1;
470 }
471
472 if (data->currvid != reqvid) {
473 printk(KERN_ERR PFX
474 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
475 reqvid, data->currvid);
476 return 1;
477 }
478 }
479
480 if (query_current_values_with_pending_wait(data))
481 return 1;
482
483 if (savereqvid != data->currvid) {
484 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
485 return 1;
486 }
487
488 if (savefid != data->currfid) {
489 dprintk("ph3 failed, currfid changed 0x%x\n",
490 data->currfid);
491 return 1;
492 }
493
494 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
495 data->currfid, data->currvid);
496
497 return 0;
498}
499
500static int check_supported_cpu(unsigned int cpu)
501{
502 cpumask_t oldmask = CPU_MASK_ALL;
503 u32 eax, ebx, ecx, edx;
504 unsigned int rc = 0;
505
506 oldmask = current->cpus_allowed;
507 set_cpus_allowed(current, cpumask_of_cpu(cpu));
508
509 if (smp_processor_id() != cpu) {
510 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
511 goto out;
512 }
513
514 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
515 goto out;
516
517 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
518 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
519 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
520 goto out;
521
522 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
523 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
524 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
525 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
526 goto out;
527 }
528
529 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
530 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
531 printk(KERN_INFO PFX
532 "No frequency change capabilities detected\n");
533 goto out;
534 }
535
536 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
537 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
538 printk(KERN_INFO PFX "Power state transitions not supported\n");
539 goto out;
540 }
541 } else { /* must be a HW Pstate capable processor */
542 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
543 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
544 cpu_family = CPU_HW_PSTATE;
545 else
546 goto out;
547 }
548
549 rc = 1;
550
551out:
552 set_cpus_allowed(current, oldmask);
553 return rc;
554}
555
556static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
557{
558 unsigned int j;
559 u8 lastfid = 0xff;
560
561 for (j = 0; j < data->numps; j++) {
562 if (pst[j].vid > LEAST_VID) {
563 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
564 return -EINVAL;
565 }
566 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
567 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
568 return -ENODEV;
569 }
570 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
571 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
572 return -ENODEV;
573 }
574 if (pst[j].fid > MAX_FID) {
575 printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
576 return -ENODEV;
577 }
578 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
579 /* Only first fid is allowed to be in "low" range */
580 printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
581 return -EINVAL;
582 }
583 if (pst[j].fid < lastfid)
584 lastfid = pst[j].fid;
585 }
586 if (lastfid & 1) {
587 printk(KERN_ERR BFX "lastfid invalid\n");
588 return -EINVAL;
589 }
590 if (lastfid > LO_FID_TABLE_TOP)
591 printk(KERN_INFO BFX "first fid not from lo freq table\n");
592
593 return 0;
594}
595
596static void print_basics(struct powernow_k8_data *data)
597{
598 int j;
599 for (j = 0; j < data->numps; j++) {
600 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
601 if (cpu_family == CPU_HW_PSTATE) {
602 printk(KERN_INFO PFX " %d : fid 0x%x did 0x%x (%d MHz)\n",
603 j,
604 (data->powernow_table[j].index & 0xff00) >> 8,
605 (data->powernow_table[j].index & 0xff0000) >> 16,
606 data->powernow_table[j].frequency/1000);
607 } else {
608 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n",
609 j,
610 data->powernow_table[j].index & 0xff,
611 data->powernow_table[j].frequency/1000,
612 data->powernow_table[j].index >> 8);
613 }
614 }
615 }
616 if (data->batps)
