diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:27 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:27 -0400 |
commit | ee580dc91efd83e6b55955e7261e8ad2a0e08d1a (patch) | |
tree | a6f0884e77913df35ae4219fa66fa0c95359c5cf /arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c | |
parent | c18db0d7e299791c73d4dbe5ae7905b2ab8ba332 (diff) |
i386: move kernel/cpu/cpufreq
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c')
-rw-r--r-- | arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c | 799 |
1 files changed, 799 insertions, 0 deletions
diff --git a/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c b/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c new file mode 100644 index 000000000000..705e13a30781 --- /dev/null +++ b/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c | |||
@@ -0,0 +1,799 @@ | |||
1 | /* | ||
2 | * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $) | ||
3 | * | ||
4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | ||
5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | ||
6 | * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> | ||
7 | * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> | ||
8 | * | ||
9 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify | ||
12 | * it under the terms of the GNU General Public License as published by | ||
13 | * the Free Software Foundation; either version 2 of the License, or (at | ||
14 | * your option) any later version. | ||
15 | * | ||
16 | * This program is distributed in the hope that it will be useful, but | ||
17 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
19 | * General Public License for more details. | ||
20 | * | ||
21 | * You should have received a copy of the GNU General Public License along | ||
22 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
23 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | ||
24 | * | ||
25 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
26 | */ | ||
27 | |||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/smp.h> | ||
32 | #include <linux/sched.h> | ||
33 | #include <linux/cpufreq.h> | ||
34 | #include <linux/compiler.h> | ||
35 | #include <linux/dmi.h> | ||
36 | |||
37 | #include <linux/acpi.h> | ||
38 | #include <acpi/processor.h> | ||
39 | |||
40 | #include <asm/io.h> | ||
41 | #include <asm/msr.h> | ||
42 | #include <asm/processor.h> | ||
43 | #include <asm/cpufeature.h> | ||
44 | #include <asm/delay.h> | ||
45 | #include <asm/uaccess.h> | ||
46 | |||
47 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) | ||
48 | |||
49 | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); | ||
50 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); | ||
51 | MODULE_LICENSE("GPL"); | ||
52 | |||
53 | enum { | ||
54 | UNDEFINED_CAPABLE = 0, | ||
55 | SYSTEM_INTEL_MSR_CAPABLE, | ||
56 | SYSTEM_IO_CAPABLE, | ||
57 | }; | ||
58 | |||
59 | #define INTEL_MSR_RANGE (0xffff) | ||
60 | #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1) | ||
61 | |||
62 | struct acpi_cpufreq_data { | ||
63 | struct acpi_processor_performance *acpi_data; | ||
64 | struct cpufreq_frequency_table *freq_table; | ||
65 | unsigned int max_freq; | ||
66 | unsigned int resume; | ||
67 | unsigned int cpu_feature; | ||
68 | }; | ||
69 | |||
70 | static struct acpi_cpufreq_data *drv_data[NR_CPUS]; | ||
71 | /* acpi_perf_data is a pointer to percpu data. */ | ||
72 | static struct acpi_processor_performance *acpi_perf_data; | ||
73 | |||
74 | static struct cpufreq_driver acpi_cpufreq_driver; | ||
