aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/apb_timer.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2010-03-07 18:59:39 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2010-03-07 18:59:39 -0500
commit322aafa6645a48c3b7837ca7385f126ab78127fd (patch)
tree50f6665aedcf051cecd571183df81ba7f248014b /arch/x86/kernel/apb_timer.c
parentdd04265b028c00c365a78f9ff78a05e217f98656 (diff)
parentc7bbf52aa4fa332b84c4f2bb33e69561ee6870b4 (diff)
Merge branch 'x86-mrst-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-mrst-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits) x86, mrst: Fix whitespace breakage in apb_timer.c x86, mrst: Fix APB timer per cpu clockevent x86, mrst: Remove X86_MRST dependency on PCI_IOAPIC x86, olpc: Use pci subarch init for OLPC x86, pci: Add arch_init to x86_init abstraction x86, mrst: Add Kconfig dependencies for Moorestown x86, pci: Exclude Moorestown PCI code if CONFIG_X86_MRST=n x86, numaq: Make CONFIG_X86_NUMAQ depend on CONFIG_PCI x86, pci: Add sanity check for PCI fixed bar probing x86, legacy_irq: Remove duplicate vector assigment x86, legacy_irq: Remove left over nr_legacy_irqs x86, mrst: Platform clock setup code x86, apbt: Moorestown APB system timer driver x86, mrst: Add vrtc platform data setup code x86, mrst: Add platform timer info parsing code x86, mrst: Fill in PCI functions in x86_init layer x86, mrst: Add dummy legacy pic to platform setup x86/PCI: Moorestown PCI support x86, ioapic: Add dummy ioapic functions x86, ioapic: Early enable ioapic for timer irq ... Fixed up semantic conflict of new clocksources due to commit 17622339af25 ("clocksource: add argument to resume callback").
Diffstat (limited to 'arch/x86/kernel/apb_timer.c')
-rw-r--r--arch/x86/kernel/apb_timer.c784
1 files changed, 784 insertions, 0 deletions
diff --git a/arch/x86/kernel/apb_timer.c b/arch/x86/kernel/apb_timer.c
new file mode 100644
index 000000000000..4b7099526d2c
--- /dev/null
+++ b/arch/x86/kernel/apb_timer.c
@@ -0,0 +1,784 @@
1/*
2 * apb_timer.c: Driver for Langwell APB timers
3 *
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * Note:
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
16 * OS via SFI tables.
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
28 */
29
30#include <linux/clocksource.h>
31#include <linux/clockchips.h>
32#include <linux/delay.h>
33#include <linux/errno.h>
34#include <linux/init.h>
35#include <linux/sysdev.h>
36#include <linux/pm.h>
37#include <linux/pci.h>
38#include <linux/sfi.h>
39#include <linux/interrupt.h>
40#include <linux/cpu.h>
41#include <linux/irq.h>
42
43#include <asm/fixmap.h>
44#include <asm/apb_timer.h>
45
46#define APBT_MASK CLOCKSOURCE_MASK(32)
47#define APBT_SHIFT 22
48#define APBT_CLOCKEVENT_RATING 150
49#define APBT_CLOCKSOURCE_RATING 250
50#define APBT_MIN_DELTA_USEC 200
51
52#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
53#define APBT_CLOCKEVENT0_NUM (0)
54#define APBT_CLOCKEVENT1_NUM (1)
55#define APBT_CLOCKSOURCE_NUM (2)
56
57static unsigned long apbt_address;
58static int apb_timer_block_enabled;
59static void __iomem *apbt_virt_address;
60static int phy_cs_timer_id;
61
62/*
63 * Common DW APB timer info
64 */
65static uint64_t apbt_freq;
66
67static void apbt_set_mode(enum clock_event_mode mode,
68 struct clock_event_device *evt);
69static int apbt_next_event(unsigned long delta,
70 struct clock_event_device *evt);
71static cycle_t apbt_read_clocksource(struct clocksource *cs);
72static void apbt_restart_clocksource(struct clocksource *cs);
73
74struct apbt_dev {
75 struct clock_event_device evt;
76 unsigned int num;
77 int cpu;
78 unsigned int irq;
79 unsigned int tick;
80 unsigned int count;
81 unsigned int flags;
82 char name[10];
83};
84
85int disable_apbt_percpu __cpuinitdata;
86