617 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
618}
619
620static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
621{
622 struct cpufreq_frequency_table *powernow_table;
623 unsigned int j;
624
625 if (data->batps) { /* use ACPI support to get full speed on mains power */
626 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
627 data->numps = data->batps;
628 }
629
630 for ( j=1; j<data->numps; j++ ) {
631 if (pst[j-1].fid >= pst[j].fid) {
632 printk(KERN_ERR PFX "PST out of sequence\n");
633 return -EINVAL;
634 }
635 }
636
637 if (data->numps < 2) {
638 printk(KERN_ERR PFX "no p states to transition\n");
639 return -ENODEV;
640 }
641
642 if (check_pst_table(data, pst, maxvid))
643 return -EINVAL;
644
645 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
646 * (data->numps + 1)), GFP_KERNEL);
647 if (!powernow_table) {
648 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
649 return -ENOMEM;
650 }
651
652 for (j = 0; j < data->numps; j++) {
653 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
654 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
655 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
656 }
657 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
658 powernow_table[data->numps].index = 0;
659
660 if (query_current_values_with_pending_wait(data)) {
661 kfree(powernow_table);
662 return -EIO;
663 }
664
665 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
666 data->powernow_table = powernow_table;
667 if (first_cpu(cpu_core_map[data->cpu]) == data->cpu)
668 print_basics(data);
669
670 for (j = 0; j < data->numps; j++)
671 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
672 return 0;
673
674 dprintk("currfid/vid do not match PST, ignoring\n");
675 return 0;
676}
677
678/* Find and validate the PSB/PST table in BIOS. */
679static int find_psb_table(struct powernow_k8_data *data)
680{
681 struct psb_s *psb;
682 unsigned int i;
683 u32 mvs;
684 u8 maxvid;
685 u32 cpst = 0;
686 u32 thiscpuid;
687
688 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
689 /* Scan BIOS looking for the signature. */
690 /* It can not be at ffff0 - it is too big. */
691
692 psb = phys_to_virt(i);
693 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
694 continue;
695
696 dprintk("found PSB header at 0x%p\n", psb);
697
698 dprintk("table vers: 0x%x\n", psb->tableversion);
699 if (psb->tableversion != PSB_VERSION_1_4) {
700 printk(KERN_ERR BFX "PSB table is not v1.4\n");
701 return -ENODEV;
702 }
703
704 dprintk("flags: 0x%x\n", psb->flags1);
705 if (psb->flags1) {
706 printk(KERN_ERR BFX "unknown flags\n");
707 return -ENODEV;
708 }
709
710 data->vstable = psb->vstable;
711 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
712
713 dprintk("flags2: 0x%x\n", psb->flags2);
714 data->rvo = psb->flags2 & 3;
715 data->irt = ((psb->flags2) >> 2) & 3;
716 mvs = ((psb->flags2) >> 4) & 3;
717 data->vidmvs = 1 << mvs;
718 data->batps = ((psb->flags2) >> 6) & 3;
719
720 dprintk("ramp voltage offset: %d\n", data->rvo);
721 dprintk("isochronous relief time: %d\n", data->irt);
722 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
723
724 dprintk("numpst: 0x%x\n", psb->num_tables);
725 cpst = psb->num_tables;
726 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
727 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
728 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
729 cpst = 1;
730 }
731 }
732 if (cpst != 1) {
733 printk(KERN_ERR BFX "numpst must be 1\n");
734 return -ENODEV;
735 }
736
737 data->plllock = psb->plllocktime;
738 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
739 dprintk("maxfid: 0x%x\n", psb->maxfid);
740 dprintk("maxvid: 0x%x\n", psb->maxvid);
741 maxvid = psb->maxvid;
742
743 data->numps = psb->numps;
744 dprintk("numpstates: 0x%x\n", data->numps);
745 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
746 }
747 /*
748 * If you see this message, complain to BIOS manufacturer. If
749 * he tells you "we do not support Linux" or some similar
750 * nonsense, remember that Windows 2000 uses the same legacy
751 * mechanism that the old Linux PSB driver uses. Tell them it
752 * is broken with Windows 2000.