75 | |||
76 | static unsigned int acpi_pstate_strict; | ||
77 | |||
78 | static int check_est_cpu(unsigned int cpuid) | ||
79 | { | ||
80 | struct cpuinfo_x86 *cpu = &cpu_data[cpuid]; | ||
81 | |||
82 | if (cpu->x86_vendor != X86_VENDOR_INTEL || | ||
83 | !cpu_has(cpu, X86_FEATURE_EST)) | ||
84 | return 0; | ||
85 | |||
86 | return 1; | ||
87 | } | ||
88 | |||
89 | static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) | ||
90 | { | ||
91 | struct acpi_processor_performance *perf; | ||
92 | int i; | ||
93 | |||
94 | perf = data->acpi_data; | ||
95 | |||
96 | for (i=0; i<perf->state_count; i++) { | ||
97 | if (value == perf->states[i].status) | ||
98 | return data->freq_table[i].frequency; | ||
99 | } | ||
100 | return 0; | ||
101 | } | ||
102 | |||
103 | static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) | ||
104 | { | ||
105 | int i; | ||
106 | struct acpi_processor_performance *perf; | ||
107 | |||
108 | msr &= INTEL_MSR_RANGE; | ||
109 | perf = data->acpi_data; | ||
110 | |||
111 | for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { | ||
112 | if (msr == perf->states[data->freq_table[i].index].status) | ||
113 | return data->freq_table[i].frequency; | ||
114 | } | ||
115 | return data->freq_table[0].frequency; | ||
116 | } | ||
117 | |||
118 | static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) | ||
119 | { | ||
120 | switch (data->cpu_feature) { | ||
121 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
122 | return extract_msr(val, data); | ||
123 | case SYSTEM_IO_CAPABLE: | ||
124 | return extract_io(val, data); | ||
125 | default: | ||
126 | return 0; | ||
127 | } | ||
128 | } | ||
129 | |||
130 | struct msr_addr { | ||
131 | u32 reg; | ||
132 | }; | ||
133 | |||
134 | struct io_addr { | ||
135 | u16 port; | ||
136 | u8 bit_width; | ||
137 | }; | ||
138 | |||
139 | typedef union { | ||
140 | struct msr_addr msr; | ||
141 | struct io_addr io; | ||
142 | } drv_addr_union; | ||
143 | |||
144 | struct drv_cmd { | ||
145 | unsigned int type; | ||
146 | cpumask_t mask; | ||
147 | drv_addr_union addr; | ||
148 | u32 val; | ||
149 | }; | ||
150 | |||
151 | static void do_drv_read(struct drv_cmd *cmd) | ||
152 | { | ||
153 | u32 h; | ||
154 | |||
155 | switch (cmd->type) { | ||
156 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
157 | rdmsr(cmd->addr.msr.reg, cmd->val, h); | ||
158 | break; | ||
159 | case SYSTEM_IO_CAPABLE: | ||
160 | acpi_os_read_port((acpi_io_address)cmd->addr.io.port, | ||
161 | &cmd->val, | ||
162 | (u32)cmd->addr.io.bit_width); | ||
163 | break; | ||
164 | default: | ||
165 | break; | ||
166 | } | ||
167 | } | ||
168 | |||
169 | static void do_drv_write(struct drv_cmd *cmd) | ||
170 | { | ||
171 | u32 lo, hi; | ||
172 | |||
173 | switch (cmd->type) { | ||
174 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
175 | rdmsr(cmd->addr.msr.reg, lo, hi); | ||
176 | lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); | ||
177 | wrmsr(cmd->addr.msr.reg, lo, hi); | ||
178 | break; | ||
179 | case SYSTEM_IO_CAPABLE: | ||
180 | acpi_os_write_port((acpi_io_address)cmd->addr.io.port, | ||
181 | cmd->val, | ||
182 | (u32)cmd->addr.io.bit_width); | ||
183 | break; | ||
184 | default: | ||
185 | break; | ||
186 | } | ||
187 | } | ||
188 | |||
189 | static void drv_read(struct drv_cmd *cmd) | ||
190 | { | ||
191 | cpumask_t saved_mask = current->cpus_allowed; | ||
192 | cmd->val = 0; | ||
193 | |||
194 | set_cpus_allowed(current, cmd->mask); | ||