87static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
88
89#ifdef CONFIG_SMP
90static unsigned int apbt_num_timers_used;
91static struct apbt_dev *apbt_devs;
92#endif
93
94static inline unsigned long apbt_readl_reg(unsigned long a)
95{
96 return readl(apbt_virt_address + a);
97}
98
99static inline void apbt_writel_reg(unsigned long d, unsigned long a)
100{
101 writel(d, apbt_virt_address + a);
102}
103
104static inline unsigned long apbt_readl(int n, unsigned long a)
105{
106 return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
107}
108
109static inline void apbt_writel(int n, unsigned long d, unsigned long a)
110{
111 writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
112}
113
114static inline void apbt_set_mapping(void)
115{
116 struct sfi_timer_table_entry *mtmr;
117
118 if (apbt_virt_address) {
119 pr_debug("APBT base already mapped\n");
120 return;
121 }
122 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
123 if (mtmr == NULL) {
124 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
125 APBT_CLOCKEVENT0_NUM);
126 return;
127 }
128 apbt_address = (unsigned long)mtmr->phys_addr;
129 if (!apbt_address) {
130 printk(KERN_WARNING "No timer base from SFI, use default\n");
131 apbt_address = APBT_DEFAULT_BASE;
132 }
133 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
134 if (apbt_virt_address) {
135 pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
136 (void *)apbt_address, (void *)apbt_virt_address);
137 } else {
138 pr_debug("Failed mapping APBT phy address at %p\n",\
139 (void *)apbt_address);
140 goto panic_noapbt;
141 }
142 apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
143 sfi_free_mtmr(mtmr);
144
145 /* Now figure out the physical timer id for clocksource device */
146 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
147 if (mtmr == NULL)
148 goto panic_noapbt;
149
150 /* Now figure out the physical timer id */
151 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
152 / APBTMRS_REG_SIZE;
153 pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
154 return;
155
156panic_noapbt:
157 panic("Failed to setup APB system timer\n");
158
159}
160
161static inline void apbt_clear_mapping(void)
162{
163 iounmap(apbt_virt_address);
164 apbt_virt_address = NULL;
165}
166
167/*
168 * APBT timer interrupt enable / disable
169 */
170static inline int is_apbt_capable(void)
171{
172 return apbt_virt_address ? 1 : 0;
173}
174
175static struct clocksource clocksource_apbt = {
176 .name = "apbt",
177 .rating = APBT_CLOCKSOURCE_RATING,
178 .read = apbt_read_clocksource,
179 .mask = APBT_MASK,
180 .shift = APBT_SHIFT,
181 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
182 .resume = apbt_restart_clocksource,
183};
184
185/* boot APB clock event device */
186static struct clock_event_device apbt_clockevent = {
187 .name = "apbt0",
188 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
189 .set_mode = apbt_set_mode,
190 .set_next_event = apbt_next_event,
191 .shift = APBT_SHIFT,
192 .irq = 0,
193 .rating = APBT_CLOCKEVENT_RATING,
194};
195
196/*
197 * if user does not want to use per CPU apb timer, just give it a lower rating
198 * than local apic timer and skip the late per cpu timer init.
199 */
200static inline int __init setup_x86_mrst_timer(char *arg)
201{
202 if (!arg)
203 return -EINVAL;
204
205 if (strcmp("apbt_only", arg) == 0)
206 disable_apbt_percpu = 0;
207 else if (strcmp("lapic_and_apbt", arg) == 0)
208 disable_apbt_percpu = 1;
209 else {
210 pr_warning("X86 MRST timer option %s not recognised"
211 " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
212 arg);
213 return -EINVAL;
214 }
215 return 0;
216}
217__setup("x86_mrst_timer=", setup_x86_mrst_timer);
218
219/*
220 * start count down from 0xffff_ffff. this is done by toggling the enable bit
221 * then load initial load count to ~0.