753 *
754 * The reference to the AMD documentation is chapter 9 in the
755 * BIOS and Kernel Developer's Guide, which is available on
756 * www.amd.com
757 */
758 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
759 return -ENODEV;
760}
761
762#ifdef CONFIG_X86_POWERNOW_K8_ACPI
763static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
764{
765 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
766 return;
767
768 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
769 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
770 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
771 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
772 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
773 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
774}
775
776static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
777{
778 struct cpufreq_frequency_table *powernow_table;
779 int ret_val;
780
781 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
782 dprintk("register performance failed: bad ACPI data\n");
783 return -EIO;
784 }
785
786 /* verify the data contained in the ACPI structures */
787 if (data->acpi_data.state_count <= 1) {
788 dprintk("No ACPI P-States\n");
789 goto err_out;
790 }
791
792 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
793 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
794 dprintk("Invalid control/status registers (%x - %x)\n",
795 data->acpi_data.control_register.space_id,
796 data->acpi_data.status_register.space_id);
797 goto err_out;
798 }
799
800 /* fill in data->powernow_table */
801 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
802 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
803 if (!powernow_table) {
804 dprintk("powernow_table memory alloc failure\n");
805 goto err_out;
806 }
807
808 if (cpu_family == CPU_HW_PSTATE)
809 ret_val = fill_powernow_table_pstate(data, powernow_table);
810 else
811 ret_val = fill_powernow_table_fidvid(data, powernow_table);
812 if (ret_val)
813 goto err_out_mem;
814
815 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
816 powernow_table[data->acpi_data.state_count].index = 0;
817 data->powernow_table = powernow_table;
818
819 /* fill in data */
820 data->numps = data->acpi_data.state_count;
821 if (first_cpu(cpu_core_map[data->cpu]) == data->cpu)
822 print_basics(data);
823 powernow_k8_acpi_pst_values(data, 0);
824
825 /* notify BIOS that we exist */
826 acpi_processor_notify_smm(THIS_MODULE);
827
828 return 0;
829
830err_out_mem:
831 kfree(powernow_table);
832
833err_out:
834 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
835
836 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
837 data->acpi_data.state_count = 0;
838
839 return -ENODEV;
840}
841
842static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
843{
844 int i;
845
846 for (i = 0; i < data->acpi_data.state_count; i++) {
847 u32 index;
848 u32 hi = 0, lo = 0;
849 u32 fid;
850 u32 did;
851
852 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
853 if (index > MAX_HW_PSTATE) {
854 printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
855 printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
856 }
857 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
858 if (!(hi & HW_PSTATE_VALID_MASK)) {
859 dprintk("invalid pstate %d, ignoring\n", index);
860 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
861 continue;
862 }
863
864 fid = lo & HW_PSTATE_FID_MASK;
865 did = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
866
867 dprintk(" %d : fid 0x%x, did 0x%x\n", index, fid, did);
868
869 powernow_table[i].index = index | (fid << HW_FID_INDEX_SHIFT) | (did << HW_DID_INDEX_SHIFT);
870
871 powernow_table[i].frequency = find_khz_freq_from_fiddid(fid, did);
872
873 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
874 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
875 powernow_table[i].frequency,
876 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
877 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
878 continue;
879 }
880 }
881 return 0;
882}
883
884static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
885{
886 int i;
887 int cntlofreq = 0;
888 for (i = 0; i < data->acpi_data.state_count; i++) {
889 u32 fid;
890 u32 vid;
891
892 if (data->exttype) {
893 fid = data->acpi_data.states[i].status & EXT_FID_MASK;
894 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
895 } else {
896 fid = data->acpi_data.states[i].control & FID_MASK;
897 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
898 }
899
900 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
901
902 powernow_table[i].index = fid; /* lower 8 bits */
903 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
904 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
905
906 /* verify frequency is OK */
907 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
908 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
909 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
910 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
911 continue;
912 }
913
914 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
915 if (vid == VID_OFF) {
916 dprintk("invalid vid %u, ignoring\n", vid);
917 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
918 continue;
919 }
920
921 /* verify only 1 entry from the lo frequency table */
922 if (fid < HI_FID_TABLE_BOTTOM) {
923 if (cntlofreq) {
924 /* if both entries are the same, ignore this one ... */
925 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
926 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
927 printk(KERN_ERR PFX "Too many lo freq table entries\n");
928 return 1;
929 }
930
931 dprintk("double low frequency table entry, ignoring it.\n");
932 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
933 continue;
934 } else
935 cntlofreq = i;
936 }
937
938 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
939 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
940 powernow_table[i].frequency,
941 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
942 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
943 continue;
944 }
945 }
946 return 0;
947}
948
949static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
950{
951 if (data->acpi_data.state_count)
952 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
953}
954
955#else
956static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
957static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
958static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
959#endif /* CONFIG_X86_POWERNOW_K8_ACPI */
960
961/* Take a frequency, and issue the fid/vid transition command */
962static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
963{
964 u32 fid = 0;
965 u32 vid = 0;
966 int res, i;
967 struct cpufreq_freqs freqs;
968
969 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
970
971 /* fid/vid correctness check for k8 */
972 /* fid are the lower 8 bits of the index we stored into
973 * the cpufreq frequency table in find_psb_table, vid
974 * are the upper 8 bits.