195 | do_drv_read(cmd); | ||
196 | set_cpus_allowed(current, saved_mask); | ||
197 | } | ||
198 | |||
199 | static void drv_write(struct drv_cmd *cmd) | ||
200 | { | ||
201 | cpumask_t saved_mask = current->cpus_allowed; | ||
202 | unsigned int i; | ||
203 | |||
204 | for_each_cpu_mask(i, cmd->mask) { | ||
205 | set_cpus_allowed(current, cpumask_of_cpu(i)); | ||
206 | do_drv_write(cmd); | ||
207 | } | ||
208 | |||
209 | set_cpus_allowed(current, saved_mask); | ||
210 | return; | ||
211 | } | ||
212 | |||
213 | static u32 get_cur_val(cpumask_t mask) | ||
214 | { | ||
215 | struct acpi_processor_performance *perf; | ||
216 | struct drv_cmd cmd; | ||
217 | |||
218 | if (unlikely(cpus_empty(mask))) | ||
219 | return 0; | ||
220 | |||
221 | switch (drv_data[first_cpu(mask)]->cpu_feature) { | ||
222 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
223 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; | ||
224 | cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; | ||
225 | break; | ||
226 | case SYSTEM_IO_CAPABLE: | ||
227 | cmd.type = SYSTEM_IO_CAPABLE; | ||
228 | perf = drv_data[first_cpu(mask)]->acpi_data; | ||
229 | cmd.addr.io.port = perf->control_register.address; | ||
230 | cmd.addr.io.bit_width = perf->control_register.bit_width; | ||
231 | break; | ||
232 | default: | ||
233 | return 0; | ||
234 | } | ||
235 | |||
236 | cmd.mask = mask; | ||
237 | |||
238 | drv_read(&cmd); | ||
239 | |||
240 | dprintk("get_cur_val = %u\n", cmd.val); | ||
241 | |||
242 | return cmd.val; | ||
243 | } | ||
244 | |||
245 | /* | ||
246 | * Return the measured active (C0) frequency on this CPU since last call | ||
247 | * to this function. | ||
248 | * Input: cpu number | ||
249 | * Return: Average CPU frequency in terms of max frequency (zero on error) | ||
250 | * | ||
251 | * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance | ||
252 | * over a period of time, while CPU is in C0 state. | ||
253 | * IA32_MPERF counts at the rate of max advertised frequency | ||
254 | * IA32_APERF counts at the rate of actual CPU frequency | ||
255 | * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and | ||
256 | * no meaning should be associated with absolute values of these MSRs. | ||
257 | */ | ||
258 | static unsigned int get_measured_perf(unsigned int cpu) | ||
259 | { | ||
260 | union { | ||
261 | struct { | ||
262 | u32 lo; | ||
263 | u32 hi; | ||
264 | } split; | ||
265 | u64 whole; | ||
266 | } aperf_cur, mperf_cur; | ||
267 | |||
268 | cpumask_t saved_mask; | ||
269 | unsigned int perf_percent; | ||
270 | unsigned int retval; | ||
271 | |||
272 | saved_mask = current->cpus_allowed; | ||
273 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
274 | if (get_cpu() != cpu) { | ||
275 | /* We were not able to run on requested processor */ | ||
276 | put_cpu(); | ||
277 | return 0; | ||
278 | } | ||
279 | |||
280 | rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi); | ||
281 | rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi); | ||
282 | |||
283 | wrmsr(MSR_IA32_APERF, 0,0); | ||
284 | wrmsr(MSR_IA32_MPERF, 0,0); | ||
285 | |||
286 | #ifdef __i386__ | ||
287 | /* | ||
288 | * We dont want to do 64 bit divide with 32 bit kernel | ||
289 | * Get an approximate value. Return failure in case we cannot get | ||
290 | * an approximate value. | ||
291 | */ | ||
292 | if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) { | ||
293 | int shift_count; | ||
294 | u32 h; | ||
295 | |||
296 | h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi); | ||
