diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/v850/kernel |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/v850/kernel')
57 files changed, 9573 insertions, 0 deletions
diff --git a/arch/v850/kernel/Makefile b/arch/v850/kernel/Makefile new file mode 100644 index 000000000000..3930482bddc4 --- /dev/null +++ b/arch/v850/kernel/Makefile | |||
@@ -0,0 +1,40 @@ | |||
1 | # | ||
2 | # arch/v850/kernel/Makefile | ||
3 | # | ||
4 | # Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | # Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | # | ||
7 | # This file is subject to the terms and conditions of the GNU General Public | ||
8 | # License. See the file "COPYING" in the main directory of this archive | ||
9 | # for more details. | ||
10 | # | ||
11 | |||
12 | extra-y := head.o init_task.o vmlinux.lds | ||
13 | |||
14 | obj-y += intv.o entry.o process.o syscalls.o time.o semaphore.o setup.o \ | ||
15 | signal.o irq.o mach.o ptrace.o bug.o | ||
16 | obj-$(CONFIG_MODULES) += module.o v850_ksyms.o | ||
17 | # chip-specific code | ||
18 | obj-$(CONFIG_V850E_MA1) += ma.o | ||
19 | obj-$(CONFIG_V850E_ME2) += me2.o | ||
20 | obj-$(CONFIG_V850E_TEG) += teg.o | ||
21 | obj-$(CONFIG_V850E_AS85EP1) += as85ep1.o | ||
22 | obj-$(CONFIG_V850E2_ANNA) += anna.o | ||
23 | # platform-specific code | ||
24 | obj-$(CONFIG_V850E_SIM) += sim.o simcons.o | ||
25 | obj-$(CONFIG_V850E2_SIM85E2) += sim85e2.o memcons.o | ||
26 | obj-$(CONFIG_V850E2_FPGA85E2C) += fpga85e2c.o memcons.o | ||
27 | obj-$(CONFIG_RTE_CB) += rte_cb.o rte_cb_leds.o | ||
28 | obj-$(CONFIG_RTE_CB_MA1) += rte_ma1_cb.o | ||
29 | obj-$(CONFIG_RTE_CB_ME2) += rte_me2_cb.o | ||
30 | obj-$(CONFIG_RTE_CB_NB85E) += rte_nb85e_cb.o | ||
31 | obj-$(CONFIG_RTE_CB_MULTI) += rte_cb_multi.o | ||
32 | obj-$(CONFIG_RTE_MB_A_PCI) += rte_mb_a_pci.o | ||
33 | obj-$(CONFIG_RTE_GBUS_INT) += gbus_int.o | ||
34 | # feature-specific code | ||
35 | obj-$(CONFIG_V850E_INTC) += v850e_intc.o | ||
36 | obj-$(CONFIG_V850E_TIMER_D) += v850e_timer_d.o v850e_utils.o | ||
37 | obj-$(CONFIG_V850E_CACHE) += v850e_cache.o | ||
38 | obj-$(CONFIG_V850E2_CACHE) += v850e2_cache.o | ||
39 | obj-$(CONFIG_V850E_HIGHRES_TIMER) += highres_timer.o | ||
40 | obj-$(CONFIG_PROC_FS) += procfs.o | ||
diff --git a/arch/v850/kernel/anna-rom.ld b/arch/v850/kernel/anna-rom.ld new file mode 100644 index 000000000000..7c54e7e3f1b1 --- /dev/null +++ b/arch/v850/kernel/anna-rom.ld | |||
@@ -0,0 +1,16 @@ | |||
1 | /* Linker script for the Midas labs Anna V850E2 evaluation board | ||
2 | (CONFIG_V850E2_ANNA), with kernel in ROM (CONFIG_ROM_KERNEL). */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 8MB of flash ROM. */ | ||
6 | ROM : ORIGIN = 0, LENGTH = 0x00800000 | ||
7 | |||
8 | /* 1MB of static RAM. This memory is mirrored 64 times. */ | ||
9 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = SRAM_SIZE | ||
10 | /* 64MB of DRAM. */ | ||
11 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
12 | } | ||
13 | |||
14 | SECTIONS { | ||
15 | ROMK_SECTIONS(ROM, SRAM) | ||
16 | } | ||
diff --git a/arch/v850/kernel/anna.c b/arch/v850/kernel/anna.c new file mode 100644 index 000000000000..6aaeab5e8a40 --- /dev/null +++ b/arch/v850/kernel/anna.c | |||
@@ -0,0 +1,208 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/anna.c -- Anna V850E2 evaluation chip/board | ||
3 | * | ||
4 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/bootmem.h> | ||
19 | #include <linux/major.h> | ||
20 | #include <linux/irq.h> | ||
21 | |||
22 | #include <asm/machdep.h> | ||
23 | #include <asm/atomic.h> | ||
24 | #include <asm/page.h> | ||
25 | #include <asm/v850e_timer_d.h> | ||
26 | #include <asm/v850e_uart.h> | ||
27 | |||
28 | #include "mach.h" | ||
29 | |||
30 | |||
31 | /* SRAM and SDRAM are vaguely contiguous (with a big hole in between; see | ||
32 | mach_reserve_bootmem for details); use both as one big area. */ | ||
33 | #define RAM_START SRAM_ADDR | ||
34 | #define RAM_END (SDRAM_ADDR + SDRAM_SIZE) | ||
35 | |||
36 | /* The bits of this port are connected to an 8-LED bar-graph. */ | ||
37 | #define LEDS_PORT 0 | ||
38 | |||
39 | |||
40 | static void anna_led_tick (void); | ||
41 | |||
42 | |||
43 | void __init mach_early_init (void) | ||
44 | { | ||
45 | ANNA_ILBEN = 0; | ||
46 | |||
47 | V850E2_CSC(0) = 0x402F; | ||
48 | V850E2_CSC(1) = 0x4000; | ||
49 | V850E2_BPC = 0; | ||
50 | V850E2_BSC = 0xAAAA; | ||
51 | V850E2_BEC = 0; | ||
52 | |||
53 | #if 0 | ||
54 | V850E2_BHC = 0xFFFF; /* icache all memory, dcache all */ | ||
55 | #else | ||
56 | V850E2_BHC = 0; /* cache no memory */ | ||
57 | #endif | ||
58 | V850E2_BCT(0) = 0xB088; | ||
59 | V850E2_BCT(1) = 0x0008; | ||
60 | V850E2_DWC(0) = 0x0027; | ||
61 | V850E2_DWC(1) = 0; | ||
62 | V850E2_BCC = 0x0006; | ||
63 | V850E2_ASC = 0; | ||
64 | V850E2_LBS = 0x0089; | ||
65 | V850E2_SCR(3) = 0x21A9; | ||
66 | V850E2_RFS(3) = 0x8121; | ||
67 | |||
68 | v850e_intc_disable_irqs (); | ||
69 | } | ||
70 | |||
71 | void __init mach_setup (char **cmdline) | ||
72 | { | ||
73 | ANNA_PORT_PM (LEDS_PORT) = 0; /* Make all LED pins output pins. */ | ||
74 | mach_tick = anna_led_tick; | ||
75 | } | ||
76 | |||
77 | void __init mach_get_physical_ram (unsigned long *ram_start, | ||
78 | unsigned long *ram_len) | ||
79 | { | ||
80 | *ram_start = RAM_START; | ||
81 | *ram_len = RAM_END - RAM_START; | ||
82 | } | ||
83 | |||
84 | void __init mach_reserve_bootmem () | ||
85 | { | ||
86 | /* The space between SRAM and SDRAM is filled with duplicate | ||
87 | images of SRAM. Prevent the kernel from using them. */ | ||
88 | reserve_bootmem (SRAM_ADDR + SRAM_SIZE, | ||
89 | SDRAM_ADDR - (SRAM_ADDR + SRAM_SIZE)); | ||
90 | } | ||
91 | |||
92 | void mach_gettimeofday (struct timespec *tv) | ||
93 | { | ||
94 | tv->tv_sec = 0; | ||
95 | tv->tv_nsec = 0; | ||
96 | } | ||
97 | |||
98 | void __init mach_sched_init (struct irqaction *timer_action) | ||
99 | { | ||
100 | /* Start hardware timer. */ | ||
101 | v850e_timer_d_configure (0, HZ); | ||
102 | /* Install timer interrupt handler. */ | ||
103 | setup_irq (IRQ_INTCMD(0), timer_action); | ||
104 | } | ||
105 | |||
106 | static struct v850e_intc_irq_init irq_inits[] = { | ||
107 | { "IRQ", 0, NUM_MACH_IRQS, 1, 7 }, | ||
108 | { "PIN", IRQ_INTP(0), IRQ_INTP_NUM, 1, 4 }, | ||
109 | { "CCC", IRQ_INTCCC(0), IRQ_INTCCC_NUM, 1, 5 }, | ||
110 | { "CMD", IRQ_INTCMD(0), IRQ_INTCMD_NUM, 1, 5 }, | ||
111 | { "DMA", IRQ_INTDMA(0), IRQ_INTDMA_NUM, 1, 2 }, | ||
112 | { "DMXER", IRQ_INTDMXER,1, 1, 2 }, | ||
113 | { "SRE", IRQ_INTSRE(0), IRQ_INTSRE_NUM, 3, 3 }, | ||
114 | { "SR", IRQ_INTSR(0), IRQ_INTSR_NUM, 3, 4 }, | ||
115 | { "ST", IRQ_INTST(0), IRQ_INTST_NUM, 3, 5 }, | ||
116 | { 0 } | ||
117 | }; | ||
118 | #define NUM_IRQ_INITS ((sizeof irq_inits / sizeof irq_inits[0]) - 1) | ||
119 | |||
120 | static struct hw_interrupt_type hw_itypes[NUM_IRQ_INITS]; | ||
121 | |||
122 | void __init mach_init_irqs (void) | ||
123 | { | ||
124 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
125 | } | ||
126 | |||
127 | void machine_restart (char *__unused) | ||
128 | { | ||
129 | #ifdef CONFIG_RESET_GUARD | ||
130 | disable_reset_guard (); | ||
131 | #endif | ||
132 | asm ("jmp r0"); /* Jump to the reset vector. */ | ||
133 | } | ||
134 | |||
135 | EXPORT_SYMBOL(machine_restart); | ||
136 | |||
137 | void machine_halt (void) | ||
138 | { | ||
139 | #ifdef CONFIG_RESET_GUARD | ||
140 | disable_reset_guard (); | ||
141 | #endif | ||
142 | local_irq_disable (); /* Ignore all interrupts. */ | ||
143 | ANNA_PORT_IO(LEDS_PORT) = 0xAA; /* Note that we halted. */ | ||
144 | for (;;) | ||
145 | asm ("halt; nop; nop; nop; nop; nop"); | ||
146 | } | ||
147 | |||
148 | EXPORT_SYMBOL(machine_halt); | ||
149 | |||
150 | void machine_power_off (void) | ||
151 | { | ||
152 | machine_halt (); | ||
153 | } | ||
154 | |||
155 | EXPORT_SYMBOL(machine_power_off); | ||
156 | |||
157 | /* Called before configuring an on-chip UART. */ | ||
158 | void anna_uart_pre_configure (unsigned chan, unsigned cflags, unsigned baud) | ||
159 | { | ||
160 | /* The Anna connects some general-purpose I/O pins on the CPU to | ||
161 | the RTS/CTS lines of UART 1's serial connection. I/O pins P07 | ||
162 | and P37 are RTS and CTS respectively. */ | ||
163 | if (chan == 1) { | ||
164 | ANNA_PORT_PM(0) &= ~0x80; /* P07 in output mode */ | ||
165 | ANNA_PORT_PM(3) |= 0x80; /* P37 in input mode */ | ||
166 | } | ||
167 | } | ||
168 | |||
169 | /* Minimum and maximum bounds for the moving upper LED boundary in the | ||
170 | clock tick display. We can't use the last bit because it's used for | ||
171 | UART0's CTS output. */ | ||
172 | #define MIN_MAX_POS 0 | ||
173 | #define MAX_MAX_POS 6 | ||
174 | |||
175 | /* There are MAX_MAX_POS^2 - MIN_MAX_POS^2 cycles in the animation, so if | ||
176 | we pick 6 and 0 as above, we get 49 cycles, which is when divided into | ||
177 | the standard 100 value for HZ, gives us an almost 1s total time. */ | ||
178 | #define TICKS_PER_FRAME \ | ||
179 | (HZ / (MAX_MAX_POS * MAX_MAX_POS - MIN_MAX_POS * MIN_MAX_POS)) | ||
180 | |||
181 | static void anna_led_tick () | ||
182 | { | ||
183 | static unsigned counter = 0; | ||
184 | |||
185 | if (++counter == TICKS_PER_FRAME) { | ||
186 | static int pos = 0, max_pos = MAX_MAX_POS, dir = 1; | ||
187 | |||
188 | if (dir > 0 && pos == max_pos) { | ||
189 | dir = -1; | ||
190 | if (max_pos == MIN_MAX_POS) | ||
191 | max_pos = MAX_MAX_POS; | ||
192 | else | ||
193 | max_pos--; | ||
194 | } else { | ||
195 | if (dir < 0 && pos == 0) | ||
196 | dir = 1; | ||
197 | |||
198 | if (pos + dir <= max_pos) { | ||
199 | /* Each bit of port 0 has a LED. */ | ||
200 | clear_bit (pos, &ANNA_PORT_IO(LEDS_PORT)); | ||
201 | pos += dir; | ||
202 | set_bit (pos, &ANNA_PORT_IO(LEDS_PORT)); | ||
203 | } | ||
204 | } | ||
205 | |||
206 | counter = 0; | ||
207 | } | ||
208 | } | ||
diff --git a/arch/v850/kernel/anna.ld b/arch/v850/kernel/anna.ld new file mode 100644 index 000000000000..df7f80f2833d --- /dev/null +++ b/arch/v850/kernel/anna.ld | |||
@@ -0,0 +1,20 @@ | |||
1 | /* Linker script for the Midas labs Anna V850E2 evaluation board | ||
2 | (CONFIG_V850E2_ANNA). */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 256KB of internal memory (followed by one mirror). */ | ||
6 | iMEM0 : ORIGIN = 0, LENGTH = 0x00040000 | ||
7 | /* 256KB of internal memory (followed by one mirror). */ | ||
8 | iMEM1 : ORIGIN = 0x00040000, LENGTH = 0x00040000 | ||
9 | |||
10 | /* 1MB of static RAM. This memory is mirrored 64 times. */ | ||
11 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = SRAM_SIZE | ||
12 | /* 64MB of DRAM. */ | ||
13 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
14 | } | ||
15 | |||
16 | SECTIONS { | ||
17 | .intv : { INTV_CONTENTS } > iMEM0 | ||
18 | .sram : { RAMK_KRAM_CONTENTS } > SRAM | ||
19 | .root : { ROOT_FS_CONTENTS } > SDRAM | ||
20 | } | ||
diff --git a/arch/v850/kernel/as85ep1-rom.ld b/arch/v850/kernel/as85ep1-rom.ld new file mode 100644 index 000000000000..fe2a9a3ab525 --- /dev/null +++ b/arch/v850/kernel/as85ep1-rom.ld | |||
@@ -0,0 +1,21 @@ | |||
1 | /* Linker script for the NEC AS85EP1 V850E evaluation board | ||
2 | (CONFIG_V850E_AS85EP1), with kernel in ROM (CONFIG_ROM_KERNEL). */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 4MB of flash ROM. */ | ||
6 | ROM : ORIGIN = 0, LENGTH = 0x00400000 | ||
7 | |||
8 | /* 1MB of static RAM. */ | ||
9 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = SRAM_SIZE | ||
10 | |||
11 | /* About 58MB of DRAM. This can actually be at one of two | ||
12 | positions, determined by jumper JP3; we have to use the first | ||
13 | position because the second is partially out of processor | ||
14 | instruction addressing range (though in the second position | ||
15 | there's actually 64MB available). */ | ||
16 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
17 | } | ||
18 | |||
19 | SECTIONS { | ||
20 | ROMK_SECTIONS(ROM, SRAM) | ||
21 | } | ||
diff --git a/arch/v850/kernel/as85ep1.c b/arch/v850/kernel/as85ep1.c new file mode 100644 index 000000000000..4059b1df11b5 --- /dev/null +++ b/arch/v850/kernel/as85ep1.c | |||
@@ -0,0 +1,240 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/as85ep1.c -- AS85EP1 V850E evaluation chip/board | ||
3 | * | ||
4 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/bootmem.h> | ||
19 | #include <linux/major.h> | ||
20 | #include <linux/irq.h> | ||
21 | |||
22 | #include <asm/machdep.h> | ||
23 | #include <asm/atomic.h> | ||
24 | #include <asm/page.h> | ||
25 | #include <asm/v850e_timer_d.h> | ||
26 | #include <asm/v850e_uart.h> | ||
27 | |||
28 | #include "mach.h" | ||
29 | |||
30 | |||
31 | /* SRAM and SDRAM are vaguely contiguous (with a big hole in between; see | ||
32 | mach_reserve_bootmem for details); use both as one big area. */ | ||
33 | #define RAM_START SRAM_ADDR | ||
34 | #define RAM_END (SDRAM_ADDR + SDRAM_SIZE) | ||
35 | |||
36 | /* The bits of this port are connected to an 8-LED bar-graph. */ | ||
37 | #define LEDS_PORT 4 | ||
38 | |||
39 | |||
40 | static void as85ep1_led_tick (void); | ||
41 | |||
42 | extern char _intv_copy_src_start, _intv_copy_src_end; | ||
43 | extern char _intv_copy_dst_start; | ||
44 | |||
45 | |||
46 | void __init mach_early_init (void) | ||
47 | { | ||
48 | #ifndef CONFIG_ROM_KERNEL | ||
49 | const u32 *src; | ||
50 | register u32 *dst asm ("ep"); | ||
51 | #endif | ||
52 | |||
53 | AS85EP1_CSC(0) = 0x0403; | ||
54 | AS85EP1_BCT(0) = 0xB8B8; | ||
55 | AS85EP1_DWC(0) = 0x0104; | ||
56 | AS85EP1_BCC = 0x0012; | ||
57 | AS85EP1_ASC = 0; | ||
58 | AS85EP1_LBS = 0x00A9; | ||
59 | |||
60 | AS85EP1_PORT_PMC(6) = 0xFF; /* valid A0,A1,A20-A25 */ | ||
61 | AS85EP1_PORT_PMC(7) = 0x0E; /* valid CS1-CS3 */ | ||
62 | AS85EP1_PORT_PMC(9) = 0xFF; /* valid D16-D23 */ | ||
63 | AS85EP1_PORT_PMC(10) = 0xFF; /* valid D24-D31 */ | ||
64 | |||
65 | AS85EP1_RFS(1) = 0x800c; | ||
66 | AS85EP1_RFS(3) = 0x800c; | ||
67 | AS85EP1_SCR(1) = 0x20A9; | ||
68 | AS85EP1_SCR(3) = 0x20A9; | ||
69 | |||
70 | #ifndef CONFIG_ROM_KERNEL | ||
71 | /* The early chip we have is buggy, and writing the interrupt | ||
72 | vectors into low RAM may screw up, so for non-ROM kernels, we | ||
73 | only rely on the reset vector being downloaded, and copy the | ||
74 | rest of the interrupt vectors into place here. The specific bug | ||
75 | is that writing address N, where (N & 0x10) == 0x10, will _also_ | ||
76 | write to address (N - 0x10). We avoid this (effectively) by | ||
77 | writing in 16-byte chunks backwards from the end. */ | ||
78 | |||
79 | AS85EP1_IRAMM = 0x3; /* "write-mode" for the internal instruction memory */ | ||
80 | |||
81 | src = (u32 *)(((u32)&_intv_copy_src_end - 1) & ~0xF); | ||
82 | dst = (u32 *)&_intv_copy_dst_start | ||
83 | + (src - (u32 *)&_intv_copy_src_start); | ||
84 | do { | ||
85 | u32 t0 = src[0], t1 = src[1], t2 = src[2], t3 = src[3]; | ||
86 | dst[0] = t0; dst[1] = t1; dst[2] = t2; dst[3] = t3; | ||
87 | dst -= 4; | ||
88 | src -= 4; | ||
89 | } while (src > (u32 *)&_intv_copy_src_start); | ||
90 | |||
91 | AS85EP1_IRAMM = 0x0; /* "read-mode" for the internal instruction memory */ | ||
92 | #endif /* !CONFIG_ROM_KERNEL */ | ||
93 | |||
94 | v850e_intc_disable_irqs (); | ||
95 | } | ||
96 | |||
97 | void __init mach_setup (char **cmdline) | ||
98 | { | ||
99 | AS85EP1_PORT_PMC (LEDS_PORT) = 0; /* Make the LEDs port an I/O port. */ | ||
100 | AS85EP1_PORT_PM (LEDS_PORT) = 0; /* Make all the bits output pins. */ | ||
101 | mach_tick = as85ep1_led_tick; | ||
102 | } | ||
103 | |||
104 | void __init mach_get_physical_ram (unsigned long *ram_start, | ||
105 | unsigned long *ram_len) | ||
106 | { | ||
107 | *ram_start = RAM_START; | ||
108 | *ram_len = RAM_END - RAM_START; | ||
109 | } | ||
110 | |||
111 | /* Convenience macros. */ | ||
112 | #define SRAM_END (SRAM_ADDR + SRAM_SIZE) | ||
113 | #define SDRAM_END (SDRAM_ADDR + SDRAM_SIZE) | ||
114 | |||
115 | void __init mach_reserve_bootmem () | ||
116 | { | ||
117 | if (SDRAM_ADDR < RAM_END && SDRAM_ADDR > RAM_START) | ||
118 | /* We can't use the space between SRAM and SDRAM, so | ||
119 | prevent the kernel from trying. */ | ||
120 | reserve_bootmem (SRAM_END, SDRAM_ADDR - SRAM_END); | ||
121 | } | ||
122 | |||
123 | void mach_gettimeofday (struct timespec *tv) | ||
124 | { | ||
125 | tv->tv_sec = 0; | ||
126 | tv->tv_nsec = 0; | ||
127 | } | ||
128 | |||
129 | void __init mach_sched_init (struct irqaction *timer_action) | ||
130 | { | ||
131 | /* Start hardware timer. */ | ||
132 | v850e_timer_d_configure (0, HZ); | ||
133 | /* Install timer interrupt handler. */ | ||
134 | setup_irq (IRQ_INTCMD(0), timer_action); | ||
135 | } | ||
136 | |||
137 | static struct v850e_intc_irq_init irq_inits[] = { | ||
138 | { "IRQ", 0, NUM_MACH_IRQS, 1, 7 }, | ||
139 | { "CCC", IRQ_INTCCC(0), IRQ_INTCCC_NUM, 1, 5 }, | ||
140 | { "CMD", IRQ_INTCMD(0), IRQ_INTCMD_NUM, 1, 5 }, | ||
141 | { "SRE", IRQ_INTSRE(0), IRQ_INTSRE_NUM, 3, 3 }, | ||
142 | { "SR", IRQ_INTSR(0), IRQ_INTSR_NUM, 3, 4 }, | ||
143 | { "ST", IRQ_INTST(0), IRQ_INTST_NUM, 3, 5 }, | ||
144 | { 0 } | ||
145 | }; | ||
146 | #define NUM_IRQ_INITS ((sizeof irq_inits / sizeof irq_inits[0]) - 1) | ||
147 | |||
148 | static struct hw_interrupt_type hw_itypes[NUM_IRQ_INITS]; | ||
149 | |||
150 | void __init mach_init_irqs (void) | ||
151 | { | ||
152 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
153 | } | ||
154 | |||
155 | void machine_restart (char *__unused) | ||
156 | { | ||
157 | #ifdef CONFIG_RESET_GUARD | ||
158 | disable_reset_guard (); | ||
159 | #endif | ||
160 | asm ("jmp r0"); /* Jump to the reset vector. */ | ||
161 | } | ||
162 | |||
163 | EXPORT_SYMBOL(machine_restart); | ||
164 | |||
165 | void machine_halt (void) | ||
166 | { | ||
167 | #ifdef CONFIG_RESET_GUARD | ||
168 | disable_reset_guard (); | ||
169 | #endif | ||
170 | local_irq_disable (); /* Ignore all interrupts. */ | ||
171 | AS85EP1_PORT_IO (LEDS_PORT) = 0xAA; /* Note that we halted. */ | ||
172 | for (;;) | ||
173 | asm ("halt; nop; nop; nop; nop; nop"); | ||
174 | } | ||
175 | |||
176 | EXPORT_SYMBOL(machine_halt); | ||
177 | |||
178 | void machine_power_off (void) | ||
179 | { | ||
180 | machine_halt (); | ||
181 | } | ||
182 | |||
183 | EXPORT_SYMBOL(machine_power_off); | ||
184 | |||
185 | /* Called before configuring an on-chip UART. */ | ||
186 | void as85ep1_uart_pre_configure (unsigned chan, unsigned cflags, unsigned baud) | ||
187 | { | ||
188 | /* Make the shared uart/port pins be uart pins. */ | ||
189 | AS85EP1_PORT_PMC(3) |= (0x5 << chan); | ||
190 | |||
191 | /* The AS85EP1 connects some general-purpose I/O pins on the CPU to | ||
192 | the RTS/CTS lines of UART 1's serial connection. I/O pins P53 | ||
193 | and P54 are RTS and CTS respectively. */ | ||
194 | if (chan == 1) { | ||
195 | /* Put P53 & P54 in I/O port mode. */ | ||
196 | AS85EP1_PORT_PMC(5) &= ~0x18; | ||
197 | /* Make P53 an output, and P54 an input. */ | ||
198 | AS85EP1_PORT_PM(5) |= 0x10; | ||
199 | } | ||
200 | } | ||
201 | |||
202 | /* Minimum and maximum bounds for the moving upper LED boundary in the | ||
203 | clock tick display. */ | ||
204 | #define MIN_MAX_POS 0 | ||
205 | #define MAX_MAX_POS 7 | ||
206 | |||
207 | /* There are MAX_MAX_POS^2 - MIN_MAX_POS^2 cycles in the animation, so if | ||
208 | we pick 6 and 0 as above, we get 49 cycles, which is when divided into | ||
209 | the standard 100 value for HZ, gives us an almost 1s total time. */ | ||
210 | #define TICKS_PER_FRAME \ | ||
211 | (HZ / (MAX_MAX_POS * MAX_MAX_POS - MIN_MAX_POS * MIN_MAX_POS)) | ||
212 | |||
213 | static void as85ep1_led_tick () | ||
214 | { | ||
215 | static unsigned counter = 0; | ||
216 | |||
217 | if (++counter == TICKS_PER_FRAME) { | ||
218 | static int pos = 0, max_pos = MAX_MAX_POS, dir = 1; | ||
219 | |||
220 | if (dir > 0 && pos == max_pos) { | ||
221 | dir = -1; | ||
222 | if (max_pos == MIN_MAX_POS) | ||
223 | max_pos = MAX_MAX_POS; | ||
224 | else | ||
225 | max_pos--; | ||
226 | } else { | ||
227 | if (dir < 0 && pos == 0) | ||
228 | dir = 1; | ||
229 | |||
230 | if (pos + dir <= max_pos) { | ||
231 | /* Each bit of port 0 has a LED. */ | ||
232 | set_bit (pos, &AS85EP1_PORT_IO(LEDS_PORT)); | ||
233 | pos += dir; | ||
234 | clear_bit (pos, &AS85EP1_PORT_IO(LEDS_PORT)); | ||
235 | } | ||
236 | } | ||
237 | |||
238 | counter = 0; | ||
239 | } | ||
240 | } | ||
diff --git a/arch/v850/kernel/as85ep1.ld b/arch/v850/kernel/as85ep1.ld new file mode 100644 index 000000000000..ef2c4399063e --- /dev/null +++ b/arch/v850/kernel/as85ep1.ld | |||
@@ -0,0 +1,49 @@ | |||
1 | /* Linker script for the NEC AS85EP1 V850E evaluation board | ||
2 | (CONFIG_V850E_AS85EP1). */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 1MB of internal instruction memory. */ | ||
6 | iMEM0 : ORIGIN = 0, LENGTH = 0x00100000 | ||
7 | |||
8 | /* 1MB of static RAM. */ | ||
9 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = SRAM_SIZE | ||
10 | |||
11 | /* About 58MB of DRAM. This can actually be at one of two | ||
12 | positions, determined by jump JP3; we have to use the first | ||
13 | position because the second is partially out of processor | ||
14 | instruction addressing range (though in the second position | ||
15 | there's actually 64MB available). */ | ||
16 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
17 | } | ||
18 | |||
19 | SECTIONS { | ||
20 | .resetv : { | ||
21 | __intv_start = . ; | ||
22 | *(.intv.reset) /* Reset vector */ | ||
23 | } > iMEM0 | ||
24 | |||
25 | .sram : { | ||
26 | RAMK_KRAM_CONTENTS | ||
27 | |||
28 | /* We stick most of the interrupt vectors here; they'll be | ||
29 | copied into the proper location by the early init code (we | ||
30 | can't put them directly in the right place because of | ||
31 | hardware bugs). The vectors shouldn't need to be | ||
32 | relocated, so we don't have to use `> ... AT> ...' to | ||
33 | split the load/vm addresses (and we can't because of | ||
34 | problems with the loader). */ | ||
35 | . = ALIGN (0x10) ; | ||
36 | __intv_copy_src_start = . ; | ||
37 | *(.intv.common) /* Vectors common to all v850e proc. */ | ||
38 | *(.intv.mach) /* Machine-specific int. vectors. */ | ||
39 | . = ALIGN (0x10) ; | ||
40 | __intv_copy_src_end = . ; | ||
41 | } > SRAM | ||
42 | |||
43 | /* Where we end up putting the vectors. */ | ||
44 | __intv_copy_dst_start = 0x10 ; | ||
45 | __intv_copy_dst_end = __intv_copy_dst_start + (__intv_copy_src_end - __intv_copy_src_start) ; | ||
46 | __intv_end = __intv_copy_dst_end ; | ||
47 | |||
48 | .root : { ROOT_FS_CONTENTS } > SDRAM | ||
49 | } | ||
diff --git a/arch/v850/kernel/asm-consts.c b/arch/v850/kernel/asm-consts.c new file mode 100644 index 000000000000..24f291369070 --- /dev/null +++ b/arch/v850/kernel/asm-consts.c | |||
@@ -0,0 +1,61 @@ | |||
1 | /* | ||
2 | * This program is used to generate definitions needed by | ||
3 | * assembly language modules. | ||
4 | * | ||
5 | * We use the technique used in the OSF Mach kernel code: | ||
6 | * generate asm statements containing #defines, | ||
7 | * compile this file to assembler, and then extract the | ||
8 | * #defines from the assembly-language output. | ||
9 | */ | ||
10 | |||
11 | #include <linux/stddef.h> | ||
12 | #include <linux/sched.h> | ||
13 | #include <linux/kernel_stat.h> | ||
14 | #include <linux/ptrace.h> | ||
15 | #include <linux/hardirq.h> | ||
16 | #include <asm/irq.h> | ||
17 | #include <asm/errno.h> | ||
18 | |||
19 | #define DEFINE(sym, val) \ | ||
20 | asm volatile("\n->" #sym " %0 " #val : : "i" (val)) | ||
21 | |||
22 | #define BLANK() asm volatile("\n->" : : ) | ||
23 | |||
24 | int main (void) | ||
25 | { | ||
26 | /* offsets into the task struct */ | ||
27 | DEFINE (TASK_STATE, offsetof (struct task_struct, state)); | ||
28 | DEFINE (TASK_FLAGS, offsetof (struct task_struct, flags)); | ||
29 | DEFINE (TASK_PTRACE, offsetof (struct task_struct, ptrace)); | ||
30 | DEFINE (TASK_BLOCKED, offsetof (struct task_struct, blocked)); | ||
31 | DEFINE (TASK_THREAD, offsetof (struct task_struct, thread)); | ||
32 | DEFINE (TASK_THREAD_INFO, offsetof (struct task_struct, thread_info)); | ||
33 | DEFINE (TASK_MM, offsetof (struct task_struct, mm)); | ||
34 | DEFINE (TASK_ACTIVE_MM, offsetof (struct task_struct, active_mm)); | ||
35 | DEFINE (TASK_PID, offsetof (struct task_struct, pid)); | ||
36 | |||
37 | /* offsets into the kernel_stat struct */ | ||
38 | DEFINE (STAT_IRQ, offsetof (struct kernel_stat, irqs)); | ||
39 | |||
40 | |||
41 | /* signal defines */ | ||
42 | DEFINE (SIGSEGV, SIGSEGV); | ||
43 | DEFINE (SEGV_MAPERR, SEGV_MAPERR); | ||
44 | DEFINE (SIGTRAP, SIGTRAP); | ||
45 | DEFINE (SIGCHLD, SIGCHLD); | ||
46 | DEFINE (SIGILL, SIGILL); | ||
47 | DEFINE (TRAP_TRACE, TRAP_TRACE); | ||
48 | |||
49 | /* ptrace flag bits */ | ||
50 | DEFINE (PT_PTRACED, PT_PTRACED); | ||
51 | DEFINE (PT_DTRACE, PT_DTRACE); | ||
52 | |||
53 | /* error values */ | ||
54 | DEFINE (ENOSYS, ENOSYS); | ||
55 | |||
56 | /* clone flag bits */ | ||
57 | DEFINE (CLONE_VFORK, CLONE_VFORK); | ||
58 | DEFINE (CLONE_VM, CLONE_VM); | ||
59 | |||
60 | return 0; | ||
61 | } | ||
diff --git a/arch/v850/kernel/bug.c b/arch/v850/kernel/bug.c new file mode 100644 index 000000000000..c78cf750915a --- /dev/null +++ b/arch/v850/kernel/bug.c | |||
@@ -0,0 +1,142 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/bug.c -- Bug reporting functions | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/reboot.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/module.h> | ||
18 | |||
19 | #include <asm/errno.h> | ||
20 | #include <asm/ptrace.h> | ||
21 | #include <asm/processor.h> | ||
22 | #include <asm/current.h> | ||
23 | |||
24 | /* We should use __builtin_return_address, but it doesn't work in gcc-2.90 | ||
25 | (which is currently our standard compiler on the v850). */ | ||
26 | #define ret_addr() ({ register u32 lp asm ("lp"); lp; }) | ||
27 | #define stack_addr() ({ register u32 sp asm ("sp"); sp; }) | ||
28 | |||
29 | void __bug () | ||
30 | { | ||
31 | printk (KERN_CRIT "kernel BUG at PC 0x%x (SP ~0x%x)!\n", | ||
32 | ret_addr() - 4, /* - 4 for `jarl' */ | ||
33 | stack_addr()); | ||
34 | machine_halt (); | ||
35 | } | ||
36 | |||
37 | int bad_trap (int trap_num, struct pt_regs *regs) | ||
38 | { | ||
39 | printk (KERN_CRIT | ||
40 | "unimplemented trap %d called at 0x%08lx, pid %d!\n", | ||
41 | trap_num, regs->pc, current->pid); | ||
42 | return -ENOSYS; | ||
43 | } | ||
44 | |||
45 | #ifdef CONFIG_RESET_GUARD | ||
46 | void unexpected_reset (unsigned long ret_addr, unsigned long kmode, | ||
47 | struct task_struct *task, unsigned long sp) | ||
48 | { | ||
49 | printk (KERN_CRIT | ||
50 | "unexpected reset in %s mode, pid %d" | ||
51 | " (ret_addr = 0x%lx, sp = 0x%lx)\n", | ||
52 | kmode ? "kernel" : "user", | ||
53 | task ? task->pid : -1, | ||
54 | ret_addr, sp); | ||
55 | |||
56 | machine_halt (); | ||
57 | } | ||
58 | #endif /* CONFIG_RESET_GUARD */ | ||
59 | |||
60 | |||
61 | |||
62 | struct spec_reg_name { | ||
63 | const char *name; | ||
64 | int gpr; | ||
65 | }; | ||
66 | |||
67 | struct spec_reg_name spec_reg_names[] = { | ||
68 | { "sp", GPR_SP }, | ||
69 | { "gp", GPR_GP }, | ||
70 | { "tp", GPR_TP }, | ||
71 | { "ep", GPR_EP }, | ||
72 | { "lp", GPR_LP }, | ||
73 | { 0, 0 } | ||
74 | }; | ||
75 | |||
76 | void show_regs (struct pt_regs *regs) | ||
77 | { | ||
78 | int gpr_base, gpr_offs; | ||
79 | |||
80 | printk (" pc 0x%08lx psw 0x%08lx kernel_mode %d\n", | ||
81 | regs->pc, regs->psw, regs->kernel_mode); | ||
82 | printk (" ctpc 0x%08lx ctpsw 0x%08lx ctbp 0x%08lx\n", | ||
83 | regs->ctpc, regs->ctpsw, regs->ctbp); | ||
84 | |||
85 | for (gpr_base = 0; gpr_base < NUM_GPRS; gpr_base += 4) { | ||
86 | for (gpr_offs = 0; gpr_offs < 4; gpr_offs++) { | ||
87 | int gpr = gpr_base + gpr_offs; | ||
88 | long val = regs->gpr[gpr]; | ||
89 | struct spec_reg_name *srn; | ||
90 | |||
91 | for (srn = spec_reg_names; srn->name; srn++) | ||
92 | if (srn->gpr == gpr) | ||
93 | break; | ||
94 | |||
95 | if (srn->name) | ||
96 | printk ("%7s 0x%08lx", srn->name, val); | ||
97 | else | ||
98 | printk (" r%02d 0x%08lx", gpr, val); | ||
99 | } | ||
100 | |||
101 | printk ("\n"); | ||
102 | } | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * TASK is a pointer to the task whose backtrace we want to see (or NULL | ||
107 | * for current task), SP is the stack pointer of the first frame that | ||
108 | * should be shown in the back trace (or NULL if the entire call-chain of | ||
109 | * the task should be shown). | ||
110 | */ | ||
111 | void show_stack (struct task_struct *task, unsigned long *sp) | ||
112 | { | ||
113 | unsigned long addr, end; | ||
114 | |||
115 | if (sp) | ||
116 | addr = (unsigned long)sp; | ||
117 | else if (task) | ||
118 | addr = task_sp (task); | ||
119 | else | ||
120 | addr = stack_addr (); | ||
121 | |||
122 | addr = addr & ~3; | ||
123 | end = (addr + THREAD_SIZE - 1) & THREAD_MASK; | ||
124 | |||
125 | while (addr < end) { | ||
126 | printk ("%8lX: ", addr); | ||
127 | while (addr < end) { | ||
128 | printk (" %8lX", *(unsigned long *)addr); | ||
129 | addr += sizeof (unsigned long); | ||
130 | if (! (addr & 0xF)) | ||
131 | break; | ||
132 | } | ||
133 | printk ("\n"); | ||
134 | } | ||
135 | } | ||
136 | |||
137 | void dump_stack () | ||
138 | { | ||
139 | show_stack (0, 0); | ||
140 | } | ||
141 | |||
142 | EXPORT_SYMBOL(dump_stack); | ||
diff --git a/arch/v850/kernel/entry.S b/arch/v850/kernel/entry.S new file mode 100644 index 000000000000..895e27b1d839 --- /dev/null +++ b/arch/v850/kernel/entry.S | |||
@@ -0,0 +1,1121 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/entry.S -- Low-level system-call handling, trap handlers, | ||
3 | * and context-switching | ||
4 | * | ||
5 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
6 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <linux/sys.h> | ||
16 | |||
17 | #include <asm/entry.h> | ||
18 | #include <asm/current.h> | ||
19 | #include <asm/thread_info.h> | ||
20 | #include <asm/clinkage.h> | ||
21 | #include <asm/processor.h> | ||
22 | #include <asm/irq.h> | ||
23 | #include <asm/errno.h> | ||
24 | |||
25 | #include <asm/asm-consts.h> | ||
26 | |||
27 | |||
28 | /* Make a slightly more convenient alias for C_SYMBOL_NAME. */ | ||
29 | #define CSYM C_SYMBOL_NAME | ||
30 | |||
31 | |||
32 | /* The offset of the struct pt_regs in a state-save-frame on the stack. */ | ||
33 | #define PTO STATE_SAVE_PT_OFFSET | ||
34 | |||
35 | |||
36 | /* Save argument registers to the state-save-frame pointed to by EP. */ | ||
37 | #define SAVE_ARG_REGS \ | ||
38 | sst.w r6, PTO+PT_GPR(6)[ep]; \ | ||
39 | sst.w r7, PTO+PT_GPR(7)[ep]; \ | ||
40 | sst.w r8, PTO+PT_GPR(8)[ep]; \ | ||
41 | sst.w r9, PTO+PT_GPR(9)[ep] | ||
42 | /* Restore argument registers from the state-save-frame pointed to by EP. */ | ||
43 | #define RESTORE_ARG_REGS \ | ||
44 | sld.w PTO+PT_GPR(6)[ep], r6; \ | ||
45 | sld.w PTO+PT_GPR(7)[ep], r7; \ | ||
46 | sld.w PTO+PT_GPR(8)[ep], r8; \ | ||
47 | sld.w PTO+PT_GPR(9)[ep], r9 | ||
48 | |||
49 | /* Save value return registers to the state-save-frame pointed to by EP. */ | ||
50 | #define SAVE_RVAL_REGS \ | ||
51 | sst.w r10, PTO+PT_GPR(10)[ep]; \ | ||
52 | sst.w r11, PTO+PT_GPR(11)[ep] | ||
53 | /* Restore value return registers from the state-save-frame pointed to by EP. */ | ||
54 | #define RESTORE_RVAL_REGS \ | ||
55 | sld.w PTO+PT_GPR(10)[ep], r10; \ | ||
56 | sld.w PTO+PT_GPR(11)[ep], r11 | ||
57 | |||
58 | |||
59 | #define SAVE_CALL_CLOBBERED_REGS_BEFORE_ARGS \ | ||
60 | sst.w r1, PTO+PT_GPR(1)[ep]; \ | ||
61 | sst.w r5, PTO+PT_GPR(5)[ep] | ||
62 | #define SAVE_CALL_CLOBBERED_REGS_AFTER_RVAL \ | ||
63 | sst.w r12, PTO+PT_GPR(12)[ep]; \ | ||
64 | sst.w r13, PTO+PT_GPR(13)[ep]; \ | ||
65 | sst.w r14, PTO+PT_GPR(14)[ep]; \ | ||
66 | sst.w r15, PTO+PT_GPR(15)[ep]; \ | ||
67 | sst.w r16, PTO+PT_GPR(16)[ep]; \ | ||
68 | sst.w r17, PTO+PT_GPR(17)[ep]; \ | ||
69 | sst.w r18, PTO+PT_GPR(18)[ep]; \ | ||
70 | sst.w r19, PTO+PT_GPR(19)[ep] | ||
71 | #define RESTORE_CALL_CLOBBERED_REGS_BEFORE_ARGS \ | ||
72 | sld.w PTO+PT_GPR(1)[ep], r1; \ | ||
73 | sld.w PTO+PT_GPR(5)[ep], r5 | ||
74 | #define RESTORE_CALL_CLOBBERED_REGS_AFTER_RVAL \ | ||
75 | sld.w PTO+PT_GPR(12)[ep], r12; \ | ||
76 | sld.w PTO+PT_GPR(13)[ep], r13; \ | ||
77 | sld.w PTO+PT_GPR(14)[ep], r14; \ | ||
78 | sld.w PTO+PT_GPR(15)[ep], r15; \ | ||
79 | sld.w PTO+PT_GPR(16)[ep], r16; \ | ||
80 | sld.w PTO+PT_GPR(17)[ep], r17; \ | ||
81 | sld.w PTO+PT_GPR(18)[ep], r18; \ | ||
82 | sld.w PTO+PT_GPR(19)[ep], r19 | ||
83 | |||
84 | /* Save `call clobbered' registers to the state-save-frame pointed to by EP. */ | ||
85 | #define SAVE_CALL_CLOBBERED_REGS \ | ||
86 | SAVE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ | ||
87 | SAVE_ARG_REGS; \ | ||
88 | SAVE_RVAL_REGS; \ | ||
89 | SAVE_CALL_CLOBBERED_REGS_AFTER_RVAL | ||
90 | /* Restore `call clobbered' registers from the state-save-frame pointed to | ||
91 | by EP. */ | ||
92 | #define RESTORE_CALL_CLOBBERED_REGS \ | ||
93 | RESTORE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ | ||
94 | RESTORE_ARG_REGS; \ | ||
95 | RESTORE_RVAL_REGS; \ | ||
96 | RESTORE_CALL_CLOBBERED_REGS_AFTER_RVAL | ||
97 | |||
98 | /* Save `call clobbered' registers except for the return-value registers | ||
99 | to the state-save-frame pointed to by EP. */ | ||
100 | #define SAVE_CALL_CLOBBERED_REGS_NO_RVAL \ | ||
101 | SAVE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ | ||
102 | SAVE_ARG_REGS; \ | ||
103 | SAVE_CALL_CLOBBERED_REGS_AFTER_RVAL | ||
104 | /* Restore `call clobbered' registers except for the return-value registers | ||
105 | from the state-save-frame pointed to by EP. */ | ||
106 | #define RESTORE_CALL_CLOBBERED_REGS_NO_RVAL \ | ||
107 | RESTORE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ | ||
108 | RESTORE_ARG_REGS; \ | ||
109 | RESTORE_CALL_CLOBBERED_REGS_AFTER_RVAL | ||
110 | |||
111 | /* Save `call saved' registers to the state-save-frame pointed to by EP. */ | ||
112 | #define SAVE_CALL_SAVED_REGS \ | ||
113 | sst.w r2, PTO+PT_GPR(2)[ep]; \ | ||
114 | sst.w r20, PTO+PT_GPR(20)[ep]; \ | ||
115 | sst.w r21, PTO+PT_GPR(21)[ep]; \ | ||
116 | sst.w r22, PTO+PT_GPR(22)[ep]; \ | ||
117 | sst.w r23, PTO+PT_GPR(23)[ep]; \ | ||
118 | sst.w r24, PTO+PT_GPR(24)[ep]; \ | ||
119 | sst.w r25, PTO+PT_GPR(25)[ep]; \ | ||
120 | sst.w r26, PTO+PT_GPR(26)[ep]; \ | ||
121 | sst.w r27, PTO+PT_GPR(27)[ep]; \ | ||
122 | sst.w r28, PTO+PT_GPR(28)[ep]; \ | ||
123 | sst.w r29, PTO+PT_GPR(29)[ep] | ||
124 | /* Restore `call saved' registers from the state-save-frame pointed to by EP. */ | ||
125 | #define RESTORE_CALL_SAVED_REGS \ | ||
126 | sld.w PTO+PT_GPR(2)[ep], r2; \ | ||
127 | sld.w PTO+PT_GPR(20)[ep], r20; \ | ||
128 | sld.w PTO+PT_GPR(21)[ep], r21; \ | ||
129 | sld.w PTO+PT_GPR(22)[ep], r22; \ | ||
130 | sld.w PTO+PT_GPR(23)[ep], r23; \ | ||
131 | sld.w PTO+PT_GPR(24)[ep], r24; \ | ||
132 | sld.w PTO+PT_GPR(25)[ep], r25; \ | ||
133 | sld.w PTO+PT_GPR(26)[ep], r26; \ | ||
134 | sld.w PTO+PT_GPR(27)[ep], r27; \ | ||
135 | sld.w PTO+PT_GPR(28)[ep], r28; \ | ||
136 | sld.w PTO+PT_GPR(29)[ep], r29 | ||
137 | |||
138 | |||
139 | /* Save the PC stored in the special register SAVEREG to the state-save-frame | ||
140 | pointed to by EP. r19 is clobbered. */ | ||
141 | #define SAVE_PC(savereg) \ | ||
142 | stsr SR_ ## savereg, r19; \ | ||
143 | sst.w r19, PTO+PT_PC[ep] | ||
144 | /* Restore the PC from the state-save-frame pointed to by EP, to the special | ||
145 | register SAVEREG. LP is clobbered (it is used as a scratch register | ||
146 | because the POP_STATE macro restores it, and this macro is usually used | ||
147 | inside POP_STATE). */ | ||
148 | #define RESTORE_PC(savereg) \ | ||
149 | sld.w PTO+PT_PC[ep], lp; \ | ||
150 | ldsr lp, SR_ ## savereg | ||
151 | /* Save the PSW register stored in the special register SAVREG to the | ||
152 | state-save-frame pointed to by EP. r19 is clobbered. */ | ||
153 | #define SAVE_PSW(savereg) \ | ||
154 | stsr SR_ ## savereg, r19; \ | ||
155 | sst.w r19, PTO+PT_PSW[ep] | ||
156 | /* Restore the PSW register from the state-save-frame pointed to by EP, to | ||
157 | the special register SAVEREG. LP is clobbered (it is used as a scratch | ||
158 | register because the POP_STATE macro restores it, and this macro is | ||
159 | usually used inside POP_STATE). */ | ||
160 | #define RESTORE_PSW(savereg) \ | ||
161 | sld.w PTO+PT_PSW[ep], lp; \ | ||
162 | ldsr lp, SR_ ## savereg | ||
163 | |||
164 | /* Save CTPC/CTPSW/CTBP registers to the state-save-frame pointed to by REG. | ||
165 | r19 is clobbered. */ | ||
166 | #define SAVE_CT_REGS \ | ||
167 | stsr SR_CTPC, r19; \ | ||
168 | sst.w r19, PTO+PT_CTPC[ep]; \ | ||
169 | stsr SR_CTPSW, r19; \ | ||
170 | sst.w r19, PTO+PT_CTPSW[ep]; \ | ||
171 | stsr SR_CTBP, r19; \ | ||
172 | sst.w r19, PTO+PT_CTBP[ep] | ||
173 | /* Restore CTPC/CTPSW/CTBP registers from the state-save-frame pointed to by EP. | ||
174 | LP is clobbered (it is used as a scratch register because the POP_STATE | ||
175 | macro restores it, and this macro is usually used inside POP_STATE). */ | ||
176 | #define RESTORE_CT_REGS \ | ||
177 | sld.w PTO+PT_CTPC[ep], lp; \ | ||
178 | ldsr lp, SR_CTPC; \ | ||
179 | sld.w PTO+PT_CTPSW[ep], lp; \ | ||
180 | ldsr lp, SR_CTPSW; \ | ||
181 | sld.w PTO+PT_CTBP[ep], lp; \ | ||
182 | ldsr lp, SR_CTBP | ||
183 | |||
184 | |||
185 | /* Push register state, except for the stack pointer, on the stack in the | ||
186 | form of a state-save-frame (plus some extra padding), in preparation for | ||
187 | a system call. This macro makes sure that the EP, GP, and LP | ||
188 | registers are saved, and TYPE identifies the set of extra registers to | ||
189 | be saved as well. Also copies (the new value of) SP to EP. */ | ||
190 | #define PUSH_STATE(type) \ | ||
191 | addi -STATE_SAVE_SIZE, sp, sp; /* Make room on the stack. */ \ | ||
192 | st.w ep, PTO+PT_GPR(GPR_EP)[sp]; \ | ||
193 | mov sp, ep; \ | ||
194 | sst.w gp, PTO+PT_GPR(GPR_GP)[ep]; \ | ||
195 | sst.w lp, PTO+PT_GPR(GPR_LP)[ep]; \ | ||
196 | type ## _STATE_SAVER | ||
197 | /* Pop a register state pushed by PUSH_STATE, except for the stack pointer, | ||
198 | from the the stack. */ | ||
199 | #define POP_STATE(type) \ | ||
200 | mov sp, ep; \ | ||
201 | type ## _STATE_RESTORER; \ | ||
202 | sld.w PTO+PT_GPR(GPR_GP)[ep], gp; \ | ||
203 | sld.w PTO+PT_GPR(GPR_LP)[ep], lp; \ | ||
204 | sld.w PTO+PT_GPR(GPR_EP)[ep], ep; \ | ||
205 | addi STATE_SAVE_SIZE, sp, sp /* Clean up our stack space. */ | ||
206 | |||
207 | |||
208 | /* Switch to the kernel stack if necessary, and push register state on the | ||
209 | stack in the form of a state-save-frame. Also load the current task | ||
210 | pointer if switching from user mode. The stack-pointer (r3) should have | ||
211 | already been saved to the memory location SP_SAVE_LOC (the reason for | ||
212 | this is that the interrupt vectors may be beyond a 22-bit signed offset | ||
213 | jump from the actual interrupt handler, and this allows them to save the | ||
214 | stack-pointer and use that register to do an indirect jump). This macro | ||
215 | makes sure that `special' registers, system registers, and the stack | ||
216 | pointer are saved; TYPE identifies the set of extra registers to be | ||
217 | saved as well. SYSCALL_NUM is the register in which the system-call | ||
218 | number this state is for is stored (r0 if this isn't a system call). | ||
219 | Interrupts should already be disabled when calling this. */ | ||
220 | #define SAVE_STATE(type, syscall_num, sp_save_loc) \ | ||
221 | tst1 0, KM; /* See if already in kernel mode. */ \ | ||
222 | bz 1f; \ | ||
223 | ld.w sp_save_loc, sp; /* ... yes, use saved SP. */ \ | ||
224 | br 2f; \ | ||
225 | 1: ld.w KSP, sp; /* ... no, switch to kernel stack. */ \ | ||
226 | 2: PUSH_STATE(type); \ | ||
227 | ld.b KM, r19; /* Remember old kernel-mode. */ \ | ||
228 | sst.w r19, PTO+PT_KERNEL_MODE[ep]; \ | ||
229 | ld.w sp_save_loc, r19; /* Remember old SP. */ \ | ||
230 | sst.w r19, PTO+PT_GPR(GPR_SP)[ep]; \ | ||
231 | mov 1, r19; /* Now definitely in kernel-mode. */ \ | ||
232 | st.b r19, KM; \ | ||
233 | GET_CURRENT_TASK(CURRENT_TASK); /* Fetch the current task pointer. */ \ | ||
234 | /* Save away the syscall number. */ \ | ||
235 | sst.w syscall_num, PTO+PT_CUR_SYSCALL[ep] | ||
236 | |||
237 | |||
238 | /* Save register state not normally saved by PUSH_STATE for TYPE, to the | ||
239 | state-save-frame on the stack; also copies SP to EP. r19 may be trashed. */ | ||
240 | #define SAVE_EXTRA_STATE(type) \ | ||
241 | mov sp, ep; \ | ||
242 | type ## _EXTRA_STATE_SAVER | ||
243 | /* Restore register state not normally restored by POP_STATE for TYPE, | ||
244 | from the state-save-frame on the stack; also copies SP to EP. | ||