975 */
976 fid = data->powernow_table[index].index & 0xFF;
977 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
978
979 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
980
981 if (query_current_values_with_pending_wait(data))
982 return 1;
983
984 if ((data->currvid == vid) && (data->currfid == fid)) {
985 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
986 fid, vid);
987 return 0;
988 }
989
990 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
991 printk(KERN_ERR PFX
992 "ignoring illegal change in lo freq table-%x to 0x%x\n",
993 data->currfid, fid);
994 return 1;
995 }
996
997 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
998 smp_processor_id(), fid, vid);
999 freqs.old = find_khz_freq_from_fid(data->currfid);
1000 freqs.new = find_khz_freq_from_fid(fid);
1001
1002 for_each_cpu_mask(i, *(data->available_cores)) {
1003 freqs.cpu = i;
1004 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1005 }
1006
1007 res = transition_fid_vid(data, fid, vid);
1008 freqs.new = find_khz_freq_from_fid(data->currfid);
1009
1010 for_each_cpu_mask(i, *(data->available_cores)) {
1011 freqs.cpu = i;
1012 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1013 }
1014 return res;
1015}
1016
1017/* Take a frequency, and issue the hardware pstate transition command */
1018static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1019{
1020 u32 fid = 0;
1021 u32 did = 0;
1022 u32 pstate = 0;
1023 int res, i;
1024 struct cpufreq_freqs freqs;
1025
1026 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1027
1028 /* get fid did for hardware pstate transition */
1029 pstate = index & HW_PSTATE_MASK;
1030 if (pstate > MAX_HW_PSTATE)
1031 return 0;
1032 fid = (index & HW_FID_INDEX_MASK) >> HW_FID_INDEX_SHIFT;
1033 did = (index & HW_DID_INDEX_MASK) >> HW_DID_INDEX_SHIFT;
1034 freqs.old = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1035 freqs.new = find_khz_freq_from_fiddid(fid, did);
1036
1037 for_each_cpu_mask(i, *(data->available_cores)) {
1038 freqs.cpu = i;
1039 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1040 }
1041
1042 res = transition_pstate(data, pstate);
1043 data->currfid = find_fid_from_pstate(pstate);
1044 data->currdid = find_did_from_pstate(pstate);
1045 freqs.new = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1046
1047 for_each_cpu_mask(i, *(data->available_cores)) {
1048 freqs.cpu = i;
1049 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1050 }
1051 return res;
1052}
1053
1054/* Driver entry point to switch to the target frequency */
1055static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1056{
1057 cpumask_t oldmask = CPU_MASK_ALL;
1058 struct powernow_k8_data *data = powernow_data[pol->cpu];
1059 u32 checkfid;
1060 u32 checkvid;
1061 unsigned int newstate;
1062 int ret = -EIO;
1063
1064 if (!data)
1065 return -EINVAL;
1066
1067 checkfid = data->currfid;
1068 checkvid = data->currvid;
1069
1070 /* only run on specific CPU from here on */
1071 oldmask = current->cpus_allowed;
1072 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1073
1074 if (smp_processor_id() != pol->cpu) {
1075 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1076 goto err_out;
1077 }
1078
1079 if (pending_bit_stuck()) {
1080 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1081 goto err_out;
1082 }
1083
1084 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1085 pol->cpu, targfreq, pol->min, pol->max, relation);
1086
1087 if (query_current_values_with_pending_wait(data))
1088 goto err_out;
1089
1090 if (cpu_family == CPU_HW_PSTATE)