222 */
223static void apbt_start_counter(int n)
224{
225 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
226
227 ctrl &= ~APBTMR_CONTROL_ENABLE;
228 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
229 apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
230 /* enable, mask interrupt */
231 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
232 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
233 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
234 /* read it once to get cached counter value initialized */
235 apbt_read_clocksource(&clocksource_apbt);
236}
237
238static irqreturn_t apbt_interrupt_handler(int irq, void *data)
239{
240 struct apbt_dev *dev = (struct apbt_dev *)data;
241 struct clock_event_device *aevt = &dev->evt;
242
243 if (!aevt->event_handler) {
244 printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
245 dev->num);
246 return IRQ_NONE;
247 }
248 aevt->event_handler(aevt);
249 return IRQ_HANDLED;
250}
251
252static void apbt_restart_clocksource(struct clocksource *cs)
253{
254 apbt_start_counter(phy_cs_timer_id);
255}
256
257/* Setup IRQ routing via IOAPIC */
258#ifdef CONFIG_SMP
259static void apbt_setup_irq(struct apbt_dev *adev)
260{
261 struct irq_chip *chip;
262 struct irq_desc *desc;
263
264 /* timer0 irq has been setup early */
265 if (adev->irq == 0)
266 return;
267 desc = irq_to_desc(adev->irq);
268 chip = get_irq_chip(adev->irq);
269 disable_irq(adev->irq);
270 desc->status |= IRQ_MOVE_PCNTXT;
271 irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
272 /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */
273 set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge");
274 enable_irq(adev->irq);
275 if (system_state == SYSTEM_BOOTING)
276 if (request_irq(adev->irq, apbt_interrupt_handler,
277 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
278 adev->name, adev)) {
279 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
280 adev->num);
281 }
282}
283#endif
284
285static void apbt_enable_int(int n)
286{
287 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
288 /* clear pending intr */
289 apbt_readl(n, APBTMR_N_EOI);
290 ctrl &= ~APBTMR_CONTROL_INT;
291 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
292}
293
294static void apbt_disable_int(int n)
295{
296 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
297
298 ctrl |= APBTMR_CONTROL_INT;
299 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
300}
301
302
303static int __init apbt_clockevent_register(void)
304{
305 struct sfi_timer_table_entry *mtmr;
306 struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
307
308 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
309 if (mtmr == NULL) {
310 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
311 APBT_CLOCKEVENT0_NUM);
312 return -ENODEV;
313 }
314
315 /*
316 * We need to calculate the scaled math multiplication factor for
317 * nanosecond to apbt tick conversion.
318 * mult = (nsec/cycle)*2^APBT_SHIFT
319 */
320 apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
321 , NSEC_PER_SEC, APBT_SHIFT);
322
323 /* Calculate the min / max delta */
324 apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
325 &apbt_clockevent);
326 apbt_clockevent.min_delta_ns = clockevent_delta2ns(
327 APBT_MIN_DELTA_USEC*apbt_freq,
328 &apbt_clockevent);
329 /*
330 * Start apbt with the boot cpu mask and make it
331 * global if not used for per cpu timer.
332 */
333 apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
334 adev->num = smp_processor_id();
335 memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
336
337 if (disable_apbt_percpu) {
338 apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
339 global_clock_event = &adev->evt;
340 printk(KERN_DEBUG "%s clockevent registered as global\n",
341 global_clock_event->name);
342 }
343
344 if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
345 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
346 apbt_clockevent.name, adev)) {
347 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
348 apbt_clockevent.irq);
349 }
350
351 clockevents_register_device(&adev->evt);
352 /* Start APBT 0 interrupts */
353 apbt_enable_int(APBT_CLOCKEVENT0_NUM);
354
355 sfi_free_mtmr(mtmr);
356 return 0;
357}
358
359#ifdef CONFIG_SMP
360/* Should be called with per cpu */
361void apbt_setup_secondary_clock(void)
362{
363 struct apbt_dev *adev;
364 struct clock_event_device *aevt;
365 int cpu;
366
367 /* Don't register boot CPU clockevent */
368 cpu = smp_processor_id();
369 if (cpu == boot_cpu_id)
370 return;
371 /*
372 * We need to calculate the scaled math multiplication factor for
373 * nanosecond to apbt tick conversion.