245 | r19 may be trashed. */ | ||
246 | #define RESTORE_EXTRA_STATE(type) \ | ||
247 | mov sp, ep; \ | ||
248 | type ## _EXTRA_STATE_RESTORER | ||
249 | |||
250 | /* Save any call-clobbered registers not normally saved by PUSH_STATE for | ||
251 | TYPE, to the state-save-frame on the stack. | ||
252 | EP may be trashed, but is not guaranteed to contain a copy of SP | ||
253 | (unlike after most SAVE_... macros). r19 may be trashed. */ | ||
254 | #define SAVE_EXTRA_STATE_FOR_SCHEDULE(type) \ | ||
255 | type ## _SCHEDULE_EXTRA_STATE_SAVER | ||
256 | /* Restore any call-clobbered registers not normally restored by | ||
257 | POP_STATE for TYPE, to the state-save-frame on the stack. | ||
258 | EP may be trashed, but is not guaranteed to contain a copy of SP | ||
259 | (unlike after most RESTORE_... macros). r19 may be trashed. */ | ||
260 | #define RESTORE_EXTRA_STATE_FOR_SCHEDULE(type) \ | ||
261 | type ## _SCHEDULE_EXTRA_STATE_RESTORER | ||
262 | |||
263 | |||
264 | /* These are extra_state_saver/restorer values for a user trap. Note | ||
265 | that we save the argument registers so that restarted syscalls will | ||
266 | function properly (otherwise it wouldn't be necessary), and we must | ||
267 | _not_ restore the return-value registers (so that traps can return a | ||
268 | value!), but call-clobbered registers are not saved at all, as the | ||
269 | caller of the syscall function should have saved them. */ | ||
270 | |||
271 | #define TRAP_RET reti | ||
272 | /* Traps don't save call-clobbered registers (but do still save arg regs). | ||
273 | We preserve PSw to keep long-term state, namely interrupt status (for traps | ||
274 | from kernel-mode), and the single-step flag (for user traps). */ | ||
275 | #define TRAP_STATE_SAVER \ | ||
276 | SAVE_ARG_REGS; \ | ||
277 | SAVE_PC(EIPC); \ | ||
278 | SAVE_PSW(EIPSW) | ||
279 | /* When traps return, they just leave call-clobbered registers (except for arg | ||
280 | regs) with whatever value they have from the kernel. Traps don't preserve | ||
281 | the PSW, but we zero EIPSW to ensure it doesn't contain anything dangerous | ||
282 | (in particular, the single-step flag). */ | ||
283 | #define TRAP_STATE_RESTORER \ | ||
284 | RESTORE_ARG_REGS; \ | ||
285 | RESTORE_PC(EIPC); \ | ||
286 | RESTORE_PSW(EIPSW) | ||
287 | /* Save registers not normally saved by traps. We need to save r12, even | ||
288 | though it's nominally call-clobbered, because it's used when restarting | ||
289 | a system call (the signal-handling path uses SAVE_EXTRA_STATE, and | ||
290 | expects r12 to be restored when the trap returns). */ | ||
291 | #define TRAP_EXTRA_STATE_SAVER \ | ||
292 | SAVE_RVAL_REGS; \ | ||
293 | sst.w r12, PTO+PT_GPR(12)[ep]; \ | ||
294 | SAVE_CALL_SAVED_REGS; \ | ||
295 | SAVE_CT_REGS | ||
296 | #define TRAP_EXTRA_STATE_RESTORER \ | ||
297 | RESTORE_RVAL_REGS; \ | ||
298 | sld.w PTO+PT_GPR(12)[ep], r12; \ | ||
299 | RESTORE_CALL_SAVED_REGS; \ | ||
300 | RESTORE_CT_REGS | ||
301 | /* Save registers prior to calling scheduler (just before trap returns). | ||
302 | We have to save the return-value registers to preserve the trap's return | ||
303 | value. Note that ..._SCHEDULE_EXTRA_STATE_SAVER, unlike most ..._SAVER | ||
304 | macros, is required to setup EP itself if EP is needed (this is because | ||
305 | in many cases, the macro is empty). */ | ||
306 | #define TRAP_SCHEDULE_EXTRA_STATE_SAVER \ | ||
307 | mov sp, ep; \ | ||
308 | SAVE_RVAL_REGS | ||
309 | /* Note that ..._SCHEDULE_EXTRA_STATE_RESTORER, unlike most ..._RESTORER | ||
310 | macros, is required to setup EP itself if EP is needed (this is because | ||
311 | in many cases, the macro is empty). */ | ||
312 | #define TRAP_SCHEDULE_EXTRA_STATE_RESTORER \ | ||
313 | mov sp, ep; \ | ||
314 | RESTORE_RVAL_REGS | ||
315 | |||
316 | /* Register saving/restoring for maskable interrupts. */ | ||
317 | #define IRQ_RET reti | ||
318 | #define IRQ_STATE_SAVER \ | ||
319 | SAVE_CALL_CLOBBERED_REGS; \ | ||
320 | SAVE_PC(EIPC); \ | ||
321 | SAVE_PSW(EIPSW) | ||
322 | #define IRQ_STATE_RESTORER \ | ||
323 | RESTORE_CALL_CLOBBERED_REGS; \ | ||
324 | RESTORE_PC(EIPC); \ | ||
325 | RESTORE_PSW(EIPSW) | ||
326 | #define IRQ_EXTRA_STATE_SAVER \ | ||
327 | SAVE_CALL_SAVED_REGS; \ | ||
328 | SAVE_CT_REGS | ||
329 | #define IRQ_EXTRA_STATE_RESTORER \ | ||
330 | RESTORE_CALL_SAVED_REGS; \ | ||
331 | RESTORE_CT_REGS | ||
332 | #define IRQ_SCHEDULE_EXTRA_STATE_SAVER /* nothing */ | ||
333 | #define IRQ_SCHEDULE_EXTRA_STATE_RESTORER /* nothing */ | ||
334 | |||
335 | /* Register saving/restoring for non-maskable interrupts. */ | ||
336 | #define NMI_RET reti | ||
337 | #define NMI_STATE_SAVER \ | ||
338 | SAVE_CALL_CLOBBERED_REGS; \ | ||
339 | SAVE_PC(FEPC); \ | ||
340 | SAVE_PSW(FEPSW); | ||
341 | #define NMI_STATE_RESTORER \ | ||
342 | RESTORE_CALL_CLOBBERED_REGS; \ | ||
343 | RESTORE_PC(FEPC); \ | ||
344 | RESTORE_PSW(FEPSW); | ||
345 | #define NMI_EXTRA_STATE_SAVER \ | ||
346 | SAVE_CALL_SAVED_REGS; \ | ||
347 | SAVE_CT_REGS | ||
348 | #define NMI_EXTRA_STATE_RESTORER \ | ||
349 | RESTORE_CALL_SAVED_REGS; \ | ||
350 | RESTORE_CT_REGS | ||
351 | #define NMI_SCHEDULE_EXTRA_STATE_SAVER /* nothing */ | ||
352 | #define NMI_SCHEDULE_EXTRA_STATE_RESTORER /* nothing */ | ||
353 | |||
354 | /* Register saving/restoring for debug traps. */ | ||
355 | #define DBTRAP_RET .long 0x014607E0 /* `dbret', but gas doesn't support it. */ | ||
356 | #define DBTRAP_STATE_SAVER \ | ||
357 | SAVE_CALL_CLOBBERED_REGS; \ | ||
358 | SAVE_PC(DBPC); \ | ||
359 | SAVE_PSW(DBPSW) | ||
360 | #define DBTRAP_STATE_RESTORER \ | ||
361 | RESTORE_CALL_CLOBBERED_REGS; \ | ||
362 | RESTORE_PC(DBPC); \ | ||
363 | RESTORE_PSW(DBPSW) | ||
364 | #define DBTRAP_EXTRA_STATE_SAVER \ | ||
365 | SAVE_CALL_SAVED_REGS; \ | ||
366 | SAVE_CT_REGS | ||
367 | #define DBTRAP_EXTRA_STATE_RESTORER \ | ||
368 | RESTORE_CALL_SAVED_REGS; \ | ||
369 | RESTORE_CT_REGS | ||
370 | #define DBTRAP_SCHEDULE_EXTRA_STATE_SAVER /* nothing */ | ||
371 | #define DBTRAP_SCHEDULE_EXTRA_STATE_RESTORER /* nothing */ | ||
372 | |||
373 | /* Register saving/restoring for a context switch. We don't need to save | ||
374 | too many registers, because context-switching looks like a function call | ||
375 | (via the function `switch_thread'), so callers will save any | ||
376 | call-clobbered registers themselves. We do need to save the CT regs, as | ||
377 | they're normally not saved during kernel entry (the kernel doesn't use | ||
378 | them). We save PSW so that interrupt-status state will correctly follow | ||
379 | each thread (mostly NMI vs. normal-IRQ/trap), though for the most part | ||
380 | it doesn't matter since threads are always in almost exactly the same | ||
381 | processor state during a context switch. The stack pointer and return | ||
382 | value are handled by switch_thread itself. */ | ||
383 | #define SWITCH_STATE_SAVER \ | ||
384 | SAVE_CALL_SAVED_REGS; \ | ||
385 | SAVE_PSW(PSW); \ | ||
386 | SAVE_CT_REGS | ||
387 | #define SWITCH_STATE_RESTORER \ | ||
388 | RESTORE_CALL_SAVED_REGS; \ | ||
389 | RESTORE_PSW(PSW); \ | ||
390 | RESTORE_CT_REGS | ||
391 | |||
392 | |||
393 | /* Restore register state from the state-save-frame on the stack, switch back | ||
394 | to the user stack if necessary, and return from the trap/interrupt. | ||
395 | EXTRA_STATE_RESTORER is a sequence of assembly language statements to | ||
396 | restore anything not restored by this macro. Only registers not saved by | ||
397 | the C compiler are restored (that is, R3(sp), R4(gp), R31(lp), and | ||
398 | anything restored by EXTRA_STATE_RESTORER). */ | ||
399 | #define RETURN(type) \ | ||
400 | ld.b PTO+PT_KERNEL_MODE[sp], r19; \ | ||
401 | di; /* Disable interrupts */ \ | ||
402 | cmp r19, r0; /* See if returning to kernel mode, */\ | ||
403 | bne 2f; /* ... if so, skip resched &c. */ \ | ||
404 | \ | ||
405 | /* We're returning to user mode, so check for various conditions that \ | ||
406 | trigger rescheduling. */ \ | ||
407 | GET_CURRENT_THREAD(r18); \ | ||
408 | ld.w TI_FLAGS[r18], r19; \ | ||
409 | andi _TIF_NEED_RESCHED, r19, r0; \ | ||
410 | bnz 3f; /* Call the scheduler. */ \ | ||
411 | 5: andi _TIF_SIGPENDING, r19, r18; \ | ||
412 | ld.w TASK_PTRACE[CURRENT_TASK], r19; /* ptrace flags */ \ | ||
413 | or r18, r19; /* see if either is non-zero */ \ | ||
414 | bnz 4f; /* if so, handle them */ \ | ||
415 | \ | ||
416 | /* Return to user state. */ \ | ||
417 | 1: st.b r0, KM; /* Now officially in user state. */ \ | ||
418 | \ | ||
419 | /* Final return. The stack-pointer fiddling is not needed when returning \ | ||
420 | to kernel-mode, but they don't hurt, and this way we can share the \ | ||
421 | (sometimes rather lengthy) POP_STATE macro. */ \ | ||
422 | 2: POP_STATE(type); \ | ||
423 | st.w sp, KSP; /* Save the kernel stack pointer. */ \ | ||
424 | ld.w PT_GPR(GPR_SP)-PT_SIZE[sp], sp; /* Restore stack pointer. */ \ | ||
425 | type ## _RET; /* Return from the trap/interrupt. */ \ | ||
426 | \ | ||
427 | /* Call the scheduler before returning from a syscall/trap. */ \ | ||
428 | 3: SAVE_EXTRA_STATE_FOR_SCHEDULE(type); /* Prepare to call scheduler. */ \ | ||
429 | jarl call_scheduler, lp; /* Call scheduler */ \ | ||
430 | di; /* The scheduler enables interrupts */\ | ||
431 | RESTORE_EXTRA_STATE_FOR_SCHEDULE(type); \ | ||
432 | GET_CURRENT_THREAD(r18); \ | ||
433 | ld.w TI_FLAGS[r18], r19; \ | ||
434 | br 5b; /* Continue with return path. */ \ | ||
435 | \ | ||
436 | /* Handle a signal or ptraced process return. \ | ||
437 | r18 should be non-zero if there are pending signals. */ \ | ||
438 | 4: /* Not all registers are saved by the normal trap/interrupt entry \ | ||
439 | points (for instance, call-saved registers (because the normal \ | ||
440 | C-compiler calling sequence in the kernel makes sure they're \ | ||
441 | preserved), and call-clobbered registers in the case of \ | ||
442 | traps), but signal handlers may want to examine or change the \ | ||
443 | complete register state. Here we save anything not saved by \ | ||
444 | the normal entry sequence, so that it may be safely restored \ | ||
445 | (in a possibly modified form) after do_signal returns. */ \ | ||
446 | SAVE_EXTRA_STATE(type); /* Save state not saved by entry. */ \ | ||
447 | jarl handle_signal_or_ptrace_return, lp; \ | ||
448 | RESTORE_EXTRA_STATE(type); /* Restore extra regs. */ \ | ||
449 | br 1b | ||
450 | |||
451 | |||
452 | /* Jump to the appropriate function for the system call number in r12 | ||
453 | (r12 is not preserved), or return an error if r12 is not valid. The | ||
454 | LP register should point to the location where the called function | ||
455 | should return. [note that MAKE_SYS_CALL uses label 1] */ | ||
456 | #define MAKE_SYS_CALL \ | ||
457 | /* Figure out which function to use for this system call. */ \ | ||
458 | shl 2, r12; \ | ||
459 | /* See if the system call number is valid. */ \ | ||
460 | addi lo(CSYM(sys_call_table) - sys_call_table_end), r12, r0; \ | ||
461 | bnh 1f; \ | ||
462 | mov hilo(CSYM(sys_call_table)), r19; \ | ||
463 | add r19, r12; \ | ||
464 | ld.w 0[r12], r12; \ | ||
465 | /* Make the system call. */ \ | ||
466 | jmp [r12]; \ | ||
467 | /* The syscall number is invalid, return an error. */ \ | ||
468 | 1: addi -ENOSYS, r0, r10; \ | ||
469 | jmp [lp] | ||
470 | |||
471 | |||
472 | .text | ||
473 | |||
474 | /* | ||
475 | * User trap. | ||
476 | * | ||
477 | * Trap 0 system calls are also handled here. | ||
478 | * | ||
479 | * The stack-pointer (r3) should have already been saved to the memory | ||
480 | * location ENTRY_SP (the reason for this is that the interrupt vectors may be | ||
481 | * beyond a 22-bit signed offset jump from the actual interrupt handler, and | ||
482 | * this allows them to save the stack-pointer and use that register to do an | ||
483 | * indirect jump). | ||
484 | * | ||
485 | * Syscall protocol: | ||
486 | * Syscall number in r12, args in r6-r9 | ||
487 | * Return value in r10 | ||
488 | */ | ||
489 | G_ENTRY(trap): | ||
490 | SAVE_STATE (TRAP, r12, ENTRY_SP) // Save registers. | ||
491 | stsr SR_ECR, r19 // Find out which trap it was. | ||
492 | ei // Enable interrupts. | ||
493 | mov hilo(ret_from_trap), lp // where the trap should return | ||
494 | |||
495 | // The following two shifts (1) clear out extraneous NMI data in the | ||
496 | // upper 16-bits, (2) convert the 0x40 - 0x5f range of trap ECR | ||
497 | // numbers into the (0-31) << 2 range we want, (3) set the flags. | ||
498 | shl 27, r19 // chop off all high bits | ||
499 | shr 25, r19 // scale back down and then << 2 | ||
500 | bnz 2f // See if not trap 0. | ||
501 | |||
502 | // Trap 0 is a `short' system call, skip general trap table. | ||
503 | MAKE_SYS_CALL // Jump to the syscall function. | ||
504 | |||
505 | 2: // For other traps, use a table lookup. | ||
506 | mov hilo(CSYM(trap_table)), r18 | ||
507 | add r19, r18 | ||
508 | ld.w 0[r18], r18 | ||
509 | jmp [r18] // Jump to the trap handler. | ||
510 | END(trap) | ||
511 | |||
512 | /* This is just like ret_from_trap, but first restores extra registers | ||
513 | saved by some wrappers. */ | ||
514 | L_ENTRY(restore_extra_regs_and_ret_from_trap): | ||
515 | RESTORE_EXTRA_STATE(TRAP) | ||
516 | // fall through | ||
517 | END(restore_extra_regs_and_ret_from_trap) | ||
518 | |||
519 | /* Entry point used to return from a syscall/trap. */ | ||
520 | L_ENTRY(ret_from_trap): | ||
521 | RETURN(TRAP) | ||
522 | END(ret_from_trap) | ||
523 | |||
524 | |||
525 | /* This the initial entry point for a new child thread, with an appropriate | ||
526 | stack in place that makes it look the the child is in the middle of an | ||
527 | syscall. This function is actually `returned to' from switch_thread | ||
528 | (copy_thread makes ret_from_fork the return address in each new thread's | ||
529 | saved context). */ | ||
530 | C_ENTRY(ret_from_fork): | ||
531 | mov r10, r6 // switch_thread returns the prev task. | ||
532 | jarl CSYM(schedule_tail), lp // ...which is schedule_tail's arg | ||
533 | mov r0, r10 // Child's fork call should return 0. | ||
534 | br ret_from_trap // Do normal trap return. | ||
535 | C_END(ret_from_fork) | ||
536 | |||
537 | |||
538 | /* | ||
539 | * Trap 1: `long' system calls | ||
540 | * `Long' syscall protocol: | ||
541 | * Syscall number in r12, args in r6-r9, r13-r14 | ||
542 | * Return value in r10 | ||
543 | */ | ||
544 | L_ENTRY(syscall_long): | ||
545 | // Push extra arguments on the stack. Note that by default, the trap | ||
546 | // handler reserves enough stack space for 6 arguments, so we don't | ||
547 | // have to make any additional room. | ||
548 | st.w r13, 16[sp] // arg 5 | ||
549 | st.w r14, 20[sp] // arg 6 | ||
550 | |||
551 | // Make sure r13 and r14 are preserved, in case we have to restart a | ||
552 | // system call because of a signal (ep has already been set by caller). | ||
553 | st.w r13, PTO+PT_GPR(13)[sp] | ||
554 | st.w r14, PTO+PT_GPR(13)[sp] | ||
555 | mov hilo(ret_from_long_syscall), lp | ||
556 | |||
557 | MAKE_SYS_CALL // Jump to the syscall function. | ||
558 | END(syscall_long) | ||
559 | |||
560 | /* Entry point used to return from a long syscall. Only needed to restore | ||
561 | r13/r14 if the general trap mechanism doesnt' do so. */ | ||
562 | L_ENTRY(ret_from_long_syscall): | ||
563 | ld.w PTO+PT_GPR(13)[sp], r13 // Restore the extra registers | ||
564 | ld.w PTO+PT_GPR(13)[sp], r14 | ||
565 | br ret_from_trap // The rest is the same as other traps | ||
566 | END(ret_from_long_syscall) | ||
567 | |||
568 | |||
569 | /* These syscalls need access to the struct pt_regs on the stack, so we | ||
570 | implement them in assembly (they're basically all wrappers anyway). */ | ||
571 | |||
572 | L_ENTRY(sys_fork_wrapper): | ||
573 | #ifdef CONFIG_MMU | ||
574 | addi SIGCHLD, r0, r6 // Arg 0: flags | ||
575 | ld.w PTO+PT_GPR(GPR_SP)[sp], r7 // Arg 1: child SP (use parent's) | ||
576 | movea PTO, sp, r8 // Arg 2: parent context | ||
577 | mov r0, r9 // Arg 3/4/5: 0 | ||
578 | st.w r0, 16[sp] | ||
579 | st.w r0, 20[sp] | ||
580 | mov hilo(CSYM(do_fork)), r18 // Where the real work gets done | ||
581 | br save_extra_state_tramp // Save state and go there | ||
582 | #else | ||
583 | // fork almost works, enough to trick you into looking elsewhere :-( | ||
584 | addi -EINVAL, r0, r10 | ||
585 | jmp [lp] | ||
586 | #endif | ||
587 | END(sys_fork_wrapper) | ||
588 | |||
589 | L_ENTRY(sys_vfork_wrapper): | ||
590 | addi CLONE_VFORK | CLONE_VM | SIGCHLD, r0, r6 // Arg 0: flags | ||
591 | ld.w PTO+PT_GPR(GPR_SP)[sp], r7 // Arg 1: child SP (use parent's) | ||
592 | movea PTO, sp, r8 // Arg 2: parent context | ||
593 | mov r0, r9 // Arg 3/4/5: 0 | ||
594 | st.w r0, 16[sp] | ||
595 | st.w r0, 20[sp] | ||
596 | mov hilo(CSYM(do_fork)), r18 // Where the real work gets done | ||
597 | br save_extra_state_tramp // Save state and go there | ||
598 | END(sys_vfork_wrapper) | ||
599 | |||
600 | L_ENTRY(sys_clone_wrapper): | ||
601 | ld.w PTO+PT_GPR(GPR_SP)[sp], r19// parent's stack pointer | ||
602 | cmp r7, r0 // See if child SP arg (arg 1) is 0. | ||
603 | cmov z, r19, r7, r7 // ... and use the parent's if so. | ||
604 | movea PTO, sp, r8 // Arg 2: parent context | ||
605 | mov r0, r9 // Arg 3/4/5: 0 | ||
606 | st.w r0, 16[sp] | ||
607 | st.w r0, 20[sp] | ||
608 | mov hilo(CSYM(do_fork)), r18 // Where the real work gets done | ||
609 | br save_extra_state_tramp // Save state and go there | ||
610 | END(sys_clone_wrapper) | ||
611 | |||
612 | |||
613 | L_ENTRY(sys_execve_wrapper): | ||
614 | movea PTO, sp, r9 // add user context as 4th arg | ||
615 | jr CSYM(sys_execve) // Do real work (tail-call). | ||
616 | END(sys_execve_wrapper) | ||
617 | |||
618 | |||
619 | L_ENTRY(sys_sigsuspend_wrapper): | ||
620 | movea PTO, sp, r7 // add user context as 2nd arg | ||
621 | mov hilo(CSYM(sys_sigsuspend)), r18 // syscall function | ||
622 | jarl save_extra_state_tramp, lp // Save state and do it | ||
623 | br restore_extra_regs_and_ret_from_trap | ||
624 | END(sys_sigsuspend_wrapper) | ||
625 | L_ENTRY(sys_rt_sigsuspend_wrapper): | ||
626 | movea PTO, sp, r8 // add user context as 3rd arg | ||
627 | mov hilo(CSYM(sys_rt_sigsuspend)), r18 // syscall function | ||
628 | jarl save_extra_state_tramp, lp // Save state and do it | ||
629 | br restore_extra_regs_and_ret_from_trap | ||
630 | END(sys_rt_sigsuspend_wrapper) | ||
631 | |||
632 | L_ENTRY(sys_sigreturn_wrapper): | ||
633 | movea PTO, sp, r6 // add user context as 1st arg | ||
634 | mov hilo(CSYM(sys_sigreturn)), r18 // syscall function | ||
635 | jarl save_extra_state_tramp, lp // Save state and do it | ||
636 | br restore_extra_regs_and_ret_from_trap | ||
637 | END(sys_sigreturn_wrapper) | ||
638 | L_ENTRY(sys_rt_sigreturn_wrapper): | ||
639 | movea PTO, sp, r6 // add user context as 1st arg | ||
640 | mov hilo(CSYM(sys_rt_sigreturn)), r18// syscall function | ||
641 | jarl save_extra_state_tramp, lp // Save state and do it | ||
642 | br restore_extra_regs_and_ret_from_trap | ||
643 | END(sys_rt_sigreturn_wrapper) | ||
644 | |||
645 | |||
646 | /* Save any state not saved by SAVE_STATE(TRAP), and jump to r18. | ||
647 | It's main purpose is to share the rather lengthy code sequence that | ||
648 | SAVE_STATE expands into among the above wrapper functions. */ | ||
649 | L_ENTRY(save_extra_state_tramp): | ||
650 | SAVE_EXTRA_STATE(TRAP) // Save state not saved by entry. | ||
651 | jmp [r18] // Do the work the caller wants | ||
652 | END(save_extra_state_tramp) | ||
653 | |||
654 | |||
655 | /* | ||
656 | * Hardware maskable interrupts. | ||
657 | * | ||
658 | * The stack-pointer (r3) should have already been saved to the memory | ||
659 | * location ENTRY_SP (the reason for this is that the interrupt vectors may be | ||
660 | * beyond a 22-bit signed offset jump from the actual interrupt handler, and | ||
661 | * this allows them to save the stack-pointer and use that register to do an | ||
662 | * indirect jump). | ||
663 | */ | ||
664 | G_ENTRY(irq): | ||
665 | SAVE_STATE (IRQ, r0, ENTRY_SP) // Save registers. | ||
666 | |||
667 | stsr SR_ECR, r6 // Find out which interrupt it was. | ||
668 | movea PTO, sp, r7 // User regs are arg2 | ||
669 | |||
670 | // All v850 implementations I know about encode their interrupts as | ||
671 | // multiples of 0x10, starting at 0x80 (after NMIs and software | ||
672 | // interrupts). Convert this number into a simple IRQ index for the | ||
673 | // rest of the kernel. We also clear the upper 16 bits, which hold | ||
674 | // NMI info, and don't appear to be cleared when a NMI returns. | ||
675 | shl 16, r6 // clear upper 16 bits | ||
676 | shr 20, r6 // shift back, and remove lower nibble | ||
677 | add -8, r6 // remove bias for irqs | ||
678 | |||
679 | // Call the high-level interrupt handling code. | ||
680 | jarl CSYM(handle_irq), lp | ||
681 | |||
682 | RETURN(IRQ) | ||
683 | END(irq) | ||
684 | |||
685 | |||
686 | /* | ||
687 | * Debug trap / illegal-instruction exception | ||
688 | * | ||
689 | * The stack-pointer (r3) should have already been saved to the memory | ||
690 | * location ENTRY_SP (the reason for this is that the interrupt vectors may be | ||
691 | * beyond a 22-bit signed offset jump from the actual interrupt handler, and | ||
692 | * this allows them to save the stack-pointer and use that register to do an | ||
693 | * indirect jump). | ||
694 | */ | ||
695 | G_ENTRY(dbtrap): | ||
696 | SAVE_STATE (DBTRAP, r0, ENTRY_SP)// Save registers. | ||
697 | |||
698 | /* First see if we came from kernel mode; if so, the dbtrap | ||
699 | instruction has a special meaning, to set the DIR (`debug | ||
700 | information register') register. This is because the DIR register | ||
701 | can _only_ be manipulated/read while in `debug mode,' and debug | ||
702 | mode is only active while we're inside the dbtrap handler. The | ||
703 | exact functionality is: { DIR = (DIR | r6) & ~r7; return DIR; }. */ | ||
704 | ld.b PTO+PT_KERNEL_MODE[sp], r19 | ||
705 | cmp r19, r0 | ||
706 | bz 1f | ||
707 | |||
708 | stsr SR_DIR, r10 | ||
709 | or r6, r10 | ||
710 | not r7, r7 | ||
711 | and r7, r10 | ||
712 | ldsr r10, SR_DIR | ||
713 | stsr SR_DIR, r10 // Confirm the value we set | ||
714 | st.w r10, PTO+PT_GPR(10)[sp] // return it | ||
715 | br 3f | ||
716 | |||
717 | 1: ei // Enable interrupts. | ||
718 | |||
719 | /* The default signal type we raise. */ | ||
720 | mov SIGTRAP, r6 | ||
721 | |||
722 | /* See if it's a single-step trap. */ | ||
723 | stsr SR_DBPSW, r19 | ||
724 | andi 0x0800, r19, r19 | ||
725 | bnz 2f | ||
726 | |||
727 | /* Look to see if the preceding instruction was is a dbtrap or not, | ||
728 | to decide which signal we should use. */ | ||
729 | stsr SR_DBPC, r19 // PC following trapping insn | ||
730 | ld.hu -2[r19], r19 | ||
731 | ori 0xf840, r0, r20 // DBTRAP insn | ||
732 | cmp r19, r20 // Was this trap caused by DBTRAP? | ||
733 | cmov ne, SIGILL, r6, r6 // Choose signal appropriately | ||
734 | |||
735 | /* Raise the desired signal. */ | ||
736 | 2: mov CURRENT_TASK, r7 // Arg 1: task | ||
737 | jarl CSYM(send_sig), lp // tail call | ||
738 | |||
739 | 3: RETURN(DBTRAP) | ||
740 | END(dbtrap) | ||
741 | |||
742 | |||
743 | /* | ||
744 | * Hardware non-maskable interrupts. | ||
745 | * | ||
746 | * The stack-pointer (r3) should have already been saved to the memory | ||
747 | * location ENTRY_SP (the reason for this is that the interrupt vectors may be | ||
748 | * beyond a 22-bit signed offset jump from the actual interrupt handler, and | ||
749 | * this allows them to save the stack-pointer and use that register to do an | ||
750 | * indirect jump). | ||
751 | */ | ||
752 | G_ENTRY(nmi): | ||
753 | SAVE_STATE (NMI, r0, NMI_ENTRY_SP); /* Save registers. */ | ||
754 | |||
755 | stsr SR_ECR, r6; /* Find out which nmi it was. */ | ||
756 | shr 20, r6; /* Extract NMI code in bits 20-24. */ | ||
757 | movea PTO, sp, r7; /* User regs are arg2. */ | ||
758 | |||
759 | /* Non-maskable interrupts always lie right after maskable interrupts. | ||
760 | Call the generic IRQ handler, with two arguments, the IRQ number, | ||
761 | and a pointer to the user registers, to handle the specifics. | ||
762 | (we subtract one because the first NMI has code 1). */ | ||
763 | addi FIRST_NMI - 1, r6, r6 | ||
764 | jarl CSYM(handle_irq), lp | ||
765 | |||
766 | RETURN(NMI) | ||
767 | END(nmi) | ||
768 | |||
769 | |||
770 | /* | ||
771 | * Trap with no handler | ||
772 | */ | ||
773 | L_ENTRY(bad_trap_wrapper): | ||
774 | mov r19, r6 // Arg 0: trap number | ||
775 | movea PTO, sp, r7 // Arg 1: user regs | ||
776 | jr CSYM(bad_trap) // tail call handler | ||
777 | END(bad_trap_wrapper) | ||
778 | |||
779 | |||
780 | /* | ||
781 | * Invoke the scheduler, called from the trap/irq kernel exit path. | ||
782 | * | ||
783 | * This basically just calls `schedule', but also arranges for extra | ||
784 | * registers to be saved for ptrace'd processes, so ptrace can modify them. | ||
785 | */ | ||
786 | L_ENTRY(call_scheduler): | ||
787 | ld.w TASK_PTRACE[CURRENT_TASK], r19 // See if task is ptrace'd | ||
788 | cmp r19, r0 | ||
789 | bnz 1f // ... yes, do special stuff | ||
790 | jr CSYM(schedule) // ... no, just tail-call scheduler | ||
791 | |||
792 | // Save extra regs for ptrace'd task. We want to save anything | ||
793 | // that would otherwise only be `implicitly' saved by the normal | ||
794 | // compiler calling-convention. | ||
795 | 1: mov sp, ep // Setup EP for SAVE_CALL_SAVED_REGS | ||
796 | SAVE_CALL_SAVED_REGS // Save call-saved registers to stack | ||
797 | mov lp, r20 // Save LP in a callee-saved register | ||
798 | |||
799 | jarl CSYM(schedule), lp // Call scheduler | ||
800 | |||
801 | mov r20, lp | ||
802 | mov sp, ep // We can't rely on EP after return | ||
803 | RESTORE_CALL_SAVED_REGS // Restore (possibly modified) regs | ||
804 | jmp [lp] // Return to the return path | ||
805 | END(call_scheduler) | ||
806 | |||
807 | |||
808 | /* | ||
809 | * This is an out-of-line handler for two special cases during the kernel | ||
810 | * trap/irq exit sequence: | ||
811 | * | ||
812 | * (1) If r18 is non-zero then a signal needs to be handled, which is | ||
813 | * done, and then the caller returned to. | ||
814 | * | ||
815 | * (2) If r18 is non-zero then we're returning to a ptraced process, which | ||
816 | * has several special cases -- single-stepping and trap tracing, both | ||
817 | * of which require using the `dbret' instruction to exit the kernel | ||
818 | * instead of the normal `reti' (this is because the CPU not correctly | ||
819 | * single-step after a reti). In this case, of course, this handler | ||
820 | * never returns to the caller. | ||
821 | * | ||
822 | * In either case, all registers should have been saved to the current | ||
823 | * state-save-frame on the stack, except for callee-saved registers. | ||
824 | * | ||
825 | * [These two different cases are combined merely to avoid bloating the | ||
826 | * macro-inlined code, not because they really make much sense together!] | ||
827 | */ | ||
828 | L_ENTRY(handle_signal_or_ptrace_return): | ||
829 | cmp r18, r0 // See if handling a signal | ||
830 | bz 1f // ... nope, go do ptrace return | ||
831 | |||
832 | // Handle a signal | ||
833 | mov lp, r20 // Save link-pointer | ||
834 | mov r10, r21 // Save return-values (for trap) | ||
835 | mov r11, r22 | ||
836 | |||
837 | movea PTO, sp, r6 // Arg 1: struct pt_regs *regs | ||
838 | mov r0, r7 // Arg 2: sigset_t *oldset | ||
839 | jarl CSYM(do_signal), lp // Handle the signal | ||
840 | di // sig handling enables interrupts | ||
841 | |||
842 | mov r20, lp // Restore link-pointer | ||
843 | mov r21, r10 // Restore return-values (for trap) | ||
844 | mov r22, r11 | ||
845 | ld.w TASK_PTRACE[CURRENT_TASK], r19 // check ptrace flags too | ||
846 | cmp r19, r0 | ||
847 | bnz 1f // ... some set, so look more | ||
848 | 2: jmp [lp] // ... none set, so return normally | ||
849 | |||
850 | // ptrace return | ||
851 | 1: ld.w PTO+PT_PSW[sp], r19 // Look at user-processes's flags | ||
852 | andi 0x0800, r19, r19 // See if single-step flag is set | ||
853 | bz 2b // ... nope, return normally | ||
854 | |||
855 | // Return as if from a dbtrap insn | ||
856 | st.b r0, KM // Now officially in user state. | ||
857 | POP_STATE(DBTRAP) // Restore regs | ||
858 | st.w sp, KSP // Save the kernel stack pointer. | ||
859 | ld.w PT_GPR(GPR_SP)-PT_SIZE[sp], sp // Restore user stack pointer. | ||
860 | DBTRAP_RET // Return from the trap/interrupt. | ||
861 | END(handle_signal_or_ptrace_return) | ||
862 | |||
863 | |||
864 | /* | ||
865 | * This is where we switch between two threads. The arguments are: | ||
866 | * r6 -- pointer to the struct thread for the `current' process | ||
867 | * r7 -- pointer to the struct thread for the `new' process. | ||
868 | * when this function returns, it will return to the new thread. | ||
869 | */ | ||
870 | C_ENTRY(switch_thread): | ||
871 | // Return the previous task (r10 is not clobbered by restore below) | ||
872 | mov CURRENT_TASK, r10 | ||
873 | // First, push the current processor state on the stack | ||
874 | PUSH_STATE(SWITCH) | ||
875 | // Now save the location of the kernel stack pointer for this thread; | ||
876 | // since we've pushed all other state on the stack, this is enough to | ||
877 | // restore it all later. | ||
878 | st.w sp, THREAD_KSP[r6] | ||
879 | // Now restore the stack pointer from the new process | ||
880 | ld.w THREAD_KSP[r7], sp | ||
881 | // ... and restore all state from that | ||
882 | POP_STATE(SWITCH) | ||
883 | // Update the current task pointer | ||
884 | GET_CURRENT_TASK(CURRENT_TASK) | ||
885 | // Now return into the new thread | ||
886 | jmp [lp] | ||
887 | C_END(switch_thread) | ||
888 | |||
889 | |||
890 | .data | ||
891 | |||
892 | .align 4 | ||
893 | C_DATA(trap_table): | ||
894 | .long bad_trap_wrapper // trap 0, doesn't use trap table. | ||
895 | .long syscall_long // trap 1, `long' syscall. | ||
896 | .long bad_trap_wrapper | ||
897 | .long bad_trap_wrapper | ||
898 | .long bad_trap_wrapper | ||
899 | .long bad_trap_wrapper | ||
900 | .long bad_trap_wrapper | ||
901 | .long bad_trap_wrapper | ||
902 | .long bad_trap_wrapper | ||
903 | .long bad_trap_wrapper | ||
904 | .long bad_trap_wrapper | ||
905 | .long bad_trap_wrapper | ||
906 | .long bad_trap_wrapper | ||
907 | .long bad_trap_wrapper | ||
908 | .long bad_trap_wrapper | ||
909 | .long bad_trap_wrapper | ||
910 | C_END(trap_table) | ||
911 | |||
912 | |||
913 | .section .rodata | ||
914 | |||
915 | .align 4 | ||
916 | C_DATA(sys_call_table): | ||
917 | .long CSYM(sys_restart_syscall) // 0 | ||
918 | .long CSYM(sys_exit) | ||
919 | .long sys_fork_wrapper | ||
920 | .long CSYM(sys_read) | ||
921 | .long CSYM(sys_write) | ||
922 | .long CSYM(sys_open) // 5 | ||
923 | .long CSYM(sys_close) | ||
924 | .long CSYM(sys_waitpid) | ||
925 | .long CSYM(sys_creat) | ||
926 | .long CSYM(sys_link) | ||
927 | .long CSYM(sys_unlink) // 10 | ||
928 | .long sys_execve_wrapper | ||
929 | .long CSYM(sys_chdir) | ||
930 | .long CSYM(sys_time) | ||
931 | .long CSYM(sys_mknod) | ||
932 | .long CSYM(sys_chmod) // 15 | ||
933 | .long CSYM(sys_chown) | ||
934 | .long CSYM(sys_ni_syscall) // was: break | ||
935 | .long CSYM(sys_ni_syscall) // was: oldstat (aka stat) | ||
936 | .long CSYM(sys_lseek) | ||
937 | .long CSYM(sys_getpid) // 20 | ||
938 | .long CSYM(sys_mount) | ||
939 | .long CSYM(sys_oldumount) | ||
940 | .long CSYM(sys_setuid) | ||
941 | .long CSYM(sys_getuid) | ||
942 | .long CSYM(sys_stime) // 25 | ||
943 | .long CSYM(sys_ptrace) | ||
944 | .long CSYM(sys_alarm) | ||
945 | .long CSYM(sys_ni_syscall) // was: oldfstat (aka fstat) | ||
946 | .long CSYM(sys_pause) | ||
947 | .long CSYM(sys_utime) // 30 | ||
948 | .long CSYM(sys_ni_syscall) // was: stty | ||
949 | .long CSYM(sys_ni_syscall) // was: gtty | ||
950 | .long CSYM(sys_access) | ||
951 | .long CSYM(sys_nice) | ||
952 | .long CSYM(sys_ni_syscall) // 35, was: ftime | ||
953 | .long CSYM(sys_sync) | ||
954 | .long CSYM(sys_kill) | ||
955 | .long CSYM(sys_rename) | ||
956 | .long CSYM(sys_mkdir) | ||
957 | .long CSYM(sys_rmdir) // 40 | ||
958 | .long CSYM(sys_dup) | ||
959 | .long CSYM(sys_pipe) | ||
960 | .long CSYM(sys_times) | ||
961 | .long CSYM(sys_ni_syscall) // was: prof | ||
962 | .long CSYM(sys_brk) // 45 | ||
963 | .long CSYM(sys_setgid) | ||
964 | .long CSYM(sys_getgid) | ||
965 | .long CSYM(sys_signal) | ||
966 | .long CSYM(sys_geteuid) | ||
967 | .long CSYM(sys_getegid) // 50 | ||
968 | .long CSYM(sys_acct) | ||
969 | .long CSYM(sys_umount) // recycled never used phys() | ||
970 | .long CSYM(sys_ni_syscall) // was: lock | ||
971 | .long CSYM(sys_ioctl) | ||
972 | .long CSYM(sys_fcntl) // 55 | ||
973 | .long CSYM(sys_ni_syscall) // was: mpx | ||
974 | .long CSYM(sys_setpgid) | ||
975 | .long CSYM(sys_ni_syscall) // was: ulimit | ||
976 | .long CSYM(sys_ni_syscall) | ||
977 | .long CSYM(sys_umask) // 60 | ||
978 | .long CSYM(sys_chroot) | ||
979 | .long CSYM(sys_ustat) | ||
980 | .long CSYM(sys_dup2) | ||
981 | .long CSYM(sys_getppid) | ||
982 | .long CSYM(sys_getpgrp) // 65 | ||
983 | .long CSYM(sys_setsid) | ||
984 | .long CSYM(sys_sigaction) | ||
985 | .long CSYM(sys_sgetmask) | ||
986 | .long CSYM(sys_ssetmask) | ||
987 | .long CSYM(sys_setreuid) // 70 | ||
988 | .long CSYM(sys_setregid) | ||
989 | .long sys_sigsuspend_wrapper | ||
990 | .long CSYM(sys_sigpending) | ||
991 | .long CSYM(sys_sethostname) | ||
992 | .long CSYM(sys_setrlimit) // 75 | ||
993 | .long CSYM(sys_getrlimit) | ||
994 | .long CSYM(sys_getrusage) | ||
995 | .long CSYM(sys_gettimeofday) | ||
996 | .long CSYM(sys_settimeofday) | ||
997 | .long CSYM(sys_getgroups) // 80 | ||
998 | .long CSYM(sys_setgroups) | ||
999 | .long CSYM(sys_select) | ||
1000 | .long CSYM(sys_symlink) | ||
1001 | .long CSYM(sys_ni_syscall) // was: oldlstat (aka lstat) | ||
1002 | .long CSYM(sys_readlink) // 85 | ||
1003 | .long CSYM(sys_uselib) | ||
1004 | .long CSYM(sys_swapon) | ||
1005 | .long CSYM(sys_reboot) | ||
1006 | .long CSYM(old_readdir) | ||
1007 | .long CSYM(sys_mmap) // 90 | ||
1008 | .long CSYM(sys_munmap) | ||
1009 | .long CSYM(sys_truncate) | ||
1010 | .long CSYM(sys_ftruncate) | ||
1011 | .long CSYM(sys_fchmod) | ||
1012 | .long CSYM(sys_fchown) // 95 | ||
1013 | .long CSYM(sys_getpriority) | ||
1014 | .long CSYM(sys_setpriority) | ||
1015 | .long CSYM(sys_ni_syscall) // was: profil | ||
1016 | .long CSYM(sys_statfs) | ||
1017 | .long CSYM(sys_fstatfs) // 100 | ||
1018 | .long CSYM(sys_ni_syscall) // i386: ioperm | ||
1019 | .long CSYM(sys_socketcall) | ||
1020 | .long CSYM(sys_syslog) | ||
1021 | .long CSYM(sys_setitimer) | ||
1022 | .long CSYM(sys_getitimer) // 105 | ||
1023 | .long CSYM(sys_newstat) | ||
1024 | .long CSYM(sys_newlstat) | ||
1025 | .long CSYM(sys_newfstat) | ||
1026 | .long CSYM(sys_ni_syscall) // was: olduname (aka uname) | ||
1027 | .long CSYM(sys_ni_syscall) // 110, i386: iopl | ||
1028 | .long CSYM(sys_vhangup) | ||
1029 | .long CSYM(sys_ni_syscall) // was: idle | ||
1030 | .long CSYM(sys_ni_syscall) // i386: vm86old | ||
1031 | .long CSYM(sys_wait4) | ||
1032 | .long CSYM(sys_swapoff) // 115 | ||
1033 | .long CSYM(sys_sysinfo) | ||
1034 | .long CSYM(sys_ipc) | ||
1035 | .long CSYM(sys_fsync) | ||
1036 | .long sys_sigreturn_wrapper | ||
1037 | .long sys_clone_wrapper // 120 | ||
1038 | .long CSYM(sys_setdomainname) | ||
1039 | .long CSYM(sys_newuname) | ||
1040 | .long CSYM(sys_ni_syscall) // i386: modify_ldt, m68k: cacheflush | ||
1041 | .long CSYM(sys_adjtimex) | ||
1042 | .long CSYM(sys_ni_syscall) // 125 - sys_mprotect | ||
1043 | .long CSYM(sys_sigprocmask) | ||
1044 | .long CSYM(sys_ni_syscall) // sys_create_module | ||
1045 | .long CSYM(sys_init_module) | ||
1046 | .long CSYM(sys_delete_module) | ||
1047 | .long CSYM(sys_ni_syscall) // 130 - sys_get_kernel_syms | ||
1048 | .long CSYM(sys_quotactl) | ||
1049 | .long CSYM(sys_getpgid) | ||
1050 | .long CSYM(sys_fchdir) | ||
1051 | .long CSYM(sys_bdflush) | ||
1052 | .long CSYM(sys_sysfs) // 135 | ||
1053 | .long CSYM(sys_personality) | ||
1054 | .long CSYM(sys_ni_syscall) // for afs_syscall | ||
1055 | .long CSYM(sys_setfsuid) | ||
1056 | .long CSYM(sys_setfsgid) | ||
1057 | .long CSYM(sys_llseek) // 140 | ||
1058 | .long CSYM(sys_getdents) | ||
1059 | .long CSYM(sys_select) // for backward compat; remove someday | ||
1060 | .long CSYM(sys_flock) | ||
1061 | .long CSYM(sys_ni_syscall) // sys_msync | ||
1062 | .long CSYM(sys_readv) // 145 | ||
1063 | .long CSYM(sys_writev) | ||
1064 | .long CSYM(sys_getsid) | ||
1065 | .long CSYM(sys_fdatasync) | ||
1066 | .long CSYM(sys_sysctl) | ||
1067 | .long CSYM(sys_ni_syscall) // 150 - sys_mlock | ||
1068 | .long CSYM(sys_ni_syscall) // sys_munlock | ||
1069 | .long CSYM(sys_ni_syscall) // sys_mlockall | ||
1070 | .long CSYM(sys_ni_syscall) // sys_munlockall | ||
1071 | .long CSYM(sys_sched_setparam) | ||
1072 | .long CSYM(sys_sched_getparam) // 155 | ||
1073 | .long CSYM(sys_sched_setscheduler) | ||
1074 | .long CSYM(sys_sched_getscheduler) | ||
1075 | .long CSYM(sys_sched_yield) | ||
1076 | .long CSYM(sys_sched_get_priority_max) | ||
1077 | .long CSYM(sys_sched_get_priority_min) // 160 | ||
1078 | .long CSYM(sys_sched_rr_get_interval) | ||
1079 | .long CSYM(sys_nanosleep) | ||
1080 | .long CSYM(sys_ni_syscall) // sys_mremap | ||
1081 | .long CSYM(sys_setresuid) | ||
1082 | .long CSYM(sys_getresuid) // 165 | ||
1083 | .long CSYM(sys_ni_syscall) // for vm86 | ||
1084 | .long CSYM(sys_ni_syscall) // sys_query_module | ||
1085 | .long CSYM(sys_poll) | ||
1086 | .long CSYM(sys_nfsservctl) | ||
1087 | .long CSYM(sys_setresgid) // 170 | ||
1088 | .long CSYM(sys_getresgid) | ||
1089 | .long CSYM(sys_prctl) | ||
1090 | .long sys_rt_sigreturn_wrapper | ||
1091 | .long CSYM(sys_rt_sigaction) | ||
1092 | .long CSYM(sys_rt_sigprocmask) // 175 | ||
1093 | .long CSYM(sys_rt_sigpending) | ||
1094 | .long CSYM(sys_rt_sigtimedwait) | ||
1095 | .long CSYM(sys_rt_sigqueueinfo) | ||
1096 | .long sys_rt_sigsuspend_wrapper | ||
1097 | .long CSYM(sys_pread64) // 180 | ||
1098 | .long CSYM(sys_pwrite64) | ||
1099 | .long CSYM(sys_lchown) | ||
1100 | .long CSYM(sys_getcwd) | ||
1101 | .long CSYM(sys_capget) | ||
1102 | .long CSYM(sys_capset) // 185 | ||
1103 | .long CSYM(sys_sigaltstack) | ||
1104 | .long CSYM(sys_sendfile) | ||
1105 | .long CSYM(sys_ni_syscall) // streams1 | ||
1106 | .long CSYM(sys_ni_syscall) // streams2 | ||
1107 | .long sys_vfork_wrapper // 190 | ||
1108 | .long CSYM(sys_ni_syscall) | ||
1109 | .long CSYM(sys_mmap2) | ||
1110 | .long CSYM(sys_truncate64) | ||
1111 | .long CSYM(sys_ftruncate64) | ||
1112 | .long CSYM(sys_stat64) // 195 | ||
1113 | .long CSYM(sys_lstat64) | ||
1114 | .long CSYM(sys_fstat64) | ||
1115 | .long CSYM(sys_fcntl64) | ||
1116 | .long CSYM(sys_getdents64) | ||
1117 | .long CSYM(sys_pivot_root) // 200 | ||
1118 | .long CSYM(sys_gettid) | ||
1119 | .long CSYM(sys_tkill) | ||
1120 | sys_call_table_end: | ||
1121 | C_END(sys_call_table) | ||
diff --git a/arch/v850/kernel/fpga85e2c.c b/arch/v850/kernel/fpga85e2c.c new file mode 100644 index 000000000000..4bac5149b3c2 --- /dev/null +++ b/arch/v850/kernel/fpga85e2c.c | |||
@@ -0,0 +1,171 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/fpga85e2c.h -- Machine-dependent defs for | ||
3 | * FPGA implementation of V850E2/NA85E2C | ||
4 | * | ||
5 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
6 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <linux/config.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/bootmem.h> | ||
22 | #include <linux/irq.h> | ||
23 | #include <linux/bitops.h> | ||
24 | |||
25 | #include <asm/atomic.h> | ||
26 | #include <asm/page.h> | ||
27 | #include <asm/machdep.h> | ||
28 | |||
29 | #include "mach.h" | ||
30 | |||
31 | extern void memcons_setup (void); | ||
32 | |||
33 | |||
34 | #define REG_DUMP_ADDR 0x220000 | ||
35 | |||
36 | |||
37 | extern struct irqaction reg_snap_action; /* fwd decl */ | ||
38 | |||
39 | |||
40 | void __init mach_early_init (void) | ||
41 | { | ||
42 | int i; | ||
43 | const u32 *src; | ||
44 | register u32 *dst asm ("ep"); | ||
45 | extern u32 _intv_end, _intv_load_start; | ||
46 | |||
47 | /* Set bus sizes: CS0 32-bit, CS1 16-bit, CS7 8-bit, | ||
48 | everything else 32-bit. */ | ||
49 | V850E2_BSC = 0x2AA6; | ||
50 | for (i = 2; i <= 6; i++) | ||
51 | CSDEV(i) = 0; /* 32 bit */ | ||
52 | |||
53 | /* Ensure that the simulator halts on a panic, instead of going | ||
54 | into an infinite loop inside the panic function. */ | ||
55 | panic_timeout = -1; | ||
56 | |||
57 | /* Move the interrupt vectors into their real location. Note that | ||