1091 dprintk("targ: curr fid 0x%x, did 0x%x\n",
1092 data->currfid, data->currdid);
1093 else {
1094 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1095 data->currfid, data->currvid);
1096
1097 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1098 printk(KERN_INFO PFX
1099 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1100 checkfid, data->currfid, checkvid, data->currvid);
1101 }
1102 }
1103
1104 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1105 goto err_out;
1106
1107 mutex_lock(&fidvid_mutex);
1108
1109 powernow_k8_acpi_pst_values(data, newstate);
1110
1111 if (cpu_family == CPU_HW_PSTATE)
1112 ret = transition_frequency_pstate(data, newstate);
1113 else
1114 ret = transition_frequency_fidvid(data, newstate);
1115 if (ret) {
1116 printk(KERN_ERR PFX "transition frequency failed\n");
1117 ret = 1;
1118 mutex_unlock(&fidvid_mutex);
1119 goto err_out;
1120 }
1121 mutex_unlock(&fidvid_mutex);
1122
1123 if (cpu_family == CPU_HW_PSTATE)
1124 pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1125 else
1126 pol->cur = find_khz_freq_from_fid(data->currfid);
1127 ret = 0;
1128
1129err_out:
1130 set_cpus_allowed(current, oldmask);
1131 return ret;
1132}
1133
1134/* Driver entry point to verify the policy and range of frequencies */
1135static int powernowk8_verify(struct cpufreq_policy *pol)
1136{
1137 struct powernow_k8_data *data = powernow_data[pol->cpu];
1138
1139 if (!data)
1140 return -EINVAL;
1141
1142 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1143}
1144
1145/* per CPU init entry point to the driver */
1146static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1147{
1148 struct powernow_k8_data *data;
1149 cpumask_t oldmask = CPU_MASK_ALL;
1150 int rc;
1151
1152 if (!cpu_online(pol->cpu))
1153 return -ENODEV;
1154
1155 if (!check_supported_cpu(pol->cpu))
1156 return -ENODEV;
1157
1158 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1159 if (!data) {
1160 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1161 return -ENOMEM;
1162 }
1163
1164 data->cpu = pol->cpu;
1165
1166 if (powernow_k8_cpu_init_acpi(data)) {
1167 /*
1168 * Use the PSB BIOS structure. This is only availabe on
1169 * an UP version, and is deprecated by AMD.
1170 */
1171 if (num_online_cpus() != 1) {
1172 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1173 kfree(data);
1174 return -ENODEV;
1175 }
1176 if (pol->cpu != 0) {
1177 printk(KERN_ERR PFX "No _PSS objects for CPU other than CPU0\n");
1178 kfree(data);
1179 return -ENODEV;
1180 }
1181 rc = find_psb_table(data);
1182 if (rc) {
1183 kfree(data);
1184 return -ENODEV;
1185 }
1186 }
1187
1188 /* only run on specific CPU from here on */
1189 oldmask = current->cpus_allowed;
1190 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1191
1192 if (smp_processor_id() != pol->cpu) {
1193 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1194 goto err_out;
1195 }
1196
1197 if (pending_bit_stuck()) {
1198 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1199 goto err_out;
1200 }
1201
1202 if (query_current_values_with_pending_wait(data))
1203 goto err_out;
1204
1205 if (cpu_family == CPU_OPTERON)
1206 fidvid_msr_init();
1207
1208 /* run on any CPU again */
1209 set_cpus_allowed(current, oldmask);
1210
1211 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1212 if (cpu_family == CPU_HW_PSTATE)
1213 pol->cpus = cpumask_of_cpu(pol->cpu);
1214 else
1215 pol->cpus = cpu_core_map[pol->cpu];
1216 data->available_cores = &(pol->cpus);
1217
1218 /* Take a crude guess here.