297 | shift_count = fls(h); | ||
298 | |||
299 | aperf_cur.whole >>= shift_count; | ||
300 | mperf_cur.whole >>= shift_count; | ||
301 | } | ||
302 | |||
303 | if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) { | ||
304 | int shift_count = 7; | ||
305 | aperf_cur.split.lo >>= shift_count; | ||
306 | mperf_cur.split.lo >>= shift_count; | ||
307 | } | ||
308 | |||
309 | if (aperf_cur.split.lo && mperf_cur.split.lo) | ||
310 | perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo; | ||
311 | else | ||
312 | perf_percent = 0; | ||
313 | |||
314 | #else | ||
315 | if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) { | ||
316 | int shift_count = 7; | ||
317 | aperf_cur.whole >>= shift_count; | ||
318 | mperf_cur.whole >>= shift_count; | ||
319 | } | ||
320 | |||
321 | if (aperf_cur.whole && mperf_cur.whole) | ||
322 | perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole; | ||
323 | else | ||
324 | perf_percent = 0; | ||
325 | |||
326 | #endif | ||
327 | |||
328 | retval = drv_data[cpu]->max_freq * perf_percent / 100; | ||
329 | |||
330 | put_cpu(); | ||
331 | set_cpus_allowed(current, saved_mask); | ||
332 | |||
333 | dprintk("cpu %d: performance percent %d\n", cpu, perf_percent); | ||
334 | return retval; | ||
335 | } | ||
336 | |||
337 | static unsigned int get_cur_freq_on_cpu(unsigned int cpu) | ||
338 | { | ||
339 | struct acpi_cpufreq_data *data = drv_data[cpu]; | ||
340 | unsigned int freq; | ||
341 | |||
342 | dprintk("get_cur_freq_on_cpu (%d)\n", cpu); | ||
343 | |||
344 | if (unlikely(data == NULL || | ||
345 | data->acpi_data == NULL || data->freq_table == NULL)) { | ||
346 | return 0; | ||
347 | } | ||
348 | |||
349 | freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data); | ||
350 | dprintk("cur freq = %u\n", freq); | ||
351 | |||
352 | return freq; | ||
353 | } | ||
354 | |||
355 | static unsigned int check_freqs(cpumask_t mask, unsigned int freq, | ||
356 | struct acpi_cpufreq_data *data) | ||
357 | { | ||
358 | unsigned int cur_freq; | ||
359 | unsigned int i; | ||
360 | |||
361 | for (i=0; i<100; i++) { | ||
362 | cur_freq = extract_freq(get_cur_val(mask), data); | ||
363 | if (cur_freq == freq) | ||
364 | return 1; | ||
365 | udelay(10); | ||
366 | } | ||
367 | return 0; | ||
368 | } | ||
369 | |||
370 | static int acpi_cpufreq_target(struct cpufreq_policy *policy, | ||
371 | unsigned int target_freq, unsigned int relation) | ||
372 | { | ||
373 | struct acpi_cpufreq_data *data = drv_data[policy->cpu]; | ||
374 | struct acpi_processor_performance *perf; | ||
375 | struct cpufreq_freqs freqs; | ||
376 | cpumask_t online_policy_cpus; | ||
377 | struct drv_cmd cmd; | ||
378 | unsigned int next_state = 0; /* Index into freq_table */ | ||
379 | unsigned int next_perf_state = 0; /* Index into perf table */ | ||
380 | unsigned int i; | ||
381 | int result = 0; | ||
382 | |||
383 | dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); | ||
384 | |||
385 | if (unlikely(data == NULL || | ||
386 | data->acpi_data == NULL || data->freq_table == NULL)) { | ||
387 | return -ENODEV; | ||
388 | } | ||
389 | |||
390 | perf = data->acpi_data; | ||
391 | result = cpufreq_frequency_table_target(policy, | ||
392 | data->freq_table, | ||
393 | target_freq, | ||
394 | relation, &next_state); | ||
395 | if (unlikely(result)) | ||
396 | return -ENODEV; | ||
397 | |||
398 | #ifdef CONFIG_HOTPLUG_CPU | ||
399 | /* cpufreq holds the hotplug lock, so we are safe from here on */ | ||