58 | any relocations there are relative to the real location, so we | ||
59 | don't have to fix anything up. We use a loop instead of calling | ||
60 | memcpy to keep this a leaf function (to avoid a function | ||
61 | prologue being generated). */ | ||
62 | dst = 0x10; /* &_intv_start + 0x10. */ | ||
63 | src = &_intv_load_start; | ||
64 | do { | ||
65 | u32 t0 = src[0], t1 = src[1], t2 = src[2], t3 = src[3]; | ||
66 | u32 t4 = src[4], t5 = src[5], t6 = src[6], t7 = src[7]; | ||
67 | dst[0] = t0; dst[1] = t1; dst[2] = t2; dst[3] = t3; | ||
68 | dst[4] = t4; dst[5] = t5; dst[6] = t6; dst[7] = t7; | ||
69 | dst += 8; | ||
70 | src += 8; | ||
71 | } while (dst < &_intv_end); | ||
72 | } | ||
73 | |||
74 | void __init mach_setup (char **cmdline) | ||
75 | { | ||
76 | memcons_setup (); | ||
77 | |||
78 | /* Setup up NMI0 to copy the registers to a known memory location. | ||
79 | The FGPA board has a button that produces NMI0 when pressed, so | ||
80 | this allows us to push the button, and then look at memory to see | ||
81 | what's in the registers (there's no other way to easily do so). | ||
82 | We have to use `setup_irq' instead of `request_irq' because it's | ||
83 | still too early to do memory allocation. */ | ||
84 | setup_irq (IRQ_NMI (0), ®_snap_action); | ||
85 | } | ||
86 | |||
87 | void mach_get_physical_ram (unsigned long *ram_start, unsigned long *ram_len) | ||
88 | { | ||
89 | *ram_start = ERAM_ADDR; | ||
90 | *ram_len = ERAM_SIZE; | ||
91 | } | ||
92 | |||
93 | void __init mach_sched_init (struct irqaction *timer_action) | ||
94 | { | ||
95 | /* Setup up the timer interrupt. The FPGA peripheral control | ||
96 | registers _only_ work with single-bit writes (set1/clr1)! */ | ||
97 | __clear_bit (RPU_GTMC_CE_BIT, &RPU_GTMC); | ||
98 | __clear_bit (RPU_GTMC_CLK_BIT, &RPU_GTMC); | ||
99 | __set_bit (RPU_GTMC_CE_BIT, &RPU_GTMC); | ||
100 | |||
101 | /* We use the first RPU interrupt, which occurs every 8.192ms. */ | ||
102 | setup_irq (IRQ_RPU (0), timer_action); | ||
103 | } | ||
104 | |||
105 | |||
106 | void mach_gettimeofday (struct timespec *tv) | ||
107 | { | ||
108 | tv->tv_sec = 0; | ||
109 | tv->tv_nsec = 0; | ||
110 | } | ||
111 | |||
112 | void machine_halt (void) __attribute__ ((noreturn)); | ||
113 | void machine_halt (void) | ||
114 | { | ||
115 | for (;;) { | ||
116 | DWC(0) = 0x7777; | ||
117 | DWC(1) = 0x7777; | ||
118 | ASC = 0xffff; | ||
119 | FLGREG(0) = 1; /* Halt immediately. */ | ||
120 | asm ("di; halt; nop; nop; nop; nop; nop"); | ||
121 | } | ||
122 | } | ||
123 | |||
124 | EXPORT_SYMBOL(machine_halt); | ||
125 | |||
126 | void machine_restart (char *__unused) | ||
127 | { | ||
128 | machine_halt (); | ||
129 | } | ||
130 | |||
131 | EXPORT_SYMBOL(machine_restart); | ||
132 | |||
133 | void machine_power_off (void) | ||
134 | { | ||
135 | machine_halt (); | ||
136 | } | ||
137 | |||
138 | EXPORT_SYMBOL(machine_power_off); | ||
139 | |||
140 | |||
141 | /* Interrupts */ | ||
142 | |||
143 | struct v850e_intc_irq_init irq_inits[] = { | ||
144 | { "IRQ", 0, NUM_MACH_IRQS, 1, 7 }, | ||
145 | { "RPU", IRQ_RPU(0), IRQ_RPU_NUM, 1, 6 }, | ||
146 | { 0 } | ||
147 | }; | ||
148 | #define NUM_IRQ_INITS ((sizeof irq_inits / sizeof irq_inits[0]) - 1) | ||
149 | |||
150 | struct hw_interrupt_type hw_itypes[NUM_IRQ_INITS]; | ||
151 | |||
152 | /* Initialize interrupts. */ | ||
153 | void __init mach_init_irqs (void) | ||
154 | { | ||
155 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
156 | } | ||
157 | |||
158 | |||
159 | /* An interrupt handler that copies the registers to a known memory location, | ||
160 | for debugging purposes. */ | ||
161 | |||
162 | static void make_reg_snap (int irq, void *dummy, struct pt_regs *regs) | ||
163 | { | ||
164 | (*(unsigned *)REG_DUMP_ADDR)++; | ||
165 | (*(struct pt_regs *)(REG_DUMP_ADDR + sizeof (unsigned))) = *regs; | ||
166 | } | ||
167 | |||
168 | static int reg_snap_dev_id; | ||
169 | static struct irqaction reg_snap_action = { | ||
170 | make_reg_snap, 0, CPU_MASK_NONE, "reg_snap", ®_snap_dev_id, 0 | ||
171 | }; | ||
diff --git a/arch/v850/kernel/fpga85e2c.ld b/arch/v850/kernel/fpga85e2c.ld new file mode 100644 index 000000000000..b5d4578ae411 --- /dev/null +++ b/arch/v850/kernel/fpga85e2c.ld | |||
@@ -0,0 +1,62 @@ | |||
1 | /* Linker script for the FPGA implementation of the V850E2 NA85E2C cpu core | ||
2 | (CONFIG_V850E2_FPGA85E2C). */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* Reset vector. */ | ||
6 | RESET : ORIGIN = 0, LENGTH = 0x10 | ||
7 | /* Interrupt vectors. */ | ||
8 | INTV : ORIGIN = 0x10, LENGTH = 0x470 | ||
9 | /* The `window' in RAM were we're allowed to load stuff. */ | ||
10 | RAM_LOW : ORIGIN = 0x480, LENGTH = 0x0005FB80 | ||
11 | /* Some more ram above the window were we can put bss &c. */ | ||
12 | RAM_HIGH : ORIGIN = 0x00060000, LENGTH = 0x000A0000 | ||
13 | /* This is the area visible from the outside world (we can use | ||
14 | this only for uninitialized data). */ | ||
15 | VISIBLE : ORIGIN = 0x00200000, LENGTH = 0x00060000 | ||
16 | } | ||
17 | |||
18 | SECTIONS { | ||
19 | .reset : { | ||
20 | __kram_start = . ; | ||
21 | __intv_start = . ; | ||
22 | *(.intv.reset) /* Reset vector */ | ||
23 | } > RESET | ||
24 | |||
25 | .ram_low : { | ||
26 | __r0_ram = . ; /* Must be near address 0. */ | ||
27 | . = . + 32 ; | ||
28 | |||
29 | TEXT_CONTENTS | ||
30 | DATA_CONTENTS | ||
31 | ROOT_FS_CONTENTS | ||
32 | RAMK_INIT_CONTENTS_NO_END | ||
33 | INITRAMFS_CONTENTS | ||
34 | } > RAM_LOW | ||
35 | |||
36 | /* Where the interrupt vectors are initially loaded. */ | ||
37 | __intv_load_start = . ; | ||
38 | |||
39 | .intv : { | ||
40 | *(.intv.common) /* Vectors common to all v850e proc. */ | ||
41 | *(.intv.mach) /* Machine-specific int. vectors. */ | ||
42 | __intv_end = . ; | ||
43 | } > INTV AT> RAM_LOW | ||
44 | |||
45 | .ram_high : { | ||
46 | /* This is here so that when we free init memory the | ||
47 | load-time copy of the interrupt vectors and any empty | ||
48 | space at the end of the `RAM_LOW' area is freed too. */ | ||
49 | . = ALIGN (4096); | ||
50 | __init_end = . ; | ||
51 | |||
52 | BSS_CONTENTS | ||
53 | __kram_end = . ; | ||
54 | BOOTMAP_CONTENTS | ||
55 | } > RAM_HIGH | ||
56 | |||
57 | .visible : { | ||
58 | _memcons_output = . ; | ||
59 | . = . + 0x8000 ; | ||
60 | _memcons_output_end = . ; | ||
61 | } > VISIBLE | ||
62 | } | ||
diff --git a/arch/v850/kernel/gbus_int.c b/arch/v850/kernel/gbus_int.c new file mode 100644 index 000000000000..92918b8d89ef --- /dev/null +++ b/arch/v850/kernel/gbus_int.c | |||
@@ -0,0 +1,271 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/gbus_int.c -- Midas labs GBUS interrupt support | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/types.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/irq.h> | ||
17 | #include <linux/interrupt.h> | ||
18 | #include <linux/signal.h> | ||
19 | |||
20 | #include <asm/machdep.h> | ||
21 | |||
22 | |||
23 | /* The number of shared GINT interrupts. */ | ||
24 | #define NUM_GINTS 4 | ||
25 | |||
26 | /* For each GINT interrupt, how many GBUS interrupts are using it. */ | ||
27 | static unsigned gint_num_active_irqs[NUM_GINTS] = { 0 }; | ||
28 | |||
29 | /* A table of GINTn interrupts we actually use. | ||
30 | Note that we don't use GINT0 because all the boards we support treat it | ||
31 | specially. */ | ||
32 | struct used_gint { | ||
33 | unsigned gint; | ||
34 | unsigned priority; | ||
35 | } used_gint[] = { | ||
36 | { 1, GBUS_INT_PRIORITY_HIGH }, | ||
37 | { 3, GBUS_INT_PRIORITY_LOW } | ||
38 | }; | ||
39 | #define NUM_USED_GINTS (sizeof used_gint / sizeof used_gint[0]) | ||
40 | |||
41 | /* A table of which GINT is used by each GBUS interrupts (they are | ||
42 | assigned based on priority). */ | ||
43 | static unsigned char gbus_int_gint[IRQ_GBUS_INT_NUM]; | ||
44 | |||
45 | |||
46 | /* Interrupt enabling/disabling. */ | ||
47 | |||
48 | /* Enable interrupt handling for interrupt IRQ. */ | ||
49 | void gbus_int_enable_irq (unsigned irq) | ||
50 | { | ||
51 | unsigned gint = gbus_int_gint[irq - GBUS_INT_BASE_IRQ]; | ||
52 | GBUS_INT_ENABLE (GBUS_INT_IRQ_WORD(irq), gint) | ||
53 | |= GBUS_INT_IRQ_MASK (irq); | ||
54 | } | ||
55 | |||
56 | /* Disable interrupt handling for interrupt IRQ. Note that any | ||
57 | interrupts received while disabled will be delivered once the | ||
58 | interrupt is enabled again, unless they are explicitly cleared using | ||
59 | `gbus_int_clear_pending_irq'. */ | ||
60 | void gbus_int_disable_irq (unsigned irq) | ||
61 | { | ||
62 | unsigned gint = gbus_int_gint[irq - GBUS_INT_BASE_IRQ]; | ||
63 | GBUS_INT_ENABLE (GBUS_INT_IRQ_WORD(irq), gint) | ||
64 | &= ~GBUS_INT_IRQ_MASK (irq); | ||
65 | } | ||
66 | |||
67 | /* Return true if interrupt handling for interrupt IRQ is enabled. */ | ||
68 | int gbus_int_irq_enabled (unsigned irq) | ||
69 | { | ||
70 | unsigned gint = gbus_int_gint[irq - GBUS_INT_BASE_IRQ]; | ||
71 | return (GBUS_INT_ENABLE (GBUS_INT_IRQ_WORD(irq), gint) | ||
72 | & GBUS_INT_IRQ_MASK(irq)); | ||
73 | } | ||
74 | |||
75 | /* Disable all GBUS irqs. */ | ||
76 | void gbus_int_disable_irqs () | ||
77 | { | ||
78 | unsigned w, n; | ||
79 | for (w = 0; w < GBUS_INT_NUM_WORDS; w++) | ||
80 | for (n = 0; n < IRQ_GINT_NUM; n++) | ||
81 | GBUS_INT_ENABLE (w, n) = 0; | ||
82 | } | ||
83 | |||
84 | /* Clear any pending interrupts for IRQ. */ | ||
85 | void gbus_int_clear_pending_irq (unsigned irq) | ||
86 | { | ||
87 | GBUS_INT_CLEAR (GBUS_INT_IRQ_WORD(irq)) = GBUS_INT_IRQ_MASK (irq); | ||
88 | } | ||
89 | |||
90 | /* Return true if interrupt IRQ is pending (but disabled). */ | ||
91 | int gbus_int_irq_pending (unsigned irq) | ||
92 | { | ||
93 | return (GBUS_INT_STATUS (GBUS_INT_IRQ_WORD(irq)) | ||
94 | & GBUS_INT_IRQ_MASK(irq)); | ||
95 | } | ||
96 | |||
97 | |||
98 | /* Delegating interrupts. */ | ||
99 | |||
100 | /* Handle a shared GINT interrupt by passing to the appropriate GBUS | ||
101 | interrupt handler. */ | ||
102 | static irqreturn_t gbus_int_handle_irq (int irq, void *dev_id, | ||
103 | struct pt_regs *regs) | ||
104 | { | ||
105 | unsigned w; | ||
106 | irqreturn_t rval = IRQ_NONE; | ||
107 | unsigned gint = irq - IRQ_GINT (0); | ||
108 | |||
109 | for (w = 0; w < GBUS_INT_NUM_WORDS; w++) { | ||
110 | unsigned status = GBUS_INT_STATUS (w); | ||
111 | unsigned enable = GBUS_INT_ENABLE (w, gint); | ||
112 | |||
113 | /* Only pay attention to enabled interrupts. */ | ||
114 | status &= enable; | ||
115 | if (status) { | ||
116 | irq = IRQ_GBUS_INT (w * GBUS_INT_BITS_PER_WORD); | ||
117 | do { | ||
118 | /* There's an active interrupt in word | ||
119 | W, find out which one, and call its | ||
120 | handler. */ | ||
121 | |||
122 | while (! (status & 0x1)) { | ||
123 | irq++; | ||
124 | status >>= 1; | ||
125 | } | ||
126 | status &= ~0x1; | ||
127 | |||
128 | /* Recursively call handle_irq to handle it. */ | ||
129 | handle_irq (irq, regs); | ||
130 | rval = IRQ_HANDLED; | ||
131 | } while (status); | ||
132 | } | ||
133 | } | ||
134 | |||
135 | /* Toggle the `all enable' bit back and forth, which should cause | ||
136 | another edge transition if there are any other interrupts | ||
137 | still pending, and so result in another CPU interrupt. */ | ||
138 | GBUS_INT_ENABLE (0, gint) &= ~0x1; | ||
139 | GBUS_INT_ENABLE (0, gint) |= 0x1; | ||
140 | |||
141 | return rval; | ||
142 | } | ||
143 | |||
144 | |||
145 | /* Initialize GBUS interrupt sources. */ | ||
146 | |||
147 | static void irq_nop (unsigned irq) { } | ||
148 | |||
149 | static unsigned gbus_int_startup_irq (unsigned irq) | ||
150 | { | ||
151 | unsigned gint = gbus_int_gint[irq - GBUS_INT_BASE_IRQ]; | ||
152 | |||
153 | if (gint_num_active_irqs[gint] == 0) { | ||
154 | /* First enable the CPU interrupt. */ | ||
155 | int rval = | ||
156 | request_irq (IRQ_GINT(gint), gbus_int_handle_irq, | ||
157 | SA_INTERRUPT, | ||
158 | "gbus_int_handler", | ||
159 | &gint_num_active_irqs[gint]); | ||
160 | if (rval != 0) | ||
161 | return rval; | ||
162 | } | ||
163 | |||
164 | gint_num_active_irqs[gint]++; | ||
165 | |||
166 | gbus_int_clear_pending_irq (irq); | ||
167 | gbus_int_enable_irq (irq); | ||
168 | |||
169 | return 0; | ||
170 | } | ||
171 | |||
172 | static void gbus_int_shutdown_irq (unsigned irq) | ||
173 | { | ||
174 | unsigned gint = gbus_int_gint[irq - GBUS_INT_BASE_IRQ]; | ||
175 | |||
176 | gbus_int_disable_irq (irq); | ||
177 | |||
178 | if (--gint_num_active_irqs[gint] == 0) | ||
179 | /* Disable the CPU interrupt. */ | ||
180 | free_irq (IRQ_GINT(gint), &gint_num_active_irqs[gint]); | ||
181 | } | ||
182 | |||
183 | /* Initialize HW_IRQ_TYPES for INTC-controlled irqs described in array | ||
184 | INITS (which is terminated by an entry with the name field == 0). */ | ||
185 | void __init gbus_int_init_irq_types (struct gbus_int_irq_init *inits, | ||
186 | struct hw_interrupt_type *hw_irq_types) | ||
187 | { | ||
188 | struct gbus_int_irq_init *init; | ||
189 | for (init = inits; init->name; init++) { | ||
190 | unsigned i; | ||
191 | struct hw_interrupt_type *hwit = hw_irq_types++; | ||
192 | |||
193 | hwit->typename = init->name; | ||
194 | |||
195 | hwit->startup = gbus_int_startup_irq; | ||
196 | hwit->shutdown = gbus_int_shutdown_irq; | ||
197 | hwit->enable = gbus_int_enable_irq; | ||
198 | hwit->disable = gbus_int_disable_irq; | ||
199 | hwit->ack = irq_nop; | ||
200 | hwit->end = irq_nop; | ||
201 | |||
202 | /* Initialize kernel IRQ infrastructure for this interrupt. */ | ||
203 | init_irq_handlers(init->base, init->num, init->interval, hwit); | ||
204 | |||
205 | /* Set the interrupt priorities. */ | ||
206 | for (i = 0; i < init->num; i++) { | ||
207 | unsigned j; | ||
208 | for (j = 0; j < NUM_USED_GINTS; j++) | ||
209 | if (used_gint[j].priority > init->priority) | ||
210 | break; | ||
211 | /* Wherever we stopped looking is one past the | ||
212 | GINT we want. */ | ||
213 | gbus_int_gint[init->base + i * init->interval | ||
214 | - GBUS_INT_BASE_IRQ] | ||
215 | = used_gint[j > 0 ? j - 1 : 0].gint; | ||
216 | } | ||
217 | } | ||
218 | } | ||
219 | |||
220 | |||
221 | /* Initialize IRQS. */ | ||
222 | |||
223 | /* Chip interrupts (GINTn) shared among GBUS interrupts. */ | ||
224 | static struct hw_interrupt_type gint_hw_itypes[NUM_USED_GINTS]; | ||
225 | |||
226 | |||
227 | /* GBUS interrupts themselves. */ | ||
228 | |||
229 | struct gbus_int_irq_init gbus_irq_inits[] __initdata = { | ||
230 | /* First set defaults. */ | ||
231 | { "GBUS_INT", IRQ_GBUS_INT(0), IRQ_GBUS_INT_NUM, 1, 6}, | ||
232 | { 0 } | ||
233 | }; | ||
234 | #define NUM_GBUS_IRQ_INITS \ | ||
235 | ((sizeof gbus_irq_inits / sizeof gbus_irq_inits[0]) - 1) | ||
236 | |||
237 | static struct hw_interrupt_type gbus_hw_itypes[NUM_GBUS_IRQ_INITS]; | ||
238 | |||
239 | |||
240 | /* Initialize GBUS interrupts. */ | ||
241 | void __init gbus_int_init_irqs (void) | ||
242 | { | ||
243 | unsigned i; | ||
244 | |||
245 | /* First initialize the shared gint interrupts. */ | ||
246 | for (i = 0; i < NUM_USED_GINTS; i++) { | ||
247 | unsigned gint = used_gint[i].gint; | ||
248 | struct v850e_intc_irq_init gint_irq_init[2]; | ||
249 | |||
250 | /* We initialize one GINT interrupt at a time. */ | ||
251 | gint_irq_init[0].name = "GINT"; | ||
252 | gint_irq_init[0].base = IRQ_GINT (gint); | ||
253 | gint_irq_init[0].num = 1; | ||
254 | gint_irq_init[0].interval = 1; | ||
255 | gint_irq_init[0].priority = used_gint[i].priority; | ||
256 | |||
257 | gint_irq_init[1].name = 0; /* Terminate the vector. */ | ||
258 | |||
259 | v850e_intc_init_irq_types (gint_irq_init, gint_hw_itypes); | ||
260 | } | ||
261 | |||
262 | /* Then the GBUS interrupts. */ | ||
263 | gbus_int_disable_irqs (); | ||
264 | gbus_int_init_irq_types (gbus_irq_inits, gbus_hw_itypes); | ||
265 | /* Turn on the `all enable' bits, which are ANDed with | ||
266 | individual interrupt enable bits; we only want to bother with | ||
267 | the latter. They are the first bit in the first word of each | ||
268 | interrupt-enable area. */ | ||
269 | for (i = 0; i < NUM_USED_GINTS; i++) | ||
270 | GBUS_INT_ENABLE (0, used_gint[i].gint) = 0x1; | ||
271 | } | ||
diff --git a/arch/v850/kernel/head.S b/arch/v850/kernel/head.S new file mode 100644 index 000000000000..c490b937ef14 --- /dev/null +++ b/arch/v850/kernel/head.S | |||
@@ -0,0 +1,128 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/head.S -- Lowest-level startup code | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <asm/clinkage.h> | ||
15 | #include <asm/current.h> | ||
16 | #include <asm/entry.h> | ||
17 | #include <asm/thread_info.h> | ||
18 | #include <asm/irq.h> | ||
19 | |||
20 | |||
21 | /* Make a slightly more convenient alias for C_SYMBOL_NAME. */ | ||
22 | #define CSYM C_SYMBOL_NAME | ||
23 | |||
24 | |||
25 | .text | ||
26 | |||
27 | // Define `mach_early_init' as a weak symbol | ||
28 | .global CSYM(mach_early_init) | ||
29 | .weak CSYM(mach_early_init) | ||
30 | |||
31 | C_ENTRY(start): | ||
32 | // Make sure interrupts are turned off, just in case | ||
33 | di | ||
34 | |||
35 | #ifdef CONFIG_RESET_GUARD | ||
36 | // See if we got here via an unexpected reset | ||
37 | ld.w RESET_GUARD, r19 // Check current value of reset guard | ||
38 | mov RESET_GUARD_ACTIVE, r20 | ||
39 | cmp r19, r20 | ||
40 | bne 1f // Guard was not active | ||
41 | |||
42 | // If we get here, the reset guard was active. Load up some | ||
43 | // interesting values as arguments, and jump to the handler. | ||
44 | st.w r0, RESET_GUARD // Allow further resets to succeed | ||
45 | mov lp, r6 // Arg 0: return address | ||
46 | ld.b KM, r7 // Arg 1: kernel mode | ||
47 | mov sp, r9 // Arg 3: stack pointer | ||
48 | ld.w KSP, r19 // maybe switch to kernel stack | ||
49 | cmp r7, r0 // see if already in kernel mode | ||
50 | cmov z, r19, sp, sp // and switch to kernel stack if not | ||
51 | GET_CURRENT_TASK(r8) // Arg 2: task pointer | ||
52 | jr CSYM(unexpected_reset) | ||
53 | |||
54 | 1: st.w r20, RESET_GUARD // Turn on reset guard | ||
55 | #endif /* CONFIG_RESET_GUARD */ | ||
56 | |||
57 | // Setup a temporary stack for doing pre-initialization function calls. | ||
58 | // | ||
59 | // We can't use the initial kernel stack, because (1) it may be | ||
60 | // located in memory we're not allowed to touch, and (2) since | ||
61 | // it's in the data segment, calling memcpy to initialize that | ||
62 | // area from ROM will overwrite memcpy's return address. | ||
63 | mov hilo(CSYM(_init_stack_end) - 4), sp | ||
64 | |||
65 | // See if there's a platform-specific early-initialization routine | ||
66 | // defined; it's a weak symbol, so it will have an address of zero if | ||
67 | // there's not. | ||
68 | mov hilo(CSYM(mach_early_init)), r6 | ||
69 | cmp r6, r0 | ||
70 | bz 3f | ||
71 | |||
72 | // There is one, so call it. If this function is written in C, it | ||
73 | // should be very careful -- the stack pointer is valid, but very | ||
74 | // little else is (e.g., bss is not zeroed yet, and initialized data | ||
75 | // hasn't been). | ||
76 | jarl 2f, lp // first figure out return address | ||
77 | 2: add 3f - ., lp | ||
78 | jmp [r6] // do call | ||
79 | 3: | ||
80 | |||
81 | #ifdef CONFIG_ROM_KERNEL | ||
82 | // Copy the data area from ROM to RAM | ||
83 | mov hilo(CSYM(_rom_copy_dst_start)), r6 | ||
84 | mov hilo(CSYM(_rom_copy_src_start)), r7 | ||
85 | mov hilo(CSYM(_rom_copy_dst_end)), r8 | ||
86 | sub r6, r8 | ||
87 | jarl CSYM(memcpy), lp | ||
88 | #endif | ||
89 | |||
90 | // Load the initial thread's stack, and current task pointer (in r16) | ||
91 | mov hilo(CSYM(init_thread_union)), r19 | ||
92 | movea THREAD_SIZE, r19, sp | ||
93 | ld.w TI_TASK[r19], CURRENT_TASK | ||
94 | |||
95 | #ifdef CONFIG_TIME_BOOTUP | ||
96 | /* This stuff must come after mach_early_init, because interrupts may | ||
97 | not work until after its been called. */ | ||
98 | jarl CSYM(highres_timer_reset), lp | ||
99 | jarl CSYM(highres_timer_start), lp | ||
100 | #endif | ||
101 | |||
102 | // Kernel stack pointer save location | ||
103 | st.w sp, KSP | ||
104 | |||
105 | // Assert that we're in `kernel mode' | ||
106 | mov 1, r19 | ||
107 | st.w r19, KM | ||
108 | |||
109 | #ifdef CONFIG_ZERO_BSS | ||
110 | // Zero bss area, since we can't rely upon any loader to do so | ||
111 | mov hilo(CSYM(_sbss)), r6 | ||
112 | mov r0, r7 | ||
113 | mov hilo(CSYM(_ebss)), r8 | ||
114 | sub r6, r8 | ||
115 | jarl CSYM(memset), lp | ||
116 | #endif | ||
117 | |||
118 | // What happens if the main kernel function returns (it shouldn't) | ||
119 | mov hilo(CSYM(machine_halt)), lp | ||
120 | |||
121 | // Start the linux kernel. We use an indirect jump to get extra | ||
122 | // range, because on some platforms this initial startup code | ||
123 | // (and the associated platform-specific code in mach_early_init) | ||
124 | // are located far away from the main kernel, e.g. so that they | ||
125 | // can initialize RAM first and copy the kernel or something. | ||
126 | mov hilo(CSYM(start_kernel)), r12 | ||
127 | jmp [r12] | ||
128 | C_END(start) | ||
diff --git a/arch/v850/kernel/highres_timer.c b/arch/v850/kernel/highres_timer.c new file mode 100644 index 000000000000..b16ad1eaf966 --- /dev/null +++ b/arch/v850/kernel/highres_timer.c | |||
@@ -0,0 +1,132 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/highres_timer.c -- High resolution timing routines | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <asm/system.h> | ||
15 | #include <asm/v850e_timer_d.h> | ||
16 | #include <asm/highres_timer.h> | ||
17 | |||
18 | #define HIGHRES_TIMER_USEC_SHIFT 12 | ||
19 | |||
20 | /* Pre-calculated constant used for converting ticks to real time | ||
21 | units. We initialize it to prevent it being put into BSS. */ | ||
22 | static u32 highres_timer_usec_prescale = 1; | ||
23 | |||
24 | void highres_timer_slow_tick_irq (void) __attribute__ ((noreturn)); | ||
25 | void highres_timer_slow_tick_irq (void) | ||
26 | { | ||
27 | /* This is an interrupt handler, so it must be very careful to | ||
28 | not to trash any registers. At this point, the stack-pointer | ||
29 | (r3) has been saved in the chip ram location ENTRY_SP by the | ||
30 | interrupt vector, so we can use it as a scratch register; we | ||
31 | must also restore it before returning. */ | ||
32 | asm ("ld.w %0[r0], sp;" | ||
33 | "add 1, sp;" | ||
34 | "st.w sp, %0[r0];" | ||
35 | "ld.w %1[r0], sp;" /* restore pre-irq stack-pointer */ | ||
36 | "reti" | ||
37 | :: | ||
38 | "i" (HIGHRES_TIMER_SLOW_TICKS_ADDR), | ||
39 | "i" (ENTRY_SP_ADDR) | ||
40 | : "memory"); | ||
41 | } | ||
42 | |||
43 | void highres_timer_reset (void) | ||
44 | { | ||
45 | V850E_TIMER_D_TMD (HIGHRES_TIMER_TIMER_D_UNIT) = 0; | ||
46 | HIGHRES_TIMER_SLOW_TICKS = 0; | ||
47 | } | ||
48 | |||
49 | void highres_timer_start (void) | ||
50 | { | ||
51 | u32 fast_tick_rate; | ||
52 | |||
53 | /* Start hardware timer. */ | ||
54 | v850e_timer_d_configure (HIGHRES_TIMER_TIMER_D_UNIT, | ||
55 | HIGHRES_TIMER_SLOW_TICK_RATE); | ||
56 | |||
57 | fast_tick_rate = | ||
58 | (V850E_TIMER_D_BASE_FREQ | ||
59 | >> V850E_TIMER_D_DIVLOG2 (HIGHRES_TIMER_TIMER_D_UNIT)); | ||
60 | |||
61 | /* The obvious way of calculating microseconds from fast ticks | ||
62 | is to do: | ||
63 | |||
64 | usec = fast_ticks * 10^6 / fast_tick_rate | ||
65 | |||
66 | However, divisions are much slower than multiplications, and | ||
67 | the above calculation can overflow, so we do this instead: | ||
68 | |||
69 | usec = fast_ticks * (10^6 * 2^12 / fast_tick_rate) / 2^12 | ||
70 | |||
71 | since we can pre-calculate (10^6 * (2^12 / fast_tick_rate)) | ||
72 | and use a shift for dividing by 2^12, this avoids division, | ||
73 | and is almost as accurate (it differs by about 2 microseconds | ||
74 | at the extreme value of the fast-tick counter's ranger). */ | ||
75 | highres_timer_usec_prescale = ((1000000 << HIGHRES_TIMER_USEC_SHIFT) | ||
76 | / fast_tick_rate); | ||
77 | |||
78 | /* Enable the interrupt (which is hardwired to this use), and | ||
79 | give it the highest priority. */ | ||
80 | V850E_INTC_IC (IRQ_INTCMD (HIGHRES_TIMER_TIMER_D_UNIT)) = 0; | ||
81 | } | ||
82 | |||
83 | void highres_timer_stop (void) | ||
84 | { | ||
85 | /* Stop the timer. */ | ||
86 | V850E_TIMER_D_TMCD (HIGHRES_TIMER_TIMER_D_UNIT) = | ||
87 | V850E_TIMER_D_TMCD_CAE; | ||
88 | /* Disable its interrupt, just in case. */ | ||
89 | v850e_intc_disable_irq (IRQ_INTCMD (HIGHRES_TIMER_TIMER_D_UNIT)); | ||
90 | } | ||
91 | |||
92 | inline void highres_timer_read_ticks (u32 *slow_ticks, u32 *fast_ticks) | ||
93 | { | ||
94 | int flags; | ||
95 | u32 fast_ticks_1, fast_ticks_2, _slow_ticks; | ||
96 | |||
97 | local_irq_save (flags); | ||
98 | fast_ticks_1 = V850E_TIMER_D_TMD (HIGHRES_TIMER_TIMER_D_UNIT); | ||
99 | _slow_ticks = HIGHRES_TIMER_SLOW_TICKS; | ||
100 | fast_ticks_2 = V850E_TIMER_D_TMD (HIGHRES_TIMER_TIMER_D_UNIT); | ||
101 | local_irq_restore (flags); | ||
102 | |||
103 | if (fast_ticks_2 < fast_ticks_1) | ||
104 | _slow_ticks++; | ||
105 | |||
106 | *slow_ticks = _slow_ticks; | ||
107 | *fast_ticks = fast_ticks_2; | ||
108 | } | ||
109 | |||
110 | inline void highres_timer_ticks_to_timeval (u32 slow_ticks, u32 fast_ticks, | ||
111 | struct timeval *tv) | ||
112 | { | ||
113 | unsigned long sec, sec_rem, usec; | ||
114 | |||
115 | usec = ((fast_ticks * highres_timer_usec_prescale) | ||
116 | >> HIGHRES_TIMER_USEC_SHIFT); | ||
117 | |||
118 | sec = slow_ticks / HIGHRES_TIMER_SLOW_TICK_RATE; | ||
119 | sec_rem = slow_ticks % HIGHRES_TIMER_SLOW_TICK_RATE; | ||
120 | |||
121 | usec += sec_rem * (1000000 / HIGHRES_TIMER_SLOW_TICK_RATE); | ||
122 | |||
123 | tv->tv_sec = sec; | ||
124 | tv->tv_usec = usec; | ||
125 | } | ||
126 | |||
127 | void highres_timer_read (struct timeval *tv) | ||
128 | { | ||
129 | u32 fast_ticks, slow_ticks; | ||
130 | highres_timer_read_ticks (&slow_ticks, &fast_ticks); | ||
131 | highres_timer_ticks_to_timeval (slow_ticks, fast_ticks, tv); | ||
132 | } | ||
diff --git a/arch/v850/kernel/init_task.c b/arch/v850/kernel/init_task.c new file mode 100644 index 000000000000..ed2f93cf7c66 --- /dev/null +++ b/arch/v850/kernel/init_task.c | |||
@@ -0,0 +1,49 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/init_task.c -- Initial task/thread structures | ||
3 | * | ||
4 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | */ | ||
11 | |||
12 | #include <linux/mm.h> | ||
13 | #include <linux/module.h> | ||
14 | #include <linux/sched.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/init_task.h> | ||
17 | #include <linux/fs.h> | ||
18 | #include <linux/mqueue.h> | ||
19 | |||
20 | #include <asm/uaccess.h> | ||
21 | #include <asm/pgtable.h> | ||
22 | |||
23 | static struct fs_struct init_fs = INIT_FS; | ||
24 | static struct files_struct init_files = INIT_FILES; | ||
25 | static struct signal_struct init_signals = INIT_SIGNALS (init_signals); | ||
26 | static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand); | ||
27 | struct mm_struct init_mm = INIT_MM (init_mm); | ||
28 | |||
29 | EXPORT_SYMBOL(init_mm); | ||
30 | |||
31 | /* | ||
32 | * Initial task structure. | ||
33 | * | ||
34 | * All other task structs will be allocated on slabs in fork.c | ||
35 | */ | ||
36 | struct task_struct init_task = INIT_TASK (init_task); | ||
37 | |||
38 | EXPORT_SYMBOL(init_task); | ||
39 | |||
40 | /* | ||
41 | * Initial thread structure. | ||
42 | * | ||
43 | * We need to make sure that this is 8192-byte aligned due to the | ||
44 | * way process stacks are handled. This is done by having a special | ||
45 | * "init_task" linker map entry. | ||
46 | */ | ||
47 | union thread_union init_thread_union | ||
48 | __attribute__((__section__(".data.init_task"))) = | ||
49 | { INIT_THREAD_INFO(init_task) }; | ||
diff --git a/arch/v850/kernel/intv.S b/arch/v850/kernel/intv.S new file mode 100644 index 000000000000..671e4c6150dd --- /dev/null +++ b/arch/v850/kernel/intv.S | |||
@@ -0,0 +1,87 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/intv.S -- Interrupt vectors | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <asm/clinkage.h> | ||
15 | #include <asm/irq.h> | ||
16 | #include <asm/machdep.h> | ||
17 | #include <asm/entry.h> | ||
18 | |||
19 | #ifdef CONFIG_V850E_HIGHRES_TIMER | ||
20 | #include <asm/highres_timer.h> | ||
21 | #endif | ||
22 | |||
23 | /* Jump to an interrupt/trap handler. These handlers (defined in entry.S) | ||
24 | expect the stack-pointer to be saved in ENTRY_SP, so we use sp to do an | ||
25 | indirect jump (which avoids problems when the handler is more than a signed | ||
26 | 22-bit offset away). */ | ||
27 | #define JUMP_TO_HANDLER(name, sp_save_loc) \ | ||
28 | st.w sp, sp_save_loc; \ | ||
29 | mov hilo(name), sp; \ | ||
30 | jmp [sp] | ||
31 | |||
32 | |||
33 | /* Reset vector. */ | ||
34 | .section .intv.reset, "ax" | ||
35 | .org 0x0 | ||
36 | mov hilo(C_SYMBOL_NAME(start)), r1; | ||
37 | jmp [r1] | ||
38 | |||
39 | |||
40 | /* Generic interrupt vectors. */ | ||
41 | .section .intv.common, "ax" | ||
42 | .balign 0x10 | ||
43 | JUMP_TO_HANDLER (nmi, NMI_ENTRY_SP) // 0x10 - NMI0 | ||
44 | .balign 0x10 | ||
45 | JUMP_TO_HANDLER (nmi, NMI_ENTRY_SP) // 0x20 - NMI1 | ||
46 | .balign 0x10 | ||
47 | JUMP_TO_HANDLER (nmi, NMI_ENTRY_SP) // 0x30 - NMI2 | ||
48 | |||
49 | .balign 0x10 | ||
50 | JUMP_TO_HANDLER (trap, ENTRY_SP) // 0x40 - TRAP0n | ||
51 | .balign 0x10 | ||
52 | JUMP_TO_HANDLER (trap, ENTRY_SP) // 0x50 - TRAP1n | ||
53 | |||
54 | .balign 0x10 | ||
55 | JUMP_TO_HANDLER (dbtrap, ENTRY_SP) // 0x60 - Illegal op / DBTRAP insn | ||
56 | |||
57 | |||
58 | /* Hardware interrupt vectors. */ | ||
59 | .section .intv.mach, "ax" | ||
60 | .org 0x0 | ||
61 | |||
62 | #if defined (CONFIG_V850E_HIGHRES_TIMER) && defined (IRQ_INTCMD) | ||
63 | |||
64 | /* Interrupts before the highres timer interrupt. */ | ||
65 | .rept IRQ_INTCMD (HIGHRES_TIMER_TIMER_D_UNIT) | ||
66 | .balign 0x10 | ||
67 | JUMP_TO_HANDLER (irq, ENTRY_SP) | ||
68 | .endr | ||
69 | |||
70 | /* The highres timer interrupt. */ | ||
71 | .balign 0x10 | ||
72 | JUMP_TO_HANDLER (C_SYMBOL_NAME (highres_timer_slow_tick_irq), ENTRY_SP) | ||
73 | |||
74 | /* Interrupts after the highres timer interrupt. */ | ||
75 | .rept NUM_CPU_IRQS - IRQ_INTCMD (HIGHRES_TIMER_TIMER_D_UNIT) - 1 | ||
76 | .balign 0x10 | ||
77 | JUMP_TO_HANDLER (irq, ENTRY_SP) | ||
78 | .endr | ||
79 | |||
80 | #else /* No highres timer */ | ||
81 | |||
82 | .rept NUM_CPU_IRQS | ||
83 | .balign 0x10 | ||
84 | JUMP_TO_HANDLER (irq, ENTRY_SP) | ||
85 | .endr | ||
86 | |||
87 | #endif /* Highres timer */ | ||
diff --git a/arch/v850/kernel/irq.c b/arch/v850/kernel/irq.c new file mode 100644 index 000000000000..336cbf21dc8f --- /dev/null +++ b/arch/v850/kernel/irq.c | |||
@@ -0,0 +1,744 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/irq.c -- High-level interrupt handling | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03,04 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03,04 Miles Bader <miles@gnu.org> | ||
6 | * Copyright (C) 1994-2000 Ralf Baechle | ||
7 | * Copyright (C) 1992 Linus Torvalds | ||
8 | * | ||
9 | * This file is subject to the terms and conditions of the GNU General | ||
10 | * Public License. See the file COPYING in the main directory of this | ||
11 | * archive for more details. | ||
12 | * | ||
13 | * This file was was derived from the mips version, arch/mips/kernel/irq.c | ||
14 | */ | ||
15 | |||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/irq.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/kernel_stat.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/mm.h> | ||
24 | #include <linux/random.h> | ||
25 | #include <linux/seq_file.h> | ||
26 | |||
27 | #include <asm/system.h> | ||
28 | |||
29 | /* | ||
30 | * Controller mappings for all interrupt sources: | ||
31 | */ | ||
32 | irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned = { | ||
33 | [0 ... NR_IRQS-1] = { | ||
34 | .handler = &no_irq_type, | ||
35 | .lock = SPIN_LOCK_UNLOCKED | ||
36 | } | ||
37 | }; | ||
38 | |||
39 | /* | ||
40 | * Special irq handlers. | ||
41 | */ | ||
42 | |||
43 | irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs) | ||
44 | { | ||
45 | return IRQ_NONE; | ||
46 | } | ||
47 | |||
48 | /* | ||
49 | * Generic no controller code | ||
50 | */ | ||
51 | |||
52 | static void enable_none(unsigned int irq) { } | ||
53 | static unsigned int startup_none(unsigned int irq) { return 0; } | ||
54 | static void disable_none(unsigned int irq) { } | ||
55 | static void ack_none(unsigned int irq) | ||
56 | { | ||
57 | /* | ||
58 | * 'what should we do if we get a hw irq event on an illegal vector'. | ||
59 | * each architecture has to answer this themselves, it doesn't deserve | ||
60 | * a generic callback i think. | ||
61 | */ | ||
62 | printk("received IRQ %d with unknown interrupt type\n", irq); | ||
63 | } | ||
64 | |||
65 | /* startup is the same as "enable", shutdown is same as "disable" */ | ||
66 | #define shutdown_none disable_none | ||
67 | #define end_none enable_none | ||
68 | |||
69 | struct hw_interrupt_type no_irq_type = { | ||
70 | "none", | ||
71 | startup_none, | ||
72 | shutdown_none, | ||
73 | enable_none, | ||
74 | disable_none, | ||
75 | ack_none, | ||
76 | end_none | ||
77 | }; | ||
78 | |||
79 | volatile unsigned long irq_err_count, spurious_count; | ||
80 | |||
81 | /* | ||
82 | * Generic, controller-independent functions: | ||
83 | */ | ||
84 | |||
85 | int show_interrupts(struct seq_file *p, void *v) | ||
86 | { | ||
87 | int i = *(loff_t *) v; | ||
88 | struct irqaction * action; | ||
89 | unsigned long flags; | ||
90 | |||
91 | if (i == 0) { | ||
92 | seq_puts(p, " "); | ||
93 | for (i=0; i < 1 /*smp_num_cpus*/; i++) | ||
94 | seq_printf(p, "CPU%d ", i); | ||
95 | seq_putc(p, '\n'); | ||
96 | } | ||
97 | |||
98 | if (i < NR_IRQS) { | ||
99 | int j, count, num; | ||
100 | const char *type_name = irq_desc[i].handler->typename; | ||
101 | spin_lock_irqsave(&irq_desc[j].lock, flags); | ||
102 | action = irq_desc[i].action; | ||
103 | if (!action) | ||
104 | goto skip; | ||
105 | |||
106 | count = 0; | ||
107 | num = -1; | ||
108 | for (j = 0; j < NR_IRQS; j++) | ||
109 | if (irq_desc[j].handler->typename == type_name) { | ||
110 | if (i == j) | ||
111 | num = count; | ||
112 | count++; | ||
113 | } | ||
114 | |||
115 | seq_printf(p, "%3d: ",i); | ||
116 | seq_printf(p, "%10u ", kstat_irqs(i)); | ||
117 | if (count > 1) { | ||
118 | int prec = (num >= 100 ? 3 : num >= 10 ? 2 : 1); | ||
119 | seq_printf(p, " %*s%d", 14 - prec, type_name, num); | ||
120 | } else | ||
121 | seq_printf(p, " %14s", type_name); | ||
122 | |||
123 | seq_printf(p, " %s", action->name); | ||
124 | for (action=action->next; action; action = action->next) | ||
125 | seq_printf(p, ", %s", action->name); | ||
126 | seq_putc(p, '\n'); | ||
127 | skip: | ||
128 | spin_unlock_irqrestore(&irq_desc[j].lock, flags); | ||
129 | } else if (i == NR_IRQS) | ||
130 | seq_printf(p, "ERR: %10lu\n", irq_err_count); | ||
131 | return 0; | ||
132 | } | ||
133 | |||
134 | /* | ||
135 | * This should really return information about whether | ||
136 | * we should do bottom half handling etc. Right now we | ||
137 | * end up _always_ checking the bottom half, which is a | ||
138 | * waste of time and is not what some drivers would | ||
139 | * prefer. | ||
140 | */ | ||
141 | int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action) | ||
142 | { | ||
143 | int status = 1; /* Force the "do bottom halves" bit */ | ||
144 | int ret; | ||
145 | |||
146 | if (!(action->flags & SA_INTERRUPT)) | ||
147 | local_irq_enable(); | ||
148 | |||
149 | do { | ||
150 | ret = action->handler(irq, action->dev_id, regs); | ||
151 | if (ret == IRQ_HANDLED) | ||
152 | status |= action->flags; | ||
153 | action = action->next; | ||
154 | } while (action); | ||
155 | if (status & SA_SAMPLE_RANDOM) | ||
156 | add_interrupt_randomness(irq); | ||
157 | local_irq_disable(); | ||
158 | |||
159 | return status; | ||
160 | } | ||
161 | |||
162 | /* | ||
163 | * Generic enable/disable code: this just calls | ||
164 | * down into the PIC-specific version for the actual | ||
165 | * hardware disable after having gotten the irq | ||
166 | * controller lock. | ||
167 | */ | ||
168 | |||
169 | /** | ||
170 | * disable_irq_nosync - disable an irq without waiting | ||
171 | * @irq: Interrupt to disable | ||
172 | * | ||
173 | * Disable the selected interrupt line. Disables of an interrupt | ||
174 | * stack. Unlike disable_irq(), this function does not ensure existing | ||
175 | * instances of the IRQ handler have completed before returning. | ||
176 | * | ||
177 | * This function may be called from IRQ context. | ||
178 | */ | ||
179 | |||
180 | void inline disable_irq_nosync(unsigned int irq) | ||
181 | { | ||
182 | irq_desc_t *desc = irq_desc + irq; | ||
183 | unsigned long flags; | ||
184 | |||
185 | spin_lock_irqsave(&desc->lock, flags); | ||
186 | if (!desc->depth++) { | ||
187 | desc->status |= IRQ_DISABLED; | ||
188 | desc->handler->disable(irq); | ||
189 | } | ||
190 | spin_unlock_irqrestore(&desc->lock, flags); | ||
191 | } | ||
192 | |||
193 | /** | ||
194 | * disable_irq - disable an irq and wait for completion | ||
195 | * @irq: Interrupt to disable | ||
196 | * | ||
197 | * Disable the selected interrupt line. Disables of an interrupt | ||
198 | * stack. That is for two disables you need two enables. This | ||
199 | * function waits for any pending IRQ handlers for this interrupt | ||
200 | * to complete before returning. If you use this function while | ||
201 | * holding a resource the IRQ handler may need you will deadlock. | ||
202 | * | ||
203 | * This function may be called - with care - from IRQ context. | ||
204 | */ | ||
205 | |||
206 | void disable_irq(unsigned int irq) | ||
207 | { | ||
208 | disable_irq_nosync(irq); | ||
209 | synchronize_irq(irq); | ||
210 | } | ||
211 | |||
212 | /** | ||
213 | * enable_irq - enable interrupt handling on an irq | ||
214 | * @irq: Interrupt to enable | ||
215 | * | ||
216 | * Re-enables the processing of interrupts on this IRQ line | ||
217 | * providing no disable_irq calls are now in effect. | ||
218 | * | ||
219 | * This function may be called from IRQ context. | ||
220 | */ | ||
221 | |||
222 | void enable_irq(unsigned int irq) | ||
223 | { | ||
224 | irq_desc_t *desc = irq_desc + irq; | ||
225 | unsigned long flags; | ||
226 | |||
227 | spin_lock_irqsave(&desc->lock, flags); | ||
228 | switch (desc->depth) { | ||
229 | case 1: { | ||
230 | unsigned int status = desc->status & ~IRQ_DISABLED; | ||
231 | desc->status = status; | ||
232 | if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { | ||
233 | desc->status = status | IRQ_REPLAY; | ||
234 | hw_resend_irq(desc->handler,irq); | ||
235 | } | ||
236 | desc->handler->enable(irq); | ||
237 | /* fall-through */ | ||
238 | } | ||
239 | default: | ||
240 | desc->depth--; | ||
241 | break; | ||
242 | case 0: | ||
243 | printk("enable_irq(%u) unbalanced from %p\n", irq, | ||
244 | __builtin_return_address(0)); | ||
245 | } | ||
246 | spin_unlock_irqrestore(&desc->lock, flags); | ||
247 | } | ||
248 | |||
249 | /* Handle interrupt IRQ. REGS are the registers at the time of ther | ||
250 | interrupt. */ | ||
251 | unsigned int handle_irq (int irq, struct pt_regs *regs) | ||
252 | { | ||
253 | /* | ||
254 | * We ack quickly, we don't want the irq controller | ||
255 | * thinking we're snobs just because some other CPU has | ||
256 | * disabled global interrupts (we have already done the | ||
257 | * INT_ACK cycles, it's too late to try to pretend to the | ||
258 | * controller that we aren't taking the interrupt). | ||
259 | * | ||
260 | * 0 return value means that this irq is already being | ||
261 | * handled by some other CPU. (or is disabled) | ||
262 | */ | ||
263 | int cpu = smp_processor_id(); | ||
264 | irq_desc_t *desc = irq_desc + irq; | ||
265 | struct irqaction * action; | ||
266 | unsigned int status; | ||
267 | |||
268 | irq_enter(); | ||
269 | kstat_cpu(cpu).irqs[irq]++; | ||
270 | spin_lock(&desc->lock); | ||
271 | desc->handler->ack(irq); | ||
272 | /* | ||
273 | REPLAY is when Linux resends an IRQ that was dropped earlier | ||
274 | WAITING is used by probe to mark irqs that are being tested | ||
275 | */ | ||
276 | status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); | ||
277 | status |= IRQ_PENDING; /* we _want_ to handle it */ | ||
278 | |||
279 | /* | ||
280 | * If the IRQ is disabled for whatever reason, we cannot | ||
281 | * use the action we have. | ||
282 | */ | ||
283 | action = NULL; | ||
284 | if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { | ||
285 | action = desc->action; | ||
286 | status &= ~IRQ_PENDING; /* we commit to handling */ | ||
287 | status |= IRQ_INPROGRESS; /* we are handling it */ | ||