374 * mult = (nsec/cycle)*2^APBT_SHIFT
375 */
376 printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
377 adev = &per_cpu(cpu_apbt_dev, cpu);
378 aevt = &adev->evt;
379
380 memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
381 aevt->cpumask = cpumask_of(cpu);
382 aevt->name = adev->name;
383 aevt->mode = CLOCK_EVT_MODE_UNUSED;
384
385 printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
386 cpu, aevt->name, *(u32 *)aevt->cpumask);
387
388 apbt_setup_irq(adev);
389
390 clockevents_register_device(aevt);
391
392 apbt_enable_int(cpu);
393
394 return;
395}
396
397/*
398 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
399 * cpus are disabled/enabled frequently, for performance reasons, we keep the
400 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
401 *
402 * TODO: it might be more reliable to directly disable percpu clockevent device
403 * without the notifier chain. currently, cpu 0 may get interrupts from other
404 * cpu timers during the offline process due to the ordering of notification.
405 * the extra interrupt is harmless.
406 */
407static int apbt_cpuhp_notify(struct notifier_block *n,
408 unsigned long action, void *hcpu)
409{
410 unsigned long cpu = (unsigned long)hcpu;
411 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
412
413 switch (action & 0xf) {
414 case CPU_DEAD:
415 apbt_disable_int(cpu);
416 if (system_state == SYSTEM_RUNNING)
417 pr_debug("skipping APBT CPU %lu offline\n", cpu);
418 else if (adev) {
419 pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
420 free_irq(adev->irq, adev);
421 }
422 break;
423 default:
424 pr_debug(KERN_INFO "APBT notified %lu, no action\n", action);
425 }
426 return NOTIFY_OK;
427}
428
429static __init int apbt_late_init(void)
430{
431 if (disable_apbt_percpu)
432 return 0;
433 /* This notifier should be called after workqueue is ready */
434 hotcpu_notifier(apbt_cpuhp_notify, -20);
435 return 0;
436}
437fs_initcall(apbt_late_init);
438#else
439
440void apbt_setup_secondary_clock(void) {}
441
442#endif /* CONFIG_SMP */
443
444static void apbt_set_mode(enum clock_event_mode mode,
445 struct clock_event_device *evt)
446{
447 unsigned long ctrl;
448 uint64_t delta;
449 int timer_num;
450 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
451
452 timer_num = adev->num;
453 pr_debug("%s CPU %d timer %d mode=%d\n",
454 __func__, first_cpu(*evt->cpumask), timer_num, mode);
455
456 switch (mode) {
457 case CLOCK_EVT_MODE_PERIODIC:
458 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
459 delta >>= apbt_clockevent.shift;
460 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
461 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
462 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
463 /*
464 * DW APB p. 46, have to disable timer before load counter,
465 * may cause sync problem.
466 */
467 ctrl &= ~APBTMR_CONTROL_ENABLE;
468 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
469 udelay(1);
470 pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
471 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
472 ctrl |= APBTMR_CONTROL_ENABLE;
473 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
474 break;
475 /* APB timer does not have one-shot mode, use free running mode */
476 case CLOCK_EVT_MODE_ONESHOT:
477 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
478 /*
479 * set free running mode, this mode will let timer reload max
480 * timeout which will give time (3min on 25MHz clock) to rearm
481 * the next event, therefore emulate the one-shot mode.
482 */
483 ctrl &= ~APBTMR_CONTROL_ENABLE;
484 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
485
486 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
487 /* write again to set free running mode */
488 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
489
490 /*
491 * DW APB p. 46, load counter with all 1s before starting free
492 * running mode.
493 */
494 apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
495 ctrl &= ~APBTMR_CONTROL_INT;
496 ctrl |= APBTMR_CONTROL_ENABLE;
497 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
498 break;
499
500 case CLOCK_EVT_MODE_UNUSED:
501 case CLOCK_EVT_MODE_SHUTDOWN:
502 apbt_disable_int(timer_num);
503 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
504 ctrl &= ~APBTMR_CONTROL_ENABLE;
505 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
506 break;
507
508 case CLOCK_EVT_MODE_RESUME:
509 apbt_enable_int(timer_num);
510 break;
511 }
512}
513
514static int apbt_next_event(unsigned long delta,
515 struct clock_event_device *evt)
516{
517 unsigned long ctrl;
518 int timer_num;
519
520 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
521
522 timer_num = adev->num;
523 /* Disable timer */
524 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
525 ctrl &= ~APBTMR_CONTROL_ENABLE;
526 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
527 /* write new count */
528 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
529 ctrl |= APBTMR_CONTROL_ENABLE;
530 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
531 return 0;
532}
533
534/*
535 * APB timer clock is not in sync with pclk on Langwell, which translates to
536 * unreliable read value caused by sampling error. the error does not add up
537 * overtime and only happens when sampling a 0 as a 1 by mistake. so the time
538 * would go backwards. the following code is trying to prevent time traveling
539 * backwards. little bit paranoid.