400 | cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); | ||
401 | #else | ||
402 | online_policy_cpus = policy->cpus; | ||
403 | #endif | ||
404 | |||
405 | next_perf_state = data->freq_table[next_state].index; | ||
406 | if (perf->state == next_perf_state) { | ||
407 | if (unlikely(data->resume)) { | ||
408 | dprintk("Called after resume, resetting to P%d\n", | ||
409 | next_perf_state); | ||
410 | data->resume = 0; | ||
411 | } else { | ||
412 | dprintk("Already at target state (P%d)\n", | ||
413 | next_perf_state); | ||
414 | return 0; | ||
415 | } | ||
416 | } | ||
417 | |||
418 | switch (data->cpu_feature) { | ||
419 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
420 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; | ||
421 | cmd.addr.msr.reg = MSR_IA32_PERF_CTL; | ||
422 | cmd.val = (u32) perf->states[next_perf_state].control; | ||
423 | break; | ||
424 | case SYSTEM_IO_CAPABLE: | ||
425 | cmd.type = SYSTEM_IO_CAPABLE; | ||
426 | cmd.addr.io.port = perf->control_register.address; | ||
427 | cmd.addr.io.bit_width = perf->control_register.bit_width; | ||
428 | cmd.val = (u32) perf->states[next_perf_state].control; | ||
429 | break; | ||
430 | default: | ||
431 | return -ENODEV; | ||
432 | } | ||
433 | |||
434 | cpus_clear(cmd.mask); | ||
435 | |||
436 | if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) | ||
437 | cmd.mask = online_policy_cpus; | ||
438 | else | ||
439 | cpu_set(policy->cpu, cmd.mask); | ||
440 | |||
441 | freqs.old = perf->states[perf->state].core_frequency * 1000; | ||
442 | freqs.new = data->freq_table[next_state].frequency; | ||
443 | for_each_cpu_mask(i, cmd.mask) { | ||
444 | freqs.cpu = i; | ||
445 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
446 | } | ||
447 | |||
448 | drv_write(&cmd); | ||
449 | |||
450 | if (acpi_pstate_strict) { | ||
451 | if (!check_freqs(cmd.mask, freqs.new, data)) { | ||
452 | dprintk("acpi_cpufreq_target failed (%d)\n", | ||
453 | policy->cpu); | ||
454 | return -EAGAIN; | ||
455 | } | ||
456 | } | ||
457 | |||
458 | for_each_cpu_mask(i, cmd.mask) { | ||
459 | freqs.cpu = i; | ||
460 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
461 | } | ||
462 | perf->state = next_perf_state; | ||
463 | |||
464 | return result; | ||
465 | } | ||
466 | |||
467 | static int acpi_cpufreq_verify(struct cpufreq_policy *policy) | ||
468 | { | ||
469 | struct acpi_cpufreq_data *data = drv_data[policy->cpu]; | ||
470 | |||
471 | dprintk("acpi_cpufreq_verify\n"); | ||
472 | |||
473 | return cpufreq_frequency_table_verify(policy, data->freq_table); | ||
474 | } | ||
475 | |||
476 | static unsigned long | ||
477 | acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) | ||
478 | { | ||
479 | struct acpi_processor_performance *perf = data->acpi_data; | ||
480 | |||
481 | if (cpu_khz) { | ||
482 | /* search the closest match to cpu_khz */ | ||
483 | unsigned int i; | ||
484 | unsigned long freq; | ||
485 | unsigned long freqn = perf->states[0].core_frequency * 1000; | ||
486 | |||
487 | for (i=0; i<(perf->state_count-1); i++) { | ||
488 | freq = freqn; | ||
489 | freqn = perf->states[i+1].core_frequency * 1000; | ||
490 | if ((2 * cpu_khz) > (freqn + freq)) { | ||
491 | perf->state = i; | ||
492 | return freq; | ||
493 | } | ||
494 | } | ||
495 | perf->state = perf->state_count-1; | ||
496 | return freqn; | ||
497 | } else { | ||
498 | /* assume CPU is at P0... */ | ||
499 | perf->state = 0; | ||
500 | return perf->states[0].core_frequency * 1000; | ||