288 | } | ||
289 | desc->status = status; | ||
290 | |||
291 | /* | ||
292 | * If there is no IRQ handler or it was disabled, exit early. | ||
293 | Since we set PENDING, if another processor is handling | ||
294 | a different instance of this same irq, the other processor | ||
295 | will take care of it. | ||
296 | */ | ||
297 | if (unlikely(!action)) | ||
298 | goto out; | ||
299 | |||
300 | /* | ||
301 | * Edge triggered interrupts need to remember | ||
302 | * pending events. | ||
303 | * This applies to any hw interrupts that allow a second | ||
304 | * instance of the same irq to arrive while we are in handle_irq | ||
305 | * or in the handler. But the code here only handles the _second_ | ||
306 | * instance of the irq, not the third or fourth. So it is mostly | ||
307 | * useful for irq hardware that does not mask cleanly in an | ||
308 | * SMP environment. | ||
309 | */ | ||
310 | for (;;) { | ||
311 | spin_unlock(&desc->lock); | ||
312 | handle_IRQ_event(irq, regs, action); | ||
313 | spin_lock(&desc->lock); | ||
314 | |||
315 | if (likely(!(desc->status & IRQ_PENDING))) | ||
316 | break; | ||
317 | desc->status &= ~IRQ_PENDING; | ||
318 | } | ||
319 | desc->status &= ~IRQ_INPROGRESS; | ||
320 | |||
321 | out: | ||
322 | /* | ||
323 | * The ->end() handler has to deal with interrupts which got | ||
324 | * disabled while the handler was running. | ||
325 | */ | ||
326 | desc->handler->end(irq); | ||
327 | spin_unlock(&desc->lock); | ||
328 | |||
329 | irq_exit(); | ||
330 | |||
331 | return 1; | ||
332 | } | ||
333 | |||
334 | /** | ||
335 | * request_irq - allocate an interrupt line | ||
336 | * @irq: Interrupt line to allocate | ||
337 | * @handler: Function to be called when the IRQ occurs | ||
338 | * @irqflags: Interrupt type flags | ||
339 | * @devname: An ascii name for the claiming device | ||
340 | * @dev_id: A cookie passed back to the handler function | ||
341 | * | ||
342 | * This call allocates interrupt resources and enables the | ||
343 | * interrupt line and IRQ handling. From the point this | ||
344 | * call is made your handler function may be invoked. Since | ||
345 | * your handler function must clear any interrupt the board | ||
346 | * raises, you must take care both to initialise your hardware | ||
347 | * and to set up the interrupt handler in the right order. | ||
348 | * | ||
349 | * Dev_id must be globally unique. Normally the address of the | ||
350 | * device data structure is used as the cookie. Since the handler | ||
351 | * receives this value it makes sense to use it. | ||
352 | * | ||
353 | * If your interrupt is shared you must pass a non NULL dev_id | ||
354 | * as this is required when freeing the interrupt. | ||
355 | * | ||
356 | * Flags: | ||
357 | * | ||
358 | * SA_SHIRQ Interrupt is shared | ||
359 | * | ||
360 | * SA_INTERRUPT Disable local interrupts while processing | ||
361 | * | ||
362 | * SA_SAMPLE_RANDOM The interrupt can be used for entropy | ||
363 | * | ||
364 | */ | ||
365 | |||
366 | int request_irq(unsigned int irq, | ||
367 | irqreturn_t (*handler)(int, void *, struct pt_regs *), | ||
368 | unsigned long irqflags, | ||
369 | const char * devname, | ||
370 | void *dev_id) | ||
371 | { | ||
372 | int retval; | ||
373 | struct irqaction * action; | ||
374 | |||
375 | #if 1 | ||
376 | /* | ||
377 | * Sanity-check: shared interrupts should REALLY pass in | ||
378 | * a real dev-ID, otherwise we'll have trouble later trying | ||
379 | * to figure out which interrupt is which (messes up the | ||
380 | * interrupt freeing logic etc). | ||
381 | */ | ||
382 | if (irqflags & SA_SHIRQ) { | ||
383 | if (!dev_id) | ||
384 | printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]); | ||
385 | } | ||
386 | #endif | ||
387 | |||
388 | if (irq >= NR_IRQS) | ||
389 | return -EINVAL; | ||
390 | if (!handler) | ||
391 | return -EINVAL; | ||
392 | |||
393 | action = (struct irqaction *) | ||
394 | kmalloc(sizeof(struct irqaction), GFP_KERNEL); | ||
395 | if (!action) | ||
396 | return -ENOMEM; | ||
397 | |||
398 | action->handler = handler; | ||
399 | action->flags = irqflags; | ||
400 | cpus_clear(action->mask); | ||
401 | action->name = devname; | ||
402 | action->next = NULL; | ||
403 | action->dev_id = dev_id; | ||
404 | |||
405 | retval = setup_irq(irq, action); | ||
406 | if (retval) | ||
407 | kfree(action); | ||
408 | return retval; | ||
409 | } | ||
410 | |||
411 | EXPORT_SYMBOL(request_irq); | ||
412 | |||
413 | /** | ||
414 | * free_irq - free an interrupt | ||
415 | * @irq: Interrupt line to free | ||
416 | * @dev_id: Device identity to free | ||
417 | * | ||
418 | * Remove an interrupt handler. The handler is removed and if the | ||
419 | * interrupt line is no longer in use by any driver it is disabled. | ||
420 | * On a shared IRQ the caller must ensure the interrupt is disabled | ||
421 | * on the card it drives before calling this function. The function | ||
422 | * does not return until any executing interrupts for this IRQ | ||
423 | * have completed. | ||
424 | * | ||
425 | * This function may be called from interrupt context. | ||
426 | * | ||
427 | * Bugs: Attempting to free an irq in a handler for the same irq hangs | ||
428 | * the machine. | ||
429 | */ | ||
430 | |||
431 | void free_irq(unsigned int irq, void *dev_id) | ||
432 | { | ||
433 | irq_desc_t *desc; | ||
434 | struct irqaction **p; | ||
435 | unsigned long flags; | ||
436 | |||
437 | if (irq >= NR_IRQS) | ||
438 | return; | ||
439 | |||
440 | desc = irq_desc + irq; | ||
441 | spin_lock_irqsave(&desc->lock,flags); | ||
442 | p = &desc->action; | ||
443 | for (;;) { | ||
444 | struct irqaction * action = *p; | ||
445 | if (action) { | ||
446 | struct irqaction **pp = p; | ||
447 | p = &action->next; | ||
448 | if (action->dev_id != dev_id) | ||
449 | continue; | ||
450 | |||
451 | /* Found it - now remove it from the list of entries */ | ||
452 | *pp = action->next; | ||
453 | if (!desc->action) { | ||
454 | desc->status |= IRQ_DISABLED; | ||
455 | desc->handler->shutdown(irq); | ||
456 | } | ||
457 | spin_unlock_irqrestore(&desc->lock,flags); | ||
458 | |||
459 | synchronize_irq(irq); | ||
460 | kfree(action); | ||
461 | return; | ||
462 | } | ||
463 | printk("Trying to free free IRQ%d\n",irq); | ||
464 | spin_unlock_irqrestore(&desc->lock,flags); | ||
465 | return; | ||
466 | } | ||
467 | } | ||
468 | |||
469 | EXPORT_SYMBOL(free_irq); | ||
470 | |||
471 | /* | ||
472 | * IRQ autodetection code.. | ||
473 | * | ||
474 | * This depends on the fact that any interrupt that | ||
475 | * comes in on to an unassigned handler will get stuck | ||
476 | * with "IRQ_WAITING" cleared and the interrupt | ||
477 | * disabled. | ||
478 | */ | ||
479 | |||
480 | static DECLARE_MUTEX(probe_sem); | ||
481 | |||
482 | /** | ||
483 | * probe_irq_on - begin an interrupt autodetect | ||
484 | * | ||
485 | * Commence probing for an interrupt. The interrupts are scanned | ||
486 | * and a mask of potential interrupt lines is returned. | ||
487 | * | ||
488 | */ | ||
489 | |||
490 | unsigned long probe_irq_on(void) | ||
491 | { | ||
492 | unsigned int i; | ||
493 | irq_desc_t *desc; | ||
494 | unsigned long val; | ||
495 | unsigned long delay; | ||
496 | |||
497 | down(&probe_sem); | ||
498 | /* | ||
499 | * something may have generated an irq long ago and we want to | ||
500 | * flush such a longstanding irq before considering it as spurious. | ||
501 | */ | ||
502 | for (i = NR_IRQS-1; i > 0; i--) { | ||
503 | desc = irq_desc + i; | ||
504 | |||
505 | spin_lock_irq(&desc->lock); | ||
506 | if (!irq_desc[i].action) | ||
507 | irq_desc[i].handler->startup(i); | ||
508 | spin_unlock_irq(&desc->lock); | ||
509 | } | ||
510 | |||
511 | /* Wait for longstanding interrupts to trigger. */ | ||
512 | for (delay = jiffies + HZ/50; time_after(delay, jiffies); ) | ||
513 | /* about 20ms delay */ barrier(); | ||
514 | |||
515 | /* | ||
516 | * enable any unassigned irqs | ||
517 | * (we must startup again here because if a longstanding irq | ||
518 | * happened in the previous stage, it may have masked itself) | ||
519 | */ | ||
520 | for (i = NR_IRQS-1; i > 0; i--) { | ||
521 | desc = irq_desc + i; | ||
522 | |||
523 | spin_lock_irq(&desc->lock); | ||
524 | if (!desc->action) { | ||
525 | desc->status |= IRQ_AUTODETECT | IRQ_WAITING; | ||
526 | if (desc->handler->startup(i)) | ||
527 | desc->status |= IRQ_PENDING; | ||
528 | } | ||
529 | spin_unlock_irq(&desc->lock); | ||
530 | } | ||
531 | |||
532 | /* | ||
533 | * Wait for spurious interrupts to trigger | ||
534 | */ | ||
535 | for (delay = jiffies + HZ/10; time_after(delay, jiffies); ) | ||
536 | /* about 100ms delay */ barrier(); | ||
537 | |||
538 | /* | ||
539 | * Now filter out any obviously spurious interrupts | ||
540 | */ | ||
541 | val = 0; | ||
542 | for (i = 0; i < NR_IRQS; i++) { | ||
543 | irq_desc_t *desc = irq_desc + i; | ||
544 | unsigned int status; | ||
545 | |||
546 | spin_lock_irq(&desc->lock); | ||
547 | status = desc->status; | ||
548 | |||
549 | if (status & IRQ_AUTODETECT) { | ||
550 | /* It triggered already - consider it spurious. */ | ||
551 | if (!(status & IRQ_WAITING)) { | ||
552 | desc->status = status & ~IRQ_AUTODETECT; | ||
553 | desc->handler->shutdown(i); | ||
554 | } else | ||
555 | if (i < 32) | ||
556 | val |= 1 << i; | ||
557 | } | ||
558 | spin_unlock_irq(&desc->lock); | ||
559 | } | ||
560 | |||
561 | return val; | ||
562 | } | ||
563 | |||
564 | EXPORT_SYMBOL(probe_irq_on); | ||
565 | |||
566 | /* | ||
567 | * Return a mask of triggered interrupts (this | ||
568 | * can handle only legacy ISA interrupts). | ||
569 | */ | ||
570 | |||
571 | /** | ||
572 | * probe_irq_mask - scan a bitmap of interrupt lines | ||
573 | * @val: mask of interrupts to consider | ||
574 | * | ||
575 | * Scan the ISA bus interrupt lines and return a bitmap of | ||
576 | * active interrupts. The interrupt probe logic state is then | ||
577 | * returned to its previous value. | ||
578 | * | ||
579 | * Note: we need to scan all the irq's even though we will | ||
580 | * only return ISA irq numbers - just so that we reset them | ||
581 | * all to a known state. | ||
582 | */ | ||
583 | unsigned int probe_irq_mask(unsigned long val) | ||
584 | { | ||
585 | int i; | ||
586 | unsigned int mask; | ||
587 | |||
588 | mask = 0; | ||
589 | for (i = 0; i < NR_IRQS; i++) { | ||
590 | irq_desc_t *desc = irq_desc + i; | ||
591 | unsigned int status; | ||
592 | |||
593 | spin_lock_irq(&desc->lock); | ||
594 | status = desc->status; | ||
595 | |||
596 | if (status & IRQ_AUTODETECT) { | ||
597 | if (i < 16 && !(status & IRQ_WAITING)) | ||
598 | mask |= 1 << i; | ||
599 | |||
600 | desc->status = status & ~IRQ_AUTODETECT; | ||
601 | desc->handler->shutdown(i); | ||
602 | } | ||
603 | spin_unlock_irq(&desc->lock); | ||
604 | } | ||
605 | up(&probe_sem); | ||
606 | |||
607 | return mask & val; | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * Return the one interrupt that triggered (this can | ||
612 | * handle any interrupt source). | ||
613 | */ | ||
614 | |||
615 | /** | ||
616 | * probe_irq_off - end an interrupt autodetect | ||
617 | * @val: mask of potential interrupts (unused) | ||
618 | * | ||
619 | * Scans the unused interrupt lines and returns the line which | ||
620 | * appears to have triggered the interrupt. If no interrupt was | ||
621 | * found then zero is returned. If more than one interrupt is | ||
622 | * found then minus the first candidate is returned to indicate | ||
623 | * their is doubt. | ||
624 | * | ||
625 | * The interrupt probe logic state is returned to its previous | ||
626 | * value. | ||
627 | * | ||
628 | * BUGS: When used in a module (which arguably shouldnt happen) | ||
629 | * nothing prevents two IRQ probe callers from overlapping. The | ||
630 | * results of this are non-optimal. | ||
631 | */ | ||
632 | |||
633 | int probe_irq_off(unsigned long val) | ||
634 | { | ||
635 | int i, irq_found, nr_irqs; | ||
636 | |||
637 | nr_irqs = 0; | ||
638 | irq_found = 0; | ||
639 | for (i = 0; i < NR_IRQS; i++) { | ||
640 | irq_desc_t *desc = irq_desc + i; | ||
641 | unsigned int status; | ||
642 | |||
643 | spin_lock_irq(&desc->lock); | ||
644 | status = desc->status; | ||
645 | |||
646 | if (status & IRQ_AUTODETECT) { | ||
647 | if (!(status & IRQ_WAITING)) { | ||
648 | if (!nr_irqs) | ||
649 | irq_found = i; | ||
650 | nr_irqs++; | ||
651 | } | ||
652 | desc->status = status & ~IRQ_AUTODETECT; | ||
653 | desc->handler->shutdown(i); | ||
654 | } | ||
655 | spin_unlock_irq(&desc->lock); | ||
656 | } | ||
657 | up(&probe_sem); | ||
658 | |||
659 | if (nr_irqs > 1) | ||
660 | irq_found = -irq_found; | ||
661 | return irq_found; | ||
662 | } | ||
663 | |||
664 | EXPORT_SYMBOL(probe_irq_off); | ||
665 | |||
666 | /* this was setup_x86_irq but it seems pretty generic */ | ||
667 | int setup_irq(unsigned int irq, struct irqaction * new) | ||
668 | { | ||
669 | int shared = 0; | ||
670 | unsigned long flags; | ||
671 | struct irqaction *old, **p; | ||
672 | irq_desc_t *desc = irq_desc + irq; | ||
673 | |||
674 | /* | ||
675 | * Some drivers like serial.c use request_irq() heavily, | ||
676 | * so we have to be careful not to interfere with a | ||
677 | * running system. | ||
678 | */ | ||
679 | if (new->flags & SA_SAMPLE_RANDOM) { | ||
680 | /* | ||
681 | * This function might sleep, we want to call it first, | ||
682 | * outside of the atomic block. | ||
683 | * Yes, this might clear the entropy pool if the wrong | ||
684 | * driver is attempted to be loaded, without actually | ||
685 | * installing a new handler, but is this really a problem, | ||
686 | * only the sysadmin is able to do this. | ||
687 | */ | ||
688 | rand_initialize_irq(irq); | ||
689 | } | ||
690 | |||
691 | /* | ||
692 | * The following block of code has to be executed atomically | ||
693 | */ | ||
694 | spin_lock_irqsave(&desc->lock,flags); | ||
695 | p = &desc->action; | ||
696 | if ((old = *p) != NULL) { | ||
697 | /* Can't share interrupts unless both agree to */ | ||
698 | if (!(old->flags & new->flags & SA_SHIRQ)) { | ||
699 | spin_unlock_irqrestore(&desc->lock,flags); | ||
700 | return -EBUSY; | ||
701 | } | ||
702 | |||
703 | /* add new interrupt at end of irq queue */ | ||
704 | do { | ||
705 | p = &old->next; | ||
706 | old = *p; | ||
707 | } while (old); | ||
708 | shared = 1; | ||
709 | } | ||
710 | |||
711 | *p = new; | ||
712 | |||
713 | if (!shared) { | ||
714 | desc->depth = 0; | ||
715 | desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS); | ||
716 | desc->handler->startup(irq); | ||
717 | } | ||
718 | spin_unlock_irqrestore(&desc->lock,flags); | ||
719 | |||
720 | /* register_irq_proc(irq); */ | ||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | /* Initialize irq handling for IRQs. | ||
725 | BASE_IRQ, BASE_IRQ+INTERVAL, ..., BASE_IRQ+NUM*INTERVAL | ||
726 | to IRQ_TYPE. An IRQ_TYPE of 0 means to use a generic interrupt type. */ | ||
727 | void __init | ||
728 | init_irq_handlers (int base_irq, int num, int interval, | ||
729 | struct hw_interrupt_type *irq_type) | ||
730 | { | ||
731 | while (num-- > 0) { | ||
732 | irq_desc[base_irq].status = IRQ_DISABLED; | ||
733 | irq_desc[base_irq].action = NULL; | ||
734 | irq_desc[base_irq].depth = 1; | ||
735 | irq_desc[base_irq].handler = irq_type; | ||
736 | base_irq += interval; | ||
737 | } | ||
738 | } | ||
739 | |||
740 | #if defined(CONFIG_PROC_FS) && defined(CONFIG_SYSCTL) | ||
741 | void init_irq_proc(void) | ||
742 | { | ||
743 | } | ||
744 | #endif /* CONFIG_PROC_FS && CONFIG_SYSCTL */ | ||
diff --git a/arch/v850/kernel/ma.c b/arch/v850/kernel/ma.c new file mode 100644 index 000000000000..b3dfbc5d2f40 --- /dev/null +++ b/arch/v850/kernel/ma.c | |||
@@ -0,0 +1,70 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/ma.c -- V850E/MA series of cpu chips | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/bootmem.h> | ||
20 | #include <linux/irq.h> | ||
21 | |||
22 | #include <asm/atomic.h> | ||
23 | #include <asm/page.h> | ||
24 | #include <asm/machdep.h> | ||
25 | #include <asm/v850e_timer_d.h> | ||
26 | |||
27 | #include "mach.h" | ||
28 | |||
29 | void __init mach_sched_init (struct irqaction *timer_action) | ||
30 | { | ||
31 | /* Start hardware timer. */ | ||
32 | v850e_timer_d_configure (0, HZ); | ||
33 | /* Install timer interrupt handler. */ | ||
34 | setup_irq (IRQ_INTCMD(0), timer_action); | ||
35 | } | ||
36 | |||
37 | static struct v850e_intc_irq_init irq_inits[] = { | ||
38 | { "IRQ", 0, NUM_MACH_IRQS, 1, 7 }, | ||
39 | { "CMD", IRQ_INTCMD(0), IRQ_INTCMD_NUM, 1, 5 }, | ||
40 | { "DMA", IRQ_INTDMA(0), IRQ_INTDMA_NUM, 1, 2 }, | ||
41 | { "CSI", IRQ_INTCSI(0), IRQ_INTCSI_NUM, 4, 4 }, | ||
42 | { "SER", IRQ_INTSER(0), IRQ_INTSER_NUM, 4, 3 }, | ||
43 | { "SR", IRQ_INTSR(0), IRQ_INTSR_NUM, 4, 4 }, | ||
44 | { "ST", IRQ_INTST(0), IRQ_INTST_NUM, 4, 5 }, | ||
45 | { 0 } | ||
46 | }; | ||
47 | #define NUM_IRQ_INITS ((sizeof irq_inits / sizeof irq_inits[0]) - 1) | ||
48 | |||
49 | static struct hw_interrupt_type hw_itypes[NUM_IRQ_INITS]; | ||
50 | |||
51 | /* Initialize MA chip interrupts. */ | ||
52 | void __init ma_init_irqs (void) | ||
53 | { | ||
54 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
55 | } | ||
56 | |||
57 | /* Called before configuring an on-chip UART. */ | ||
58 | void ma_uart_pre_configure (unsigned chan, unsigned cflags, unsigned baud) | ||
59 | { | ||
60 | /* We only know about the first two UART channels (though | ||
61 | specific chips may have more). */ | ||
62 | if (chan < 2) { | ||
63 | unsigned bits = 0x3 << (chan * 3); | ||
64 | /* Specify that the relevant pins on the chip should do | ||
65 | serial I/O, not direct I/O. */ | ||
66 | MA_PORT4_PMC |= bits; | ||
67 | /* Specify that we're using the UART, not the CSI device. */ | ||
68 | MA_PORT4_PFC |= bits; | ||
69 | } | ||
70 | } | ||
diff --git a/arch/v850/kernel/mach.c b/arch/v850/kernel/mach.c new file mode 100644 index 000000000000..b9db278d2b71 --- /dev/null +++ b/arch/v850/kernel/mach.c | |||
@@ -0,0 +1,17 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/mach.c -- Defaults for some things defined by "mach.h" | ||
3 | * | ||
4 | * Copyright (C) 2001 NEC Corporation | ||
5 | * Copyright (C) 2001 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include "mach.h" | ||
15 | |||
16 | /* Called with each timer tick, if non-zero. */ | ||
17 | void (*mach_tick)(void) = 0; | ||
diff --git a/arch/v850/kernel/mach.h b/arch/v850/kernel/mach.h new file mode 100644 index 000000000000..9e0e4816ec56 --- /dev/null +++ b/arch/v850/kernel/mach.h | |||
@@ -0,0 +1,56 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/mach.h -- Machine-dependent functions used by v850 port | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #ifndef __V850_MACH_H__ | ||
15 | #define __V850_MACH_H__ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/time.h> | ||
19 | #include <linux/spinlock.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/fs.h> | ||
22 | #include <linux/seq_file.h> | ||
23 | |||
24 | #include <asm/ptrace.h> | ||
25 | #include <asm/entry.h> | ||
26 | #include <asm/clinkage.h> | ||
27 | |||
28 | void mach_setup (char **cmdline); | ||
29 | void mach_gettimeofday (struct timespec *tv); | ||
30 | void mach_sched_init (struct irqaction *timer_action); | ||
31 | void mach_get_physical_ram (unsigned long *ram_start, unsigned long *ram_len); | ||
32 | void mach_init_irqs (void); | ||
33 | |||
34 | /* If defined, is called very early in the kernel initialization. The | ||
35 | stack pointer is valid, but very little has been initialized (e.g., | ||
36 | bss is not zeroed yet) when this is called, so care must taken. */ | ||
37 | void mach_early_init (void); | ||
38 | |||
39 | /* If defined, called after the bootmem allocator has been initialized, | ||
40 | to allow the platform-dependent code to reserve any areas of RAM that | ||
41 | the kernel shouldn't touch. */ | ||
42 | void mach_reserve_bootmem (void) __attribute__ ((__weak__)); | ||
43 | |||
44 | /* Called with each timer tick, if non-zero. */ | ||
45 | extern void (*mach_tick) (void); | ||
46 | |||
47 | /* The following establishes aliases for various mach_ functions to the | ||
48 | name by which the rest of the kernel calls them. These statements | ||
49 | should only have an effect in the file that defines the actual functions. */ | ||
50 | #define MACH_ALIAS(to, from) \ | ||
51 | asm (".global " macrology_stringify (C_SYMBOL_NAME (to)) ";" \ | ||
52 | macrology_stringify (C_SYMBOL_NAME (to)) \ | ||
53 | " = " macrology_stringify (C_SYMBOL_NAME (from))) | ||
54 | /* e.g.: MACH_ALIAS (kernel_name, arch_spec_name); */ | ||
55 | |||
56 | #endif /* __V850_MACH_H__ */ | ||
diff --git a/arch/v850/kernel/me2.c b/arch/v850/kernel/me2.c new file mode 100644 index 000000000000..6527c218f91d --- /dev/null +++ b/arch/v850/kernel/me2.c | |||
@@ -0,0 +1,74 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/me2.c -- V850E/ME2 chip-specific support | ||
3 | * | ||
4 | * Copyright (C) 2003 NEC Corporation | ||
5 | * Copyright (C) 2003 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/bootmem.h> | ||
20 | #include <linux/irq.h> | ||
21 | |||
22 | #include <asm/atomic.h> | ||
23 | #include <asm/page.h> | ||
24 | #include <asm/machdep.h> | ||
25 | #include <asm/v850e_timer_d.h> | ||
26 | |||
27 | #include "mach.h" | ||
28 | |||
29 | void __init mach_sched_init (struct irqaction *timer_action) | ||
30 | { | ||
31 | /* Start hardware timer. */ | ||
32 | v850e_timer_d_configure (0, HZ); | ||
33 | /* Install timer interrupt handler. */ | ||
34 | setup_irq (IRQ_INTCMD(0), timer_action); | ||
35 | } | ||
36 | |||
37 | static struct v850e_intc_irq_init irq_inits[] = { | ||
38 | { "IRQ", 0, NUM_CPU_IRQS, 1, 7 }, | ||
39 | { "INTP", IRQ_INTP(0), IRQ_INTP_NUM, 1, 5 }, | ||
40 | { "CMD", IRQ_INTCMD(0), IRQ_INTCMD_NUM, 1, 3 }, | ||
41 | { "UBTIRE", IRQ_INTUBTIRE(0), IRQ_INTUBTIRE_NUM, 5, 4 }, | ||
42 | { "UBTIR", IRQ_INTUBTIR(0), IRQ_INTUBTIR_NUM, 5, 4 }, | ||
43 | { "UBTIT", IRQ_INTUBTIT(0), IRQ_INTUBTIT_NUM, 5, 4 }, | ||
44 | { "UBTIF", IRQ_INTUBTIF(0), IRQ_INTUBTIF_NUM, 5, 4 }, | ||
45 | { "UBTITO", IRQ_INTUBTITO(0), IRQ_INTUBTITO_NUM, 5, 4 }, | ||
46 | { 0 } | ||
47 | }; | ||
48 | #define NUM_IRQ_INITS ((sizeof irq_inits / sizeof irq_inits[0]) - 1) | ||
49 | |||
50 | static struct hw_interrupt_type hw_itypes[NUM_IRQ_INITS]; | ||
51 | |||
52 | /* Initialize V850E/ME2 chip interrupts. */ | ||
53 | void __init me2_init_irqs (void) | ||
54 | { | ||
55 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
56 | } | ||
57 | |||
58 | /* Called before configuring an on-chip UART. */ | ||
59 | void me2_uart_pre_configure (unsigned chan, unsigned cflags, unsigned baud) | ||
60 | { | ||
61 | if (chan == 0) { | ||
62 | /* Specify that the relevent pins on the chip should do | ||
63 | serial I/O, not direct I/O. */ | ||
64 | ME2_PORT1_PMC |= 0xC; | ||
65 | /* Specify that we're using the UART, not the CSI device. */ | ||
66 | ME2_PORT1_PFC |= 0xC; | ||
67 | } else if (chan == 1) { | ||
68 | /* Specify that the relevent pins on the chip should do | ||
69 | serial I/O, not direct I/O. */ | ||
70 | ME2_PORT2_PMC |= 0x6; | ||
71 | /* Specify that we're using the UART, not the CSI device. */ | ||
72 | ME2_PORT2_PFC |= 0x6; | ||
73 | } | ||
74 | } | ||
diff --git a/arch/v850/kernel/memcons.c b/arch/v850/kernel/memcons.c new file mode 100644 index 000000000000..491614c435cd --- /dev/null +++ b/arch/v850/kernel/memcons.c | |||
@@ -0,0 +1,135 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/memcons.c -- Console I/O to a memory buffer | ||
3 | * | ||
4 | * Copyright (C) 2001,02 NEC Corporation | ||
5 | * Copyright (C) 2001,02 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/console.h> | ||
16 | #include <linux/tty.h> | ||
17 | #include <linux/tty_driver.h> | ||
18 | #include <linux/init.h> | ||
19 | |||
20 | /* If this device is enabled, the linker map should define start and | ||
21 | end points for its buffer. */ | ||
22 | extern char memcons_output[], memcons_output_end; | ||
23 | |||
24 | /* Current offset into the buffer. */ | ||
25 | static unsigned long memcons_offs = 0; | ||
26 | |||
27 | /* Spinlock protecting memcons_offs. */ | ||
28 | static DEFINE_SPINLOCK(memcons_lock); | ||
29 | |||
30 | |||
31 | static size_t write (const char *buf, size_t len) | ||
32 | { | ||
33 | int flags; | ||
34 | char *point; | ||
35 | |||
36 | spin_lock_irqsave (memcons_lock, flags); | ||
37 | |||
38 | point = memcons_output + memcons_offs; | ||
39 | if (point + len >= &memcons_output_end) { | ||
40 | len = &memcons_output_end - point; | ||
41 | memcons_offs = 0; | ||
42 | } else | ||
43 | memcons_offs += len; | ||
44 | |||
45 | spin_unlock_irqrestore (memcons_lock, flags); | ||
46 | |||
47 | memcpy (point, buf, len); | ||
48 | |||
49 | return len; | ||
50 | } | ||
51 | |||
52 | |||
53 | /* Low-level console. */ | ||
54 | |||
55 | static void memcons_write (struct console *co, const char *buf, unsigned len) | ||
56 | { | ||
57 | while (len > 0) | ||
58 | len -= write (buf, len); | ||
59 | } | ||
60 | |||
61 | static struct tty_driver *tty_driver; | ||
62 | |||
63 | static struct tty_driver *memcons_device (struct console *co, int *index) | ||
64 | { | ||
65 | *index = co->index; | ||
66 | return tty_driver; | ||
67 | } | ||
68 | |||
69 | static struct console memcons = | ||
70 | { | ||
71 | .name = "memcons", | ||
72 | .write = memcons_write, | ||
73 | .device = memcons_device, | ||
74 | .flags = CON_PRINTBUFFER, | ||
75 | .index = -1, | ||
76 | }; | ||
77 | |||
78 | void memcons_setup (void) | ||
79 | { | ||
80 | register_console (&memcons); | ||
81 | printk (KERN_INFO "Console: static memory buffer (memcons)\n"); | ||
82 | } | ||
83 | |||
84 | /* Higher level TTY interface. */ | ||
85 | |||
86 | int memcons_tty_open (struct tty_struct *tty, struct file *filp) | ||
87 | { | ||
88 | return 0; | ||
89 | } | ||
90 | |||
91 | int memcons_tty_write (struct tty_struct *tty, const unsigned char *buf, int len) | ||
92 | { | ||
93 | return write (buf, len); | ||
94 | } | ||
95 | |||
96 | int memcons_tty_write_room (struct tty_struct *tty) | ||
97 | { | ||
98 | return &memcons_output_end - (memcons_output + memcons_offs); | ||
99 | } | ||
100 | |||
101 | int memcons_tty_chars_in_buffer (struct tty_struct *tty) | ||
102 | { | ||
103 | /* We have no buffer. */ | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | static struct tty_operations ops = { | ||
108 | .open = memcons_tty_open, | ||
109 | .write = memcons_tty_write, | ||
110 | .write_room = memcons_tty_write_room, | ||
111 | .chars_in_buffer = memcons_tty_chars_in_buffer, | ||
112 | }; | ||
113 | |||
114 | int __init memcons_tty_init (void) | ||
115 | { | ||
116 | int err; | ||
117 | struct tty_driver *driver = alloc_tty_driver(1); | ||
118 | if (!driver) | ||
119 | return -ENOMEM; | ||
120 | |||
121 | driver->name = "memcons"; | ||
122 | driver->major = TTY_MAJOR; | ||
123 | driver->minor_start = 64; | ||
124 | driver->type = TTY_DRIVER_TYPE_SYSCONS; | ||
125 | driver->init_termios = tty_std_termios; | ||
126 | tty_set_operations(driver, &ops); | ||
127 | err = tty_register_driver(driver); | ||
128 | if (err) { | ||
129 | put_tty_driver(driver); | ||
130 | return err; | ||
131 | } | ||
132 | tty_driver = driver; | ||
133 | return 0; | ||
134 | } | ||
135 | __initcall (memcons_tty_init); | ||
diff --git a/arch/v850/kernel/module.c b/arch/v850/kernel/module.c new file mode 100644 index 000000000000..64aeb3e37c52 --- /dev/null +++ b/arch/v850/kernel/module.c | |||
@@ -0,0 +1,237 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/module.c -- Architecture-specific module functions | ||
3 | * | ||
4 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
6 | * Copyright (C) 2001,03 Rusty Russell | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | * | ||
14 | * Derived in part from arch/ppc/kernel/module.c | ||
15 | */ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/vmalloc.h> | ||
19 | #include <linux/moduleloader.h> | ||
20 | #include <linux/elf.h> | ||
21 | |||
22 | #if 0 | ||
23 | #define DEBUGP printk | ||
24 | #else | ||
25 | #define DEBUGP(fmt , ...) | ||
26 | #endif | ||
27 | |||
28 | void *module_alloc (unsigned long size) | ||
29 | { | ||
30 | return size == 0 ? 0 : vmalloc (size); | ||
31 | } | ||
32 | |||
33 | void module_free (struct module *mod, void *module_region) | ||
34 | { | ||
35 | vfree (module_region); | ||
36 | /* FIXME: If module_region == mod->init_region, trim exception | ||
37 | table entries. */ | ||
38 | } | ||
39 | |||
40 | int module_finalize (const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, | ||
41 | struct module *mod) | ||
42 | { | ||
43 | return 0; | ||
44 | } | ||
45 | |||
46 | /* Count how many different relocations (different symbol, different | ||
47 | addend) */ | ||
48 | static unsigned int count_relocs(const Elf32_Rela *rela, unsigned int num) | ||
49 | { | ||
50 | unsigned int i, j, ret = 0; | ||
51 | |||
52 | /* Sure, this is order(n^2), but it's usually short, and not | ||
53 | time critical */ | ||
54 | for (i = 0; i < num; i++) { | ||
55 | for (j = 0; j < i; j++) { | ||
56 | /* If this addend appeared before, it's | ||
57 | already been counted */ | ||
58 | if (ELF32_R_SYM(rela[i].r_info) | ||
59 | == ELF32_R_SYM(rela[j].r_info) | ||
60 | && rela[i].r_addend == rela[j].r_addend) | ||
61 | break; | ||
62 | } | ||
63 | if (j == i) ret++; | ||
64 | } | ||
65 | return ret; | ||
66 | } | ||
67 | |||
68 | /* Get the potential trampolines size required of the init and | ||
69 | non-init sections */ | ||
70 | static unsigned long get_plt_size(const Elf32_Ehdr *hdr, | ||
71 | const Elf32_Shdr *sechdrs, | ||
72 | const char *secstrings, | ||
73 | int is_init) | ||
74 | { | ||
75 | unsigned long ret = 0; | ||
76 | unsigned i; | ||
77 | |||
78 | /* Everything marked ALLOC (this includes the exported | ||
79 | symbols) */ | ||
80 | for (i = 1; i < hdr->e_shnum; i++) { | ||
81 | /* If it's called *.init*, and we're not init, we're | ||
82 | not interested */ | ||
83 | if ((strstr(secstrings + sechdrs[i].sh_name, ".init") != 0) | ||
84 | != is_init) | ||
85 | continue; | ||
86 | |||
87 | if (sechdrs[i].sh_type == SHT_RELA) { | ||
88 | DEBUGP("Found relocations in section %u\n", i); | ||
89 | DEBUGP("Ptr: %p. Number: %u\n", | ||
90 | (void *)hdr + sechdrs[i].sh_offset, | ||
91 | sechdrs[i].sh_size / sizeof(Elf32_Rela)); | ||
92 | ret += count_relocs((void *)hdr | ||
93 | + sechdrs[i].sh_offset, | ||
94 | sechdrs[i].sh_size | ||
95 | / sizeof(Elf32_Rela)) | ||
96 | * sizeof(struct v850_plt_entry); | ||
97 | } | ||
98 | } | ||
99 | |||
100 | return ret; | ||
101 | } | ||
102 | |||
103 | int module_frob_arch_sections(Elf32_Ehdr *hdr, | ||
104 | Elf32_Shdr *sechdrs, | ||
105 | char *secstrings, | ||
106 | struct module *me) | ||
107 | { | ||
108 | unsigned int i; | ||
109 | |||
110 | /* Find .plt and .pltinit sections */ | ||
111 | for (i = 0; i < hdr->e_shnum; i++) { | ||
112 | if (strcmp(secstrings + sechdrs[i].sh_name, ".init.plt") == 0) | ||
113 | me->arch.init_plt_section = i; | ||
114 | else if (strcmp(secstrings + sechdrs[i].sh_name, ".plt") == 0) | ||
115 | me->arch.core_plt_section = i; | ||
116 | } | ||
117 | if (!me->arch.core_plt_section || !me->arch.init_plt_section) { | ||
118 | printk("Module doesn't contain .plt or .plt.init sections.\n"); | ||
119 | return -ENOEXEC; | ||
120 | } | ||
121 | |||
122 | /* Override their sizes */ | ||
123 | sechdrs[me->arch.core_plt_section].sh_size | ||
124 | = get_plt_size(hdr, sechdrs, secstrings, 0); | ||
125 | sechdrs[me->arch.init_plt_section].sh_size | ||
126 | = get_plt_size(hdr, sechdrs, secstrings, 1); | ||
127 | return 0; | ||
128 | } | ||
129 | |||
130 | int apply_relocate (Elf32_Shdr *sechdrs, const char *strtab, | ||
131 | unsigned int symindex, unsigned int relsec, | ||
132 | struct module *mod) | ||
133 | { | ||
134 | printk ("Barf\n"); | ||
135 | return -ENOEXEC; | ||
136 | } | ||
137 | |||
138 | /* Set up a trampoline in the PLT to bounce us to the distant function */ | ||
139 | static uint32_t do_plt_call (void *location, Elf32_Addr val, | ||
140 | Elf32_Shdr *sechdrs, struct module *mod) | ||
141 | { | ||
142 | struct v850_plt_entry *entry; | ||
143 | /* Instructions used to do the indirect jump. */ | ||
144 | uint32_t tramp[2]; | ||
145 | |||
146 | /* We have to trash a register, so we assume that any control | ||
147 | transfer more than 21-bits away must be a function call | ||
148 | (so we can use a call-clobbered register). */ | ||
149 | tramp[0] = 0x0621 + ((val & 0xffff) << 16); /* mov sym, r1 ... */ | ||
150 | tramp[1] = ((val >> 16) & 0xffff) + 0x610000; /* ...; jmp r1 */ | ||
151 | |||
152 | /* Init, or core PLT? */ | ||
153 | if (location >= mod->module_core | ||
154 | && location < mod->module_core + mod->core_size) | ||
155 | entry = (void *)sechdrs[mod->arch.core_plt_section].sh_addr; | ||
156 | else | ||
157 | entry = (void *)sechdrs[mod->arch.init_plt_section].sh_addr; | ||
158 | |||
159 | /* Find this entry, or if that fails, the next avail. entry */ | ||
160 | while (entry->tramp[0]) | ||
161 | if (entry->tramp[0] == tramp[0] && entry->tramp[1] == tramp[1]) | ||
162 | return (uint32_t)entry; | ||
163 | else | ||
164 | entry++; | ||
165 | |||
166 | entry->tramp[0] = tramp[0]; | ||
167 | entry->tramp[1] = tramp[1]; | ||
168 | |||
169 | return (uint32_t)entry; | ||
170 | } | ||
171 | |||
172 | int apply_relocate_add (Elf32_Shdr *sechdrs, const char *strtab, | ||
173 | unsigned int symindex, unsigned int relsec, | ||
174 | struct module *mod) | ||
175 | { | ||
176 | unsigned int i; | ||
177 | Elf32_Rela *rela = (void *)sechdrs[relsec].sh_addr; | ||
178 | |||
179 | DEBUGP ("Applying relocate section %u to %u\n", relsec, | ||
180 | sechdrs[relsec].sh_info); | ||
181 | |||
182 | for (i = 0; i < sechdrs[relsec].sh_size / sizeof (*rela); i++) { | ||
183 | /* This is where to make the change */ | ||
184 | uint32_t *loc | ||
185 | = ((void *)sechdrs[sechdrs[relsec].sh_info].sh_addr | ||
186 | + rela[i].r_offset); | ||
187 | /* This is the symbol it is referring to. Note that all | ||
188 | undefined symbols have been resolved. */ | ||
189 | Elf32_Sym *sym | ||
190 | = ((Elf32_Sym *)sechdrs[symindex].sh_addr | ||
191 | + ELF32_R_SYM (rela[i].r_info)); | ||
192 | uint32_t val = sym->st_value + rela[i].r_addend; | ||
193 | |||
194 | switch (ELF32_R_TYPE (rela[i].r_info)) { | ||
195 | case R_V850_32: | ||
196 | /* We write two shorts instead of a long because even | ||
197 | 32-bit insns only need half-word alignment, but | ||
198 | 32-bit data writes need to be long-word aligned. */ | ||
199 | val += ((uint16_t *)loc)[0]; | ||
200 | val += ((uint16_t *)loc)[1] << 16; | ||
201 | ((uint16_t *)loc)[0] = val & 0xffff; | ||
202 | ((uint16_t *)loc)[1] = (val >> 16) & 0xffff; | ||
203 | break; | ||
204 | |||
205 | case R_V850_22_PCREL: | ||
206 | /* Maybe jump indirectly via a PLT table entry. */ | ||
207 | if ((int32_t)(val - (uint32_t)loc) > 0x1fffff | ||
208 | || (int32_t)(val - (uint32_t)loc) < -0x200000) | ||
209 | val = do_plt_call (loc, val, sechdrs, mod); | ||
210 | |||
211 | val -= (uint32_t)loc; | ||
212 | |||
213 | /* We write two shorts instead of a long because | ||
214 | even 32-bit insns only need half-word alignment, | ||
215 | but 32-bit data writes need to be long-word | ||
216 | aligned. */ | ||
217 | ((uint16_t *)loc)[0] = | ||
218 | (*(uint16_t *)loc & 0xffc0) /* opcode + reg */ | ||
219 | | ((val >> 16) & 0xffc03f); /* offs high */ | ||
220 | ((uint16_t *)loc)[1] = | ||
221 | (val & 0xffff); /* offs low */ | ||
222 | break; | ||
223 | |||
224 | default: | ||
225 | printk (KERN_ERR "module %s: Unknown reloc: %u\n", | ||
226 | mod->name, ELF32_R_TYPE (rela[i].r_info)); | ||
227 | return -ENOEXEC; | ||
228 | } | ||
229 | } | ||
230 | |||
231 | return 0; | ||
232 | } | ||
233 | |||
234 | void | ||
235 | module_arch_cleanup(struct module *mod) | ||
236 | { | ||
237 | } | ||
diff --git a/arch/v850/kernel/process.c b/arch/v850/kernel/process.c new file mode 100644 index 000000000000..9c708c32c1f0 --- /dev/null +++ b/arch/v850/kernel/process.c | |||
@@ -0,0 +1,236 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/process.c -- Arch-dependent process handling | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/errno.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/smp.h> | ||
20 | #include <linux/smp_lock.h> | ||
21 | #include <linux/stddef.h> | ||
22 | #include <linux/unistd.h> | ||
23 | #include <linux/ptrace.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/user.h> | ||
26 | #include <linux/a.out.h> | ||
27 | #include <linux/reboot.h> | ||
28 | |||
29 | #include <asm/uaccess.h> | ||
30 | #include <asm/system.h> | ||
31 | #include <asm/pgtable.h> | ||
32 | |||
33 | extern void ret_from_fork (void); | ||
34 | |||
35 | |||
36 | /* The idle loop. */ | ||
37 | void default_idle (void) | ||
38 | { | ||
39 | while (1) { | ||
40 | while (! need_resched ()) | ||
41 | asm ("halt; nop; nop; nop; nop; nop" ::: "cc"); | ||
42 | schedule (); | ||
43 | } | ||
44 | } | ||
45 | |||
46 | void (*idle)(void) = default_idle; | ||
47 | |||
48 | /* | ||
49 | * The idle thread. There's no useful work to be | ||
50 | * done, so just try to conserve power and have a | ||
51 | * low exit latency (ie sit in a loop waiting for | ||
52 | * somebody to say that they'd like to reschedule) | ||
53 | */ | ||
54 | void cpu_idle (void) | ||
55 | { | ||
56 | /* endless idle loop with no priority at all */ | ||
57 | (*idle) (); | ||
58 | } | ||
59 | |||
60 | /* | ||
61 | * This is the mechanism for creating a new kernel thread. | ||
62 | * | ||
63 | * NOTE! Only a kernel-only process (ie the swapper or direct descendants who | ||
64 | * haven't done an "execve()") should use this: it will work within a system | ||
65 | * call from a "real" process, but the process memory space will not be free'd | ||
66 | * until both the parent and the child have exited. | ||
67 | */ | ||
68 | int kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) | ||
69 | { | ||
70 | register mm_segment_t fs = get_fs (); | ||
71 | register unsigned long syscall asm (SYSCALL_NUM); | ||
72 | register unsigned long arg0 asm (SYSCALL_ARG0); | ||
73 | register unsigned long ret asm (SYSCALL_RET); | ||
74 | |||
75 | set_fs (KERNEL_DS); | ||
76 | |||
77 | /* Clone this thread. Note that we don't pass the clone syscall's | ||
78 | second argument -- it's ignored for calls from kernel mode (the | ||
79 | child's SP is always set to the top of the kernel stack). */ | ||
80 | arg0 = flags | CLONE_VM; | ||
81 | syscall = __NR_clone; | ||
82 | asm volatile ("trap " SYSCALL_SHORT_TRAP | ||
83 | : "=r" (ret), "=r" (syscall) | ||
84 | : "1" (syscall), "r" (arg0) | ||
85 | : SYSCALL_SHORT_CLOBBERS); | ||
86 | |||
87 | if (ret == 0) { | ||
88 | /* In child thread, call FN and exit. */ | ||
89 | arg0 = (*fn) (arg); | ||
90 | syscall = __NR_exit; | ||
91 | asm volatile ("trap " SYSCALL_SHORT_TRAP | ||
92 | : "=r" (ret), "=r" (syscall) | ||
93 | : "1" (syscall), "r" (arg0) | ||
94 | : SYSCALL_SHORT_CLOBBERS); | ||
95 | } | ||
96 | |||
97 | /* In parent. */ | ||
98 | set_fs (fs); | ||
99 | |||
100 | return ret; | ||
101 | } | ||
102 | |||
103 | void flush_thread (void) | ||
104 | { | ||
105 | set_fs (USER_DS); | ||
106 | } | ||
107 | |||
108 | int copy_thread (int nr, unsigned long clone_flags, | ||
109 | unsigned long stack_start, unsigned long stack_size, | ||
110 | struct task_struct *p, struct pt_regs *regs) | ||
111 | { | ||
112 | /* Start pushing stuff from the top of the child's kernel stack. */ | ||
113 | unsigned long orig_ksp = (unsigned long)p->thread_info + THREAD_SIZE; | ||
114 | unsigned long ksp = orig_ksp; | ||
115 | /* We push two `state save' stack fames (see entry.S) on the new | ||
116 | kernel stack: | ||
117 | 1) The innermost one is what switch_thread would have | ||
118 | pushed, and is used when we context switch to the child | ||
119 | thread for the first time. It's set up to return to | ||
120 | ret_from_fork in entry.S. | ||
121 | 2) The outermost one (nearest the top) is what a syscall | ||
122 | trap would have pushed, and is set up to return to the | ||
123 | same location as the parent thread, but with a return | ||
124 | value of 0. */ | ||
125 | struct pt_regs *child_switch_regs, *child_trap_regs; | ||
126 | |||
127 | /* Trap frame. */ | ||
128 | ksp -= STATE_SAVE_SIZE; | ||
129 | child_trap_regs = (struct pt_regs *)(ksp + STATE_SAVE_PT_OFFSET); | ||
130 | /* Switch frame. */ | ||
131 | ksp -= STATE_SAVE_SIZE; | ||
132 | child_switch_regs = (struct pt_regs *)(ksp + STATE_SAVE_PT_OFFSET); | ||
133 | |||
134 | /* First copy parent's register state to child. */ | ||