540 */
541static cycle_t apbt_read_clocksource(struct clocksource *cs)
542{
543 unsigned long t0, t1, t2;
544 static unsigned long last_read;
545
546bad_count:
547 t1 = apbt_readl(phy_cs_timer_id,
548 APBTMR_N_CURRENT_VALUE);
549 t2 = apbt_readl(phy_cs_timer_id,
550 APBTMR_N_CURRENT_VALUE);
551 if (unlikely(t1 < t2)) {
552 pr_debug("APBT: read current count error %lx:%lx:%lx\n",
553 t1, t2, t2 - t1);
554 goto bad_count;
555 }
556 /*
557 * check against cached last read, makes sure time does not go back.
558 * it could be a normal rollover but we will do tripple check anyway
559 */
560 if (unlikely(t2 > last_read)) {
561 /* check if we have a normal rollover */
562 unsigned long raw_intr_status =
563 apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
564 /*
565 * cs timer interrupt is masked but raw intr bit is set if
566 * rollover occurs. then we read EOI reg to clear it.
567 */
568 if (raw_intr_status & (1 << phy_cs_timer_id)) {
569 apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
570 goto out;
571 }
572 pr_debug("APB CS going back %lx:%lx:%lx ",
573 t2, last_read, t2 - last_read);
574bad_count_x3:
575 pr_debug(KERN_INFO "tripple check enforced\n");
576 t0 = apbt_readl(phy_cs_timer_id,
577 APBTMR_N_CURRENT_VALUE);
578 udelay(1);
579 t1 = apbt_readl(phy_cs_timer_id,
580 APBTMR_N_CURRENT_VALUE);
581 udelay(1);
582 t2 = apbt_readl(phy_cs_timer_id,
583 APBTMR_N_CURRENT_VALUE);
584 if ((t2 > t1) || (t1 > t0)) {
585 printk(KERN_ERR "Error: APB CS tripple check failed\n");
586 goto bad_count_x3;
587 }
588 }
589out:
590 last_read = t2;
591 return (cycle_t)~t2;
592}
593
594static int apbt_clocksource_register(void)
595{
596 u64 start, now;
597 cycle_t t1;
598
599 /* Start the counter, use timer 2 as source, timer 0/1 for event */
600 apbt_start_counter(phy_cs_timer_id);
601
602 /* Verify whether apbt counter works */
603 t1 = apbt_read_clocksource(&clocksource_apbt);
604 rdtscll(start);
605
606 /*
607 * We don't know the TSC frequency yet, but waiting for
608 * 200000 TSC cycles is safe:
609 * 4 GHz == 50us
610 * 1 GHz == 200us
611 */
612 do {
613 rep_nop();
614 rdtscll(now);
615 } while ((now - start) < 200000UL);
616
617 /* APBT is the only always on clocksource, it has to work! */
618 if (t1 == apbt_read_clocksource(&clocksource_apbt))
619 panic("APBT counter not counting. APBT disabled\n");
620
621 /*
622 * initialize and register APBT clocksource
623 * convert that to ns/clock cycle
624 * mult = (ns/c) * 2^APBT_SHIFT
625 */
626 clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
627 (unsigned long) apbt_freq, APBT_SHIFT);
628 clocksource_register(&clocksource_apbt);
629
630 return 0;
631}
632
633/*
634 * Early setup the APBT timer, only use timer 0 for booting then switch to
635 * per CPU timer if possible.
636 * returns 1 if per cpu apbt is setup
637 * returns 0 if no per cpu apbt is chosen
638 * panic if set up failed, this is the only platform timer on Moorestown.