501 | } | ||
502 | } | ||
503 | |||
504 | /* | ||
505 | * acpi_cpufreq_early_init - initialize ACPI P-States library | ||
506 | * | ||
507 | * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) | ||
508 | * in order to determine correct frequency and voltage pairings. We can | ||
509 | * do _PDC and _PSD and find out the processor dependency for the | ||
510 | * actual init that will happen later... | ||
511 | */ | ||
512 | static int __init acpi_cpufreq_early_init(void) | ||
513 | { | ||
514 | dprintk("acpi_cpufreq_early_init\n"); | ||
515 | |||
516 | acpi_perf_data = alloc_percpu(struct acpi_processor_performance); | ||
517 | if (!acpi_perf_data) { | ||
518 | dprintk("Memory allocation error for acpi_perf_data.\n"); | ||
519 | return -ENOMEM; | ||
520 | } | ||
521 | |||
522 | /* Do initialization in ACPI core */ | ||
523 | acpi_processor_preregister_performance(acpi_perf_data); | ||
524 | return 0; | ||
525 | } | ||
526 | |||
527 | #ifdef CONFIG_SMP | ||
528 | /* | ||
529 | * Some BIOSes do SW_ANY coordination internally, either set it up in hw | ||
530 | * or do it in BIOS firmware and won't inform about it to OS. If not | ||
531 | * detected, this has a side effect of making CPU run at a different speed | ||
532 | * than OS intended it to run at. Detect it and handle it cleanly. | ||
533 | */ | ||
534 | static int bios_with_sw_any_bug; | ||
535 | |||
536 | static int sw_any_bug_found(struct dmi_system_id *d) | ||
537 | { | ||
538 | bios_with_sw_any_bug = 1; | ||
539 | return 0; | ||
540 | } | ||
541 | |||
542 | static struct dmi_system_id sw_any_bug_dmi_table[] = { | ||
543 | { | ||
544 | .callback = sw_any_bug_found, | ||
545 | .ident = "Supermicro Server X6DLP", | ||
546 | .matches = { | ||
547 | DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), | ||
548 | DMI_MATCH(DMI_BIOS_VERSION, "080010"), | ||
549 | DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), | ||
550 | }, | ||
551 | }, | ||
552 | { } | ||
553 | }; | ||
554 | #endif | ||
555 | |||
556 | static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) | ||
557 | { | ||
558 | unsigned int i; | ||
559 | unsigned int valid_states = 0; | ||
560 | unsigned int cpu = policy->cpu; | ||
561 | struct acpi_cpufreq_data *data; | ||
562 | unsigned int result = 0; | ||
563 | struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; | ||
564 | struct acpi_processor_performance *perf; | ||
565 | |||
566 | dprintk("acpi_cpufreq_cpu_init\n"); | ||
567 | |||
568 | data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); | ||
569 | if (!data) | ||
570 | return -ENOMEM; | ||
571 | |||
572 | data->acpi_data = percpu_ptr(acpi_perf_data, cpu); | ||
573 | drv_data[cpu] = data; | ||
574 | |||
575 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) | ||
576 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
577 | |||
578 | result = acpi_processor_register_performance(data->acpi_data, cpu); | ||
579 | if (result) | ||
580 | goto err_free; | ||
581 | |||
582 | perf = data->acpi_data; | ||
583 | policy->shared_type = perf->shared_type; | ||
584 | |||
585 | /* | ||
586 | * Will let policy->cpus know about dependency only when software | ||
587 | * coordination is required. | ||
588 | */ | ||
589 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || | ||
590 | policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { | ||
591 | policy->cpus = perf->shared_cpu_map; | ||
592 | } | ||
593 | |||
594 | #ifdef CONFIG_SMP | ||
595 | dmi_check_system(sw_any_bug_dmi_table); | ||