135 | *child_switch_regs = *regs; | ||
136 | *child_trap_regs = *regs; | ||
137 | |||
138 | /* switch_thread returns to the restored value of the lp | ||
139 | register (r31), so we make that the place where we want to | ||
140 | jump when the child thread begins running. */ | ||
141 | child_switch_regs->gpr[GPR_LP] = (v850_reg_t)ret_from_fork; | ||
142 | |||
143 | if (regs->kernel_mode) | ||
144 | /* Since we're returning to kernel-mode, make sure the child's | ||
145 | stored kernel stack pointer agrees with what the actual | ||
146 | stack pointer will be at that point (the trap return code | ||
147 | always restores the SP, even when returning to | ||
148 | kernel-mode). */ | ||
149 | child_trap_regs->gpr[GPR_SP] = orig_ksp; | ||
150 | else | ||
151 | /* Set the child's user-mode stack-pointer (the name | ||
152 | `stack_start' is a misnomer, it's just the initial SP | ||
153 | value). */ | ||
154 | child_trap_regs->gpr[GPR_SP] = stack_start; | ||
155 | |||
156 | /* Thread state for the child (everything else is on the stack). */ | ||
157 | p->thread.ksp = ksp; | ||
158 | |||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | /* | ||
163 | * fill in the user structure for a core dump.. | ||
164 | */ | ||
165 | void dump_thread (struct pt_regs *regs, struct user *dump) | ||
166 | { | ||
167 | #if 0 /* Later. XXX */ | ||
168 | dump->magic = CMAGIC; | ||
169 | dump->start_code = 0; | ||
170 | dump->start_stack = regs->gpr[GPR_SP]; | ||
171 | dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT; | ||
172 | dump->u_dsize = ((unsigned long) (current->mm->brk + | ||
173 | (PAGE_SIZE-1))) >> PAGE_SHIFT; | ||
174 | dump->u_dsize -= dump->u_tsize; | ||
175 | dump->u_ssize = 0; | ||
176 | |||
177 | if (dump->start_stack < TASK_SIZE) | ||
178 | dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT; | ||
179 | |||
180 | dump->u_ar0 = (struct user_regs_struct *)((int)&dump->regs - (int)dump); | ||
181 | dump->regs = *regs; | ||
182 | dump->u_fpvalid = 0; | ||
183 | #endif | ||
184 | } | ||
185 | |||
186 | /* | ||
187 | * sys_execve() executes a new program. | ||
188 | */ | ||
189 | int sys_execve (char *name, char **argv, char **envp, struct pt_regs *regs) | ||
190 | { | ||
191 | char *filename = getname (name); | ||
192 | int error = PTR_ERR (filename); | ||
193 | |||
194 | if (! IS_ERR (filename)) { | ||
195 | error = do_execve (filename, argv, envp, regs); | ||
196 | putname (filename); | ||
197 | } | ||
198 | |||
199 | return error; | ||
200 | } | ||
201 | |||
202 | |||
203 | /* | ||
204 | * These bracket the sleeping functions.. | ||
205 | */ | ||
206 | #define first_sched ((unsigned long)__sched_text_start) | ||
207 | #define last_sched ((unsigned long)__sched_text_end) | ||
208 | |||
209 | unsigned long get_wchan (struct task_struct *p) | ||
210 | { | ||
211 | #if 0 /* Barf. Figure out the stack-layout later. XXX */ | ||
212 | unsigned long fp, pc; | ||
213 | int count = 0; | ||
214 | |||
215 | if (!p || p == current || p->state == TASK_RUNNING) | ||
216 | return 0; | ||
217 | |||
218 | pc = thread_saved_pc (p); | ||
219 | |||
220 | /* This quite disgusting function walks up the stack, following | ||
221 | saved return address, until it something that's out of bounds | ||
222 | (as defined by `first_sched' and `last_sched'). It then | ||
223 | returns the last PC that was in-bounds. */ | ||
224 | do { | ||
225 | if (fp < stack_page + sizeof (struct task_struct) || | ||
226 | fp >= 8184+stack_page) | ||
227 | return 0; | ||
228 | pc = ((unsigned long *)fp)[1]; | ||
229 | if (pc < first_sched || pc >= last_sched) | ||
230 | return pc; | ||
231 | fp = *(unsigned long *) fp; | ||
232 | } while (count++ < 16); | ||
233 | #endif | ||
234 | |||
235 | return 0; | ||
236 | } | ||
diff --git a/arch/v850/kernel/procfs.c b/arch/v850/kernel/procfs.c new file mode 100644 index 000000000000..e6f9d060ad5b --- /dev/null +++ b/arch/v850/kernel/procfs.c | |||
@@ -0,0 +1,67 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/procfs.c -- Introspection functions for /proc filesystem | ||
3 | * | ||
4 | * Copyright (C) 2001,02 NEC Corporation | ||
5 | * Copyright (C) 2001,02 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include "mach.h" | ||
15 | |||
16 | static int cpuinfo_print (struct seq_file *m, void *v) | ||
17 | { | ||
18 | extern unsigned long loops_per_jiffy; | ||
19 | |||
20 | seq_printf (m, "CPU-Family: v850\nCPU-Arch: %s\n", CPU_ARCH); | ||
21 | |||
22 | #ifdef CPU_MODEL_LONG | ||
23 | seq_printf (m, "CPU-Model: %s (%s)\n", CPU_MODEL, CPU_MODEL_LONG); | ||
24 | #else | ||
25 | seq_printf (m, "CPU-Model: %s\n", CPU_MODEL); | ||
26 | #endif | ||
27 | |||
28 | #ifdef CPU_CLOCK_FREQ | ||
29 | seq_printf (m, "CPU-Clock: %ld (%ld MHz)\n", | ||
30 | (long)CPU_CLOCK_FREQ, | ||
31 | (long)CPU_CLOCK_FREQ / 1000000); | ||
32 | #endif | ||
33 | |||
34 | seq_printf (m, "BogoMips: %lu.%02lu\n", | ||
35 | loops_per_jiffy/(500000/HZ), | ||
36 | (loops_per_jiffy/(5000/HZ)) % 100); | ||
37 | |||
38 | #ifdef PLATFORM_LONG | ||
39 | seq_printf (m, "Platform: %s (%s)\n", PLATFORM, PLATFORM_LONG); | ||
40 | #elif defined (PLATFORM) | ||
41 | seq_printf (m, "Platform: %s\n", PLATFORM); | ||
42 | #endif | ||
43 | |||
44 | return 0; | ||
45 | } | ||
46 | |||
47 | static void *cpuinfo_start (struct seq_file *m, loff_t *pos) | ||
48 | { | ||
49 | return *pos < NR_CPUS ? ((void *) 0x12345678) : NULL; | ||
50 | } | ||
51 | |||
52 | static void *cpuinfo_next (struct seq_file *m, void *v, loff_t *pos) | ||
53 | { | ||
54 | ++*pos; | ||
55 | return cpuinfo_start (m, pos); | ||
56 | } | ||
57 | |||
58 | static void cpuinfo_stop (struct seq_file *m, void *v) | ||
59 | { | ||
60 | } | ||
61 | |||
62 | struct seq_operations cpuinfo_op = { | ||
63 | .start = cpuinfo_start, | ||
64 | .next = cpuinfo_next, | ||
65 | .stop = cpuinfo_stop, | ||
66 | .show = cpuinfo_print | ||
67 | }; | ||
diff --git a/arch/v850/kernel/ptrace.c b/arch/v850/kernel/ptrace.c new file mode 100644 index 000000000000..8fa780757dcd --- /dev/null +++ b/arch/v850/kernel/ptrace.c | |||
@@ -0,0 +1,282 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/ptrace.c -- `ptrace' system call | ||
3 | * | ||
4 | * Copyright (C) 2002,03,04 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03,04 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * Derived from arch/mips/kernel/ptrace.c: | ||
8 | * | ||
9 | * Copyright (C) 1992 Ross Biro | ||
10 | * Copyright (C) Linus Torvalds | ||
11 | * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle | ||
12 | * Copyright (C) 1996 David S. Miller | ||
13 | * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | ||
14 | * Copyright (C) 1999 MIPS Technologies, Inc. | ||
15 | * | ||
16 | * This file is subject to the terms and conditions of the GNU General | ||
17 | * Public License. See the file COPYING in the main directory of this | ||
18 | * archive for more details. | ||
19 | */ | ||
20 | |||
21 | #include <linux/kernel.h> | ||
22 | #include <linux/mm.h> | ||
23 | #include <linux/sched.h> | ||
24 | #include <linux/smp_lock.h> | ||
25 | #include <linux/ptrace.h> | ||
26 | |||
27 | #include <asm/errno.h> | ||
28 | #include <asm/ptrace.h> | ||
29 | #include <asm/processor.h> | ||
30 | #include <asm/uaccess.h> | ||
31 | |||
32 | /* Returns the address where the register at REG_OFFS in P is stashed away. */ | ||
33 | static v850_reg_t *reg_save_addr (unsigned reg_offs, struct task_struct *t) | ||
34 | { | ||
35 | struct pt_regs *regs; | ||
36 | |||
37 | /* Three basic cases: | ||
38 | |||
39 | (1) A register normally saved before calling the scheduler, is | ||
40 | available in the kernel entry pt_regs structure at the top | ||
41 | of the kernel stack. The kernel trap/irq exit path takes | ||
42 | care to save/restore almost all registers for ptrace'd | ||
43 | processes. | ||
44 | |||
45 | (2) A call-clobbered register, where the process P entered the | ||
46 | kernel via [syscall] trap, is not stored anywhere; that's | ||
47 | OK, because such registers are not expected to be preserved | ||
48 | when the trap returns anyway (so we don't actually bother to | ||
49 | test for this case). | ||
50 | |||
51 | (3) A few registers not used at all by the kernel, and so | ||
52 | normally never saved except by context-switches, are in the | ||
53 | context switch state. */ | ||
54 | |||
55 | if (reg_offs == PT_CTPC || reg_offs == PT_CTPSW || reg_offs == PT_CTBP) | ||
56 | /* Register saved during context switch. */ | ||
57 | regs = thread_saved_regs (t); | ||
58 | else | ||
59 | /* Register saved during kernel entry (or not available). */ | ||
60 | regs = task_regs (t); | ||
61 | |||
62 | return (v850_reg_t *)((char *)regs + reg_offs); | ||
63 | } | ||
64 | |||
65 | /* Set the bits SET and clear the bits CLEAR in the v850e DIR | ||
66 | (`debug information register'). Returns the new value of DIR. */ | ||
67 | static inline v850_reg_t set_dir (v850_reg_t set, v850_reg_t clear) | ||
68 | { | ||
69 | register v850_reg_t rval asm ("r10"); | ||
70 | register v850_reg_t arg0 asm ("r6") = set; | ||
71 | register v850_reg_t arg1 asm ("r7") = clear; | ||
72 | |||
73 | /* The dbtrap handler has exactly this functionality when called | ||
74 | from kernel mode. 0xf840 is a `dbtrap' insn. */ | ||
75 | asm (".short 0xf840" : "=r" (rval) : "r" (arg0), "r" (arg1)); | ||
76 | |||
77 | return rval; | ||
78 | } | ||
79 | |||
80 | /* Makes sure hardware single-stepping is (globally) enabled. | ||
81 | Returns true if successful. */ | ||
82 | static inline int enable_single_stepping (void) | ||
83 | { | ||
84 | static int enabled = 0; /* Remember whether we already did it. */ | ||
85 | if (! enabled) { | ||
86 | /* Turn on the SE (`single-step enable') bit, 0x100, in the | ||
87 | DIR (`debug information register'). This may fail if a | ||
88 | processor doesn't support it or something. We also try | ||
89 | to clear bit 0x40 (`INI'), which is necessary to use the | ||
90 | debug stuff on the v850e2; on the v850e, clearing 0x40 | ||
91 | shouldn't cause any problem. */ | ||
92 | v850_reg_t dir = set_dir (0x100, 0x40); | ||
93 | /* Make sure it really got set. */ | ||
94 | if (dir & 0x100) | ||
95 | enabled = 1; | ||
96 | } | ||
97 | return enabled; | ||
98 | } | ||
99 | |||
100 | /* Try to set CHILD's single-step flag to VAL. Returns true if successful. */ | ||
101 | static int set_single_step (struct task_struct *t, int val) | ||
102 | { | ||
103 | v850_reg_t *psw_addr = reg_save_addr(PT_PSW, t); | ||
104 | if (val) { | ||
105 | /* Make sure single-stepping is enabled. */ | ||
106 | if (! enable_single_stepping ()) | ||
107 | return 0; | ||
108 | /* Set T's single-step flag. */ | ||
109 | *psw_addr |= 0x800; | ||
110 | } else | ||
111 | *psw_addr &= ~0x800; | ||
112 | return 1; | ||
113 | } | ||
114 | |||
115 | int sys_ptrace(long request, long pid, long addr, long data) | ||
116 | { | ||
117 | struct task_struct *child; | ||
118 | int rval; | ||
119 | |||
120 | lock_kernel(); | ||
121 | |||
122 | if (request == PTRACE_TRACEME) { | ||
123 | /* are we already being traced? */ | ||
124 | if (current->ptrace & PT_PTRACED) { | ||
125 | rval = -EPERM; | ||
126 | goto out; | ||
127 | } | ||
128 | /* set the ptrace bit in the process flags. */ | ||
129 | current->ptrace |= PT_PTRACED; | ||
130 | rval = 0; | ||
131 | goto out; | ||
132 | } | ||
133 | rval = -ESRCH; | ||
134 | read_lock(&tasklist_lock); | ||
135 | child = find_task_by_pid(pid); | ||
136 | if (child) | ||
137 | get_task_struct(child); | ||
138 | read_unlock(&tasklist_lock); | ||
139 | if (!child) | ||
140 | goto out; | ||
141 | |||
142 | rval = -EPERM; | ||
143 | if (pid == 1) /* you may not mess with init */ | ||
144 | goto out_tsk; | ||
145 | |||
146 | if (request == PTRACE_ATTACH) { | ||
147 | rval = ptrace_attach(child); | ||
148 | goto out_tsk; | ||
149 | } | ||
150 | rval = ptrace_check_attach(child, request == PTRACE_KILL); | ||
151 | if (rval < 0) | ||
152 | goto out_tsk; | ||
153 | |||
154 | switch (request) { | ||
155 | unsigned long val, copied; | ||
156 | |||
157 | case PTRACE_PEEKTEXT: /* read word at location addr. */ | ||
158 | case PTRACE_PEEKDATA: | ||
159 | copied = access_process_vm(child, addr, &val, sizeof(val), 0); | ||
160 | rval = -EIO; | ||
161 | if (copied != sizeof(val)) | ||
162 | break; | ||
163 | rval = put_user(val, (unsigned long *)data); | ||
164 | goto out; | ||
165 | |||
166 | case PTRACE_POKETEXT: /* write the word at location addr. */ | ||
167 | case PTRACE_POKEDATA: | ||
168 | rval = 0; | ||
169 | if (access_process_vm(child, addr, &data, sizeof(data), 1) | ||
170 | == sizeof(data)) | ||
171 | break; | ||
172 | rval = -EIO; | ||
173 | goto out; | ||
174 | |||
175 | /* Read/write the word at location ADDR in the registers. */ | ||
176 | case PTRACE_PEEKUSR: | ||
177 | case PTRACE_POKEUSR: | ||
178 | rval = 0; | ||
179 | if (addr >= PT_SIZE && request == PTRACE_PEEKUSR) { | ||
180 | /* Special requests that don't actually correspond | ||
181 | to offsets in struct pt_regs. */ | ||
182 | if (addr == PT_TEXT_ADDR) | ||
183 | val = child->mm->start_code; | ||
184 | else if (addr == PT_DATA_ADDR) | ||
185 | val = child->mm->start_data; | ||
186 | else if (addr == PT_TEXT_LEN) | ||
187 | val = child->mm->end_code | ||
188 | - child->mm->start_code; | ||
189 | else | ||
190 | rval = -EIO; | ||
191 | } else if (addr >= 0 && addr < PT_SIZE && (addr & 0x3) == 0) { | ||
192 | v850_reg_t *reg_addr = reg_save_addr(addr, child); | ||
193 | if (request == PTRACE_PEEKUSR) | ||
194 | val = *reg_addr; | ||
195 | else | ||
196 | *reg_addr = data; | ||
197 | } else | ||
198 | rval = -EIO; | ||
199 | |||
200 | if (rval == 0 && request == PTRACE_PEEKUSR) | ||
201 | rval = put_user (val, (unsigned long *)data); | ||
202 | goto out; | ||
203 | |||
204 | /* Continue and stop at next (return from) syscall */ | ||
205 | case PTRACE_SYSCALL: | ||
206 | /* Restart after a signal. */ | ||
207 | case PTRACE_CONT: | ||
208 | /* Execute a single instruction. */ | ||
209 | case PTRACE_SINGLESTEP: | ||
210 | rval = -EIO; | ||
211 | if ((unsigned long) data > _NSIG) | ||
212 | break; | ||
213 | |||
214 | /* Turn CHILD's single-step flag on or off. */ | ||
215 | if (! set_single_step (child, request == PTRACE_SINGLESTEP)) | ||
216 | break; | ||
217 | |||
218 | if (request == PTRACE_SYSCALL) | ||
219 | set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | ||
220 | else | ||
221 | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | ||
222 | |||
223 | child->exit_code = data; | ||
224 | wake_up_process(child); | ||
225 | rval = 0; | ||
226 | break; | ||
227 | |||
228 | /* | ||
229 | * make the child exit. Best I can do is send it a sigkill. | ||
230 | * perhaps it should be put in the status that it wants to | ||
231 | * exit. | ||
232 | */ | ||
233 | case PTRACE_KILL: | ||
234 | rval = 0; | ||
235 | if (child->exit_state == EXIT_ZOMBIE) /* already dead */ | ||
236 | break; | ||
237 | child->exit_code = SIGKILL; | ||
238 | wake_up_process(child); | ||
239 | break; | ||
240 | |||
241 | case PTRACE_DETACH: /* detach a process that was attached. */ | ||
242 | set_single_step (child, 0); /* Clear single-step flag */ | ||
243 | rval = ptrace_detach(child, data); | ||
244 | break; | ||
245 | |||
246 | default: | ||
247 | rval = -EIO; | ||
248 | goto out; | ||
249 | } | ||
250 | |||
251 | out_tsk: | ||
252 | put_task_struct(child); | ||
253 | out: | ||
254 | unlock_kernel(); | ||
255 | return rval; | ||
256 | } | ||
257 | |||
258 | asmlinkage void syscall_trace(void) | ||
259 | { | ||
260 | if (!test_thread_flag(TIF_SYSCALL_TRACE)) | ||
261 | return; | ||
262 | if (!(current->ptrace & PT_PTRACED)) | ||
263 | return; | ||
264 | /* The 0x80 provides a way for the tracing parent to distinguish | ||
265 | between a syscall stop and SIGTRAP delivery */ | ||
266 | ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) | ||
267 | ? 0x80 : 0)); | ||
268 | /* | ||
269 | * this isn't the same as continuing with a signal, but it will do | ||
270 | * for normal use. strace only continues with a signal if the | ||
271 | * stopping signal is not SIGTRAP. -brl | ||
272 | */ | ||
273 | if (current->exit_code) { | ||
274 | send_sig(current->exit_code, current, 1); | ||
275 | current->exit_code = 0; | ||
276 | } | ||
277 | } | ||
278 | |||
279 | void ptrace_disable (struct task_struct *child) | ||
280 | { | ||
281 | /* nothing to do */ | ||
282 | } | ||
diff --git a/arch/v850/kernel/rte_cb.c b/arch/v850/kernel/rte_cb.c new file mode 100644 index 000000000000..7ba397f77aca --- /dev/null +++ b/arch/v850/kernel/rte_cb.c | |||
@@ -0,0 +1,200 @@ | |||
1 | /* | ||
2 | * include/asm-v850/rte_cb.c -- Midas lab RTE-CB series of evaluation boards | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/irq.h> | ||
17 | #include <linux/fs.h> | ||
18 | #include <linux/module.h> | ||
19 | |||
20 | #include <asm/machdep.h> | ||
21 | #include <asm/v850e_uart.h> | ||
22 | |||
23 | #include "mach.h" | ||
24 | |||
25 | static void led_tick (void); | ||
26 | |||
27 | /* LED access routines. */ | ||
28 | extern unsigned read_leds (int pos, char *buf, int len); | ||
29 | extern unsigned write_leds (int pos, const char *buf, int len); | ||
30 | |||
31 | #ifdef CONFIG_RTE_CB_MULTI | ||
32 | extern void multi_init (void); | ||
33 | #endif | ||
34 | |||
35 | |||
36 | void __init rte_cb_early_init (void) | ||
37 | { | ||
38 | v850e_intc_disable_irqs (); | ||
39 | |||
40 | #ifdef CONFIG_RTE_CB_MULTI | ||
41 | multi_init (); | ||
42 | #endif | ||
43 | } | ||
44 | |||
45 | void __init mach_setup (char **cmdline) | ||
46 | { | ||
47 | #ifdef CONFIG_RTE_MB_A_PCI | ||
48 | /* Probe for Mother-A, and print a message if we find it. */ | ||
49 | *(volatile unsigned long *)MB_A_SRAM_ADDR = 0xDEADBEEF; | ||
50 | if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0xDEADBEEF) { | ||
51 | *(volatile unsigned long *)MB_A_SRAM_ADDR = 0x12345678; | ||
52 | if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0x12345678) | ||
53 | printk (KERN_INFO | ||
54 | " NEC SolutionGear/Midas lab" | ||
55 | " RTE-MOTHER-A motherboard\n"); | ||
56 | } | ||
57 | #endif /* CONFIG_RTE_MB_A_PCI */ | ||
58 | |||
59 | mach_tick = led_tick; | ||
60 | } | ||
61 | |||
62 | void machine_restart (char *__unused) | ||
63 | { | ||
64 | #ifdef CONFIG_RESET_GUARD | ||
65 | disable_reset_guard (); | ||
66 | #endif | ||
67 | asm ("jmp r0"); /* Jump to the reset vector. */ | ||
68 | } | ||
69 | |||
70 | EXPORT_SYMBOL(machine_restart); | ||
71 | |||
72 | /* This says `HALt.' in LEDese. */ | ||
73 | static unsigned char halt_leds_msg[] = { 0x76, 0x77, 0x38, 0xF8 }; | ||
74 | |||
75 | void machine_halt (void) | ||
76 | { | ||
77 | #ifdef CONFIG_RESET_GUARD | ||
78 | disable_reset_guard (); | ||
79 | #endif | ||
80 | |||
81 | /* Ignore all interrupts. */ | ||
82 | local_irq_disable (); | ||
83 | |||
84 | /* Write a little message. */ | ||
85 | write_leds (0, halt_leds_msg, sizeof halt_leds_msg); | ||
86 | |||
87 | /* Really halt. */ | ||
88 | for (;;) | ||
89 | asm ("halt; nop; nop; nop; nop; nop"); | ||
90 | } | ||
91 | |||
92 | EXPORT_SYMBOL(machine_halt); | ||
93 | |||
94 | void machine_power_off (void) | ||
95 | { | ||
96 | machine_halt (); | ||
97 | } | ||
98 | |||
99 | EXPORT_SYMBOL(machine_power_off); | ||
100 | |||
101 | |||
102 | /* Animated LED display for timer tick. */ | ||
103 | |||
104 | #define TICK_UPD_FREQ 6 | ||
105 | static int tick_frames[][10] = { | ||
106 | { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, -1 }, | ||
107 | { 0x63, 0x5c, -1 }, | ||
108 | { 0x5c, 0x00, -1 }, | ||
109 | { 0x63, 0x00, -1 }, | ||
110 | { -1 } | ||
111 | }; | ||
112 | |||
113 | static void led_tick () | ||
114 | { | ||
115 | static unsigned counter = 0; | ||
116 | |||
117 | if (++counter == (HZ / TICK_UPD_FREQ)) { | ||
118 | /* Which frame we're currently displaying for each digit. */ | ||
119 | static unsigned frame_nums[LED_NUM_DIGITS] = { 0 }; | ||
120 | /* Display image. */ | ||
121 | static unsigned char image[LED_NUM_DIGITS] = { 0 }; | ||
122 | unsigned char prev_image[LED_NUM_DIGITS]; | ||
123 | int write_to_leds = 1; /* true if we should actually display */ | ||
124 | int digit; | ||
125 | |||
126 | /* We check to see if the physical LEDs contains what we last | ||
127 | wrote to them; if not, we suppress display (this is so that | ||
128 | users can write to the LEDs, and not have their output | ||
129 | overwritten). As a special case, we start writing again if | ||
130 | all the LEDs are blank, or our display image is all zeros | ||
131 | (indicating that this is the initial update, when the actual | ||
132 | LEDs might contain random data). */ | ||
133 | read_leds (0, prev_image, LED_NUM_DIGITS); | ||
134 | for (digit = 0; digit < LED_NUM_DIGITS; digit++) | ||
135 | if (image[digit] != prev_image[digit] | ||
136 | && image[digit] && prev_image[digit]) | ||
137 | { | ||
138 | write_to_leds = 0; | ||
139 | break; | ||
140 | } | ||
141 | |||
142 | /* Update display image. */ | ||
143 | for (digit = 0; | ||
144 | digit < LED_NUM_DIGITS && tick_frames[digit][0] >= 0; | ||
145 | digit++) | ||
146 | { | ||
147 | int frame = tick_frames[digit][frame_nums[digit]]; | ||
148 | if (frame < 0) { | ||
149 | image[digit] = tick_frames[digit][0]; | ||
150 | frame_nums[digit] = 1; | ||
151 | } else { | ||
152 | image[digit] = frame; | ||
153 | frame_nums[digit]++; | ||
154 | break; | ||
155 | } | ||
156 | } | ||
157 | |||
158 | if (write_to_leds) | ||
159 | /* Write the display image to the physical LEDs. */ | ||
160 | write_leds (0, image, LED_NUM_DIGITS); | ||
161 | |||
162 | counter = 0; | ||
163 | } | ||
164 | } | ||
165 | |||
166 | |||
167 | /* Mother-A interrupts. */ | ||
168 | |||
169 | #ifdef CONFIG_RTE_GBUS_INT | ||
170 | |||
171 | #define L GBUS_INT_PRIORITY_LOW | ||
172 | #define M GBUS_INT_PRIORITY_MEDIUM | ||
173 | #define H GBUS_INT_PRIORITY_HIGH | ||
174 | |||
175 | static struct gbus_int_irq_init gbus_irq_inits[] = { | ||
176 | #ifdef CONFIG_RTE_MB_A_PCI | ||
177 | { "MB_A_LAN", IRQ_MB_A_LAN, 1, 1, L }, | ||
178 | { "MB_A_PCI1", IRQ_MB_A_PCI1(0), IRQ_MB_A_PCI1_NUM, 1, L }, | ||
179 | { "MB_A_PCI2", IRQ_MB_A_PCI2(0), IRQ_MB_A_PCI2_NUM, 1, L }, | ||
180 | { "MB_A_EXT", IRQ_MB_A_EXT(0), IRQ_MB_A_EXT_NUM, 1, L }, | ||
181 | { "MB_A_USB_OC",IRQ_MB_A_USB_OC(0), IRQ_MB_A_USB_OC_NUM, 1, L }, | ||
182 | { "MB_A_PCMCIA_OC",IRQ_MB_A_PCMCIA_OC, 1, 1, L }, | ||
183 | #endif | ||
184 | { 0 } | ||
185 | }; | ||
186 | #define NUM_GBUS_IRQ_INITS \ | ||
187 | ((sizeof gbus_irq_inits / sizeof gbus_irq_inits[0]) - 1) | ||
188 | |||
189 | static struct hw_interrupt_type gbus_hw_itypes[NUM_GBUS_IRQ_INITS]; | ||
190 | |||
191 | #endif /* CONFIG_RTE_GBUS_INT */ | ||
192 | |||
193 | |||
194 | void __init rte_cb_init_irqs (void) | ||
195 | { | ||
196 | #ifdef CONFIG_RTE_GBUS_INT | ||
197 | gbus_int_init_irqs (); | ||
198 | gbus_int_init_irq_types (gbus_irq_inits, gbus_hw_itypes); | ||
199 | #endif /* CONFIG_RTE_GBUS_INT */ | ||
200 | } | ||
diff --git a/arch/v850/kernel/rte_cb_leds.c b/arch/v850/kernel/rte_cb_leds.c new file mode 100644 index 000000000000..b662ad838940 --- /dev/null +++ b/arch/v850/kernel/rte_cb_leds.c | |||
@@ -0,0 +1,138 @@ | |||
1 | /* | ||
2 | * include/asm-v850/rte_cb_leds.c -- Midas lab RTE-CB board LED device support | ||
3 | * | ||
4 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/spinlock.h> | ||
17 | #include <linux/fs.h> | ||
18 | #include <linux/miscdevice.h> | ||
19 | |||
20 | #include <asm/uaccess.h> | ||
21 | |||
22 | #define LEDS_MINOR 169 /* Minor device number, using misc major. */ | ||
23 | |||
24 | /* The actual LED hardware is write-only, so we hold the contents here too. */ | ||
25 | static unsigned char leds_image[LED_NUM_DIGITS] = { 0 }; | ||
26 | |||
27 | /* Spinlock protecting the above leds. */ | ||
28 | static DEFINE_SPINLOCK(leds_lock); | ||
29 | |||
30 | /* Common body of LED read/write functions, checks POS and LEN for | ||
31 | correctness, declares a variable using IMG_DECL, initialized pointing at | ||
32 | the POS position in the LED image buffer, and and iterates COPY_EXPR | ||
33 | until BUF is equal to the last buffer position; finally, sets LEN to be | ||
34 | the amount actually copied. IMG should be a variable declaration | ||
35 | (without an initializer or a terminating semicolon); POS, BUF, and LEN | ||
36 | should all be simple variables. */ | ||
37 | #define DO_LED_COPY(img_decl, pos, buf, len, copy_expr) \ | ||
38 | do { \ | ||
39 | if (pos > LED_NUM_DIGITS) \ | ||
40 | len = 0; \ | ||
41 | else { \ | ||
42 | if (pos + len > LED_NUM_DIGITS) \ | ||
43 | len = LED_NUM_DIGITS - pos; \ | ||
44 | \ | ||
45 | if (len > 0) { \ | ||
46 | int _flags; \ | ||
47 | const char *_end = buf + len; \ | ||
48 | img_decl = &leds_image[pos]; \ | ||
49 | \ | ||
50 | spin_lock_irqsave (leds_lock, _flags); \ | ||
51 | do \ | ||
52 | (copy_expr); \ | ||
53 | while (buf != _end); \ | ||
54 | spin_unlock_irqrestore (leds_lock, _flags); \ | ||
55 | } \ | ||
56 | } \ | ||
57 | } while (0) | ||
58 | |||
59 | /* Read LEN bytes from LEDs at position POS, into BUF. | ||
60 | Returns actual amount read. */ | ||
61 | unsigned read_leds (unsigned pos, char *buf, unsigned len) | ||
62 | { | ||
63 | DO_LED_COPY (const char *img, pos, buf, len, *buf++ = *img++); | ||
64 | return len; | ||
65 | } | ||
66 | |||
67 | /* Write LEN bytes to LEDs at position POS, from BUF. | ||
68 | Returns actual amount written. */ | ||
69 | unsigned write_leds (unsigned pos, const char *buf, unsigned len) | ||
70 | { | ||
71 | /* We write the actual LED values backwards, because | ||
72 | increasing memory addresses reflect LEDs right-to-left. */ | ||
73 | volatile char *led = &LED (LED_NUM_DIGITS - pos - 1); | ||
74 | /* We invert the value written to the hardware, because 1 = off, | ||
75 | and 0 = on. */ | ||
76 | DO_LED_COPY (char *img, pos, buf, len, | ||
77 | *led-- = 0xFF ^ (*img++ = *buf++)); | ||
78 | return len; | ||
79 | } | ||
80 | |||
81 | |||
82 | /* Device functions. */ | ||
83 | |||
84 | static ssize_t leds_dev_read (struct file *file, char *buf, size_t len, | ||
85 | loff_t *pos) | ||
86 | { | ||
87 | char temp_buf[LED_NUM_DIGITS]; | ||
88 | len = read_leds (*pos, temp_buf, len); | ||
89 | if (copy_to_user (buf, temp_buf, len)) | ||
90 | return -EFAULT; | ||
91 | *pos += len; | ||
92 | return len; | ||
93 | } | ||
94 | |||
95 | static ssize_t leds_dev_write (struct file *file, const char *buf, size_t len, | ||
96 | loff_t *pos) | ||
97 | { | ||
98 | char temp_buf[LED_NUM_DIGITS]; | ||
99 | if (copy_from_user (temp_buf, buf, min_t(size_t, len, LED_NUM_DIGITS))) | ||
100 | return -EFAULT; | ||
101 | len = write_leds (*pos, temp_buf, len); | ||
102 | *pos += len; | ||
103 | return len; | ||
104 | } | ||
105 | |||
106 | static loff_t leds_dev_lseek (struct file *file, loff_t offs, int whence) | ||
107 | { | ||
108 | if (whence == 1) | ||
109 | offs += file->f_pos; /* relative */ | ||
110 | else if (whence == 2) | ||
111 | offs += LED_NUM_DIGITS; /* end-relative */ | ||
112 | |||
113 | if (offs < 0 || offs > LED_NUM_DIGITS) | ||
114 | return -EINVAL; | ||
115 | |||
116 | file->f_pos = offs; | ||
117 | |||
118 | return 0; | ||
119 | } | ||
120 | |||
121 | static struct file_operations leds_fops = { | ||
122 | .read = leds_dev_read, | ||
123 | .write = leds_dev_write, | ||
124 | .llseek = leds_dev_lseek | ||
125 | }; | ||
126 | |||
127 | static struct miscdevice leds_miscdev = { | ||
128 | .name = "leds", | ||
129 | .minor = LEDS_MINOR, | ||
130 | .fops = &leds_fops | ||
131 | }; | ||
132 | |||
133 | int __init leds_dev_init (void) | ||
134 | { | ||
135 | return misc_register (&leds_miscdev); | ||
136 | } | ||
137 | |||
138 | __initcall (leds_dev_init); | ||
diff --git a/arch/v850/kernel/rte_cb_multi.c b/arch/v850/kernel/rte_cb_multi.c new file mode 100644 index 000000000000..963d55ab34cc --- /dev/null +++ b/arch/v850/kernel/rte_cb_multi.c | |||
@@ -0,0 +1,121 @@ | |||
1 | /* | ||
2 | * include/asm-v850/rte_multi.c -- Support for Multi debugger monitor ROM | ||
3 | * on Midas lab RTE-CB series of evaluation boards | ||
4 | * | ||
5 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
6 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <linux/init.h> | ||
16 | |||
17 | #include <asm/machdep.h> | ||
18 | |||
19 | #define IRQ_ADDR(irq) (0x80 + (irq) * 0x10) | ||
20 | |||
21 | /* A table of which interrupt vectors to install, since blindly | ||
22 | installing all of them makes the debugger stop working. This is a | ||
23 | list of offsets in the interrupt vector area; each entry means to | ||
24 | copy that particular 16-byte vector. An entry less than zero ends | ||
25 | the table. */ | ||
26 | static long multi_intv_install_table[] = { | ||
27 | /* Trap vectors */ | ||
28 | 0x40, 0x50, | ||
29 | |||
30 | #ifdef CONFIG_RTE_CB_MULTI_DBTRAP | ||
31 | /* Illegal insn / dbtrap. These are used by multi, so only handle | ||
32 | them if configured to do so. */ | ||
33 | 0x60, | ||
34 | #endif | ||
35 | |||
36 | /* GINT1 - GINT3 (note, not GINT0!) */ | ||
37 | IRQ_ADDR (IRQ_GINT(1)), | ||
38 | IRQ_ADDR (IRQ_GINT(2)), | ||
39 | IRQ_ADDR (IRQ_GINT(3)), | ||
40 | |||
41 | /* Timer D interrupts (up to 4 timers) */ | ||
42 | IRQ_ADDR (IRQ_INTCMD(0)), | ||
43 | #if IRQ_INTCMD_NUM > 1 | ||
44 | IRQ_ADDR (IRQ_INTCMD(1)), | ||
45 | #if IRQ_INTCMD_NUM > 2 | ||
46 | IRQ_ADDR (IRQ_INTCMD(2)), | ||
47 | #if IRQ_INTCMD_NUM > 3 | ||
48 | IRQ_ADDR (IRQ_INTCMD(3)), | ||
49 | #endif | ||
50 | #endif | ||
51 | #endif | ||
52 | |||
53 | /* UART interrupts (up to 3 channels) */ | ||
54 | IRQ_ADDR (IRQ_INTSER (0)), /* err */ | ||
55 | IRQ_ADDR (IRQ_INTSR (0)), /* rx */ | ||
56 | IRQ_ADDR (IRQ_INTST (0)), /* tx */ | ||
57 | #if IRQ_INTSR_NUM > 1 | ||
58 | IRQ_ADDR (IRQ_INTSER (1)), /* err */ | ||
59 | IRQ_ADDR (IRQ_INTSR (1)), /* rx */ | ||
60 | IRQ_ADDR (IRQ_INTST (1)), /* tx */ | ||
61 | #if IRQ_INTSR_NUM > 2 | ||
62 | IRQ_ADDR (IRQ_INTSER (2)), /* err */ | ||
63 | IRQ_ADDR (IRQ_INTSR (2)), /* rx */ | ||
64 | IRQ_ADDR (IRQ_INTST (2)), /* tx */ | ||
65 | #endif | ||
66 | #endif | ||
67 | |||
68 | -1 | ||
69 | }; | ||
70 | |||
71 | /* Early initialization for kernel using Multi debugger ROM monitor. */ | ||
72 | void __init multi_init (void) | ||
73 | { | ||
74 | /* We're using the Multi debugger monitor, so we have to install | ||
75 | the interrupt vectors. The monitor doesn't allow them to be | ||
76 | initially downloaded into their final destination because | ||
77 | it's in the monitor's scratch-RAM area. Unfortunately, Multi | ||
78 | also doesn't deal correctly with ELF sections where the LMA | ||
79 | and VMA differ -- it just ignores the LMA -- so we can't use | ||
80 | that feature to work around the problem. What we do instead | ||
81 | is just put the interrupt vectors into a normal section, and | ||
82 | do the necessary copying and relocation here. Since the | ||
83 | interrupt vector basically only contains `jr' instructions | ||
84 | and no-ops, it's not that hard. */ | ||
85 | extern unsigned long _intv_load_start, _intv_start; | ||
86 | register unsigned long *src = &_intv_load_start; | ||
87 | register unsigned long *dst = (unsigned long *)INTV_BASE; | ||
88 | register unsigned long jr_fixup = (char *)&_intv_start - (char *)dst; | ||
89 | register long *ii; | ||
90 | |||
91 | /* Copy interrupt vectors as instructed by multi_intv_install_table. */ | ||
92 | for (ii = multi_intv_install_table; *ii >= 0; ii++) { | ||
93 | /* Copy 16-byte interrupt vector at offset *ii. */ | ||
94 | int boffs; | ||
95 | for (boffs = 0; boffs < 0x10; boffs += sizeof *src) { | ||
96 | /* Copy a single word, fixing up the jump offs | ||
97 | if it's a `jr' instruction. */ | ||
98 | int woffs = (*ii + boffs) / sizeof *src; | ||
99 | unsigned long word = src[woffs]; | ||
100 | |||
101 | if ((word & 0xFC0) == 0x780) { | ||
102 | /* A `jr' insn, fix up its offset (and yes, the | ||
103 | weird half-word swapping is intentional). */ | ||
104 | unsigned short hi = word & 0xFFFF; | ||
105 | unsigned short lo = word >> 16; | ||
106 | unsigned long udisp22 | ||
107 | = lo + ((hi & 0x3F) << 16); | ||
108 | long disp22 = (long)(udisp22 << 10) >> 10; | ||
109 | |||
110 | disp22 += jr_fixup; | ||
111 | |||
112 | hi = ((disp22 >> 16) & 0x3F) | 0x780; | ||
113 | lo = disp22 & 0xFFFF; | ||
114 | |||
115 | word = hi + (lo << 16); | ||
116 | } | ||
117 | |||
118 | dst[woffs] = word; | ||
119 | } | ||
120 | } | ||
121 | } | ||
diff --git a/arch/v850/kernel/rte_ma1_cb-rom.ld b/arch/v850/kernel/rte_ma1_cb-rom.ld new file mode 100644 index 000000000000..87b618f8253b --- /dev/null +++ b/arch/v850/kernel/rte_ma1_cb-rom.ld | |||
@@ -0,0 +1,14 @@ | |||
1 | /* Linker script for the Midas labs RTE-V850E/MA1-CB evaluation board | ||
2 | (CONFIG_RTE_CB_MA1), with kernel in ROM. */ | ||
3 | |||
4 | MEMORY { | ||
5 | ROM : ORIGIN = 0x00000000, LENGTH = 0x00100000 | ||
6 | /* 1MB of SRAM. This memory is mirrored 4 times. */ | ||
7 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = SRAM_SIZE | ||
8 | /* 32MB of SDRAM. */ | ||
9 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
10 | } | ||
11 | |||
12 | SECTIONS { | ||
13 | ROMK_SECTIONS(ROM, SRAM) | ||
14 | } | ||
diff --git a/arch/v850/kernel/rte_ma1_cb.c b/arch/v850/kernel/rte_ma1_cb.c new file mode 100644 index 000000000000..3873e276392f --- /dev/null +++ b/arch/v850/kernel/rte_ma1_cb.c | |||
@@ -0,0 +1,106 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/rte_ma1_cb.c -- Midas labs RTE-V850E/MA1-CB board | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/bootmem.h> | ||
18 | |||
19 | #include <asm/atomic.h> | ||
20 | #include <asm/page.h> | ||
21 | #include <asm/ma1.h> | ||
22 | #include <asm/rte_ma1_cb.h> | ||
23 | #include <asm/v850e_timer_c.h> | ||
24 | |||
25 | #include "mach.h" | ||
26 | |||
27 | |||
28 | /* SRAM and SDRAM are almost contiguous (with a small hole in between; | ||
29 | see mach_reserve_bootmem for details), so just use both as one big area. */ | ||
30 | #define RAM_START SRAM_ADDR | ||
31 | #define RAM_END (SDRAM_ADDR + SDRAM_SIZE) | ||
32 | |||
33 | |||
34 | void __init mach_early_init (void) | ||
35 | { | ||
36 | rte_cb_early_init (); | ||
37 | } | ||
38 | |||
39 | void __init mach_get_physical_ram (unsigned long *ram_start, | ||
40 | unsigned long *ram_len) | ||
41 | { | ||
42 | *ram_start = RAM_START; | ||
43 | *ram_len = RAM_END - RAM_START; | ||
44 | } | ||
45 | |||
46 | void __init mach_reserve_bootmem () | ||
47 | { | ||
48 | #ifdef CONFIG_RTE_CB_MULTI | ||
49 | /* Prevent the kernel from touching the monitor's scratch RAM. */ | ||
50 | reserve_bootmem (MON_SCRATCH_ADDR, MON_SCRATCH_SIZE); | ||
51 | #endif | ||
52 | |||
53 | /* The space between SRAM and SDRAM is filled with duplicate | ||
54 | images of SRAM. Prevent the kernel from using them. */ | ||
55 | reserve_bootmem (SRAM_ADDR + SRAM_SIZE, | ||
56 | SDRAM_ADDR - (SRAM_ADDR + SRAM_SIZE)); | ||
57 | } | ||
58 | |||
59 | void mach_gettimeofday (struct timespec *tv) | ||
60 | { | ||
61 | tv->tv_sec = 0; | ||
62 | tv->tv_nsec = 0; | ||
63 | } | ||
64 | |||
65 | /* Called before configuring an on-chip UART. */ | ||
66 | void rte_ma1_cb_uart_pre_configure (unsigned chan, | ||
67 | unsigned cflags, unsigned baud) | ||
68 | { | ||
69 | /* The RTE-MA1-CB connects some general-purpose I/O pins on the | ||
70 | CPU to the RTS/CTS lines of UART 0's serial connection. | ||
71 | I/O pins P42 and P43 are RTS and CTS respectively. */ | ||
72 | if (chan == 0) { | ||
73 | /* Put P42 & P43 in I/O port mode. */ | ||
74 | MA_PORT4_PMC &= ~0xC; | ||
75 | /* Make P42 an output, and P43 an input. */ | ||
76 | MA_PORT4_PM = (MA_PORT4_PM & ~0xC) | 0x8; | ||
77 | } | ||
78 | |||
79 | /* Do pre-configuration for the actual UART. */ | ||
80 | ma_uart_pre_configure (chan, cflags, baud); | ||
81 | } | ||
82 | |||
83 | void __init mach_init_irqs (void) | ||
84 | { | ||
85 | unsigned tc; | ||
86 | |||
87 | /* Initialize interrupts. */ | ||
88 | ma_init_irqs (); | ||
89 | rte_cb_init_irqs (); | ||
90 | |||
91 | /* Use falling-edge-sensitivity for interrupts . */ | ||
92 | V850E_TIMER_C_SESC (0) &= ~0xC; | ||
93 | V850E_TIMER_C_SESC (1) &= ~0xF; | ||
94 | |||
95 | /* INTP000-INTP011 are shared with `Timer C', so we have to set | ||
96 | up Timer C to pass them through as raw interrupts. */ | ||
97 | for (tc = 0; tc < 2; tc++) | ||
98 | /* Turn on the timer. */ | ||
99 | V850E_TIMER_C_TMCC0 (tc) |= V850E_TIMER_C_TMCC0_CAE; | ||
100 | |||
101 | /* Make sure the relevant port0/port1 pins are assigned | ||
102 | interrupt duty. We used INTP001-INTP011 (don't screw with | ||
103 | INTP000 because the monitor uses it). */ | ||
104 | MA_PORT0_PMC |= 0x4; /* P02 (INTP001) in IRQ mode. */ | ||
105 | MA_PORT1_PMC |= 0x6; /* P11 (INTP010) & P12 (INTP011) in IRQ mode.*/ | ||
106 | } | ||
diff --git a/arch/v850/kernel/rte_ma1_cb.ld b/arch/v850/kernel/rte_ma1_cb.ld new file mode 100644 index 000000000000..c8e16d16be41 --- /dev/null +++ b/arch/v850/kernel/rte_ma1_cb.ld | |||
@@ -0,0 +1,57 @@ | |||
1 | /* Linker script for the Midas labs RTE-V850E/MA1-CB evaluation board | ||
2 | (CONFIG_RTE_CB_MA1), with kernel in SDRAM, under Multi debugger. */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 1MB of SRAM; we can't use the last 32KB, because it's used by | ||
6 | the monitor scratch-RAM. This memory is mirrored 4 times. */ | ||
7 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = (SRAM_SIZE - MON_SCRATCH_SIZE) | ||
8 | /* Monitor scratch RAM; only the interrupt vectors should go here. */ | ||
9 | MRAM : ORIGIN = MON_SCRATCH_ADDR, LENGTH = MON_SCRATCH_SIZE | ||
10 | /* 32MB of SDRAM. */ | ||
11 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
12 | } | ||
13 | |||
14 | #ifdef CONFIG_RTE_CB_MA1_KSRAM | ||
15 | # define KRAM SRAM | ||
16 | #else | ||
17 | # define KRAM SDRAM | ||
18 | #endif | ||
19 | |||
20 | SECTIONS { | ||
21 | /* We can't use RAMK_KRAM_CONTENTS because that puts the whole | ||
22 | kernel in a single ELF segment, and the Multi debugger (which | ||
23 | we use to load the kernel) appears to have bizarre problems | ||
24 | dealing with it. */ | ||
25 | |||
26 | .text : { | ||
27 | __kram_start = . ; | ||
28 | TEXT_CONTENTS | ||
29 | } > KRAM | ||
30 | |||
31 | .data : { | ||
32 | DATA_CONTENTS | ||
33 | BSS_CONTENTS | ||
34 | RAMK_INIT_CONTENTS | ||
35 | __kram_end = . ; | ||
36 | BOOTMAP_CONTENTS | ||
37 | |||
38 | /* The address at which the interrupt vectors are initially | ||
39 | loaded by the loader. We can't load the interrupt vectors | ||
40 | directly into their target location, because the monitor | ||
41 | ROM for the GHS Multi debugger barfs if we try. | ||
42 | Unfortunately, Multi also doesn't deal correctly with ELF | ||
43 | sections where the LMA and VMA differ (it just ignores the | ||
44 | LMA), so we can't use that feature to work around the | ||
45 | problem! What we do instead is just put the interrupt | ||
46 | vectors into a normal section, and have the | ||
47 | `mach_early_init' function for Midas boards do the | ||
48 | necessary copying and relocation at runtime (this section | ||
49 | basically only contains `jr' instructions, so it's not | ||
50 | that hard). */ | ||
51 | . = ALIGN (0x10) ; | ||
52 | __intv_load_start = . ; | ||
53 | INTV_CONTENTS | ||
54 | } > KRAM | ||
55 | |||
56 | .root ALIGN (4096) : { ROOT_FS_CONTENTS } > SDRAM | ||
57 | } | ||
diff --git a/arch/v850/kernel/rte_mb_a_pci.c b/arch/v850/kernel/rte_mb_a_pci.c new file mode 100644 index 000000000000..074b50abc89d --- /dev/null +++ b/arch/v850/kernel/rte_mb_a_pci.c | |||
@@ -0,0 +1,796 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/mb_a_pci.c -- PCI support for Midas lab RTE-MOTHER-A board | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/slab.h> | ||
19 | #include <linux/spinlock.h> | ||
20 | #include <linux/pci.h> | ||
21 | |||
22 | #include <asm/machdep.h> | ||
23 | |||
24 | /* __nomods_init is like __devinit, but is a no-op when modules are enabled. | ||
25 | This is used by some routines that can be called either during boot | ||
26 | or by a module. */ | ||
27 | #ifdef CONFIG_MODULES | ||
28 | #define __nomods_init /*nothing*/ | ||
29 | #else | ||
30 | #define __nomods_init __devinit | ||
31 | #endif | ||
32 | |||
33 | /* PCI devices on the Mother-A board can only do DMA to/from the MB SRAM | ||
34 | (the RTE-V850E/MA1-CB cpu board doesn't support PCI access to | ||
35 | CPU-board memory), and since linux DMA buffers are allocated in | ||
36 | normal kernel memory, we basically have to copy DMA blocks around | ||
37 | (this is like a `bounce buffer'). When a DMA block is `mapped', we | ||
38 | allocate an identically sized block in MB SRAM, and if we're doing | ||
39 | output to the device, copy the CPU-memory block to the MB-SRAM block. | ||