1219 * That guess was in microseconds, so multiply with 1000 */
1220 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1221 + (3 * (1 << data->irt) * 10)) * 1000;
1222
1223 if (cpu_family == CPU_HW_PSTATE)
1224 pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1225 else
1226 pol->cur = find_khz_freq_from_fid(data->currfid);
1227 dprintk("policy current frequency %d kHz\n", pol->cur);
1228
1229 /* min/max the cpu is capable of */
1230 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1231 printk(KERN_ERR PFX "invalid powernow_table\n");
1232 powernow_k8_cpu_exit_acpi(data);
1233 kfree(data->powernow_table);
1234 kfree(data);
1235 return -EINVAL;
1236 }
1237
1238 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1239
1240 if (cpu_family == CPU_HW_PSTATE)
1241 dprintk("cpu_init done, current fid 0x%x, did 0x%x\n",
1242 data->currfid, data->currdid);
1243 else
1244 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1245 data->currfid, data->currvid);
1246
1247 powernow_data[pol->cpu] = data;
1248
1249 return 0;
1250
1251err_out:
1252 set_cpus_allowed(current, oldmask);
1253 powernow_k8_cpu_exit_acpi(data);
1254
1255 kfree(data);
1256 return -ENODEV;
1257}
1258
1259static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1260{
1261 struct powernow_k8_data *data = powernow_data[pol->cpu];
1262
1263 if (!data)
1264 return -EINVAL;
1265
1266 powernow_k8_cpu_exit_acpi(data);
1267
1268 cpufreq_frequency_table_put_attr(pol->cpu);
1269
1270 kfree(data->powernow_table);
1271 kfree(data);
1272
1273 return 0;
1274}
1275
1276static unsigned int powernowk8_get (unsigned int cpu)
1277{
1278 struct powernow_k8_data *data;
1279 cpumask_t oldmask = current->cpus_allowed;
1280 unsigned int khz = 0;
1281
1282 data = powernow_data[first_cpu(cpu_core_map[cpu])];
1283
1284 if (!data)
1285 return -EINVAL;
1286
1287 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1288 if (smp_processor_id() != cpu) {
1289 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1290 set_cpus_allowed(current, oldmask);
1291 return 0;
1292 }
1293
1294 if (query_current_values_with_pending_wait(data))
1295 goto out;
1296
1297 if (cpu_family == CPU_HW_PSTATE)
1298 khz = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1299 else
1300 khz = find_khz_freq_from_fid(data->currfid);
1301
1302
1303out:
1304 set_cpus_allowed(current, oldmask);
1305 return khz;
1306}
1307
1308static struct freq_attr* powernow_k8_attr[] = {
1309 &cpufreq_freq_attr_scaling_available_freqs,
1310 NULL,
1311};
1312
1313static struct cpufreq_driver cpufreq_amd64_driver = {
1314 .verify = powernowk8_verify,
1315 .target = powernowk8_target,
1316 .init = powernowk8_cpu_init,
1317 .exit = __devexit_p(powernowk8_cpu_exit),
1318 .get = powernowk8_get,
1319 .name = "powernow-k8",
1320 .owner = THIS_MODULE,
1321 .attr = powernow_k8_attr,
1322};
1323
1324/* driver entry point for init */
1325static int __cpuinit powernowk8_init(void)
1326{
1327 unsigned int i, supported_cpus = 0;
1328 unsigned int booted_cores = 1;
1329
1330 for_each_online_cpu(i) {
1331 if (check_supported_cpu(i))
1332 supported_cpus++;
1333 }
1334
1335#ifdef CONFIG_SMP
1336 booted_cores = cpu_data[0].booted_cores;
1337#endif
1338
1339 if (supported_cpus == num_online_cpus()) {
1340 printk(KERN_INFO PFX "Found %d %s "
1341 "processors (%d cpu cores) (" VERSION ")\n",
1342 supported_cpus/booted_cores,
1343 boot_cpu_data.x86_model_id, supported_cpus);
1344 return cpufreq_register_driver(&cpufreq_amd64_driver);
1345 }
1346
1347 return -ENODEV;
1348}
1349
1350/* driver entry point for term */
1351static void __exit powernowk8_exit(void)
1352{
1353 dprintk("exit\n");
1354
1355 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1356}
1357
1358MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1359MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1360MODULE_LICENSE("GPL");
1361
1362late_initcall(powernowk8_init);
1363module_exit(powernowk8_exit);