596 | if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) { | ||
597 | policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; | ||
598 | policy->cpus = cpu_core_map[cpu]; | ||
599 | } | ||
600 | #endif | ||
601 | |||
602 | /* capability check */ | ||
603 | if (perf->state_count <= 1) { | ||
604 | dprintk("No P-States\n"); | ||
605 | result = -ENODEV; | ||
606 | goto err_unreg; | ||
607 | } | ||
608 | |||
609 | if (perf->control_register.space_id != perf->status_register.space_id) { | ||
610 | result = -ENODEV; | ||
611 | goto err_unreg; | ||
612 | } | ||
613 | |||
614 | switch (perf->control_register.space_id) { | ||
615 | case ACPI_ADR_SPACE_SYSTEM_IO: | ||
616 | dprintk("SYSTEM IO addr space\n"); | ||
617 | data->cpu_feature = SYSTEM_IO_CAPABLE; | ||
618 | break; | ||
619 | case ACPI_ADR_SPACE_FIXED_HARDWARE: | ||
620 | dprintk("HARDWARE addr space\n"); | ||
621 | if (!check_est_cpu(cpu)) { | ||
622 | result = -ENODEV; | ||
623 | goto err_unreg; | ||
624 | } | ||
625 | data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; | ||
626 | break; | ||
627 | default: | ||
628 | dprintk("Unknown addr space %d\n", | ||
629 | (u32) (perf->control_register.space_id)); | ||
630 | result = -ENODEV; | ||
631 | goto err_unreg; | ||
632 | } | ||
633 | |||
634 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * | ||
635 | (perf->state_count+1), GFP_KERNEL); | ||
636 | if (!data->freq_table) { | ||
637 | result = -ENOMEM; | ||
638 | goto err_unreg; | ||
639 | } | ||
640 | |||
641 | /* detect transition latency */ | ||
642 | policy->cpuinfo.transition_latency = 0; | ||
643 | for (i=0; i<perf->state_count; i++) { | ||
644 | if ((perf->states[i].transition_latency * 1000) > | ||
645 | policy->cpuinfo.transition_latency) | ||
646 | policy->cpuinfo.transition_latency = | ||
647 | perf->states[i].transition_latency * 1000; | ||
648 | } | ||
649 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
650 | |||
651 | data->max_freq = perf->states[0].core_frequency * 1000; | ||
652 | /* table init */ | ||
653 | for (i=0; i<perf->state_count; i++) { | ||
654 | if (i>0 && perf->states[i].core_frequency >= | ||
655 | data->freq_table[valid_states-1].frequency / 1000) | ||
656 | continue; | ||
657 | |||
658 | data->freq_table[valid_states].index = i; | ||
659 | data->freq_table[valid_states].frequency = | ||
660 | perf->states[i].core_frequency * 1000; | ||
661 | valid_states++; | ||
662 | } | ||
663 | data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; | ||
664 | perf->state = 0; | ||
665 | |||
666 | result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); | ||
667 | if (result) | ||
668 | goto err_freqfree; | ||
669 | |||
670 | switch (perf->control_register.space_id) { | ||
671 | case ACPI_ADR_SPACE_SYSTEM_IO: | ||
672 | /* Current speed is unknown and not detectable by IO port */ | ||
673 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); | ||
674 | break; | ||
675 | case ACPI_ADR_SPACE_FIXED_HARDWARE: | ||
676 | acpi_cpufreq_driver.get = get_cur_freq_on_cpu; | ||
677 | policy->cur = get_cur_freq_on_cpu(cpu); | ||
678 | break; | ||
679 | default: | ||
680 | break; | ||
681 | } | ||
682 | |||
683 | /* notify BIOS that we exist */ | ||
684 | acpi_processor_notify_smm(THIS_MODULE); | ||
685 | |||
686 | /* Check for APERF/MPERF support in hardware */ | ||
687 | if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) { | ||
688 | unsigned int ecx; | ||
689 | ecx = cpuid_ecx(6); | ||