40 | When an active block is `unmapped', we will copy the block back to | ||
41 | CPU memory if necessary, and then deallocate the MB SRAM block. | ||
42 | Ack. */ | ||
43 | |||
44 | /* Where the motherboard SRAM is in the PCI-bus address space (the | ||
45 | first 512K of it is also mapped at PCI address 0). */ | ||
46 | #define PCI_MB_SRAM_ADDR 0x800000 | ||
47 | |||
48 | /* Convert CPU-view MB SRAM address to/from PCI-view addresses of the | ||
49 | same memory. */ | ||
50 | #define MB_SRAM_TO_PCI(mb_sram_addr) \ | ||
51 | ((dma_addr_t)mb_sram_addr - MB_A_SRAM_ADDR + PCI_MB_SRAM_ADDR) | ||
52 | #define PCI_TO_MB_SRAM(pci_addr) \ | ||
53 | (void *)(pci_addr - PCI_MB_SRAM_ADDR + MB_A_SRAM_ADDR) | ||
54 | |||
55 | static void pcibios_assign_resources (void); | ||
56 | |||
57 | struct mb_pci_dev_irq { | ||
58 | unsigned dev; /* PCI device number */ | ||
59 | unsigned irq_base; /* First IRQ */ | ||
60 | unsigned query_pin; /* True if we should read the device's | ||
61 | Interrupt Pin info, and allocate | ||
62 | interrupt IRQ_BASE + PIN. */ | ||
63 | }; | ||
64 | |||
65 | /* PCI interrupts are mapped statically to GBUS interrupts. */ | ||
66 | static struct mb_pci_dev_irq mb_pci_dev_irqs[] = { | ||
67 | /* Motherboard SB82558 ethernet controller */ | ||
68 | { 10, IRQ_MB_A_LAN, 0 }, | ||
69 | /* PCI slot 1 */ | ||
70 | { 8, IRQ_MB_A_PCI1(0), 1 }, | ||
71 | /* PCI slot 2 */ | ||
72 | { 9, IRQ_MB_A_PCI2(0), 1 } | ||
73 | }; | ||
74 | #define NUM_MB_PCI_DEV_IRQS \ | ||
75 | (sizeof mb_pci_dev_irqs / sizeof mb_pci_dev_irqs[0]) | ||
76 | |||
77 | |||
78 | /* PCI configuration primitives. */ | ||
79 | |||
80 | #define CONFIG_DMCFGA(bus, devfn, offs) \ | ||
81 | (0x80000000 \ | ||
82 | | ((offs) & ~0x3) \ | ||
83 | | ((devfn) << 8) \ | ||
84 | | ((bus)->number << 16)) | ||
85 | |||
86 | static int | ||
87 | mb_pci_read (struct pci_bus *bus, unsigned devfn, int offs, int size, u32 *rval) | ||
88 | { | ||
89 | u32 addr; | ||
90 | int flags; | ||
91 | |||
92 | local_irq_save (flags); | ||
93 | |||
94 | MB_A_PCI_PCICR = 0x7; | ||
95 | MB_A_PCI_DMCFGA = CONFIG_DMCFGA (bus, devfn, offs); | ||
96 | |||
97 | addr = MB_A_PCI_IO_ADDR + (offs & 0x3); | ||
98 | |||
99 | switch (size) { | ||
100 | case 1: *rval = *(volatile u8 *)addr; break; | ||
101 | case 2: *rval = *(volatile u16 *)addr; break; | ||
102 | case 4: *rval = *(volatile u32 *)addr; break; | ||
103 | } | ||
104 | |||
105 | if (MB_A_PCI_PCISR & 0x2000) { | ||
106 | MB_A_PCI_PCISR = 0x2000; | ||
107 | *rval = ~0; | ||
108 | } | ||
109 | |||
110 | MB_A_PCI_DMCFGA = 0; | ||
111 | |||
112 | local_irq_restore (flags); | ||
113 | |||
114 | return PCIBIOS_SUCCESSFUL; | ||
115 | } | ||
116 | |||
117 | static int | ||
118 | mb_pci_write (struct pci_bus *bus, unsigned devfn, int offs, int size, u32 val) | ||
119 | { | ||
120 | u32 addr; | ||
121 | int flags; | ||
122 | |||
123 | local_irq_save (flags); | ||
124 | |||
125 | MB_A_PCI_PCICR = 0x7; | ||
126 | MB_A_PCI_DMCFGA = CONFIG_DMCFGA (bus, devfn, offs); | ||
127 | |||
128 | addr = MB_A_PCI_IO_ADDR + (offs & 0x3); | ||
129 | |||
130 | switch (size) { | ||
131 | case 1: *(volatile u8 *)addr = val; break; | ||
132 | case 2: *(volatile u16 *)addr = val; break; | ||
133 | case 4: *(volatile u32 *)addr = val; break; | ||
134 | } | ||
135 | |||
136 | if (MB_A_PCI_PCISR & 0x2000) | ||
137 | MB_A_PCI_PCISR = 0x2000; | ||
138 | |||
139 | MB_A_PCI_DMCFGA = 0; | ||
140 | |||
141 | local_irq_restore (flags); | ||
142 | |||
143 | return PCIBIOS_SUCCESSFUL; | ||
144 | } | ||
145 | |||
146 | static struct pci_ops mb_pci_config_ops = { | ||
147 | .read = mb_pci_read, | ||
148 | .write = mb_pci_write, | ||
149 | }; | ||
150 | |||
151 | |||
152 | /* PCI Initialization. */ | ||
153 | |||
154 | static struct pci_bus *mb_pci_bus = 0; | ||
155 | |||
156 | /* Do initial PCI setup. */ | ||
157 | static int __devinit pcibios_init (void) | ||
158 | { | ||
159 | u32 id = MB_A_PCI_PCIHIDR; | ||
160 | u16 vendor = id & 0xFFFF; | ||
161 | u16 device = (id >> 16) & 0xFFFF; | ||
162 | |||
163 | if (vendor == PCI_VENDOR_ID_PLX && device == PCI_DEVICE_ID_PLX_9080) { | ||
164 | printk (KERN_INFO | ||
165 | "PCI: PLX Technology PCI9080 HOST/PCI bridge\n"); | ||
166 | |||
167 | MB_A_PCI_PCICR = 0x147; | ||
168 | |||
169 | MB_A_PCI_PCIBAR0 = 0x007FFF00; | ||
170 | MB_A_PCI_PCIBAR1 = 0x0000FF00; | ||
171 | MB_A_PCI_PCIBAR2 = 0x00800000; | ||
172 | |||
173 | MB_A_PCI_PCILTR = 0x20; | ||
174 | |||
175 | MB_A_PCI_PCIPBAM |= 0x3; | ||
176 | |||
177 | MB_A_PCI_PCISR = ~0; /* Clear errors. */ | ||
178 | |||
179 | /* Reprogram the motherboard's IO/config address space, | ||
180 | as we don't support the GCS7 address space that the | ||
181 | default uses. */ | ||
182 | |||
183 | /* Significant address bits used for decoding PCI GCS5 space | ||
184 | accessess. */ | ||
185 | MB_A_PCI_DMRR = ~(MB_A_PCI_MEM_SIZE - 1); | ||
186 | |||
187 | /* I don't understand this, but the SolutionGear example code | ||
188 | uses such an offset, and it doesn't work without it. XXX */ | ||
189 | #if GCS5_SIZE == 0x00800000 | ||
190 | #define GCS5_CFG_OFFS 0x00800000 | ||
191 | #else | ||
192 | #define GCS5_CFG_OFFS 0 | ||
193 | #endif | ||
194 | |||
195 | /* Address bit values for matching. Note that we have to give | ||
196 | the address from the motherboard's point of view, which is | ||
197 | different than the CPU's. */ | ||
198 | /* PCI memory space. */ | ||
199 | MB_A_PCI_DMLBAM = GCS5_CFG_OFFS + 0x0; | ||
200 | /* PCI I/O space. */ | ||
201 | MB_A_PCI_DMLBAI = | ||
202 | GCS5_CFG_OFFS + (MB_A_PCI_IO_ADDR - GCS5_ADDR); | ||
203 | |||
204 | mb_pci_bus = pci_scan_bus (0, &mb_pci_config_ops, 0); | ||
205 | |||
206 | pcibios_assign_resources (); | ||
207 | } else | ||
208 | printk (KERN_ERR "PCI: HOST/PCI bridge not found\n"); | ||
209 | |||
210 | return 0; | ||
211 | } | ||
212 | |||
213 | subsys_initcall (pcibios_init); | ||
214 | |||
215 | char __devinit *pcibios_setup (char *option) | ||
216 | { | ||
217 | /* Don't handle any options. */ | ||
218 | return option; | ||
219 | } | ||
220 | |||
221 | |||
222 | int __nomods_init pcibios_enable_device (struct pci_dev *dev, int mask) | ||
223 | { | ||
224 | u16 cmd, old_cmd; | ||
225 | int idx; | ||
226 | struct resource *r; | ||
227 | |||
228 | pci_read_config_word(dev, PCI_COMMAND, &cmd); | ||
229 | old_cmd = cmd; | ||
230 | for (idx = 0; idx < 6; idx++) { | ||
231 | r = &dev->resource[idx]; | ||
232 | if (!r->start && r->end) { | ||
233 | printk(KERN_ERR "PCI: Device %s not available because " | ||
234 | "of resource collisions\n", pci_name(dev)); | ||
235 | return -EINVAL; | ||
236 | } | ||
237 | if (r->flags & IORESOURCE_IO) | ||
238 | cmd |= PCI_COMMAND_IO; | ||
239 | if (r->flags & IORESOURCE_MEM) | ||
240 | cmd |= PCI_COMMAND_MEMORY; | ||
241 | } | ||
242 | if (cmd != old_cmd) { | ||
243 | printk("PCI: Enabling device %s (%04x -> %04x)\n", | ||
244 | pci_name(dev), old_cmd, cmd); | ||
245 | pci_write_config_word(dev, PCI_COMMAND, cmd); | ||
246 | } | ||
247 | return 0; | ||
248 | } | ||
249 | |||
250 | |||
251 | /* Resource allocation. */ | ||
252 | static void __devinit pcibios_assign_resources (void) | ||
253 | { | ||
254 | struct pci_dev *dev = NULL; | ||
255 | struct resource *r; | ||
256 | |||
257 | for_each_pci_dev(dev) { | ||
258 | unsigned di_num; | ||
259 | unsigned class = dev->class >> 8; | ||
260 | |||
261 | if (class && class != PCI_CLASS_BRIDGE_HOST) { | ||
262 | unsigned r_num; | ||
263 | for(r_num = 0; r_num < 6; r_num++) { | ||
264 | r = &dev->resource[r_num]; | ||
265 | if (!r->start && r->end) | ||
266 | pci_assign_resource (dev, r_num); | ||
267 | } | ||
268 | } | ||
269 | |||
270 | /* Assign interrupts. */ | ||
271 | for (di_num = 0; di_num < NUM_MB_PCI_DEV_IRQS; di_num++) { | ||
272 | struct mb_pci_dev_irq *di = &mb_pci_dev_irqs[di_num]; | ||
273 | |||
274 | if (di->dev == PCI_SLOT (dev->devfn)) { | ||
275 | unsigned irq = di->irq_base; | ||
276 | |||
277 | if (di->query_pin) { | ||
278 | /* Find out which interrupt pin | ||
279 | this device uses (each PCI | ||
280 | slot has 4). */ | ||
281 | u8 irq_pin; | ||
282 | |||
283 | pci_read_config_byte (dev, | ||
284 | PCI_INTERRUPT_PIN, | ||
285 | &irq_pin); | ||
286 | |||
287 | if (irq_pin == 0) | ||
288 | /* Doesn't use interrupts. */ | ||
289 | continue; | ||
290 | else | ||
291 | irq += irq_pin - 1; | ||
292 | } | ||
293 | |||
294 | pcibios_update_irq (dev, irq); | ||
295 | } | ||
296 | } | ||
297 | } | ||
298 | } | ||
299 | |||
300 | void __devinit pcibios_update_irq (struct pci_dev *dev, int irq) | ||
301 | { | ||
302 | dev->irq = irq; | ||
303 | pci_write_config_byte (dev, PCI_INTERRUPT_LINE, irq); | ||
304 | } | ||
305 | |||
306 | void __devinit | ||
307 | pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region, | ||
308 | struct resource *res) | ||
309 | { | ||
310 | unsigned long offset = 0; | ||
311 | |||
312 | if (res->flags & IORESOURCE_IO) { | ||
313 | offset = MB_A_PCI_IO_ADDR; | ||
314 | } else if (res->flags & IORESOURCE_MEM) { | ||
315 | offset = MB_A_PCI_MEM_ADDR; | ||
316 | } | ||
317 | |||
318 | region->start = res->start - offset; | ||
319 | region->end = res->end - offset; | ||
320 | } | ||
321 | |||
322 | |||
323 | /* Stubs for things we don't use. */ | ||
324 | |||
325 | /* Called after each bus is probed, but before its children are examined. */ | ||
326 | void pcibios_fixup_bus(struct pci_bus *b) | ||
327 | { | ||
328 | } | ||
329 | |||
330 | void | ||
331 | pcibios_align_resource (void *data, struct resource *res, | ||
332 | unsigned long size, unsigned long align) | ||
333 | { | ||
334 | } | ||
335 | |||
336 | void pcibios_set_master (struct pci_dev *dev) | ||
337 | { | ||
338 | } | ||
339 | |||
340 | |||
341 | /* Mother-A SRAM memory allocation. This is a simple first-fit allocator. */ | ||
342 | |||
343 | /* A memory free-list node. */ | ||
344 | struct mb_sram_free_area { | ||
345 | void *mem; | ||
346 | unsigned long size; | ||
347 | struct mb_sram_free_area *next; | ||
348 | }; | ||
349 | |||
350 | /* The tail of the free-list, which starts out containing all the SRAM. */ | ||
351 | static struct mb_sram_free_area mb_sram_free_tail = { | ||
352 | (void *)MB_A_SRAM_ADDR, MB_A_SRAM_SIZE, 0 | ||
353 | }; | ||
354 | |||
355 | /* The free-list. */ | ||
356 | static struct mb_sram_free_area *mb_sram_free_areas = &mb_sram_free_tail; | ||
357 | |||
358 | /* The free-list of free free-list nodes. (:-) */ | ||
359 | static struct mb_sram_free_area *mb_sram_free_free_areas = 0; | ||
360 | |||
361 | /* Spinlock protecting the above globals. */ | ||
362 | static DEFINE_SPINLOCK(mb_sram_lock); | ||
363 | |||
364 | /* Allocate a memory block at least SIZE bytes long in the Mother-A SRAM | ||
365 | space. */ | ||
366 | static void *alloc_mb_sram (size_t size) | ||
367 | { | ||
368 | struct mb_sram_free_area *prev, *fa; | ||
369 | int flags; | ||
370 | void *mem = 0; | ||
371 | |||
372 | spin_lock_irqsave (mb_sram_lock, flags); | ||
373 | |||
374 | /* Look for a free area that can contain SIZE bytes. */ | ||
375 | for (prev = 0, fa = mb_sram_free_areas; fa; prev = fa, fa = fa->next) | ||
376 | if (fa->size >= size) { | ||
377 | /* Found one! */ | ||
378 | mem = fa->mem; | ||
379 | |||
380 | if (fa->size == size) { | ||
381 | /* In fact, it fits exactly, so remove | ||
382 | this node from the free-list. */ | ||
383 | if (prev) | ||
384 | prev->next = fa->next; | ||
385 | else | ||
386 | mb_sram_free_areas = fa->next; | ||
387 | /* Put it on the free-list-entry-free-list. */ | ||
388 | fa->next = mb_sram_free_free_areas; | ||
389 | mb_sram_free_free_areas = fa; | ||
390 | } else { | ||
391 | /* FA is bigger than SIZE, so just | ||
392 | reduce its size to account for this | ||
393 | allocation. */ | ||
394 | fa->mem += size; | ||
395 | fa->size -= size; | ||
396 | } | ||
397 | |||
398 | break; | ||
399 | } | ||
400 | |||
401 | spin_unlock_irqrestore (mb_sram_lock, flags); | ||
402 | |||
403 | return mem; | ||
404 | } | ||
405 | |||
406 | /* Return the memory area MEM of size SIZE to the MB SRAM free pool. */ | ||
407 | static void free_mb_sram (void *mem, size_t size) | ||
408 | { | ||
409 | struct mb_sram_free_area *prev, *fa, *new_fa; | ||
410 | int flags; | ||
411 | void *end = mem + size; | ||
412 | |||
413 | spin_lock_irqsave (mb_sram_lock, flags); | ||
414 | |||
415 | retry: | ||
416 | /* Find an adjacent free-list entry. */ | ||
417 | for (prev = 0, fa = mb_sram_free_areas; fa; prev = fa, fa = fa->next) | ||
418 | if (fa->mem == end) { | ||
419 | /* FA is just after MEM, grow down to encompass it. */ | ||
420 | fa->mem = mem; | ||
421 | fa->size += size; | ||
422 | goto done; | ||
423 | } else if (fa->mem + fa->size == mem) { | ||
424 | struct mb_sram_free_area *next_fa = fa->next; | ||
425 | |||
426 | /* FA is just before MEM, expand to encompass it. */ | ||
427 | fa->size += size; | ||
428 | |||
429 | /* See if FA can now be merged with its successor. */ | ||
430 | if (next_fa && fa->mem + fa->size == next_fa->mem) { | ||
431 | /* Yup; merge NEXT_FA's info into FA. */ | ||
432 | fa->size += next_fa->size; | ||
433 | fa->next = next_fa->next; | ||
434 | /* Free NEXT_FA. */ | ||
435 | next_fa->next = mb_sram_free_free_areas; | ||
436 | mb_sram_free_free_areas = next_fa; | ||
437 | } | ||
438 | goto done; | ||
439 | } else if (fa->mem > mem) | ||
440 | /* We've reached the right spot in the free-list | ||
441 | without finding an adjacent free-area, so add | ||
442 | a new free area to hold mem. */ | ||
443 | break; | ||
444 | |||
445 | /* Make a new free-list entry. */ | ||
446 | |||
447 | /* First, get a free-list entry. */ | ||
448 | if (! mb_sram_free_free_areas) { | ||
449 | /* There are none, so make some. */ | ||
450 | void *block; | ||
451 | size_t block_size = sizeof (struct mb_sram_free_area) * 8; | ||
452 | |||
453 | /* Don't hold the lock while calling kmalloc (I'm not | ||
454 | sure whether it would be a problem, since we use | ||
455 | GFP_ATOMIC, but it makes me nervous). */ | ||
456 | spin_unlock_irqrestore (mb_sram_lock, flags); | ||
457 | |||
458 | block = kmalloc (block_size, GFP_ATOMIC); | ||
459 | if (! block) | ||
460 | panic ("free_mb_sram: can't allocate free-list entry"); | ||
461 | |||
462 | /* Now get the lock back. */ | ||
463 | spin_lock_irqsave (mb_sram_lock, flags); | ||
464 | |||
465 | /* Add the new free free-list entries. */ | ||
466 | while (block_size > 0) { | ||
467 | struct mb_sram_free_area *nfa = block; | ||
468 | nfa->next = mb_sram_free_free_areas; | ||
469 | mb_sram_free_free_areas = nfa; | ||
470 | block += sizeof *nfa; | ||
471 | block_size -= sizeof *nfa; | ||
472 | } | ||
473 | |||
474 | /* Since we dropped the lock to call kmalloc, the | ||
475 | free-list could have changed, so retry from the | ||
476 | beginning. */ | ||
477 | goto retry; | ||
478 | } | ||
479 | |||
480 | /* Remove NEW_FA from the free-list of free-list entries. */ | ||
481 | new_fa = mb_sram_free_free_areas; | ||
482 | mb_sram_free_free_areas = new_fa->next; | ||
483 | |||
484 | /* NEW_FA initially holds only MEM. */ | ||
485 | new_fa->mem = mem; | ||
486 | new_fa->size = size; | ||
487 | |||
488 | /* Insert NEW_FA in the free-list between PREV and FA. */ | ||
489 | new_fa->next = fa; | ||
490 | if (prev) | ||
491 | prev->next = new_fa; | ||
492 | else | ||
493 | mb_sram_free_areas = new_fa; | ||
494 | |||
495 | done: | ||
496 | spin_unlock_irqrestore (mb_sram_lock, flags); | ||
497 | } | ||
498 | |||
499 | |||
500 | /* Maintainence of CPU -> Mother-A DMA mappings. */ | ||
501 | |||
502 | struct dma_mapping { | ||
503 | void *cpu_addr; | ||
504 | void *mb_sram_addr; | ||
505 | size_t size; | ||
506 | struct dma_mapping *next; | ||
507 | }; | ||
508 | |||
509 | /* A list of mappings from CPU addresses to MB SRAM addresses for active | ||
510 | DMA blocks (that have been `granted' to the PCI device). */ | ||
511 | static struct dma_mapping *active_dma_mappings = 0; | ||
512 | |||
513 | /* A list of free mapping objects. */ | ||
514 | static struct dma_mapping *free_dma_mappings = 0; | ||
515 | |||
516 | /* Spinlock protecting the above globals. */ | ||
517 | static DEFINE_SPINLOCK(dma_mappings_lock); | ||
518 | |||
519 | static struct dma_mapping *new_dma_mapping (size_t size) | ||
520 | { | ||
521 | int flags; | ||
522 | struct dma_mapping *mapping; | ||
523 | void *mb_sram_block = alloc_mb_sram (size); | ||
524 | |||
525 | if (! mb_sram_block) | ||
526 | return 0; | ||
527 | |||
528 | spin_lock_irqsave (dma_mappings_lock, flags); | ||
529 | |||
530 | if (! free_dma_mappings) { | ||
531 | /* We're out of mapping structures, make more. */ | ||
532 | void *mblock; | ||
533 | size_t mblock_size = sizeof (struct dma_mapping) * 8; | ||
534 | |||
535 | /* Don't hold the lock while calling kmalloc (I'm not | ||
536 | sure whether it would be a problem, since we use | ||
537 | GFP_ATOMIC, but it makes me nervous). */ | ||
538 | spin_unlock_irqrestore (dma_mappings_lock, flags); | ||
539 | |||
540 | mblock = kmalloc (mblock_size, GFP_ATOMIC); | ||
541 | if (! mblock) { | ||
542 | free_mb_sram (mb_sram_block, size); | ||
543 | return 0; | ||
544 | } | ||
545 | |||
546 | /* Get the lock back. */ | ||
547 | spin_lock_irqsave (dma_mappings_lock, flags); | ||
548 | |||
549 | /* Add the new mapping structures to the free-list. */ | ||
550 | while (mblock_size > 0) { | ||
551 | struct dma_mapping *fm = mblock; | ||
552 | fm->next = free_dma_mappings; | ||
553 | free_dma_mappings = fm; | ||
554 | mblock += sizeof *fm; | ||
555 | mblock_size -= sizeof *fm; | ||
556 | } | ||
557 | } | ||
558 | |||
559 | /* Get a mapping struct from the freelist. */ | ||
560 | mapping = free_dma_mappings; | ||
561 | free_dma_mappings = mapping->next; | ||
562 | |||
563 | /* Initialize the mapping. Other fields should be filled in by | ||
564 | caller. */ | ||
565 | mapping->mb_sram_addr = mb_sram_block; | ||
566 | mapping->size = size; | ||
567 | |||
568 | /* Add it to the list of active mappings. */ | ||
569 | mapping->next = active_dma_mappings; | ||
570 | active_dma_mappings = mapping; | ||
571 | |||
572 | spin_unlock_irqrestore (dma_mappings_lock, flags); | ||
573 | |||
574 | return mapping; | ||
575 | } | ||
576 | |||
577 | static struct dma_mapping *find_dma_mapping (void *mb_sram_addr) | ||
578 | { | ||
579 | int flags; | ||
580 | struct dma_mapping *mapping; | ||
581 | |||
582 | spin_lock_irqsave (dma_mappings_lock, flags); | ||
583 | |||
584 | for (mapping = active_dma_mappings; mapping; mapping = mapping->next) | ||
585 | if (mapping->mb_sram_addr == mb_sram_addr) { | ||
586 | spin_unlock_irqrestore (dma_mappings_lock, flags); | ||
587 | return mapping; | ||
588 | } | ||
589 | |||
590 | panic ("find_dma_mapping: unmapped PCI DMA addr 0x%x", | ||
591 | MB_SRAM_TO_PCI (mb_sram_addr)); | ||
592 | } | ||
593 | |||
594 | static struct dma_mapping *deactivate_dma_mapping (void *mb_sram_addr) | ||
595 | { | ||
596 | int flags; | ||
597 | struct dma_mapping *mapping, *prev; | ||
598 | |||
599 | spin_lock_irqsave (dma_mappings_lock, flags); | ||
600 | |||
601 | for (prev = 0, mapping = active_dma_mappings; | ||
602 | mapping; | ||
603 | prev = mapping, mapping = mapping->next) | ||
604 | { | ||
605 | if (mapping->mb_sram_addr == mb_sram_addr) { | ||
606 | /* This is the MAPPING; deactivate it. */ | ||
607 | if (prev) | ||
608 | prev->next = mapping->next; | ||
609 | else | ||
610 | active_dma_mappings = mapping->next; | ||
611 | |||
612 | spin_unlock_irqrestore (dma_mappings_lock, flags); | ||
613 | |||
614 | return mapping; | ||
615 | } | ||
616 | } | ||
617 | |||
618 | panic ("deactivate_dma_mapping: unmapped PCI DMA addr 0x%x", | ||
619 | MB_SRAM_TO_PCI (mb_sram_addr)); | ||
620 | } | ||
621 | |||
622 | /* Return MAPPING to the freelist. */ | ||
623 | static inline void | ||
624 | free_dma_mapping (struct dma_mapping *mapping) | ||
625 | { | ||
626 | int flags; | ||
627 | |||
628 | free_mb_sram (mapping->mb_sram_addr, mapping->size); | ||
629 | |||
630 | spin_lock_irqsave (dma_mappings_lock, flags); | ||
631 | |||
632 | mapping->next = free_dma_mappings; | ||
633 | free_dma_mappings = mapping; | ||
634 | |||
635 | spin_unlock_irqrestore (dma_mappings_lock, flags); | ||
636 | } | ||
637 | |||
638 | |||
639 | /* Single PCI DMA mappings. */ | ||
640 | |||
641 | /* `Grant' to PDEV the memory block at CPU_ADDR, for doing DMA. The | ||
642 | 32-bit PCI bus mastering address to use is returned. the device owns | ||
643 | this memory until either pci_unmap_single or pci_dma_sync_single is | ||
644 | performed. */ | ||
645 | dma_addr_t | ||
646 | pci_map_single (struct pci_dev *pdev, void *cpu_addr, size_t size, int dir) | ||
647 | { | ||
648 | struct dma_mapping *mapping = new_dma_mapping (size); | ||
649 | |||
650 | if (! mapping) | ||
651 | return 0; | ||
652 | |||
653 | mapping->cpu_addr = cpu_addr; | ||
654 | |||
655 | if (dir == PCI_DMA_BIDIRECTIONAL || dir == PCI_DMA_TODEVICE) | ||
656 | memcpy (mapping->mb_sram_addr, cpu_addr, size); | ||
657 | |||
658 | return MB_SRAM_TO_PCI (mapping->mb_sram_addr); | ||
659 | } | ||
660 | |||
661 | /* Return to the CPU the PCI DMA memory block previously `granted' to | ||
662 | PDEV, at DMA_ADDR. */ | ||
663 | void pci_unmap_single (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, | ||
664 | int dir) | ||
665 | { | ||
666 | void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr); | ||
667 | struct dma_mapping *mapping = deactivate_dma_mapping (mb_sram_addr); | ||
668 | |||
669 | if (size != mapping->size) | ||
670 | panic ("pci_unmap_single: size (%d) doesn't match" | ||
671 | " size of mapping at PCI DMA addr 0x%x (%d)\n", | ||
672 | size, dma_addr, mapping->size); | ||
673 | |||
674 | /* Copy back the DMA'd contents if necessary. */ | ||
675 | if (dir == PCI_DMA_BIDIRECTIONAL || dir == PCI_DMA_FROMDEVICE) | ||
676 | memcpy (mapping->cpu_addr, mb_sram_addr, size); | ||
677 | |||
678 | /* Return mapping to the freelist. */ | ||
679 | free_dma_mapping (mapping); | ||
680 | } | ||
681 | |||
682 | /* Make physical memory consistent for a single streaming mode DMA | ||
683 | translation after a transfer. | ||
684 | |||
685 | If you perform a pci_map_single() but wish to interrogate the | ||
686 | buffer using the cpu, yet do not wish to teardown the PCI dma | ||
687 | mapping, you must call this function before doing so. At the next | ||
688 | point you give the PCI dma address back to the card, you must first | ||
689 | perform a pci_dma_sync_for_device, and then the device again owns | ||
690 | the buffer. */ | ||
691 | void | ||
692 | pci_dma_sync_single_for_cpu (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, | ||
693 | int dir) | ||
694 | { | ||
695 | void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr); | ||
696 | struct dma_mapping *mapping = find_dma_mapping (mb_sram_addr); | ||
697 | |||
698 | /* Synchronize the DMA buffer with the CPU buffer if necessary. */ | ||
699 | if (dir == PCI_DMA_FROMDEVICE) | ||
700 | memcpy (mapping->cpu_addr, mb_sram_addr, size); | ||
701 | else if (dir == PCI_DMA_TODEVICE) | ||
702 | ; /* nothing to do */ | ||
703 | else | ||
704 | panic("pci_dma_sync_single: unsupported sync dir: %d", dir); | ||
705 | } | ||
706 | |||
707 | void | ||
708 | pci_dma_sync_single_for_device (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, | ||
709 | int dir) | ||
710 | { | ||
711 | void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr); | ||
712 | struct dma_mapping *mapping = find_dma_mapping (mb_sram_addr); | ||
713 | |||
714 | /* Synchronize the DMA buffer with the CPU buffer if necessary. */ | ||
715 | if (dir == PCI_DMA_FROMDEVICE) | ||
716 | ; /* nothing to do */ | ||
717 | else if (dir == PCI_DMA_TODEVICE) | ||
718 | memcpy (mb_sram_addr, mapping->cpu_addr, size); | ||
719 | else | ||
720 | panic("pci_dma_sync_single: unsupported sync dir: %d", dir); | ||
721 | } | ||
722 | |||
723 | |||
724 | /* Scatter-gather PCI DMA mappings. */ | ||
725 | |||
726 | /* Do multiple DMA mappings at once. */ | ||
727 | int | ||
728 | pci_map_sg (struct pci_dev *pdev, struct scatterlist *sg, int sg_len, int dir) | ||
729 | { | ||
730 | BUG (); | ||
731 | return 0; | ||
732 | } | ||
733 | |||
734 | /* Unmap multiple DMA mappings at once. */ | ||
735 | void | ||
736 | pci_unmap_sg (struct pci_dev *pdev, struct scatterlist *sg, int sg_len,int dir) | ||
737 | { | ||
738 | BUG (); | ||
739 | } | ||
740 | |||
741 | /* Make physical memory consistent for a set of streaming mode DMA | ||
742 | translations after a transfer. The same as pci_dma_sync_single_* but | ||
743 | for a scatter-gather list, same rules and usage. */ | ||
744 | |||
745 | void | ||
746 | pci_dma_sync_sg_for_cpu (struct pci_dev *dev, struct scatterlist *sg, int sg_len, | ||
747 | int dir) | ||
748 | { | ||
749 | BUG (); | ||
750 | } | ||
751 | |||
752 | void | ||
753 | pci_dma_sync_sg_for_device (struct pci_dev *dev, struct scatterlist *sg, int sg_len, | ||
754 | int dir) | ||
755 | { | ||
756 | BUG (); | ||
757 | } | ||
758 | |||
759 | |||
760 | /* PCI mem mapping. */ | ||
761 | |||
762 | /* Allocate and map kernel buffer using consistent mode DMA for PCI | ||
763 | device. Returns non-NULL cpu-view pointer to the buffer if | ||
764 | successful and sets *DMA_ADDR to the pci side dma address as well, | ||
765 | else DMA_ADDR is undefined. */ | ||
766 | void * | ||
767 | pci_alloc_consistent (struct pci_dev *pdev, size_t size, dma_addr_t *dma_addr) | ||
768 | { | ||
769 | void *mb_sram_mem = alloc_mb_sram (size); | ||
770 | if (mb_sram_mem) | ||
771 | *dma_addr = MB_SRAM_TO_PCI (mb_sram_mem); | ||
772 | return mb_sram_mem; | ||
773 | } | ||
774 | |||
775 | /* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must | ||
776 | be values that were returned from pci_alloc_consistent. SIZE must be | ||
777 | the same as what as passed into pci_alloc_consistent. References to | ||
778 | the memory and mappings assosciated with CPU_ADDR or DMA_ADDR past | ||
779 | this call are illegal. */ | ||
780 | void | ||
781 | pci_free_consistent (struct pci_dev *pdev, size_t size, void *cpu_addr, | ||
782 | dma_addr_t dma_addr) | ||
783 | { | ||
784 | void *mb_sram_mem = PCI_TO_MB_SRAM (dma_addr); | ||
785 | free_mb_sram (mb_sram_mem, size); | ||
786 | } | ||
787 | |||
788 | |||
789 | /* symbol exports (for modules) */ | ||
790 | |||
791 | EXPORT_SYMBOL (pci_map_single); | ||
792 | EXPORT_SYMBOL (pci_unmap_single); | ||
793 | EXPORT_SYMBOL (pci_alloc_consistent); | ||
794 | EXPORT_SYMBOL (pci_free_consistent); | ||
795 | EXPORT_SYMBOL (pci_dma_sync_single_for_cpu); | ||
796 | EXPORT_SYMBOL (pci_dma_sync_single_for_device); | ||
diff --git a/arch/v850/kernel/rte_me2_cb.c b/arch/v850/kernel/rte_me2_cb.c new file mode 100644 index 000000000000..faaf3d95e6cf --- /dev/null +++ b/arch/v850/kernel/rte_me2_cb.c | |||
@@ -0,0 +1,300 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/rte_me2_cb.c -- Midas labs RTE-V850E/ME2-CB board | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/bootmem.h> | ||
18 | #include <linux/irq.h> | ||
19 | #include <linux/fs.h> | ||
20 | #include <linux/major.h> | ||
21 | #include <linux/sched.h> | ||
22 | #include <linux/delay.h> | ||
23 | |||
24 | #include <asm/atomic.h> | ||
25 | #include <asm/page.h> | ||
26 | #include <asm/me2.h> | ||
27 | #include <asm/rte_me2_cb.h> | ||
28 | #include <asm/machdep.h> | ||
29 | #include <asm/v850e_intc.h> | ||
30 | #include <asm/v850e_cache.h> | ||
31 | #include <asm/irq.h> | ||
32 | |||
33 | #include "mach.h" | ||
34 | |||
35 | extern unsigned long *_intv_start; | ||
36 | extern unsigned long *_intv_end; | ||
37 | |||
38 | /* LED access routines. */ | ||
39 | extern unsigned read_leds (int pos, char *buf, int len); | ||
40 | extern unsigned write_leds (int pos, const char *buf, int len); | ||
41 | |||
42 | |||
43 | /* SDRAM are almost contiguous (with a small hole in between; | ||
44 | see mach_reserve_bootmem for details), so just use both as one big area. */ | ||
45 | #define RAM_START SDRAM_ADDR | ||
46 | #define RAM_END (SDRAM_ADDR + SDRAM_SIZE) | ||
47 | |||
48 | |||
49 | void __init mach_get_physical_ram (unsigned long *ram_start, | ||
50 | unsigned long *ram_len) | ||
51 | { | ||
52 | *ram_start = RAM_START; | ||
53 | *ram_len = RAM_END - RAM_START; | ||
54 | } | ||
55 | |||
56 | void mach_gettimeofday (struct timespec *tv) | ||
57 | { | ||
58 | tv->tv_sec = 0; | ||
59 | tv->tv_nsec = 0; | ||
60 | } | ||
61 | |||
62 | /* Called before configuring an on-chip UART. */ | ||
63 | void rte_me2_cb_uart_pre_configure (unsigned chan, | ||
64 | unsigned cflags, unsigned baud) | ||
65 | { | ||
66 | /* The RTE-V850E/ME2-CB connects some general-purpose I/O | ||
67 | pins on the CPU to the RTS/CTS lines of UARTB channel 0's | ||
68 | serial connection. | ||
69 | I/O pins P21 and P22 are RTS and CTS respectively. */ | ||
70 | if (chan == 0) { | ||
71 | /* Put P21 & P22 in I/O port mode. */ | ||
72 | ME2_PORT2_PMC &= ~0x6; | ||
73 | /* Make P21 and output, and P22 an input. */ | ||
74 | ME2_PORT2_PM = (ME2_PORT2_PM & ~0xC) | 0x4; | ||
75 | } | ||
76 | |||
77 | me2_uart_pre_configure (chan, cflags, baud); | ||
78 | } | ||
79 | |||
80 | void __init mach_init_irqs (void) | ||
81 | { | ||
82 | /* Initialize interrupts. */ | ||
83 | me2_init_irqs (); | ||
84 | rte_me2_cb_init_irqs (); | ||
85 | } | ||
86 | |||
87 | #ifdef CONFIG_ROM_KERNEL | ||
88 | /* Initialization for kernel in ROM. */ | ||
89 | static inline rom_kernel_init (void) | ||
90 | { | ||
91 | /* If the kernel is in ROM, we have to copy any initialized data | ||
92 | from ROM into RAM. */ | ||
93 | extern unsigned long _data_load_start, _sdata, _edata; | ||
94 | register unsigned long *src = &_data_load_start; | ||
95 | register unsigned long *dst = &_sdata, *end = &_edata; | ||
96 | |||
97 | while (dst != end) | ||
98 | *dst++ = *src++; | ||
99 | } | ||
100 | #endif /* CONFIG_ROM_KERNEL */ | ||
101 | |||
102 | static void install_interrupt_vectors (void) | ||
103 | { | ||
104 | unsigned long *p1, *p2; | ||
105 | |||
106 | ME2_IRAMM = 0x03; /* V850E/ME2 iRAM write mode */ | ||
107 | |||
108 | /* vector copy to iRAM */ | ||
109 | p1 = (unsigned long *)0; /* v85x vector start */ | ||
110 | p2 = (unsigned long *)&_intv_start; | ||
111 | while (p2 < (unsigned long *)&_intv_end) | ||
112 | *p1++ = *p2++; | ||
113 | |||
114 | ME2_IRAMM = 0x00; /* V850E/ME2 iRAM read mode */ | ||
115 | } | ||
116 | |||
117 | /* CompactFlash */ | ||
118 | |||
119 | static void cf_power_on (void) | ||
120 | { | ||
121 | /* CF card detected? */ | ||
122 | if (CB_CF_STS0 & 0x0030) | ||
123 | return; | ||
124 | |||
125 | CB_CF_REG0 = 0x0002; /* reest on */ | ||
126 | mdelay (10); | ||
127 | CB_CF_REG0 = 0x0003; /* power on */ | ||
128 | mdelay (10); | ||
129 | CB_CF_REG0 = 0x0001; /* reset off */ | ||
130 | mdelay (10); | ||
131 | } | ||
132 | |||
133 | static void cf_power_off (void) | ||
134 | { | ||
135 | CB_CF_REG0 = 0x0003; /* power on */ | ||
136 | mdelay (10); | ||
137 | CB_CF_REG0 = 0x0002; /* reest on */ | ||
138 | mdelay (10); | ||
139 | } | ||
140 | |||
141 | void __init mach_early_init (void) | ||
142 | { | ||
143 | install_interrupt_vectors (); | ||
144 | |||
145 | /* CS1 SDRAM instruction cache enable */ | ||
146 | v850e_cache_enable (0x04, 0x03, 0); | ||
147 | |||
148 | rte_cb_early_init (); | ||
149 | |||
150 | /* CompactFlash power on */ | ||
151 | cf_power_on (); | ||
152 | |||
153 | #if defined (CONFIG_ROM_KERNEL) | ||
154 | rom_kernel_init (); | ||
155 | #endif | ||
156 | } | ||
157 | |||
158 | |||
159 | /* RTE-V850E/ME2-CB Programmable Interrupt Controller. */ | ||
160 | |||
161 | static struct cb_pic_irq_init cb_pic_irq_inits[] = { | ||
162 | { "CB_EXTTM0", IRQ_CB_EXTTM0, 1, 1, 6 }, | ||
163 | { "CB_EXTSIO", IRQ_CB_EXTSIO, 1, 1, 6 }, | ||
164 | { "CB_TOVER", IRQ_CB_TOVER, 1, 1, 6 }, | ||
165 | { "CB_GINT0", IRQ_CB_GINT0, 1, 1, 6 }, | ||
166 | { "CB_USB", IRQ_CB_USB, 1, 1, 6 }, | ||
167 | { "CB_LANC", IRQ_CB_LANC, 1, 1, 6 }, | ||
168 | { "CB_USB_VBUS_ON", IRQ_CB_USB_VBUS_ON, 1, 1, 6 }, | ||
169 | { "CB_USB_VBUS_OFF", IRQ_CB_USB_VBUS_OFF, 1, 1, 6 }, | ||
170 | { "CB_EXTTM1", IRQ_CB_EXTTM1, 1, 1, 6 }, | ||
171 | { "CB_EXTTM2", IRQ_CB_EXTTM2, 1, 1, 6 }, | ||
172 | { 0 } | ||
173 | }; | ||
174 | #define NUM_CB_PIC_IRQ_INITS \ | ||
175 | ((sizeof cb_pic_irq_inits / sizeof cb_pic_irq_inits[0]) - 1) | ||
176 | |||
177 | static struct hw_interrupt_type cb_pic_hw_itypes[NUM_CB_PIC_IRQ_INITS]; | ||
178 | static unsigned char cb_pic_active_irqs = 0; | ||
179 | |||
180 | void __init rte_me2_cb_init_irqs (void) | ||
181 | { | ||
182 | cb_pic_init_irq_types (cb_pic_irq_inits, cb_pic_hw_itypes); | ||
183 | |||
184 | /* Initalize on board PIC1 (not PIC0) enable */ | ||
185 | CB_PIC_INT0M = 0x0000; | ||
186 | CB_PIC_INT1M = 0x0000; | ||
187 | CB_PIC_INTR = 0x0000; | ||
188 | CB_PIC_INTEN |= CB_PIC_INT1EN; | ||
189 | |||
190 | ME2_PORT2_PMC |= 0x08; /* INTP23/SCK1 mode */ | ||
191 | ME2_PORT2_PFC &= ~0x08; /* INTP23 mode */ | ||
192 | ME2_INTR(2) &= ~0x08; /* INTP23 falling-edge detect */ | ||
193 | ME2_INTF(2) &= ~0x08; /* " */ | ||
194 | |||
195 | rte_cb_init_irqs (); /* gbus &c */ | ||
196 | } | ||
197 | |||
198 | |||
199 | /* Enable interrupt handling for interrupt IRQ. */ | ||
200 | void cb_pic_enable_irq (unsigned irq) | ||
201 | { | ||
202 | CB_PIC_INT1M |= 1 << (irq - CB_PIC_BASE_IRQ); | ||
203 | } | ||
204 | |||
205 | void cb_pic_disable_irq (unsigned irq) | ||
206 | { | ||
207 | CB_PIC_INT1M &= ~(1 << (irq - CB_PIC_BASE_IRQ)); | ||
208 | } | ||
209 | |||
210 | void cb_pic_shutdown_irq (unsigned irq) | ||
211 | { | ||
212 | cb_pic_disable_irq (irq); | ||
213 | |||
214 | if (--cb_pic_active_irqs == 0) | ||
215 | free_irq (IRQ_CB_PIC, 0); | ||
216 | |||
217 | CB_PIC_INT1M &= ~(1 << (irq - CB_PIC_BASE_IRQ)); | ||
218 | } | ||
219 | |||
220 | static irqreturn_t cb_pic_handle_irq (int irq, void *dev_id, | ||
221 | struct pt_regs *regs) | ||
222 | { | ||
223 | irqreturn_t rval = IRQ_NONE; | ||
224 | unsigned status = CB_PIC_INTR; | ||
225 | unsigned enable = CB_PIC_INT1M; | ||
226 | |||
227 | /* Only pay attention to enabled interrupts. */ | ||
228 | status &= enable; | ||
229 | |||
230 | CB_PIC_INTEN &= ~CB_PIC_INT1EN; | ||
231 | |||
232 | if (status) { | ||
233 | unsigned mask = 1; | ||
234 | |||
235 | irq = CB_PIC_BASE_IRQ; | ||
236 | do { | ||
237 | /* There's an active interrupt, find out which one, | ||
238 | and call its handler. */ | ||
239 | while (! (status & mask)) { | ||
240 | irq++; | ||
241 | mask <<= 1; | ||
242 | } | ||
243 | status &= ~mask; | ||
244 | |||
245 | CB_PIC_INTR = mask; | ||
246 | |||
247 | /* Recursively call handle_irq to handle it. */ | ||
248 | handle_irq (irq, regs); | ||
249 | rval = IRQ_HANDLED; | ||
250 | } while (status); | ||
251 | } | ||
252 | |||
253 | CB_PIC_INTEN |= CB_PIC_INT1EN; | ||
254 | |||
255 | return rval; | ||
256 | } | ||
257 | |||
258 | |||
259 | static void irq_nop (unsigned irq) { } | ||
260 | |||
261 | static unsigned cb_pic_startup_irq (unsigned irq) | ||
262 | { | ||
263 | int rval; | ||
264 | |||
265 | if (cb_pic_active_irqs == 0) { | ||
266 | rval = request_irq (IRQ_CB_PIC, cb_pic_handle_irq, | ||
267 | SA_INTERRUPT, "cb_pic_handler", 0); | ||
268 | if (rval != 0) | ||
269 | return rval; | ||
270 | } | ||
271 | |||
272 | cb_pic_active_irqs++; | ||
273 | |||
274 | cb_pic_enable_irq (irq); | ||
275 | |||
276 | return 0; | ||
277 | } | ||
278 | |||
279 | /* Initialize HW_IRQ_TYPES for INTC-controlled irqs described in array | ||
280 | INITS (which is terminated by an entry with the name field == 0). */ | ||
281 | void __init cb_pic_init_irq_types (struct cb_pic_irq_init *inits, | ||
282 | struct hw_interrupt_type *hw_irq_types) | ||
283 | { | ||
284 | struct cb_pic_irq_init *init; | ||
285 | for (init = inits; init->name; init++) { | ||
286 | struct hw_interrupt_type *hwit = hw_irq_types++; | ||
287 | |||
288 | hwit->typename = init->name; | ||
289 | |||
290 | hwit->startup = cb_pic_startup_irq; | ||
291 | hwit->shutdown = cb_pic_shutdown_irq; | ||
292 | hwit->enable = cb_pic_enable_irq; | ||
293 | hwit->disable = cb_pic_disable_irq; | ||
294 | hwit->ack = irq_nop; | ||
295 | hwit->end = irq_nop; | ||
296 | |||
297 | /* Initialize kernel IRQ infrastructure for this interrupt. */ | ||
298 | init_irq_handlers(init->base, init->num, init->interval, hwit); | ||
299 | } | ||
300 | } | ||
diff --git a/arch/v850/kernel/rte_me2_cb.ld b/arch/v850/kernel/rte_me2_cb.ld new file mode 100644 index 000000000000..cf0766065ec6 --- /dev/null +++ b/arch/v850/kernel/rte_me2_cb.ld | |||
@@ -0,0 +1,30 @@ | |||
1 | /* Linker script for the Midas labs RTE-V850E/ME2-CB evaluation board | ||
2 | (CONFIG_RTE_CB_ME2), with kernel in SDRAM. */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 128Kbyte of IRAM */ | ||
6 | IRAM : ORIGIN = 0x00000000, LENGTH = 0x00020000 | ||
7 | |||
8 | /* 32MB of SDRAM. */ | ||
9 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
10 | } | ||
11 | |||
12 | #define KRAM SDRAM | ||
13 | |||
14 | SECTIONS { | ||
15 | .text : { | ||
16 | __kram_start = . ; | ||
17 | TEXT_CONTENTS | ||
18 | INTV_CONTENTS /* copy to iRAM (0x0-0x620) */ | ||
19 | } > KRAM | ||
20 | |||
21 | .data : { | ||
22 | DATA_CONTENTS | ||
23 | BSS_CONTENTS | ||
24 | RAMK_INIT_CONTENTS | ||
25 | __kram_end = . ; | ||
26 | BOOTMAP_CONTENTS | ||
27 | } > KRAM | ||
28 | |||
29 | .root ALIGN (4096) : { ROOT_FS_CONTENTS } > SDRAM | ||
30 | } | ||
diff --git a/arch/v850/kernel/rte_nb85e_cb-multi.ld b/arch/v850/kernel/rte_nb85e_cb-multi.ld new file mode 100644 index 000000000000..de347b4fffac --- /dev/null +++ b/arch/v850/kernel/rte_nb85e_cb-multi.ld | |||
@@ -0,0 +1,57 @@ | |||
1 | /* Linker script for the Midas labs RTE-NB85E-CB evaluation board | ||
2 | (CONFIG_RTE_CB_NB85E), with the Multi debugger ROM monitor . */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 1MB of SRAM; we can't use the last 96KB, because it's used by | ||
6 | the monitor scratch-RAM. This memory is mirrored 4 times. */ | ||
7 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = (SRAM_SIZE - MON_SCRATCH_SIZE) | ||
8 | /* Monitor scratch RAM; only the interrupt vectors should go here. */ | ||
9 | MRAM : ORIGIN = MON_SCRATCH_ADDR, LENGTH = MON_SCRATCH_SIZE | ||
10 | /* 16MB of SDRAM. */ | ||
11 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
12 | } | ||
13 | |||
14 | #ifdef CONFIG_RTE_CB_NB85E_KSRAM | ||
15 | # define KRAM SRAM | ||
16 | #else | ||
17 | # define KRAM SDRAM | ||
18 | #endif | ||
19 | |||
20 | SECTIONS { | ||
21 | /* We can't use RAMK_KRAM_CONTENTS because that puts the whole | ||
22 | kernel in a single ELF segment, and the Multi debugger (which | ||
23 | we use to load the kernel) appears to have bizarre problems | ||
24 | dealing with it. */ | ||
25 | |||
26 | .text : { | ||
27 | __kram_start = . ; | ||
28 | TEXT_CONTENTS | ||
29 | } > KRAM | ||
30 | |||
31 | .data : { | ||
32 | DATA_CONTENTS | ||
33 | BSS_CONTENTS | ||
34 | RAMK_INIT_CONTENTS | ||
35 | __kram_end = . ; | ||
36 | BOOTMAP_CONTENTS | ||
37 | |||
38 | /* The address at which the interrupt vectors are initially | ||
39 | loaded by the loader. We can't load the interrupt vectors | ||
40 | directly into their target location, because the monitor | ||
41 | ROM for the GHS Multi debugger barfs if we try. | ||
42 | Unfortunately, Multi also doesn't deal correctly with ELF | ||
43 | sections where the LMA and VMA differ (it just ignores the | ||
44 | LMA), so we can't use that feature to work around the | ||
45 | problem! What we do instead is just put the interrupt | ||
46 | vectors into a normal section, and have the | ||
47 | `mach_early_init' function for Midas boards do the | ||
48 | necessary copying and relocation at runtime (this section | ||
49 | basically only contains `jr' instructions, so it's not | ||
50 | that hard). */ | ||
51 | . = ALIGN (0x10) ; | ||
52 | __intv_load_start = . ; | ||
53 | INTV_CONTENTS | ||
54 | } > KRAM | ||
55 | |||
56 | .root ALIGN (4096) : { ROOT_FS_CONTENTS } > SDRAM | ||
57 | } | ||
diff --git a/arch/v850/kernel/rte_nb85e_cb.c b/arch/v850/kernel/rte_nb85e_cb.c new file mode 100644 index 000000000000..990b20bffe47 --- /dev/null +++ b/arch/v850/kernel/rte_nb85e_cb.c | |||
@@ -0,0 +1,82 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/rte_nb85e_cb.c -- Midas labs RTE-V850E/NB85E-CB board | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/bootmem.h> | ||
20 | #include <linux/irq.h> | ||
21 | |||
22 | #include <asm/atomic.h> | ||
23 | #include <asm/page.h> | ||
24 | #include <asm/v850e.h> | ||
25 | #include <asm/rte_nb85e_cb.h> | ||
26 | |||
27 | #include "mach.h" | ||
28 | |||
29 | void __init mach_early_init (void) | ||
30 | { | ||
31 | /* Configure caching; some possible settings: | ||
32 | |||
33 | BHC = 0x0000, DCC = 0x0000 -- all caching disabled | ||