639 */
640void __init apbt_time_init(void)
641{
642#ifdef CONFIG_SMP
643 int i;
644 struct sfi_timer_table_entry *p_mtmr;
645 unsigned int percpu_timer;
646 struct apbt_dev *adev;
647#endif
648
649 if (apb_timer_block_enabled)
650 return;
651 apbt_set_mapping();
652 if (apbt_virt_address) {
653 pr_debug("Found APBT version 0x%lx\n",\
654 apbt_readl_reg(APBTMRS_COMP_VERSION));
655 } else
656 goto out_noapbt;
657 /*
658 * Read the frequency and check for a sane value, for ESL model
659 * we extend the possible clock range to allow time scaling.
660 */
661
662 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
663 pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
664 goto out_noapbt;
665 }
666 if (apbt_clocksource_register()) {
667 pr_debug("APBT has failed to register clocksource\n");
668 goto out_noapbt;
669 }
670 if (!apbt_clockevent_register())
671 apb_timer_block_enabled = 1;
672 else {
673 pr_debug("APBT has failed to register clockevent\n");
674 goto out_noapbt;
675 }
676#ifdef CONFIG_SMP
677 /* kernel cmdline disable apb timer, so we will use lapic timers */
678 if (disable_apbt_percpu) {
679 printk(KERN_INFO "apbt: disabled per cpu timer\n");
680 return;
681 }
682 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
683 if (num_possible_cpus() <= sfi_mtimer_num) {
684 percpu_timer = 1;
685 apbt_num_timers_used = num_possible_cpus();
686 } else {
687 percpu_timer = 0;
688 apbt_num_timers_used = 1;
689 adev = &per_cpu(cpu_apbt_dev, 0);
690 adev->flags &= ~APBT_DEV_USED;
691 }
692 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
693
694 /* here we set up per CPU timer data structure */
695 apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
696 GFP_KERNEL);
697 if (!apbt_devs) {
698 printk(KERN_ERR "Failed to allocate APB timer devices\n");
699 return;
700 }
701 for (i = 0; i < apbt_num_timers_used; i++) {
702 adev = &per_cpu(cpu_apbt_dev, i);
703 adev->num = i;
704 adev->cpu = i;
705 p_mtmr = sfi_get_mtmr(i);
706 if (p_mtmr) {
707 adev->tick = p_mtmr->freq_hz;
708 adev->irq = p_mtmr->irq;
709 } else
710 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
711 adev->count = 0;
712 sprintf(adev->name, "apbt%d", i);
713 }
714#endif
715
716 return;
717
718out_noapbt:
719 apbt_clear_mapping();
720 apb_timer_block_enabled = 0;
721 panic("failed to enable APB timer\n");
722}
723
724static inline void apbt_disable(int n)
725{
726 if (is_apbt_capable()) {
727 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
728 ctrl &= ~APBTMR_CONTROL_ENABLE;
729 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
730 }
731}
732
733/* called before apb_timer_enable, use early map */
734unsigned long apbt_quick_calibrate()
735{
736 int i, scale;
737 u64 old, new;
738 cycle_t t1, t2;
739 unsigned long khz = 0;
740 u32 loop, shift;
741
742 apbt_set_mapping();
743 apbt_start_counter(phy_cs_timer_id);
744
745 /* check if the timer can count down, otherwise return */
746 old = apbt_read_clocksource(&clocksource_apbt);
747 i = 10000;
748 while (--i) {
749 if (old != apbt_read_clocksource(&clocksource_apbt))
750 break;
751 }
752 if (!i)
753 goto failed;
754
755 /* count 16 ms */
756 loop = (apbt_freq * 1000) << 4;
757
758 /* restart the timer to ensure it won't get to 0 in the calibration */
759 apbt_start_counter(phy_cs_timer_id);
760
761 old = apbt_read_clocksource(&clocksource_apbt);
762 old += loop;
763
764 t1 = __native_read_tsc();
765
766 do {
767 new = apbt_read_clocksource(&clocksource_apbt);
768 } while (new < old);
769
770 t2 = __native_read_tsc();
771
772 shift = 5;
773 if (unlikely(loop >> shift == 0)) {
774 printk(KERN_INFO
775 "APBT TSC calibration failed, not enough resolution\n");
776 return 0;
777 }
778 scale = (int)div_u64((t2 - t1), loop >> shift);
779 khz = (scale * apbt_freq * 1000) >> shift;
780 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
781 return khz;
782failed:
783 return 0;
784}