690 | if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY) | ||
691 | acpi_cpufreq_driver.getavg = get_measured_perf; | ||
692 | } | ||
693 | |||
694 | dprintk("CPU%u - ACPI performance management activated.\n", cpu); | ||
695 | for (i = 0; i < perf->state_count; i++) | ||
696 | dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", | ||
697 | (i == perf->state ? '*' : ' '), i, | ||
698 | (u32) perf->states[i].core_frequency, | ||
699 | (u32) perf->states[i].power, | ||
700 | (u32) perf->states[i].transition_latency); | ||
701 | |||
702 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); | ||
703 | |||
704 | /* | ||
705 | * the first call to ->target() should result in us actually | ||
706 | * writing something to the appropriate registers. | ||
707 | */ | ||
708 | data->resume = 1; | ||
709 | |||
710 | return result; | ||
711 | |||
712 | err_freqfree: | ||
713 | kfree(data->freq_table); | ||
714 | err_unreg: | ||
715 | acpi_processor_unregister_performance(perf, cpu); | ||
716 | err_free: | ||
717 | kfree(data); | ||
718 | drv_data[cpu] = NULL; | ||
719 | |||
720 | return result; | ||
721 | } | ||
722 | |||
723 | static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) | ||
724 | { | ||
725 | struct acpi_cpufreq_data *data = drv_data[policy->cpu]; | ||
726 | |||
727 | dprintk("acpi_cpufreq_cpu_exit\n"); | ||
728 | |||
729 | if (data) { | ||
730 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
731 | drv_data[policy->cpu] = NULL; | ||
732 | acpi_processor_unregister_performance(data->acpi_data, | ||
733 | policy->cpu); | ||
734 | kfree(data); | ||
735 | } | ||
736 | |||
737 | return 0; | ||
738 | } | ||
739 | |||
740 | static int acpi_cpufreq_resume(struct cpufreq_policy *policy) | ||
741 | { | ||
742 | struct acpi_cpufreq_data *data = drv_data[policy->cpu]; | ||
743 | |||
744 | dprintk("acpi_cpufreq_resume\n"); | ||
745 | |||
746 | data->resume = 1; | ||
747 | |||
748 | return 0; | ||
749 | } | ||
750 | |||
751 | static struct freq_attr *acpi_cpufreq_attr[] = { | ||
752 | &cpufreq_freq_attr_scaling_available_freqs, | ||
753 | NULL, | ||
754 | }; | ||
755 | |||
756 | static struct cpufreq_driver acpi_cpufreq_driver = { | ||
757 | .verify = acpi_cpufreq_verify, | ||
758 | .target = acpi_cpufreq_target, | ||
759 | .init = acpi_cpufreq_cpu_init, | ||
760 | .exit = acpi_cpufreq_cpu_exit, | ||
761 | .resume = acpi_cpufreq_resume, | ||
762 | .name = "acpi-cpufreq", | ||
763 | .owner = THIS_MODULE, | ||
764 | .attr = acpi_cpufreq_attr, | ||
765 | }; | ||
766 | |||
767 | static int __init acpi_cpufreq_init(void) | ||
768 | { | ||
769 | int ret; | ||
770 | |||
771 | dprintk("acpi_cpufreq_init\n"); | ||
772 | |||
773 | ret = acpi_cpufreq_early_init(); | ||
774 | if (ret) | ||
775 | return ret; | ||
776 | |||
777 | return cpufreq_register_driver(&acpi_cpufreq_driver); | ||
778 | } | ||
779 | |||
780 | static void __exit acpi_cpufreq_exit(void) | ||
781 | { | ||
782 | dprintk("acpi_cpufreq_exit\n"); | ||
783 | |||
784 | cpufreq_unregister_driver(&acpi_cpufreq_driver); | ||
785 | |||
786 | free_percpu(acpi_perf_data); | ||
787 | |||
788 | return; | ||
789 | } | ||
790 | |||
791 | module_param(acpi_pstate_strict, uint, 0644); | ||
792 | MODULE_PARM_DESC(acpi_pstate_strict, | ||
793 | "value 0 or non-zero. non-zero -> strict ACPI checks are " | ||
794 | "performed during frequency changes."); | ||
795 | |||
796 | late_initcall(acpi_cpufreq_init); | ||
797 | module_exit(acpi_cpufreq_exit); | ||
798 | |||
799 | MODULE_ALIAS("acpi"); | ||