34 | BHC = 0x0040, DCC = 0x0000 -- SDRAM: icache only | ||
35 | BHC = 0x0080, DCC = 0x0C00 -- SDRAM: write-back dcache only | ||
36 | BHC = 0x00C0, DCC = 0x0C00 -- SDRAM: icache + write-back dcache | ||
37 | BHC = 0x00C0, DCC = 0x0800 -- SDRAM: icache + write-thru dcache | ||
38 | |||
39 | We can only cache SDRAM (we can't use cache SRAM because it's in | ||
40 | the same memory region as the on-chip RAM and I/O space). | ||
41 | |||
42 | Unfortunately, the dcache seems to be buggy, so we only use the | ||
43 | icache for now. */ | ||
44 | v850e_cache_enable (0x0040 /*BHC*/, 0x0003 /*ICC*/, 0x0000 /*DCC*/); | ||
45 | |||
46 | rte_cb_early_init (); | ||
47 | } | ||
48 | |||
49 | void __init mach_get_physical_ram (unsigned long *ram_start, | ||
50 | unsigned long *ram_len) | ||
51 | { | ||
52 | /* We just use SDRAM here. */ | ||
53 | *ram_start = SDRAM_ADDR; | ||
54 | *ram_len = SDRAM_SIZE; | ||
55 | } | ||
56 | |||
57 | void mach_gettimeofday (struct timespec *tv) | ||
58 | { | ||
59 | tv->tv_sec = 0; | ||
60 | tv->tv_nsec = 0; | ||
61 | } | ||
62 | |||
63 | /* Called before configuring an on-chip UART. */ | ||
64 | void rte_nb85e_cb_uart_pre_configure (unsigned chan, | ||
65 | unsigned cflags, unsigned baud) | ||
66 | { | ||
67 | /* The RTE-NB85E-CB connects some general-purpose I/O pins on the | ||
68 | CPU to the RTS/CTS lines the UART's serial connection, as follows: | ||
69 | P00 = CTS (in), P01 = DSR (in), P02 = RTS (out), P03 = DTR (out). */ | ||
70 | |||
71 | TEG_PORT0_PM = 0x03; /* P00 and P01 inputs, P02 and P03 outputs */ | ||
72 | TEG_PORT0_IO = 0x03; /* Accept input */ | ||
73 | |||
74 | /* Do pre-configuration for the actual UART. */ | ||
75 | teg_uart_pre_configure (chan, cflags, baud); | ||
76 | } | ||
77 | |||
78 | void __init mach_init_irqs (void) | ||
79 | { | ||
80 | teg_init_irqs (); | ||
81 | rte_cb_init_irqs (); | ||
82 | } | ||
diff --git a/arch/v850/kernel/rte_nb85e_cb.ld b/arch/v850/kernel/rte_nb85e_cb.ld new file mode 100644 index 000000000000..b672f484f085 --- /dev/null +++ b/arch/v850/kernel/rte_nb85e_cb.ld | |||
@@ -0,0 +1,22 @@ | |||
1 | /* Linker script for the Midas labs RTE-NB85E-CB evaluation board | ||
2 | (CONFIG_RTE_CB_NB85E). */ | ||
3 | |||
4 | MEMORY { | ||
5 | LOW : ORIGIN = 0x0, LENGTH = 0x00100000 | ||
6 | /* 1MB of SRAM This memory is mirrored 4 times. */ | ||
7 | SRAM : ORIGIN = SRAM_ADDR, LENGTH = SRAM_SIZE | ||
8 | /* 16MB of SDRAM. */ | ||
9 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
10 | } | ||
11 | |||
12 | #ifdef CONFIG_RTE_CB_NB85E_KSRAM | ||
13 | # define KRAM SRAM | ||
14 | #else | ||
15 | # define KRAM SDRAM | ||
16 | #endif | ||
17 | |||
18 | SECTIONS { | ||
19 | .intv : { INTV_CONTENTS } > LOW | ||
20 | .sram : { RAMK_KRAM_CONTENTS } > KRAM | ||
21 | .root : { ROOT_FS_CONTENTS } > SDRAM | ||
22 | } | ||
diff --git a/arch/v850/kernel/semaphore.c b/arch/v850/kernel/semaphore.c new file mode 100644 index 000000000000..fc89fd661c99 --- /dev/null +++ b/arch/v850/kernel/semaphore.c | |||
@@ -0,0 +1,166 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/semaphore.c -- Semaphore support | ||
3 | * | ||
4 | * Copyright (C) 1998-2000 IBM Corporation | ||
5 | * Copyright (C) 1999 Linus Torvalds | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * This file is a copy of the s390 version, arch/s390/kernel/semaphore.c | ||
12 | * Author(s): Martin Schwidefsky | ||
13 | * which was derived from the i386 version, linux/arch/i386/kernel/semaphore.c | ||
14 | */ | ||
15 | |||
16 | #include <linux/errno.h> | ||
17 | #include <linux/sched.h> | ||
18 | #include <linux/init.h> | ||
19 | |||
20 | #include <asm/semaphore.h> | ||
21 | |||
22 | /* | ||
23 | * Semaphores are implemented using a two-way counter: | ||
24 | * The "count" variable is decremented for each process | ||
25 | * that tries to acquire the semaphore, while the "sleeping" | ||
26 | * variable is a count of such acquires. | ||
27 | * | ||
28 | * Notably, the inline "up()" and "down()" functions can | ||
29 | * efficiently test if they need to do any extra work (up | ||
30 | * needs to do something only if count was negative before | ||
31 | * the increment operation. | ||
32 | * | ||
33 | * "sleeping" and the contention routine ordering is | ||
34 | * protected by the semaphore spinlock. | ||
35 | * | ||
36 | * Note that these functions are only called when there is | ||
37 | * contention on the lock, and as such all this is the | ||
38 | * "non-critical" part of the whole semaphore business. The | ||
39 | * critical part is the inline stuff in <asm/semaphore.h> | ||
40 | * where we want to avoid any extra jumps and calls. | ||
41 | */ | ||
42 | |||
43 | /* | ||
44 | * Logic: | ||
45 | * - only on a boundary condition do we need to care. When we go | ||
46 | * from a negative count to a non-negative, we wake people up. | ||
47 | * - when we go from a non-negative count to a negative do we | ||
48 | * (a) synchronize with the "sleeper" count and (b) make sure | ||
49 | * that we're on the wakeup list before we synchronize so that | ||
50 | * we cannot lose wakeup events. | ||
51 | */ | ||
52 | |||
53 | void __up(struct semaphore *sem) | ||
54 | { | ||
55 | wake_up(&sem->wait); | ||
56 | } | ||
57 | |||
58 | static DEFINE_SPINLOCK(semaphore_lock); | ||
59 | |||
60 | void __sched __down(struct semaphore * sem) | ||
61 | { | ||
62 | struct task_struct *tsk = current; | ||
63 | DECLARE_WAITQUEUE(wait, tsk); | ||
64 | tsk->state = TASK_UNINTERRUPTIBLE; | ||
65 | add_wait_queue_exclusive(&sem->wait, &wait); | ||
66 | |||
67 | spin_lock_irq(&semaphore_lock); | ||
68 | sem->sleepers++; | ||
69 | for (;;) { | ||
70 | int sleepers = sem->sleepers; | ||
71 | |||
72 | /* | ||
73 | * Add "everybody else" into it. They aren't | ||
74 | * playing, because we own the spinlock. | ||
75 | */ | ||
76 | if (!atomic_add_negative(sleepers - 1, &sem->count)) { | ||
77 | sem->sleepers = 0; | ||
78 | break; | ||
79 | } | ||
80 | sem->sleepers = 1; /* us - see -1 above */ | ||
81 | spin_unlock_irq(&semaphore_lock); | ||
82 | |||
83 | schedule(); | ||
84 | tsk->state = TASK_UNINTERRUPTIBLE; | ||
85 | spin_lock_irq(&semaphore_lock); | ||
86 | } | ||
87 | spin_unlock_irq(&semaphore_lock); | ||
88 | remove_wait_queue(&sem->wait, &wait); | ||
89 | tsk->state = TASK_RUNNING; | ||
90 | wake_up(&sem->wait); | ||
91 | } | ||
92 | |||
93 | int __sched __down_interruptible(struct semaphore * sem) | ||
94 | { | ||
95 | int retval = 0; | ||
96 | struct task_struct *tsk = current; | ||
97 | DECLARE_WAITQUEUE(wait, tsk); | ||
98 | tsk->state = TASK_INTERRUPTIBLE; | ||
99 | add_wait_queue_exclusive(&sem->wait, &wait); | ||
100 | |||
101 | spin_lock_irq(&semaphore_lock); | ||
102 | sem->sleepers ++; | ||
103 | for (;;) { | ||
104 | int sleepers = sem->sleepers; | ||
105 | |||
106 | /* | ||
107 | * With signals pending, this turns into | ||
108 | * the trylock failure case - we won't be | ||
109 | * sleeping, and we* can't get the lock as | ||
110 | * it has contention. Just correct the count | ||
111 | * and exit. | ||
112 | */ | ||
113 | if (signal_pending(current)) { | ||
114 | retval = -EINTR; | ||
115 | sem->sleepers = 0; | ||
116 | atomic_add(sleepers, &sem->count); | ||
117 | break; | ||
118 | } | ||
119 | |||
120 | /* | ||
121 | * Add "everybody else" into it. They aren't | ||
122 | * playing, because we own the spinlock. The | ||
123 | * "-1" is because we're still hoping to get | ||
124 | * the lock. | ||
125 | */ | ||
126 | if (!atomic_add_negative(sleepers - 1, &sem->count)) { | ||
127 | sem->sleepers = 0; | ||
128 | break; | ||
129 | } | ||
130 | sem->sleepers = 1; /* us - see -1 above */ | ||
131 | spin_unlock_irq(&semaphore_lock); | ||
132 | |||
133 | schedule(); | ||
134 | tsk->state = TASK_INTERRUPTIBLE; | ||
135 | spin_lock_irq(&semaphore_lock); | ||
136 | } | ||
137 | spin_unlock_irq(&semaphore_lock); | ||
138 | tsk->state = TASK_RUNNING; | ||
139 | remove_wait_queue(&sem->wait, &wait); | ||
140 | wake_up(&sem->wait); | ||
141 | return retval; | ||
142 | } | ||
143 | |||
144 | /* | ||
145 | * Trylock failed - make sure we correct for | ||
146 | * having decremented the count. | ||
147 | */ | ||
148 | int __down_trylock(struct semaphore * sem) | ||
149 | { | ||
150 | unsigned long flags; | ||
151 | int sleepers; | ||
152 | |||
153 | spin_lock_irqsave(&semaphore_lock, flags); | ||
154 | sleepers = sem->sleepers + 1; | ||
155 | sem->sleepers = 0; | ||
156 | |||
157 | /* | ||
158 | * Add "everybody else" and us into it. They aren't | ||
159 | * playing, because we own the spinlock. | ||
160 | */ | ||
161 | if (!atomic_add_negative(sleepers, &sem->count)) | ||
162 | wake_up(&sem->wait); | ||
163 | |||
164 | spin_unlock_irqrestore(&semaphore_lock, flags); | ||
165 | return 1; | ||
166 | } | ||
diff --git a/arch/v850/kernel/setup.c b/arch/v850/kernel/setup.c new file mode 100644 index 000000000000..c41d72b01b88 --- /dev/null +++ b/arch/v850/kernel/setup.c | |||
@@ -0,0 +1,286 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/setup.c -- Arch-dependent initialization functions | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/mm.h> | ||
15 | #include <linux/bootmem.h> | ||
16 | #include <linux/swap.h> /* we don't have swap, but for nr_free_pages */ | ||
17 | #include <linux/irq.h> | ||
18 | #include <linux/reboot.h> | ||
19 | #include <linux/personality.h> | ||
20 | #include <linux/major.h> | ||
21 | #include <linux/root_dev.h> | ||
22 | #include <linux/mtd/mtd.h> | ||
23 | #include <linux/init.h> | ||
24 | |||
25 | #include <asm/irq.h> | ||
26 | #include <asm/setup.h> | ||
27 | |||
28 | #include "mach.h" | ||
29 | |||
30 | /* These symbols are all defined in the linker map to delineate various | ||
31 | statically allocated regions of memory. */ | ||
32 | |||
33 | extern char _intv_start, _intv_end; | ||
34 | /* `kram' is only used if the kernel uses part of normal user RAM. */ | ||
35 | extern char _kram_start __attribute__ ((__weak__)); | ||
36 | extern char _kram_end __attribute__ ((__weak__)); | ||
37 | extern char _init_start, _init_end; | ||
38 | extern char _bootmap; | ||
39 | extern char _stext, _etext, _sdata, _edata, _sbss, _ebss; | ||
40 | /* Many platforms use an embedded root image. */ | ||
41 | extern char _root_fs_image_start __attribute__ ((__weak__)); | ||
42 | extern char _root_fs_image_end __attribute__ ((__weak__)); | ||
43 | |||
44 | |||
45 | char command_line[COMMAND_LINE_SIZE]; | ||
46 | |||
47 | /* Memory not used by the kernel. */ | ||
48 | static unsigned long total_ram_pages; | ||
49 | |||
50 | /* System RAM. */ | ||
51 | static unsigned long ram_start = 0, ram_len = 0; | ||
52 | |||
53 | |||
54 | #define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT) | ||
55 | #define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT) | ||
56 | #define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT) | ||
57 | |||
58 | static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len); | ||
59 | |||
60 | void set_mem_root (void *addr, size_t len, char *cmd_line); | ||
61 | |||
62 | |||
63 | void __init setup_arch (char **cmdline) | ||
64 | { | ||
65 | /* Keep a copy of command line */ | ||
66 | *cmdline = command_line; | ||
67 | memcpy (saved_command_line, command_line, COMMAND_LINE_SIZE); | ||
68 | saved_command_line[COMMAND_LINE_SIZE - 1] = '\0'; | ||
69 | |||
70 | console_verbose (); | ||
71 | |||
72 | init_mm.start_code = (unsigned long) &_stext; | ||
73 | init_mm.end_code = (unsigned long) &_etext; | ||
74 | init_mm.end_data = (unsigned long) &_edata; | ||
75 | init_mm.brk = (unsigned long) &_kram_end; | ||
76 | |||
77 | /* Find out what mem this machine has. */ | ||
78 | mach_get_physical_ram (&ram_start, &ram_len); | ||
79 | /* ... and tell the kernel about it. */ | ||
80 | init_mem_alloc (ram_start, ram_len); | ||
81 | |||
82 | printk (KERN_INFO "CPU: %s\nPlatform: %s\n", | ||
83 | CPU_MODEL_LONG, PLATFORM_LONG); | ||
84 | |||
85 | /* do machine-specific setups. */ | ||
86 | mach_setup (cmdline); | ||
87 | |||
88 | #ifdef CONFIG_MTD | ||
89 | if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start) | ||
90 | set_mem_root (&_root_fs_image_start, | ||
91 | &_root_fs_image_end - &_root_fs_image_start, | ||
92 | *cmdline); | ||
93 | #endif | ||
94 | } | ||
95 | |||
96 | void __init trap_init (void) | ||
97 | { | ||
98 | } | ||
99 | |||
100 | #ifdef CONFIG_MTD | ||
101 | /* Set the root filesystem to be the given memory region. | ||
102 | Some parameter may be appended to CMD_LINE. */ | ||
103 | void set_mem_root (void *addr, size_t len, char *cmd_line) | ||
104 | { | ||
105 | /* The only way to pass info to the MTD slram driver is via | ||
106 | the command line. */ | ||
107 | if (*cmd_line) { | ||
108 | cmd_line += strlen (cmd_line); | ||
109 | *cmd_line++ = ' '; | ||
110 | } | ||
111 | sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len); | ||
112 | |||
113 | ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0); | ||
114 | } | ||
115 | #endif | ||
116 | |||
117 | |||
118 | static void irq_nop (unsigned irq) { } | ||
119 | static unsigned irq_zero (unsigned irq) { return 0; } | ||
120 | |||
121 | static void nmi_end (unsigned irq) | ||
122 | { | ||
123 | if (irq != IRQ_NMI (0)) { | ||
124 | printk (KERN_CRIT "NMI %d is unrecoverable; restarting...", | ||
125 | irq - IRQ_NMI (0)); | ||
126 | machine_restart (0); | ||
127 | } | ||
128 | } | ||
129 | |||
130 | static struct hw_interrupt_type nmi_irq_type = { | ||
131 | "NMI", | ||
132 | irq_zero, /* startup */ | ||
133 | irq_nop, /* shutdown */ | ||
134 | irq_nop, /* enable */ | ||
135 | irq_nop, /* disable */ | ||
136 | irq_nop, /* ack */ | ||
137 | nmi_end, /* end */ | ||
138 | }; | ||
139 | |||
140 | void __init init_IRQ (void) | ||
141 | { | ||
142 | init_irq_handlers (0, NUM_MACH_IRQS, 1, 0); | ||
143 | init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type); | ||
144 | mach_init_irqs (); | ||
145 | } | ||
146 | |||
147 | |||
148 | void __init mem_init (void) | ||
149 | { | ||
150 | max_mapnr = MAP_NR (ram_start + ram_len); | ||
151 | |||
152 | num_physpages = ADDR_TO_PAGE (ram_len); | ||
153 | |||
154 | total_ram_pages = free_all_bootmem (); | ||
155 | |||
156 | printk (KERN_INFO | ||
157 | "Memory: %luK/%luK available" | ||
158 | " (%luK kernel code, %luK data)\n", | ||
159 | PAGE_TO_ADDR (nr_free_pages()) / 1024, | ||
160 | ram_len / 1024, | ||
161 | ((unsigned long)&_etext - (unsigned long)&_stext) / 1024, | ||
162 | ((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024); | ||
163 | } | ||
164 | |||
165 | void free_initmem (void) | ||
166 | { | ||
167 | unsigned long ram_end = ram_start + ram_len; | ||
168 | unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start)); | ||
169 | |||
170 | if (start >= ram_start && start < ram_end) { | ||
171 | unsigned long addr; | ||
172 | unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end)); | ||
173 | |||
174 | if (end > ram_end) | ||
175 | end = ram_end; | ||
176 | |||
177 | printk("Freeing unused kernel memory: %ldK freed\n", | ||
178 | (end - start) / 1024); | ||
179 | |||
180 | for (addr = start; addr < end; addr += PAGE_SIZE) { | ||
181 | struct page *page = virt_to_page (addr); | ||
182 | ClearPageReserved (page); | ||
183 | set_page_count (page, 1); | ||
184 | __free_page (page); | ||
185 | total_ram_pages++; | ||
186 | } | ||
187 | } | ||
188 | } | ||
189 | |||
190 | |||
191 | /* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify | ||
192 | what RAM may be used. */ | ||
193 | static void __init | ||
194 | init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len) | ||
195 | { | ||
196 | /* The part of the kernel that's in the same managed RAM space | ||
197 | used for general allocation. */ | ||
198 | unsigned long kram_start = (unsigned long)&_kram_start; | ||
199 | unsigned long kram_end = (unsigned long)&_kram_end; | ||
200 | /* End of the managed RAM space. */ | ||
201 | unsigned long ram_end = ram_start + ram_len; | ||
202 | /* Address range of the interrupt vector table. */ | ||
203 | unsigned long intv_start = (unsigned long)&_intv_start; | ||
204 | unsigned long intv_end = (unsigned long)&_intv_end; | ||
205 | /* True if the interrupt vectors are in the managed RAM area. */ | ||
206 | int intv_in_ram = (intv_end > ram_start && intv_start < ram_end); | ||
207 | /* True if the interrupt vectors are inside the kernel's RAM. */ | ||
208 | int intv_in_kram = (intv_end > kram_start && intv_start < kram_end); | ||
209 | /* A pointer to an optional function that reserves platform-specific | ||
210 | memory regions. We declare the pointer `volatile' to avoid gcc | ||
211 | turning the call into a static call (the problem is that since | ||
212 | it's a weak symbol, a static call may end up trying to reference | ||
213 | the location 0x0, which is not always reachable). */ | ||
214 | void (*volatile mrb) (void) = mach_reserve_bootmem; | ||
215 | /* The bootmem allocator's allocation bitmap. */ | ||
216 | unsigned long bootmap = (unsigned long)&_bootmap; | ||
217 | unsigned long bootmap_len; | ||
218 | |||
219 | /* Round bootmap location up to next page. */ | ||
220 | bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap)); | ||
221 | |||
222 | /* Initialize bootmem allocator. */ | ||
223 | bootmap_len = init_bootmem_node (NODE_DATA (0), | ||
224 | ADDR_TO_PAGE (bootmap), | ||
225 | ADDR_TO_PAGE (PAGE_OFFSET), | ||
226 | ADDR_TO_PAGE (ram_end)); | ||
227 | |||
228 | /* Now make the RAM actually allocatable (it starts out `reserved'). */ | ||
229 | free_bootmem (ram_start, ram_len); | ||
230 | |||
231 | if (kram_end > kram_start) | ||
232 | /* Reserve the RAM part of the kernel's address space, so it | ||
233 | doesn't get allocated. */ | ||
234 | reserve_bootmem (kram_start, kram_end - kram_start); | ||
235 | |||
236 | if (intv_in_ram && !intv_in_kram) | ||
237 | /* Reserve the interrupt vector space. */ | ||
238 | reserve_bootmem (intv_start, intv_end - intv_start); | ||
239 | |||
240 | if (bootmap >= ram_start && bootmap < ram_end) | ||
241 | /* Reserve the bootmap space. */ | ||
242 | reserve_bootmem (bootmap, bootmap_len); | ||
243 | |||
244 | /* Reserve the memory used by the root filesystem image if it's | ||
245 | in RAM. */ | ||
246 | if (&_root_fs_image_end > &_root_fs_image_start | ||
247 | && (unsigned long)&_root_fs_image_start >= ram_start | ||
248 | && (unsigned long)&_root_fs_image_start < ram_end) | ||
249 | reserve_bootmem ((unsigned long)&_root_fs_image_start, | ||
250 | &_root_fs_image_end - &_root_fs_image_start); | ||
251 | |||
252 | /* Let the platform-dependent code reserve some too. */ | ||
253 | if (mrb) | ||
254 | (*mrb) (); | ||
255 | } | ||
256 | |||
257 | /* Tell the kernel about what RAM it may use for memory allocation. */ | ||
258 | static void __init | ||
259 | init_mem_alloc (unsigned long ram_start, unsigned long ram_len) | ||
260 | { | ||
261 | unsigned i; | ||
262 | unsigned long zones_size[MAX_NR_ZONES]; | ||
263 | |||
264 | init_bootmem_alloc (ram_start, ram_len); | ||
265 | |||
266 | for (i = 0; i < MAX_NR_ZONES; i++) | ||
267 | zones_size[i] = 0; | ||
268 | |||
269 | /* We stuff all the memory into one area, which includes the | ||
270 | initial gap from PAGE_OFFSET to ram_start. */ | ||
271 | zones_size[ZONE_DMA] | ||
272 | = ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET)); | ||
273 | |||
274 | /* The allocator is very picky about the address of the first | ||
275 | allocatable page -- it must be at least as aligned as the | ||
276 | maximum allocation -- so try to detect cases where it will get | ||
277 | confused and signal them at compile time (this is a common | ||
278 | problem when porting to a new platform with ). There is a | ||
279 | similar runtime check in free_area_init_core. */ | ||
280 | #if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1)) | ||
281 | #error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it) | ||
282 | #endif | ||
283 | NODE_DATA(0)->node_mem_map = NULL; | ||
284 | free_area_init_node (0, NODE_DATA(0), zones_size, | ||
285 | ADDR_TO_PAGE (PAGE_OFFSET), 0); | ||
286 | } | ||
diff --git a/arch/v850/kernel/signal.c b/arch/v850/kernel/signal.c new file mode 100644 index 000000000000..37061e32e1a4 --- /dev/null +++ b/arch/v850/kernel/signal.c | |||
@@ -0,0 +1,525 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/signal.c -- Signal handling | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * Copyright (C) 1999,2000,2002 Niibe Yutaka & Kaz Kojima | ||
7 | * Copyright (C) 1991,1992 Linus Torvalds | ||
8 | * | ||
9 | * This file is subject to the terms and conditions of the GNU General | ||
10 | * Public License. See the file COPYING in the main directory of this | ||
11 | * archive for more details. | ||
12 | * | ||
13 | * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson | ||
14 | * | ||
15 | * This file was derived from the sh version, arch/sh/kernel/signal.c | ||
16 | */ | ||
17 | |||
18 | #include <linux/mm.h> | ||
19 | #include <linux/smp.h> | ||
20 | #include <linux/smp_lock.h> | ||
21 | #include <linux/kernel.h> | ||
22 | #include <linux/signal.h> | ||
23 | #include <linux/errno.h> | ||
24 | #include <linux/wait.h> | ||
25 | #include <linux/ptrace.h> | ||
26 | #include <linux/unistd.h> | ||
27 | #include <linux/stddef.h> | ||
28 | #include <linux/personality.h> | ||
29 | #include <linux/tty.h> | ||
30 | |||
31 | #include <asm/ucontext.h> | ||
32 | #include <asm/uaccess.h> | ||
33 | #include <asm/pgtable.h> | ||
34 | #include <asm/pgalloc.h> | ||
35 | #include <asm/thread_info.h> | ||
36 | #include <asm/cacheflush.h> | ||
37 | |||
38 | #define DEBUG_SIG 0 | ||
39 | |||
40 | #define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP))) | ||
41 | |||
42 | asmlinkage int do_signal(struct pt_regs *regs, sigset_t *oldset); | ||
43 | |||
44 | /* | ||
45 | * Atomically swap in the new signal mask, and wait for a signal. | ||
46 | */ | ||
47 | asmlinkage int | ||
48 | sys_sigsuspend(old_sigset_t mask, struct pt_regs *regs) | ||
49 | { | ||
50 | sigset_t saveset; | ||
51 | |||
52 | mask &= _BLOCKABLE; | ||
53 | spin_lock_irq(¤t->sighand->siglock); | ||
54 | saveset = current->blocked; | ||
55 | siginitset(¤t->blocked, mask); | ||
56 | recalc_sigpending(); | ||
57 | spin_unlock_irq(¤t->sighand->siglock); | ||
58 | |||
59 | regs->gpr[GPR_RVAL] = -EINTR; | ||
60 | while (1) { | ||
61 | current->state = TASK_INTERRUPTIBLE; | ||
62 | schedule(); | ||
63 | if (do_signal(regs, &saveset)) | ||
64 | return -EINTR; | ||
65 | } | ||
66 | } | ||
67 | |||
68 | asmlinkage int | ||
69 | sys_rt_sigsuspend(sigset_t *unewset, size_t sigsetsize, | ||
70 | struct pt_regs *regs) | ||
71 | { | ||
72 | sigset_t saveset, newset; | ||
73 | |||
74 | /* XXX: Don't preclude handling different sized sigset_t's. */ | ||
75 | if (sigsetsize != sizeof(sigset_t)) | ||
76 | return -EINVAL; | ||
77 | |||
78 | if (copy_from_user(&newset, unewset, sizeof(newset))) | ||
79 | return -EFAULT; | ||
80 | sigdelsetmask(&newset, ~_BLOCKABLE); | ||
81 | spin_lock_irq(¤t->sighand->siglock); | ||
82 | saveset = current->blocked; | ||
83 | current->blocked = newset; | ||
84 | recalc_sigpending(); | ||
85 | spin_unlock_irq(¤t->sighand->siglock); | ||
86 | |||
87 | regs->gpr[GPR_RVAL] = -EINTR; | ||
88 | while (1) { | ||
89 | current->state = TASK_INTERRUPTIBLE; | ||
90 | schedule(); | ||
91 | if (do_signal(regs, &saveset)) | ||
92 | return -EINTR; | ||
93 | } | ||
94 | } | ||
95 | |||
96 | asmlinkage int | ||
97 | sys_sigaction(int sig, const struct old_sigaction *act, | ||
98 | struct old_sigaction *oact) | ||
99 | { | ||
100 | struct k_sigaction new_ka, old_ka; | ||
101 | int ret; | ||
102 | |||
103 | if (act) { | ||
104 | old_sigset_t mask; | ||
105 | if (!access_ok(VERIFY_READ, act, sizeof(*act)) || | ||
106 | __get_user(new_ka.sa.sa_handler, &act->sa_handler) || | ||
107 | __get_user(new_ka.sa.sa_restorer, &act->sa_restorer)) | ||
108 | return -EFAULT; | ||
109 | __get_user(new_ka.sa.sa_flags, &act->sa_flags); | ||
110 | __get_user(mask, &act->sa_mask); | ||
111 | siginitset(&new_ka.sa.sa_mask, mask); | ||
112 | } | ||
113 | |||
114 | ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); | ||
115 | |||
116 | if (!ret && oact) { | ||
117 | if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || | ||
118 | __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || | ||
119 | __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer)) | ||
120 | return -EFAULT; | ||
121 | __put_user(old_ka.sa.sa_flags, &oact->sa_flags); | ||
122 | __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask); | ||
123 | } | ||
124 | |||
125 | return ret; | ||
126 | } | ||
127 | |||
128 | asmlinkage int | ||
129 | sys_sigaltstack(const stack_t *uss, stack_t *uoss, | ||
130 | struct pt_regs *regs) | ||
131 | { | ||
132 | return do_sigaltstack(uss, uoss, regs->gpr[GPR_SP]); | ||
133 | } | ||
134 | |||
135 | |||
136 | /* | ||
137 | * Do a signal return; undo the signal stack. | ||
138 | */ | ||
139 | |||
140 | struct sigframe | ||
141 | { | ||
142 | struct sigcontext sc; | ||
143 | unsigned long extramask[_NSIG_WORDS-1]; | ||
144 | unsigned long tramp[2]; /* signal trampoline */ | ||
145 | }; | ||
146 | |||
147 | struct rt_sigframe | ||
148 | { | ||
149 | struct siginfo info; | ||
150 | struct ucontext uc; | ||
151 | unsigned long tramp[2]; /* signal trampoline */ | ||
152 | }; | ||
153 | |||
154 | static int | ||
155 | restore_sigcontext(struct pt_regs *regs, struct sigcontext *sc, int *rval_p) | ||
156 | { | ||
157 | unsigned int err = 0; | ||
158 | |||
159 | #define COPY(x) err |= __get_user(regs->x, &sc->regs.x) | ||
160 | COPY(gpr[0]); COPY(gpr[1]); COPY(gpr[2]); COPY(gpr[3]); | ||
161 | COPY(gpr[4]); COPY(gpr[5]); COPY(gpr[6]); COPY(gpr[7]); | ||
162 | COPY(gpr[8]); COPY(gpr[9]); COPY(gpr[10]); COPY(gpr[11]); | ||
163 | COPY(gpr[12]); COPY(gpr[13]); COPY(gpr[14]); COPY(gpr[15]); | ||
164 | COPY(gpr[16]); COPY(gpr[17]); COPY(gpr[18]); COPY(gpr[19]); | ||
165 | COPY(gpr[20]); COPY(gpr[21]); COPY(gpr[22]); COPY(gpr[23]); | ||
166 | COPY(gpr[24]); COPY(gpr[25]); COPY(gpr[26]); COPY(gpr[27]); | ||
167 | COPY(gpr[28]); COPY(gpr[29]); COPY(gpr[30]); COPY(gpr[31]); | ||
168 | COPY(pc); COPY(psw); | ||
169 | COPY(ctpc); COPY(ctpsw); COPY(ctbp); | ||
170 | #undef COPY | ||
171 | |||
172 | return err; | ||
173 | } | ||
174 | |||
175 | asmlinkage int sys_sigreturn(struct pt_regs *regs) | ||
176 | { | ||
177 | struct sigframe *frame = (struct sigframe *)regs->gpr[GPR_SP]; | ||
178 | sigset_t set; | ||
179 | int rval; | ||
180 | |||
181 | if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) | ||
182 | goto badframe; | ||
183 | |||
184 | if (__get_user(set.sig[0], &frame->sc.oldmask) | ||
185 | || (_NSIG_WORDS > 1 | ||
186 | && __copy_from_user(&set.sig[1], &frame->extramask, | ||
187 | sizeof(frame->extramask)))) | ||
188 | goto badframe; | ||
189 | |||
190 | sigdelsetmask(&set, ~_BLOCKABLE); | ||
191 | spin_lock_irq(¤t->sighand->siglock); | ||
192 | current->blocked = set; | ||
193 | recalc_sigpending(); | ||
194 | spin_unlock_irq(¤t->sighand->siglock); | ||
195 | |||
196 | if (restore_sigcontext(regs, &frame->sc, &rval)) | ||
197 | goto badframe; | ||
198 | return rval; | ||
199 | |||
200 | badframe: | ||
201 | force_sig(SIGSEGV, current); | ||
202 | return 0; | ||
203 | } | ||
204 | |||
205 | asmlinkage int sys_rt_sigreturn(struct pt_regs *regs) | ||
206 | { | ||
207 | struct rt_sigframe *frame = (struct rt_sigframe *)regs->gpr[GPR_SP]; | ||
208 | sigset_t set; | ||
209 | stack_t st; | ||
210 | int rval; | ||
211 | |||
212 | if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) | ||
213 | goto badframe; | ||
214 | |||
215 | if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set))) | ||
216 | goto badframe; | ||
217 | |||
218 | sigdelsetmask(&set, ~_BLOCKABLE); | ||
219 | spin_lock_irq(¤t->sighand->siglock); | ||
220 | current->blocked = set; | ||
221 | recalc_sigpending(); | ||
222 | spin_unlock_irq(¤t->sighand->siglock); | ||
223 | |||
224 | if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &rval)) | ||
225 | goto badframe; | ||
226 | |||
227 | if (__copy_from_user(&st, &frame->uc.uc_stack, sizeof(st))) | ||
228 | goto badframe; | ||
229 | /* It is more difficult to avoid calling this function than to | ||
230 | call it and ignore errors. */ | ||
231 | do_sigaltstack(&st, NULL, regs->gpr[GPR_SP]); | ||
232 | |||
233 | return rval; | ||
234 | |||
235 | badframe: | ||
236 | force_sig(SIGSEGV, current); | ||
237 | return 0; | ||
238 | } | ||
239 | |||
240 | /* | ||
241 | * Set up a signal frame. | ||
242 | */ | ||
243 | |||
244 | static int | ||
245 | setup_sigcontext(struct sigcontext *sc, struct pt_regs *regs, | ||
246 | unsigned long mask) | ||
247 | { | ||
248 | int err = 0; | ||
249 | |||
250 | #define COPY(x) err |= __put_user(regs->x, &sc->regs.x) | ||
251 | COPY(gpr[0]); COPY(gpr[1]); COPY(gpr[2]); COPY(gpr[3]); | ||
252 | COPY(gpr[4]); COPY(gpr[5]); COPY(gpr[6]); COPY(gpr[7]); | ||
253 | COPY(gpr[8]); COPY(gpr[9]); COPY(gpr[10]); COPY(gpr[11]); | ||
254 | COPY(gpr[12]); COPY(gpr[13]); COPY(gpr[14]); COPY(gpr[15]); | ||
255 | COPY(gpr[16]); COPY(gpr[17]); COPY(gpr[18]); COPY(gpr[19]); | ||
256 | COPY(gpr[20]); COPY(gpr[21]); COPY(gpr[22]); COPY(gpr[23]); | ||
257 | COPY(gpr[24]); COPY(gpr[25]); COPY(gpr[26]); COPY(gpr[27]); | ||
258 | COPY(gpr[28]); COPY(gpr[29]); COPY(gpr[30]); COPY(gpr[31]); | ||
259 | COPY(pc); COPY(psw); | ||
260 | COPY(ctpc); COPY(ctpsw); COPY(ctbp); | ||
261 | #undef COPY | ||
262 | |||
263 | err |= __put_user(mask, &sc->oldmask); | ||
264 | |||
265 | return err; | ||
266 | } | ||
267 | |||
268 | /* | ||
269 | * Determine which stack to use.. | ||
270 | */ | ||
271 | static inline void * | ||
272 | get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size) | ||
273 | { | ||
274 | /* Default to using normal stack */ | ||
275 | unsigned long sp = regs->gpr[GPR_SP]; | ||
276 | |||
277 | if ((ka->sa.sa_flags & SA_ONSTACK) != 0 && ! on_sig_stack(sp)) | ||
278 | sp = current->sas_ss_sp + current->sas_ss_size; | ||
279 | |||
280 | return (void *)((sp - frame_size) & -8UL); | ||
281 | } | ||
282 | |||
283 | static void setup_frame(int sig, struct k_sigaction *ka, | ||
284 | sigset_t *set, struct pt_regs *regs) | ||
285 | { | ||
286 | struct sigframe *frame; | ||
287 | int err = 0; | ||
288 | int signal; | ||
289 | |||
290 | frame = get_sigframe(ka, regs, sizeof(*frame)); | ||
291 | |||
292 | if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) | ||
293 | goto give_sigsegv; | ||
294 | |||
295 | signal = current_thread_info()->exec_domain | ||
296 | && current_thread_info()->exec_domain->signal_invmap | ||
297 | && sig < 32 | ||
298 | ? current_thread_info()->exec_domain->signal_invmap[sig] | ||
299 | : sig; | ||
300 | |||
301 | err |= setup_sigcontext(&frame->sc, regs, set->sig[0]); | ||
302 | |||
303 | if (_NSIG_WORDS > 1) { | ||
304 | err |= __copy_to_user(frame->extramask, &set->sig[1], | ||
305 | sizeof(frame->extramask)); | ||
306 | } | ||
307 | |||
308 | /* Set up to return from userspace. If provided, use a stub | ||
309 | already in userspace. */ | ||
310 | if (ka->sa.sa_flags & SA_RESTORER) { | ||
311 | regs->gpr[GPR_LP] = (unsigned long) ka->sa.sa_restorer; | ||
312 | } else { | ||
313 | /* Note, these encodings are _little endian_! */ | ||
314 | |||
315 | /* addi __NR_sigreturn, r0, r12 */ | ||
316 | err |= __put_user(0x6600 | (__NR_sigreturn << 16), | ||
317 | frame->tramp + 0); | ||
318 | /* trap 0 */ | ||
319 | err |= __put_user(0x010007e0, | ||
320 | frame->tramp + 1); | ||
321 | |||
322 | regs->gpr[GPR_LP] = (unsigned long)frame->tramp; | ||
323 | |||
324 | flush_cache_sigtramp (regs->gpr[GPR_LP]); | ||
325 | } | ||
326 | |||
327 | if (err) | ||
328 | goto give_sigsegv; | ||
329 | |||
330 | /* Set up registers for signal handler. */ | ||
331 | regs->pc = (v850_reg_t) ka->sa.sa_handler; | ||
332 | regs->gpr[GPR_SP] = (v850_reg_t)frame; | ||
333 | /* Signal handler args: */ | ||
334 | regs->gpr[GPR_ARG0] = signal; /* arg 0: signum */ | ||
335 | regs->gpr[GPR_ARG1] = (v850_reg_t)&frame->sc;/* arg 1: sigcontext */ | ||
336 | |||
337 | set_fs(USER_DS); | ||
338 | |||
339 | #if DEBUG_SIG | ||
340 | printk("SIG deliver (%s:%d): sp=%p pc=%08lx ra=%08lx\n", | ||
341 | current->comm, current->pid, frame, regs->pc, ); | ||
342 | #endif | ||
343 | |||
344 | return; | ||
345 | |||
346 | give_sigsegv: | ||
347 | force_sigsegv(sig, current); | ||
348 | } | ||
349 | |||
350 | static void setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info, | ||
351 | sigset_t *set, struct pt_regs *regs) | ||
352 | { | ||
353 | struct rt_sigframe *frame; | ||
354 | int err = 0; | ||
355 | int signal; | ||
356 | |||
357 | frame = get_sigframe(ka, regs, sizeof(*frame)); | ||
358 | |||
359 | if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) | ||
360 | goto give_sigsegv; | ||
361 | |||
362 | signal = current_thread_info()->exec_domain | ||
363 | && current_thread_info()->exec_domain->signal_invmap | ||
364 | && sig < 32 | ||
365 | ? current_thread_info()->exec_domain->signal_invmap[sig] | ||
366 | : sig; | ||
367 | |||
368 | err |= copy_siginfo_to_user(&frame->info, info); | ||
369 | |||
370 | /* Create the ucontext. */ | ||
371 | err |= __put_user(0, &frame->uc.uc_flags); | ||
372 | err |= __put_user(0, &frame->uc.uc_link); | ||
373 | err |= __put_user((void *)current->sas_ss_sp, | ||
374 | &frame->uc.uc_stack.ss_sp); | ||
375 | err |= __put_user(sas_ss_flags(regs->gpr[GPR_SP]), | ||
376 | &frame->uc.uc_stack.ss_flags); | ||
377 | err |= __put_user(current->sas_ss_size, &frame->uc.uc_stack.ss_size); | ||
378 | err |= setup_sigcontext(&frame->uc.uc_mcontext, | ||
379 | regs, set->sig[0]); | ||
380 | err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); | ||
381 | |||
382 | /* Set up to return from userspace. If provided, use a stub | ||
383 | already in userspace. */ | ||
384 | if (ka->sa.sa_flags & SA_RESTORER) { | ||
385 | regs->gpr[GPR_LP] = (unsigned long) ka->sa.sa_restorer; | ||
386 | } else { | ||
387 | /* Note, these encodings are _little endian_! */ | ||
388 | |||
389 | /* addi __NR_sigreturn, r0, r12 */ | ||
390 | err |= __put_user(0x6600 | (__NR_sigreturn << 16), | ||
391 | frame->tramp + 0); | ||
392 | /* trap 0 */ | ||
393 | err |= __put_user(0x010007e0, | ||
394 | frame->tramp + 1); | ||
395 | |||
396 | regs->gpr[GPR_LP] = (unsigned long)frame->tramp; | ||
397 | |||
398 | flush_cache_sigtramp (regs->gpr[GPR_LP]); | ||
399 | } | ||
400 | |||
401 | if (err) | ||
402 | goto give_sigsegv; | ||
403 | |||
404 | /* Set up registers for signal handler. */ | ||
405 | regs->pc = (v850_reg_t) ka->sa.sa_handler; | ||
406 | regs->gpr[GPR_SP] = (v850_reg_t)frame; | ||
407 | /* Signal handler args: */ | ||
408 | regs->gpr[GPR_ARG0] = signal; /* arg 0: signum */ | ||
409 | regs->gpr[GPR_ARG1] = (v850_reg_t)&frame->info; /* arg 1: siginfo */ | ||
410 | regs->gpr[GPR_ARG2] = (v850_reg_t)&frame->uc; /* arg 2: ucontext */ | ||
411 | |||
412 | set_fs(USER_DS); | ||
413 | |||
414 | #if DEBUG_SIG | ||
415 | printk("SIG deliver (%s:%d): sp=%p pc=%08lx pr=%08lx\n", | ||
416 | current->comm, current->pid, frame, regs->pc, regs->pr); | ||
417 | #endif | ||
418 | |||
419 | return; | ||
420 | |||
421 | give_sigsegv: | ||
422 | force_sigsegv(sig, current); | ||
423 | } | ||
424 | |||
425 | /* | ||
426 | * OK, we're invoking a handler | ||
427 | */ | ||
428 | |||
429 | static void | ||
430 | handle_signal(unsigned long sig, siginfo_t *info, struct k_sigaction *ka, | ||
431 | sigset_t *oldset, struct pt_regs * regs) | ||
432 | { | ||
433 | /* Are we from a system call? */ | ||
434 | if (PT_REGS_SYSCALL (regs)) { | ||
435 | /* If so, check system call restarting.. */ | ||
436 | switch (regs->gpr[GPR_RVAL]) { | ||
437 | case -ERESTART_RESTARTBLOCK: | ||
438 | current_thread_info()->restart_block.fn = | ||
439 | do_no_restart_syscall; | ||
440 | /* fall through */ | ||
441 | case -ERESTARTNOHAND: | ||
442 | regs->gpr[GPR_RVAL] = -EINTR; | ||
443 | break; | ||
444 | |||
445 | case -ERESTARTSYS: | ||
446 | if (!(ka->sa.sa_flags & SA_RESTART)) { | ||
447 | regs->gpr[GPR_RVAL] = -EINTR; | ||
448 | break; | ||
449 | } | ||
450 | /* fallthrough */ | ||
451 | case -ERESTARTNOINTR: | ||
452 | regs->gpr[12] = PT_REGS_SYSCALL (regs); | ||
453 | regs->pc -= 4; /* Size of `trap 0' insn. */ | ||
454 | } | ||
455 | |||
456 | PT_REGS_SET_SYSCALL (regs, 0); | ||
457 | } | ||
458 | |||
459 | /* Set up the stack frame */ | ||
460 | if (ka->sa.sa_flags & SA_SIGINFO) | ||
461 | setup_rt_frame(sig, ka, info, oldset, regs); | ||
462 | else | ||
463 | setup_frame(sig, ka, oldset, regs); | ||
464 | |||
465 | if (!(ka->sa.sa_flags & SA_NODEFER)) { | ||
466 | spin_lock_irq(¤t->sighand->siglock); | ||
467 | sigorsets(¤t->blocked,¤t->blocked,&ka->sa.sa_mask); | ||
468 | sigaddset(¤t->blocked,sig); | ||
469 | recalc_sigpending(); | ||
470 | spin_unlock_irq(¤t->sighand->siglock); | ||
471 | } | ||
472 | } | ||
473 | |||
474 | /* | ||
475 | * Note that 'init' is a special process: it doesn't get signals it doesn't | ||
476 | * want to handle. Thus you cannot kill init even with a SIGKILL even by | ||
477 | * mistake. | ||
478 | * | ||
479 | * Note that we go through the signals twice: once to check the signals that | ||
480 | * the kernel can handle, and then we build all the user-level signal handling | ||
481 | * stack-frames in one go after that. | ||
482 | */ | ||
483 | int do_signal(struct pt_regs *regs, sigset_t *oldset) | ||
484 | { | ||
485 | siginfo_t info; | ||
486 | int signr; | ||
487 | struct k_sigaction ka; | ||
488 | |||
489 | /* | ||
490 | * We want the common case to go fast, which | ||
491 | * is why we may in certain cases get here from | ||
492 | * kernel mode. Just return without doing anything | ||
493 | * if so. | ||
494 | */ | ||
495 | if (!user_mode(regs)) | ||
496 | return 1; | ||
497 | |||
498 | if (!oldset) | ||
499 | oldset = ¤t->blocked; | ||
500 | |||
501 | signr = get_signal_to_deliver(&info, &ka, regs, NULL); | ||
502 | if (signr > 0) { | ||
503 | /* Whee! Actually deliver the signal. */ | ||
504 | handle_signal(signr, &info, &ka, oldset, regs); | ||
505 | return 1; | ||
506 | } | ||
507 | |||
508 | /* Did we come from a system call? */ | ||
509 | if (PT_REGS_SYSCALL (regs)) { | ||
510 | int rval = (int)regs->gpr[GPR_RVAL]; | ||
511 | /* Restart the system call - no handlers present */ | ||
512 | if (rval == -ERESTARTNOHAND | ||
513 | || rval == -ERESTARTSYS | ||
514 | || rval == -ERESTARTNOINTR) | ||
515 | { | ||
516 | regs->gpr[12] = PT_REGS_SYSCALL (regs); | ||
517 | regs->pc -= 4; /* Size of `trap 0' insn. */ | ||
518 | } | ||
519 | else if (rval == -ERESTART_RESTARTBLOCK) { | ||
520 | regs->gpr[12] = __NR_restart_syscall; | ||
521 | regs->pc -= 4; /* Size of `trap 0' insn. */ | ||
522 | } | ||
523 | } | ||
524 | return 0; | ||
525 | } | ||
diff --git a/arch/v850/kernel/sim.c b/arch/v850/kernel/sim.c new file mode 100644 index 000000000000..4f31da962632 --- /dev/null +++ b/arch/v850/kernel/sim.c | |||
@@ -0,0 +1,179 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/sim.c -- Machine-specific stuff for GDB v850e simulator | ||
3 | * | ||
4 | * Copyright (C) 2001,02 NEC Corporation | ||
5 | * Copyright (C) 2001,02 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/swap.h> | ||
20 | #include <linux/bootmem.h> | ||
21 | #include <linux/irq.h> | ||
22 | |||
23 | #include <asm/atomic.h> | ||
24 | #include <asm/page.h> | ||
25 | #include <asm/machdep.h> | ||
26 | #include <asm/simsyscall.h> | ||
27 | |||
28 | #include "mach.h" | ||
29 | |||
30 | /* The name of a file containing the root filesystem. */ | ||
31 | #define ROOT_FS "rootfs.image" | ||
32 | |||
33 | extern void simcons_setup (void); | ||
34 | extern void simcons_poll_ttys (void); | ||
35 | extern void set_mem_root (void *addr, size_t len, char *cmd_line); | ||
36 | |||
37 | static int read_file (const char *name, | ||
38 | unsigned long *addr, unsigned long *len, | ||
39 | const char **err); | ||
40 | |||
41 | void __init mach_setup (char **cmdline) | ||
42 | { | ||
43 | const char *err; | ||
44 | unsigned long root_dev_addr, root_dev_len; | ||
45 | |||
46 | simcons_setup (); | ||
47 | |||
48 | printk (KERN_INFO "Reading root filesystem: %s", ROOT_FS); | ||
49 | |||
50 | if (read_file (ROOT_FS, &root_dev_addr, &root_dev_len, &err)) { | ||
51 | printk (" (size %luK)\n", root_dev_len / 1024); | ||
52 | set_mem_root ((void *)root_dev_addr, (size_t)root_dev_len, | ||
53 | *cmdline); | ||
54 | } else | ||
55 | printk ("...%s failed!\n", err); | ||
56 | } | ||
57 | |||
58 | void mach_get_physical_ram (unsigned long *ram_start, unsigned long *ram_len) | ||
59 | { | ||
60 | *ram_start = RAM_ADDR; | ||
61 | *ram_len = RAM_SIZE; | ||
62 | } | ||
63 | |||
64 | void __init mach_sched_init (struct irqaction *timer_action) | ||
65 | { | ||
66 | /* ...do magic timer initialization?... */ | ||
67 | mach_tick = simcons_poll_ttys; | ||
68 | setup_irq (0, timer_action); | ||
69 | } | ||
70 | |||
71 | |||
72 | static void irq_nop (unsigned irq) { } | ||
73 | static unsigned irq_zero (unsigned irq) { return 0; } | ||
74 | |||
75 | static struct hw_interrupt_type sim_irq_type = { | ||
76 | "IRQ", | ||
77 | irq_zero, /* startup */ | ||
78 | irq_nop, /* shutdown */ | ||
79 | irq_nop, /* enable */ | ||
80 | irq_nop, /* disable */ | ||
81 | irq_nop, /* ack */ | ||
82 | irq_nop, /* end */ | ||
83 | }; | ||
84 | |||
85 | void __init mach_init_irqs (void) | ||
86 | { | ||
87 | init_irq_handlers (0, NUM_MACH_IRQS, 1, &sim_irq_type); | ||
88 | } | ||
89 | |||
90 | |||
91 | void mach_gettimeofday (struct timespec *tv) | ||
92 | { | ||
93 | long timeval[2], timezone[2]; | ||
94 | int rval = V850_SIM_SYSCALL (gettimeofday, timeval, timezone); | ||
95 | if (rval == 0) { | ||
96 | tv->tv_sec = timeval[0]; | ||
97 | tv->tv_nsec = timeval[1] * 1000; | ||
98 | } | ||
99 | } | ||
100 | |||
101 | void machine_restart (char *__unused) | ||
102 | { | ||
103 | V850_SIM_SYSCALL (write, 1, "RESTART\n", 8); | ||
104 | V850_SIM_SYSCALL (exit, 0); | ||
105 | } | ||
106 | |||
107 | EXPORT_SYMBOL(machine_restart); | ||
108 | |||
109 | void machine_halt (void) | ||
110 | { | ||
111 | V850_SIM_SYSCALL (write, 1, "HALT\n", 5); | ||
112 | V850_SIM_SYSCALL (exit, 0); | ||
113 | } | ||
114 | |||
115 | EXPORT_SYMBOL(machine_halt); | ||
116 | |||
117 | void machine_power_off (void) | ||
118 | { | ||
119 | V850_SIM_SYSCALL (write, 1, "POWER OFF\n", 10); | ||
120 | V850_SIM_SYSCALL (exit, 0); | ||
121 | } | ||
122 | |||
123 | EXPORT_SYMBOL(machine_power_off); | ||
124 | |||
125 | |||
126 | /* Load data from a file called NAME into ram. The address and length | ||
127 | of the data image are returned in ADDR and LEN. */ | ||
128 | static int __init | ||
129 | read_file (const char *name, | ||
130 | unsigned long *addr, unsigned long *len, | ||
131 | const char **err) | ||
132 | { | ||
133 | int rval, fd; | ||
134 | unsigned long cur, left; | ||
135 | /* Note this is not a normal stat buffer, it's an ad-hoc | ||
136 | structure defined by the simulator. */ | ||
137 | unsigned long stat_buf[10]; | ||
138 | |||
139 | /* Stat the file to find out the length. */ | ||
140 | rval = V850_SIM_SYSCALL (stat, name, stat_buf); | ||
141 | if (rval < 0) { | ||
142 | if (err) *err = "stat"; | ||
143 | return 0; | ||
144 | } | ||
145 | *len = stat_buf[4]; | ||
146 | |||
147 | /* Open the file; `0' is O_RDONLY. */ | ||
148 | fd = V850_SIM_SYSCALL (open, name, 0); | ||
149 | if (fd < 0) { | ||
150 | if (err) *err = "open"; | ||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | *addr = (unsigned long)alloc_bootmem(*len); | ||
155 | if (! *addr) { | ||
156 | V850_SIM_SYSCALL (close, fd); | ||
157 | if (err) *err = "alloc_bootmem"; | ||
158 | return 0; | ||
159 | } | ||
160 | |||
161 | cur = *addr; | ||
162 | left = *len; | ||
163 | while (left > 0) { | ||
164 | int chunk = V850_SIM_SYSCALL (read, fd, cur, left); | ||
165 | if (chunk <= 0) | ||
166 | break; | ||
167 | cur += chunk; | ||
168 | left -= chunk; | ||
169 | } | ||
170 | V850_SIM_SYSCALL (close, fd); | ||
171 | if (left > 0) { | ||
172 | /* Some read failed. */ | ||
173 | free_bootmem (*addr, *len); | ||
174 | if (err) *err = "read"; | ||
175 | return 0; | ||
176 | } | ||
177 | |||
178 | return 1; | ||
179 | } | ||
diff --git a/arch/v850/kernel/sim.ld b/arch/v850/kernel/sim.ld new file mode 100644 index 000000000000..101885f3c9f0 --- /dev/null +++ b/arch/v850/kernel/sim.ld | |||
@@ -0,0 +1,13 @@ | |||
1 | /* Linker script for the gdb v850e simulator (CONFIG_V850E_SIM). */ | ||
2 | |||
3 | MEMORY { | ||
4 | /* Interrupt vectors. */ | ||
5 | INTV : ORIGIN = 0x0, LENGTH = 0xe0 | ||
6 | /* Main RAM. */ | ||
7 | RAM : ORIGIN = RAM_ADDR, LENGTH = RAM_SIZE | ||
8 | } | ||
9 | |||
10 | SECTIONS { | ||
11 | .intv : { INTV_CONTENTS } > INTV | ||
12 | .ram : { RAMK_KRAM_CONTENTS } > RAM | ||
13 | } | ||
diff --git a/arch/v850/kernel/sim85e2.c b/arch/v850/kernel/sim85e2.c new file mode 100644 index 000000000000..93a722b516bb --- /dev/null +++ b/arch/v850/kernel/sim85e2.c | |||
@@ -0,0 +1,201 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/sim85e2.c -- Machine-specific stuff for | ||
3 | * V850E2 RTL simulator | ||
4 | * | ||
5 | * Copyright (C) 2002,03 NEC Electronics Corporation | ||
6 | * Copyright (C) 2002,03 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <linux/config.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/bootmem.h> | ||
22 | #include <linux/irq.h> | ||
23 | |||
24 | #include <asm/atomic.h> | ||
25 | #include <asm/page.h> | ||
26 | #include <asm/machdep.h> | ||
27 | |||
28 | #include "mach.h" | ||
29 | |||
30 | |||
31 | /* There are 4 possible areas we can use: | ||
32 | |||
33 | IRAM (1MB) is fast for instruction fetches, but slow for data | ||
34 | DRAM (1020KB) is fast for data, but slow for instructions | ||
35 | ERAM is cached, so should be fast for both insns and data | ||
36 | SDRAM is external DRAM, similar to ERAM | ||
37 | */ | ||
38 | |||
39 | #define INIT_MEMC_FOR_SDRAM | ||
40 | #define USE_SDRAM_AREA | ||
41 | #define KERNEL_IN_SDRAM_AREA | ||
42 | |||
43 | #define DCACHE_MODE V850E2_CACHE_BTSC_DCM_WT | ||
44 | /*#define DCACHE_MODE V850E2_CACHE_BTSC_DCM_WB_ALLOC*/ | ||
45 | |||
46 | #ifdef USE_SDRAM_AREA | ||
47 | #define RAM_START SDRAM_ADDR | ||
48 | #define RAM_END (SDRAM_ADDR + SDRAM_SIZE) | ||
49 | #else | ||
50 | /* When we use DRAM, we need to account for the fact that the end of it is | ||
51 | used for R0_RAM. */ | ||
52 | #define RAM_START DRAM_ADDR | ||
53 | #define RAM_END R0_RAM_ADDR | ||
54 | #endif | ||
55 | |||
56 | |||
57 | extern void memcons_setup (void); | ||
58 | |||
59 | |||
60 | #ifdef KERNEL_IN_SDRAM_AREA | ||
61 | #define EARLY_INIT_SECTION_ATTR __attribute__ ((section (".early.text"))) | ||
62 | #else | ||
63 | #define EARLY_INIT_SECTION_ATTR __init | ||
64 | #endif | ||
65 | |||
66 | void EARLY_INIT_SECTION_ATTR mach_early_init (void) | ||
67 | { | ||
68 | /* The sim85e2 simulator tracks `undefined' values, so to make | ||
69 | debugging easier, we begin by zeroing out all otherwise | ||
70 | undefined registers. This is not strictly necessary. | ||
71 | |||
72 | The registers we zero are: | ||
73 | Every GPR except: | ||
74 | stack-pointer (r3) | ||
75 | task-pointer (r16) | ||
76 | our return addr (r31) | ||
77 | Every system register (SPR) that we know about except for | ||
78 | the PSW (SPR 5), which we zero except for the | ||
79 | disable-interrupts bit. | ||
80 | */ | ||
81 | |||
82 | /* GPRs */ | ||
83 | asm volatile (" mov r0, r1 ; mov r0, r2 "); | ||
84 | asm volatile ("mov r0, r4 ; mov r0, r5 ; mov r0, r6 ; mov r0, r7 "); | ||
85 | asm volatile ("mov r0, r8 ; mov r0, r9 ; mov r0, r10; mov r0, r11"); | ||
86 | asm volatile ("mov r0, r12; mov r0, r13; mov r0, r14; mov r0, r15"); | ||
87 | asm volatile (" mov r0, r17; mov r0, r18; mov r0, r19"); | ||
88 | asm volatile ("mov r0, r20; mov r0, r21; mov r0, r22; mov r0, r23"); | ||
89 | asm volatile ("mov r0, r24; mov r0, r25; mov r0, r26; mov r0, r27"); | ||
90 | asm volatile ("mov r0, r28; mov r0, r29; mov r0, r30"); | ||
91 | |||
92 | /* SPRs */ | ||
93 | asm volatile ("ldsr r0, 0; ldsr r0, 1; ldsr r0, 2; ldsr r0, 3"); | ||
94 | asm volatile ("ldsr r0, 4"); | ||
95 | asm volatile ("addi 0x20, r0, r1; ldsr r1, 5"); /* PSW */ | ||
96 | asm volatile ("ldsr r0, 16; ldsr r0, 17; ldsr r0, 18; ldsr r0, 19"); | ||
97 | asm volatile ("ldsr r0, 20"); | ||
98 | |||
99 | |||
100 | #ifdef INIT_MEMC_FOR_SDRAM | ||
101 | /* Settings for SDRAM controller. */ | ||
102 | V850E2_VSWC = 0x0042; | ||
103 | V850E2_BSC = 0x9286; | ||
104 | V850E2_BCT(0) = 0xb000; /* was: 0 */ | ||
105 | V850E2_BCT(1) = 0x000b; | ||
106 | V850E2_ASC = 0; | ||
107 | V850E2_LBS = 0xa9aa; /* was: 0xaaaa */ | ||
108 | V850E2_LBC(0) = 0; | ||
109 | V850E2_LBC(1) = 0; /* was: 0x3 */ | ||
110 | V850E2_BCC = 0; | ||
111 | V850E2_RFS(4) = 0x800a; /* was: 0xf109 */ | ||
112 | V850E2_SCR(4) = 0x2091; /* was: 0x20a1 */ | ||
113 | V850E2_RFS(3) = 0x800c; | ||
114 | V850E2_SCR(3) = 0x20a1; | ||
115 | V850E2_DWC(0) = 0; | ||
116 | V850E2_DWC(1) = 0; | ||
117 | #endif | ||
118 | |||
119 | #if 0 | ||
120 | #ifdef CONFIG_V850E2_SIM85E2S | ||
121 | /* Turn on the caches. */ | ||
122 | V850E2_CACHE_BTSC = V850E2_CACHE_BTSC_ICM | DCACHE_MODE; | ||
123 | V850E2_BHC = 0x1010; | ||
124 | #elif CONFIG_V850E2_SIM85E2C | ||
125 | V850E2_CACHE_BTSC |= (V850E2_CACHE_BTSC_ICM | V850E2_CACHE_BTSC_DCM0); | ||
126 | V850E2_BUSM_BHC = 0xFFFF; | ||
127 | #endif | ||
128 | #else | ||
129 | V850E2_BHC = 0; | ||
130 | #endif | ||
131 | |||
132 | /* Don't stop the simulator at `halt' instructions. */ | ||
133 | SIM85E2_NOTHAL = 1; | ||
134 | |||
135 | /* Ensure that the simulator halts on a panic, instead of going | ||
136 | into an infinite loop inside the panic function. */ | ||
137 | panic_timeout = -1; | ||
138 | } | ||
139 | |||
140 | void __init mach_setup (char **cmdline) | ||
141 | { | ||
142 | memcons_setup (); | ||
143 | } | ||
144 | |||
145 | void mach_get_physical_ram (unsigned long *ram_start, unsigned long *ram_len) | ||
146 | { | ||
147 | *ram_start = RAM_START; | ||
148 | *ram_len = RAM_END - RAM_START; | ||
149 | } | ||
150 | |||
151 | void __init mach_sched_init (struct irqaction *timer_action) | ||
152 | { | ||
153 | /* The simulator actually cycles through all interrupts | ||
154 | periodically. We just pay attention to IRQ0, which gives us | ||
155 | 1/64 the rate of the periodic interrupts. */ | ||
156 | setup_irq (0, timer_action); | ||
157 | } | ||
158 | |||
159 | void mach_gettimeofday (struct timespec *tv) | ||
160 | { | ||
161 | tv->tv_sec = 0; | ||
162 | tv->tv_nsec = 0; | ||
163 | } | ||
164 | |||
165 | /* Interrupts */ | ||
166 | |||
167 | struct v850e_intc_irq_init irq_inits[] = { | ||
168 | { "IRQ", 0, NUM_MACH_IRQS, 1, 7 }, | ||
169 | { 0 } | ||
170 | }; | ||
171 | struct hw_interrupt_type hw_itypes[1]; | ||
172 | |||
173 | /* Initialize interrupts. */ | ||
174 | void __init mach_init_irqs (void) | ||
175 | { | ||
176 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
177 | } | ||
178 | |||
179 | |||
180 | void machine_halt (void) __attribute__ ((noreturn)); | ||
181 | void machine_halt (void) | ||
182 | { | ||
183 | SIM85E2_SIMFIN = 0; /* Halt immediately. */ | ||
184 | for (;;) {} | ||
185 | } | ||
186 | |||
187 | EXPORT_SYMBOL(machine_halt); | ||
188 | |||
189 | void machine_restart (char *__unused) | ||
190 | { | ||
191 | machine_halt (); | ||
192 | } | ||
193 | |||
194 | EXPORT_SYMBOL(machine_restart); | ||
195 | |||
196 | void machine_power_off (void) | ||
197 | { | ||
198 | machine_halt (); | ||
199 | } | ||
200 | |||
201 | EXPORT_SYMBOL(machine_power_off); | ||
diff --git a/arch/v850/kernel/sim85e2.ld b/arch/v850/kernel/sim85e2.ld new file mode 100644 index 000000000000..7470fd2ffb5b --- /dev/null +++ b/arch/v850/kernel/sim85e2.ld | |||
@@ -0,0 +1,36 @@ | |||
1 | /* Linker script for the sim85e2c simulator, which is a verilog simulation of | ||
2 | the V850E2 NA85E2C cpu core (CONFIG_V850E2_SIM85E2C). */ | ||
3 | |||
4 | MEMORY { | ||
5 | /* 1MB of `instruction RAM', starting at 0. | ||
6 | Instruction fetches are much faster from IRAM than from DRAM. */ | ||
7 | IRAM : ORIGIN = IRAM_ADDR, LENGTH = IRAM_SIZE | ||
8 | |||
9 | /* 1MB of `data RAM', below and contiguous with the I/O space. | ||
10 | Data fetches are much faster from DRAM than from IRAM. */ | ||
11 | DRAM : ORIGIN = DRAM_ADDR, LENGTH = DRAM_SIZE | ||
12 | |||
13 | /* `external ram' (CS1 area), comes after IRAM. */ | ||
14 | ERAM : ORIGIN = ERAM_ADDR, LENGTH = ERAM_SIZE | ||
15 | |||
16 | /* Dynamic RAM; uses memory controller. */ | ||
17 | SDRAM : ORIGIN = SDRAM_ADDR, LENGTH = SDRAM_SIZE | ||
18 | } | ||
19 | |||
20 | SECTIONS { | ||
21 | .iram : { | ||
22 | INTV_CONTENTS | ||
23 | *arch/v850/kernel/head.o | ||
24 | *(.early.text) | ||
25 | } > IRAM | ||
26 | .dram : { | ||
27 | _memcons_output = . ; | ||
28 | . = . + 0x8000 ; | ||
29 | _memcons_output_end = . ; | ||
30 | } > DRAM | ||
31 | .sdram : { | ||
32 | /* We stick console output into a buffer here. */ | ||
33 | RAMK_KRAM_CONTENTS | ||
34 | ROOT_FS_CONTENTS | ||
35 | } > SDRAM | ||
36 | } | ||
diff --git a/arch/v850/kernel/simcons.c b/arch/v850/kernel/simcons.c new file mode 100644 index 000000000000..7f0efaa025c9 --- /dev/null +++ b/arch/v850/kernel/simcons.c | |||
@@ -0,0 +1,166 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/simcons.c -- Console I/O for GDB v850e simulator | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/console.h> | ||
16 | #include <linux/tty.h> | ||
17 | #include <linux/tty_flip.h> | ||
18 | #include <linux/tty_driver.h> | ||
19 | #include <linux/init.h> | ||
20 | |||
21 | #include <asm/poll.h> | ||
22 | #include <asm/string.h> | ||
23 | #include <asm/simsyscall.h> | ||
24 | |||
25 | |||
26 | /* Low-level console. */ | ||
27 | |||
28 | static void simcons_write (struct console *co, const char *buf, unsigned len) | ||
29 | { | ||
30 | V850_SIM_SYSCALL (write, 1, buf, len); | ||
31 | } | ||
32 | |||
33 | static int simcons_read (struct console *co, char *buf, unsigned len) | ||
34 | { | ||
35 | return V850_SIM_SYSCALL (read, 0, buf, len); | ||
36 | } | ||
37 | |||
38 | static struct tty_driver *tty_driver; | ||
39 | static struct tty_driver *simcons_device (struct console *c, int *index) | ||
40 | { | ||
41 | *index = c->index; | ||
42 | return tty_driver; | ||
43 | } | ||
44 | |||
45 | static struct console simcons = | ||
46 | { | ||
47 | .name = "simcons", | ||
48 | .write = simcons_write, | ||
49 | .read = simcons_read, | ||
50 | .device = simcons_device, | ||
51 | .flags = CON_PRINTBUFFER, | ||
52 | .index = -1, | ||
53 | }; | ||
54 | |||
55 | /* Higher level TTY interface. */ | ||
56 | |||
57 | int simcons_tty_open (struct tty_struct *tty, struct file *filp) | ||
58 | { | ||
59 | return 0; | ||
60 | } | ||
61 | |||
62 | int simcons_tty_write (struct tty_struct *tty, | ||
63 | const unsigned char *buf, int count) | ||
64 | { | ||
65 | return V850_SIM_SYSCALL (write, 1, buf, count); | ||
66 | } | ||
67 | |||
68 | int simcons_tty_write_room (struct tty_struct *tty) | ||
69 | { | ||
70 | /* Completely arbitrary. */ | ||
71 | return 0x100000; | ||
72 | } | ||
73 | |||
74 | int simcons_tty_chars_in_buffer (struct tty_struct *tty) | ||
75 | { | ||
76 | /* We have no buffer. */ | ||
77 | return 0; | ||
78 | } | ||
79 | |||
80 | static struct tty_operations ops = { | ||
81 | .open = simcons_tty_open, | ||
82 | .write = simcons_tty_write, | ||
83 | .write_room = simcons_tty_write_room, | ||
84 | .chars_in_buffer = simcons_tty_chars_in_buffer, | ||
85 | }; | ||
86 | |||
87 | int __init simcons_tty_init (void) | ||
88 | { | ||
89 | struct tty_driver *driver = alloc_tty_driver(1); | ||
90 | int err; | ||
91 | if (!driver) | ||
92 | return -ENOMEM; | ||
93 | driver->name = "simcons"; | ||
94 | driver->major = TTY_MAJOR; | ||
95 | driver->minor_start = 64; | ||
96 | driver->type = TTY_DRIVER_TYPE_SYSCONS; | ||
97 | driver->init_termios = tty_std_termios; | ||
98 | tty_set_operations(driver, &ops); | ||
99 | err = tty_register_driver(driver); | ||
100 | if (err) { | ||
101 | put_tty_driver(driver); | ||
102 | return err; | ||
103 | } | ||
104 | tty_driver = driver; | ||
105 | return 0; | ||
106 | } | ||
107 | /* We use `late_initcall' instead of just `__initcall' as a workaround for | ||
108 | the fact that (1) simcons_tty_init can't be called before tty_init, | ||
109 | (2) tty_init is called via `module_init', (3) if statically linked, | ||
110 | module_init == device_init, and (4) there's no ordering of init lists. | ||
111 | We can do this easily because simcons is always statically linked, but | ||
112 | other tty drivers that depend on tty_init and which must use | ||
113 | `module_init' to declare their init routines are likely to be broken. */ | ||
114 | late_initcall(simcons_tty_init); | ||
115 | |||
116 | /* Poll for input on the console, and if there's any, deliver it to the | ||
117 | tty driver. */ | ||
118 | void simcons_poll_tty (struct tty_struct *tty) | ||
119 | { | ||
120 | int flip = 0, send_break = 0; | ||
121 | struct pollfd pfd; | ||
122 | pfd.fd = 0; | ||
123 | pfd.events = POLLIN; | ||
124 | |||
125 | if (V850_SIM_SYSCALL (poll, &pfd, 1, 0) > 0) { | ||
126 | if (pfd.revents & POLLIN) { | ||
127 | int left = TTY_FLIPBUF_SIZE - tty->flip.count; | ||
128 | |||
129 | if (left > 0) { | ||
130 | unsigned char *buf = tty->flip.char_buf_ptr; | ||
131 | int rd = V850_SIM_SYSCALL (read, 0, buf, left); | ||
132 | |||
133 | if (rd > 0) { | ||
134 | tty->flip.count += rd; | ||
135 | tty->flip.char_buf_ptr += rd; | ||
136 | memset (tty->flip.flag_buf_ptr, 0, rd); | ||
137 | tty->flip.flag_buf_ptr += rd; | ||
138 | flip = 1; | ||
139 | } else | ||
140 | send_break = 1; | ||
141 | } | ||
142 | } else if (pfd.revents & POLLERR) | ||
143 | send_break = 1; | ||
144 | } | ||
145 | |||
146 | if (send_break) { | ||
147 | tty_insert_flip_char (tty, 0, TTY_BREAK); | ||
148 | flip = 1; | ||
149 | } | ||
150 | |||
151 | if (flip) | ||
152 | tty_schedule_flip (tty); | ||
153 | } | ||
154 | |||
155 | void simcons_poll_ttys (void) | ||
156 | { | ||
157 | if (tty_driver && tty_driver->ttys[0]) | ||
158 | simcons_poll_tty (tty_driver->ttys[0]); | ||
159 | } | ||
160 | |||
161 | void simcons_setup (void) | ||
162 | { | ||
163 | V850_SIM_SYSCALL (make_raw, 0); | ||
164 | register_console (&simcons); | ||
165 | printk (KERN_INFO "Console: GDB V850E simulator stdio\n"); | ||
166 | } | ||
diff --git a/arch/v850/kernel/syscalls.c b/arch/v850/kernel/syscalls.c new file mode 100644 index 000000000000..9224cb65f6ec --- /dev/null +++ b/arch/v850/kernel/syscalls.c | |||
@@ -0,0 +1,197 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/syscalls.c -- Various system-call definitions not | ||
3 | * defined in machine-independent code | ||
4 | * | ||
5 | * Copyright (C) 2001,02 NEC Corporation | ||
6 | * Copyright (C) 2001,02 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * This file was derived the ppc version, arch/ppc/kernel/syscalls.c | ||
13 | * ... which was derived from "arch/i386/kernel/sys_i386.c" by Gary Thomas; | ||
14 | * modified by Cort Dougan (cort@cs.nmt.edu) | ||
15 | * and Paul Mackerras (paulus@cs.anu.edu.au). | ||
16 | */ | ||
17 | |||
18 | #include <linux/config.h> | ||
19 | #include <linux/errno.h> | ||
20 | #include <linux/mm.h> | ||
21 | #include <linux/smp.h> | ||
22 | #include <linux/smp_lock.h> | ||
23 | #include <linux/syscalls.h> | ||
24 | #include <linux/sem.h> | ||
25 | #include <linux/msg.h> | ||
26 | #include <linux/shm.h> | ||
27 | #include <linux/stat.h> | ||
28 | #include <linux/mman.h> | ||
29 | #include <linux/sys.h> | ||
30 | #include <linux/ipc.h> | ||
31 | #include <linux/utsname.h> | ||
32 | #include <linux/file.h> | ||
33 | |||
34 | #include <asm/uaccess.h> | ||
35 | #include <asm/ipc.h> | ||
36 | #include <asm/semaphore.h> | ||
37 | |||
38 | /* | ||
39 | * sys_ipc() is the de-multiplexer for the SysV IPC calls.. | ||
40 | * | ||
41 | * This is really horribly ugly. | ||
42 | */ | ||
43 | int | ||
44 | sys_ipc (uint call, int first, int second, int third, void *ptr, long fifth) | ||
45 | { | ||
46 | int version, ret; | ||
47 | |||
48 | version = call >> 16; /* hack for backward compatibility */ | ||
49 | call &= 0xffff; | ||
50 | |||
51 | ret = -EINVAL; | ||
52 | switch (call) { | ||
53 | case SEMOP: | ||
54 | ret = sys_semop (first, (struct sembuf *)ptr, second); | ||
55 | break; | ||
56 | case SEMGET: | ||
57 | ret = sys_semget (first, second, third); | ||
58 | break; | ||
59 | case SEMCTL: | ||
60 | { | ||
61 | union semun fourth; | ||
62 | |||
63 | if (!ptr) | ||
64 | break; | ||
65 | if ((ret = access_ok(VERIFY_READ, ptr, sizeof(long)) ? 0 : -EFAULT) | ||
66 | || (ret = get_user(fourth.__pad, (void **)ptr))) | ||
67 | break; | ||
68 | ret = sys_semctl (first, second, third, fourth); | ||
69 | break; | ||
70 | } | ||
71 | case MSGSND: | ||
72 | ret = sys_msgsnd (first, (struct msgbuf *) ptr, second, third); | ||
73 | break; | ||
74 | case MSGRCV: | ||
75 | switch (version) { | ||
76 | case 0: { | ||
77 | struct ipc_kludge tmp; | ||
78 | |||
79 | if (!ptr) | ||
80 | break; | ||
81 | if ((ret = access_ok(VERIFY_READ, ptr, sizeof(tmp)) ? 0 : -EFAULT) | ||
82 | || (ret = copy_from_user(&tmp, | ||
83 | (struct ipc_kludge *) ptr, | ||
84 | sizeof (tmp)))) | ||
85 | break; | ||
86 | ret = sys_msgrcv (first, tmp.msgp, second, tmp.msgtyp, | ||
87 | third); | ||
88 | break; | ||
89 | } | ||
90 | default: | ||
91 | ret = sys_msgrcv (first, (struct msgbuf *) ptr, | ||
92 | second, fifth, third); | ||
93 | break; | ||
94 | } | ||
95 | break; | ||
96 | case MSGGET: | ||
97 | ret = sys_msgget ((key_t) first, second); | ||
98 | break; | ||
99 | case MSGCTL: | ||
100 | ret = sys_msgctl (first, second, (struct msqid_ds *) ptr); | ||
101 | break; | ||
102 | case SHMAT: | ||
103 | switch (version) { | ||
104 | default: { | ||
105 | ulong raddr; | ||
106 | |||
107 | if ((ret = access_ok(VERIFY_WRITE, (ulong*) third, | ||
108 | sizeof(ulong)) ? 0 : -EFAULT)) | ||
109 | break; | ||
110 | ret = do_shmat (first, (char *) ptr, second, &raddr); | ||
111 | if (ret) | ||
112 | break; | ||
113 | ret = put_user (raddr, (ulong *) third); | ||
114 | break; | ||
115 | } | ||
116 | case 1: /* iBCS2 emulator entry point */ | ||
117 | if (!segment_eq(get_fs(), get_ds())) | ||
118 | break; | ||
119 | ret = do_shmat (first, (char *) ptr, second, | ||
120 | (ulong *) third); | ||
121 | break; | ||
122 | } | ||
123 | break; | ||
124 | case SHMDT: | ||
125 | ret = sys_shmdt ((char *)ptr); | ||
126 | break; | ||
127 | case SHMGET: | ||
128 | ret = sys_shmget (first, second, third); | ||
129 | break; | ||
130 | case SHMCTL: | ||
131 | ret = sys_shmctl (first, second, (struct shmid_ds *) ptr); | ||
132 | break; | ||
133 | } | ||
134 | |||
135 | return ret; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | * sys_pipe() is the normal C calling standard for creating | ||
140 | * a pipe. It's not the way unix traditionally does this, though. | ||
141 | */ | ||
142 | int sys_pipe (int *fildes) | ||
143 | { | ||
144 | int fd[2]; | ||
145 | int error; | ||
146 | |||
147 | error = do_pipe (fd); | ||
148 | if (!error) { | ||
149 | if (copy_to_user (fildes, fd, 2*sizeof (int))) | ||
150 | error = -EFAULT; | ||
151 | } | ||
152 | return error; | ||
153 | } | ||
154 | |||
155 | static inline unsigned long | ||
156 | do_mmap2 (unsigned long addr, size_t len, | ||
157 | unsigned long prot, unsigned long flags, | ||
158 | unsigned long fd, unsigned long pgoff) | ||
159 | { | ||
160 | struct file * file = NULL; | ||
161 | int ret = -EBADF; | ||
162 | |||
163 | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); | ||
164 | if (! (flags & MAP_ANONYMOUS)) { | ||
165 | if (!(file = fget (fd))) | ||
166 | goto out; | ||
167 | } | ||
168 | |||
169 | down_write (¤t->mm->mmap_sem); | ||
170 | ret = do_mmap_pgoff (file, addr, len, prot, flags, pgoff); | ||
171 | up_write (¤t->mm->mmap_sem); | ||
172 | if (file) | ||
173 | fput (file); | ||
174 | out: | ||
175 | return ret; | ||
176 | } | ||
177 | |||
178 | unsigned long sys_mmap2 (unsigned long addr, size_t len, | ||
179 | unsigned long prot, unsigned long flags, | ||
180 | unsigned long fd, unsigned long pgoff) | ||
181 | { | ||
182 | return do_mmap2 (addr, len, prot, flags, fd, pgoff); | ||
183 | } | ||
184 | |||
185 | unsigned long sys_mmap (unsigned long addr, size_t len, | ||
186 | unsigned long prot, unsigned long flags, | ||
187 | unsigned long fd, off_t offset) | ||
188 | { | ||
189 | int err = -EINVAL; | ||
190 | |||
191 | if (offset & ~PAGE_MASK) | ||
192 | goto out; | ||
193 | |||
194 | err = do_mmap2 (addr, len, prot, flags, fd, offset >> PAGE_SHIFT); | ||
195 | out: | ||
196 | return err; | ||
197 | } | ||
diff --git a/arch/v850/kernel/teg.c b/arch/v850/kernel/teg.c new file mode 100644 index 000000000000..495cf8f37bcb --- /dev/null +++ b/arch/v850/kernel/teg.c | |||
@@ -0,0 +1,63 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/teg.c -- NB85E-TEG cpu chip | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/bootmem.h> | ||
20 | #include <linux/irq.h> | ||
21 | |||
22 | #include <asm/atomic.h> | ||
23 | #include <asm/page.h> | ||
24 | #include <asm/machdep.h> | ||
25 | #include <asm/v850e_timer_d.h> | ||
26 | |||
27 | #include "mach.h" | ||
28 | |||
29 | void __init mach_sched_init (struct irqaction *timer_action) | ||
30 | { | ||
31 | /* Select timer interrupt instead of external pin. */ | ||
32 | TEG_ISS |= 0x1; | ||
33 | /* Start hardware timer. */ | ||
34 | v850e_timer_d_configure (0, HZ); | ||
35 | /* Install timer interrupt handler. */ | ||
36 | setup_irq (IRQ_INTCMD(0), timer_action); | ||
37 | } | ||
38 | |||
39 | static struct v850e_intc_irq_init irq_inits[] = { | ||
40 | { "IRQ", 0, NUM_CPU_IRQS, 1, 7 }, | ||
41 | { "CMD", IRQ_INTCMD(0), IRQ_INTCMD_NUM, 1, 5 }, | ||
42 | { "SER", IRQ_INTSER(0), IRQ_INTSER_NUM, 1, 3 }, | ||
43 | { "SR", IRQ_INTSR(0), IRQ_INTSR_NUM, 1, 4 }, | ||
44 | { "ST", IRQ_INTST(0), IRQ_INTST_NUM, 1, 5 }, | ||
45 | { 0 } | ||
46 | }; | ||
47 | #define NUM_IRQ_INITS ((sizeof irq_inits / sizeof irq_inits[0]) - 1) | ||
48 | |||
49 | static struct hw_interrupt_type hw_itypes[NUM_IRQ_INITS]; | ||
50 | |||
51 | /* Initialize MA chip interrupts. */ | ||
52 | void __init teg_init_irqs (void) | ||
53 | { | ||
54 | v850e_intc_init_irq_types (irq_inits, hw_itypes); | ||
55 | } | ||
56 | |||
57 | /* Called before configuring an on-chip UART. */ | ||
58 | void teg_uart_pre_configure (unsigned chan, unsigned cflags, unsigned baud) | ||
59 | { | ||
60 | /* Enable UART I/O pins instead of external interrupt pins, and | ||
61 | UART interrupts instead of external pin interrupts. */ | ||
62 | TEG_ISS |= 0x4E; | ||
63 | } | ||
diff --git a/arch/v850/kernel/time.c b/arch/v850/kernel/time.c new file mode 100644 index 000000000000..f722a268238a --- /dev/null +++ b/arch/v850/kernel/time.c | |||
@@ -0,0 +1,198 @@ | |||
1 | /* | ||
2 | * linux/arch/v850/kernel/time.c -- Arch-dependent timer functions | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992, 1995, 2001, 2002 Linus Torvalds | ||
5 | * | ||
6 | * This file contains the v850-specific time handling details. | ||
7 | * Most of the stuff is located in the machine specific files. | ||
8 | * | ||
9 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
10 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
11 | */ | ||
12 | |||
13 | #include <linux/config.h> /* CONFIG_HEARTBEAT */ | ||
14 | #include <linux/errno.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/param.h> | ||
18 | #include <linux/string.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/time.h> | ||
22 | #include <linux/timex.h> | ||
23 | #include <linux/profile.h> | ||
24 | |||
25 | #include <asm/io.h> | ||
26 | |||
27 | #include "mach.h" | ||
28 | |||
29 | u64 jiffies_64 = INITIAL_JIFFIES; | ||
30 | |||
31 | EXPORT_SYMBOL(jiffies_64); | ||
32 | |||
33 | #define TICK_SIZE (tick_nsec / 1000) | ||
34 | |||
35 | /* | ||
36 | * Scheduler clock - returns current time in nanosec units. | ||
37 | */ | ||
38 | unsigned long long sched_clock(void) | ||
39 | { | ||
40 | return (unsigned long long)jiffies * (1000000000 / HZ); | ||
41 | } | ||
42 | |||
43 | /* | ||
44 | * timer_interrupt() needs to keep up the real-time clock, | ||
45 | * as well as call the "do_timer()" routine every clocktick | ||
46 | */ | ||
47 | static irqreturn_t timer_interrupt (int irq, void *dummy, struct pt_regs *regs) | ||
48 | { | ||
49 | #if 0 | ||
50 | /* last time the cmos clock got updated */ | ||
51 | static long last_rtc_update=0; | ||
52 | #endif | ||
53 | |||
54 | /* may need to kick the hardware timer */ | ||
55 | if (mach_tick) | ||
56 | mach_tick (); | ||
57 | |||
58 | do_timer (regs); | ||
59 | #ifndef CONFIG_SMP | ||
60 | update_process_times(user_mode(regs)); | ||
61 | #endif | ||
62 | profile_tick(CPU_PROFILING, regs); | ||
63 | #if 0 | ||
64 | /* | ||
65 | * If we have an externally synchronized Linux clock, then update | ||
66 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | ||
67 | * called as close as possible to 500 ms before the new second starts. | ||
68 | */ | ||
69 | if ((time_status & STA_UNSYNC) == 0 && | ||
70 | xtime.tv_sec > last_rtc_update + 660 && | ||
71 | (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | ||
72 | (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | ||
73 | if (set_rtc_mmss (xtime.tv_sec) == 0) | ||
74 | last_rtc_update = xtime.tv_sec; | ||
75 | else | ||
76 | last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ | ||
77 | } | ||
78 | #ifdef CONFIG_HEARTBEAT | ||
79 | /* use power LED as a heartbeat instead -- much more useful | ||
80 | for debugging -- based on the version for PReP by Cort */ | ||
81 | /* acts like an actual heart beat -- ie thump-thump-pause... */ | ||
82 | if (mach_heartbeat) { | ||
83 | static unsigned cnt = 0, period = 0, dist = 0; | ||
84 | |||
85 | if (cnt == 0 || cnt == dist) | ||
86 | mach_heartbeat ( 1 ); | ||
87 | else if (cnt == 7 || cnt == dist+7) | ||
88 | mach_heartbeat ( 0 ); | ||
89 | |||
90 | if (++cnt > period) { | ||
91 | cnt = 0; | ||
92 | /* The hyperbolic function below modifies the heartbeat period | ||
93 | * length in dependency of the current (5min) load. It goes | ||
94 | * through the points f(0)=126, f(1)=86, f(5)=51, | ||
95 | * f(inf)->30. */ | ||
96 | period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30; | ||
97 | dist = period / 4; | ||
98 | } | ||
99 | } | ||
100 | #endif /* CONFIG_HEARTBEAT */ | ||
101 | #endif /* 0 */ | ||
102 | |||
103 | return IRQ_HANDLED; | ||
104 | } | ||
105 | |||
106 | /* | ||
107 | * This version of gettimeofday has near microsecond resolution. | ||
108 | */ | ||
109 | void do_gettimeofday (struct timeval *tv) | ||
110 | { | ||
111 | #if 0 /* DAVIDM later if possible */ | ||
112 | extern volatile unsigned long lost_ticks; | ||
113 | unsigned long lost; | ||
114 | #endif | ||
115 | unsigned long flags; | ||
116 | unsigned long usec, sec; | ||
117 | unsigned long seq; | ||
118 | |||
119 | do { | ||
120 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | ||
121 | |||
122 | #if 0 | ||
123 | usec = mach_gettimeoffset ? mach_gettimeoffset () : 0; | ||
124 | #else | ||
125 | usec = 0; | ||
126 | #endif | ||
127 | #if 0 /* DAVIDM later if possible */ | ||
128 | lost = lost_ticks; | ||
129 | if (lost) | ||
130 | usec += lost * (1000000/HZ); | ||
131 | #endif | ||
132 | sec = xtime.tv_sec; | ||
133 | usec += xtime.tv_nsec / 1000; | ||
134 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | ||
135 | |||
136 | while (usec >= 1000000) { | ||
137 | usec -= 1000000; | ||
138 | sec++; | ||
139 | } | ||
140 | |||
141 | tv->tv_sec = sec; | ||
142 | tv->tv_usec = usec; | ||
143 | } | ||
144 | |||
145 | EXPORT_SYMBOL(do_gettimeofday); | ||
146 | |||
147 | int do_settimeofday(struct timespec *tv) | ||
148 | { | ||
149 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
150 | return -EINVAL; | ||
151 | |||
152 | write_seqlock_irq (&xtime_lock); | ||
153 | |||
154 | /* This is revolting. We need to set the xtime.tv_nsec | ||
155 | * correctly. However, the value in this location is | ||
156 | * is value at the last tick. | ||
157 | * Discover what correction gettimeofday | ||
158 | * would have done, and then undo it! | ||
159 | */ | ||
160 | #if 0 | ||
161 | tv->tv_nsec -= mach_gettimeoffset() * 1000; | ||
162 | #endif | ||
163 | |||
164 | while (tv->tv_nsec < 0) { | ||
165 | tv->tv_nsec += NSEC_PER_SEC; | ||
166 | tv->tv_sec--; | ||
167 | } | ||
168 | |||
169 | xtime.tv_sec = tv->tv_sec; | ||
170 | xtime.tv_nsec = tv->tv_nsec; | ||
171 | |||
172 | time_adjust = 0; /* stop active adjtime () */ | ||
173 | time_status |= STA_UNSYNC; | ||
174 | time_maxerror = NTP_PHASE_LIMIT; | ||
175 | time_esterror = NTP_PHASE_LIMIT; | ||
176 | |||
177 | write_sequnlock_irq (&xtime_lock); | ||
178 | clock_was_set(); | ||
179 | return 0; | ||
180 | } | ||
181 | |||
182 | EXPORT_SYMBOL(do_settimeofday); | ||
183 | |||
184 | static int timer_dev_id; | ||
185 | static struct irqaction timer_irqaction = { | ||
186 | timer_interrupt, | ||
187 | SA_INTERRUPT, | ||
188 | CPU_MASK_NONE, | ||
189 | "timer", | ||
190 | &timer_dev_id, | ||
191 | NULL | ||
192 | }; | ||
193 | |||
194 | void time_init (void) | ||
195 | { | ||
196 | mach_gettimeofday (&xtime); | ||
197 | mach_sched_init (&timer_irqaction); | ||
198 | } | ||
diff --git a/arch/v850/kernel/v850_ksyms.c b/arch/v850/kernel/v850_ksyms.c new file mode 100644 index 000000000000..0ca64900dd91 --- /dev/null +++ b/arch/v850/kernel/v850_ksyms.c | |||
@@ -0,0 +1,78 @@ | |||
1 | #include <linux/module.h> | ||
2 | #include <linux/linkage.h> | ||
3 | #include <linux/sched.h> | ||
4 | #include <linux/string.h> | ||
5 | #include <linux/mm.h> | ||
6 | #include <linux/user.h> | ||
7 | #include <linux/elfcore.h> | ||
8 | #include <linux/in6.h> | ||
9 | #include <linux/interrupt.h> | ||
10 | #include <linux/config.h> | ||
11 | |||
12 | #include <asm/pgalloc.h> | ||
13 | #include <asm/irq.h> | ||
14 | #include <asm/io.h> | ||
15 | #include <asm/semaphore.h> | ||
16 | #include <asm/checksum.h> | ||
17 | #include <asm/current.h> | ||
18 | |||
19 | |||
20 | extern void *trap_table; | ||
21 | EXPORT_SYMBOL (trap_table); | ||
22 | |||
23 | /* platform dependent support */ | ||
24 | extern void dump_thread (struct pt_regs *, struct user *); | ||
25 | EXPORT_SYMBOL (dump_thread); | ||
26 | EXPORT_SYMBOL (kernel_thread); | ||
27 | EXPORT_SYMBOL (enable_irq); | ||
28 | EXPORT_SYMBOL (disable_irq); | ||
29 | EXPORT_SYMBOL (disable_irq_nosync); | ||
30 | EXPORT_SYMBOL (__bug); | ||
31 | |||
32 | /* Networking helper routines. */ | ||
33 | EXPORT_SYMBOL (csum_partial_copy); | ||
34 | EXPORT_SYMBOL (csum_partial_copy_from_user); | ||
35 | EXPORT_SYMBOL (ip_compute_csum); | ||
36 | EXPORT_SYMBOL (ip_fast_csum); | ||
37 | |||
38 | /* string / mem functions */ | ||
39 | EXPORT_SYMBOL (strcpy); | ||
40 | EXPORT_SYMBOL (strncpy); | ||
41 | EXPORT_SYMBOL (strcat); | ||
42 | EXPORT_SYMBOL (strncat); | ||
43 | EXPORT_SYMBOL (strcmp); | ||
44 | EXPORT_SYMBOL (strncmp); | ||
45 | EXPORT_SYMBOL (strchr); | ||
46 | EXPORT_SYMBOL (strlen); | ||
47 | EXPORT_SYMBOL (strnlen); | ||
48 | EXPORT_SYMBOL (strpbrk); | ||
49 | EXPORT_SYMBOL (strrchr); | ||
50 | EXPORT_SYMBOL (strstr); | ||
51 | EXPORT_SYMBOL (memset); | ||
52 | EXPORT_SYMBOL (memcpy); | ||
53 | EXPORT_SYMBOL (memmove); | ||
54 | EXPORT_SYMBOL (memcmp); | ||
55 | EXPORT_SYMBOL (memscan); | ||
56 | |||
57 | /* semaphores */ | ||
58 | EXPORT_SYMBOL (__down); | ||
59 | EXPORT_SYMBOL (__down_interruptible); | ||
60 | EXPORT_SYMBOL (__down_trylock); | ||
61 | EXPORT_SYMBOL (__up); | ||
62 | |||
63 | /* | ||
64 | * libgcc functions - functions that are used internally by the | ||
65 | * compiler... (prototypes are not correct though, but that | ||
66 | * doesn't really matter since they're not versioned). | ||
67 | */ | ||
68 | extern void __ashldi3 (void); | ||
69 | extern void __ashrdi3 (void); | ||
70 | extern void __lshrdi3 (void); | ||
71 | extern void __muldi3 (void); | ||
72 | extern void __negdi2 (void); | ||
73 | |||
74 | EXPORT_SYMBOL (__ashldi3); | ||
75 | EXPORT_SYMBOL (__ashrdi3); | ||
76 | EXPORT_SYMBOL (__lshrdi3); | ||
77 | EXPORT_SYMBOL (__muldi3); | ||
78 | EXPORT_SYMBOL (__negdi2); | ||
diff --git a/arch/v850/kernel/v850e2_cache.c b/arch/v850/kernel/v850e2_cache.c new file mode 100644 index 000000000000..4570312c689c --- /dev/null +++ b/arch/v850/kernel/v850e2_cache.c | |||
@@ -0,0 +1,127 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/v850e2_cache.c -- Cache control for V850E2 cache | ||
3 | * memories | ||
4 | * | ||
5 | * Copyright (C) 2003 NEC Electronics Corporation | ||
6 | * Copyright (C) 2003 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <linux/mm.h> | ||
16 | |||
17 | #include <asm/v850e2_cache.h> | ||
18 | |||
19 | /* Cache operations we can do. The encoding corresponds directly to the | ||
20 | value we need to write into the COPR register. */ | ||
21 | enum cache_op { | ||
22 | OP_SYNC_IF_DIRTY = V850E2_CACHE_COPR_CFC(0), /* 000 */ | ||
23 | OP_SYNC_IF_VALID = V850E2_CACHE_COPR_CFC(1), /* 001 */ | ||
24 | OP_SYNC_IF_VALID_AND_CLEAR = V850E2_CACHE_COPR_CFC(3), /* 011 */ | ||
25 | OP_WAY_CLEAR = V850E2_CACHE_COPR_CFC(4), /* 100 */ | ||
26 | OP_FILL = V850E2_CACHE_COPR_CFC(5), /* 101 */ | ||
27 | OP_CLEAR = V850E2_CACHE_COPR_CFC(6), /* 110 */ | ||
28 | OP_CREATE_DIRTY = V850E2_CACHE_COPR_CFC(7) /* 111 */ | ||
29 | }; | ||
30 | |||
31 | /* Which cache to use. This encoding also corresponds directly to the | ||
32 | value we need to write into the COPR register. */ | ||
33 | enum cache { | ||
34 | ICACHE = 0, | ||
35 | DCACHE = V850E2_CACHE_COPR_LBSL | ||
36 | }; | ||
37 | |||
38 | /* Returns ADDR rounded down to the beginning of its cache-line. */ | ||
39 | #define CACHE_LINE_ADDR(addr) \ | ||
40 | ((addr) & ~(V850E2_CACHE_LINE_SIZE - 1)) | ||
41 | /* Returns END_ADDR rounded up to the `limit' of its cache-line. */ | ||
42 | #define CACHE_LINE_END_ADDR(end_addr) \ | ||
43 | CACHE_LINE_ADDR(end_addr + (V850E2_CACHE_LINE_SIZE - 1)) | ||
44 | |||
45 | |||
46 | /* Low-level cache ops. */ | ||
47 | |||
48 | /* Apply cache-op OP to all entries in CACHE. */ | ||
49 | static inline void cache_op_all (enum cache_op op, enum cache cache) | ||
50 | { | ||
51 | int cmd = op | cache | V850E2_CACHE_COPR_WSLE | V850E2_CACHE_COPR_STRT; | ||
52 | |||
53 | if (op != OP_WAY_CLEAR) { | ||
54 | /* The WAY_CLEAR operation does the whole way, but other | ||
55 | ops take begin-index and count params; we just indicate | ||
56 | the entire cache. */ | ||
57 | V850E2_CACHE_CADL = 0; | ||
58 | V850E2_CACHE_CADH = 0; | ||
59 | V850E2_CACHE_CCNT = V850E2_CACHE_WAY_SIZE - 1; | ||
60 | } | ||
61 | |||
62 | V850E2_CACHE_COPR = cmd | V850E2_CACHE_COPR_WSL(0); /* way 0 */ | ||
63 | V850E2_CACHE_COPR = cmd | V850E2_CACHE_COPR_WSL(1); /* way 1 */ | ||
64 | V850E2_CACHE_COPR = cmd | V850E2_CACHE_COPR_WSL(2); /* way 2 */ | ||
65 | V850E2_CACHE_COPR = cmd | V850E2_CACHE_COPR_WSL(3); /* way 3 */ | ||
66 | } | ||
67 | |||
68 | /* Apply cache-op OP to all entries in CACHE covering addresses ADDR | ||
69 | through ADDR+LEN. */ | ||
70 | static inline void cache_op_range (enum cache_op op, u32 addr, u32 len, | ||
71 | enum cache cache) | ||
72 | { | ||
73 | u32 start = CACHE_LINE_ADDR (addr); | ||
74 | u32 end = CACHE_LINE_END_ADDR (addr + len); | ||
75 | u32 num_lines = (end - start) >> V850E2_CACHE_LINE_SIZE_BITS; | ||
76 | |||
77 | V850E2_CACHE_CADL = start & 0xFFFF; | ||
78 | V850E2_CACHE_CADH = start >> 16; | ||
79 | V850E2_CACHE_CCNT = num_lines - 1; | ||
80 | |||
81 | V850E2_CACHE_COPR = op | cache | V850E2_CACHE_COPR_STRT; | ||
82 | } | ||
83 | |||
84 | |||
85 | /* High-level ops. */ | ||
86 | |||
87 | static void cache_exec_after_store_all (void) | ||
88 | { | ||
89 | cache_op_all (OP_SYNC_IF_DIRTY, DCACHE); | ||
90 | cache_op_all (OP_WAY_CLEAR, ICACHE); | ||
91 | } | ||
92 | |||
93 | static void cache_exec_after_store_range (u32 start, u32 len) | ||
94 | { | ||
95 | cache_op_range (OP_SYNC_IF_DIRTY, start, len, DCACHE); | ||
96 | cache_op_range (OP_CLEAR, start, len, ICACHE); | ||
97 | } | ||
98 | |||
99 | |||
100 | /* Exported functions. */ | ||
101 | |||
102 | void flush_icache (void) | ||
103 | { | ||
104 | cache_exec_after_store_all (); | ||
105 | } | ||
106 | |||
107 | void flush_icache_range (unsigned long start, unsigned long end) | ||
108 | { | ||
109 | cache_exec_after_store_range (start, end - start); | ||
110 | } | ||
111 | |||
112 | void flush_icache_page (struct vm_area_struct *vma, struct page *page) | ||
113 | { | ||
114 | cache_exec_after_store_range (page_to_virt (page), PAGE_SIZE); | ||
115 | } | ||
116 | |||
117 | void flush_icache_user_range (struct vm_area_struct *vma, struct page *page, | ||
118 | unsigned long addr, int len) | ||
119 | { | ||
120 | cache_exec_after_store_range (addr, len); | ||
121 | } | ||
122 | |||
123 | void flush_cache_sigtramp (unsigned long addr) | ||
124 | { | ||
125 | /* For the exact size, see signal.c, but 16 bytes should be enough. */ | ||
126 | cache_exec_after_store_range (addr, 16); | ||
127 | } | ||
diff --git a/arch/v850/kernel/v850e_cache.c b/arch/v850/kernel/v850e_cache.c new file mode 100644 index 000000000000..ea3e51cfb259 --- /dev/null +++ b/arch/v850/kernel/v850e_cache.c | |||
@@ -0,0 +1,174 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/v850e_cache.c -- Cache control for V850E cache memories | ||
3 | * | ||
4 | * Copyright (C) 2003 NEC Electronics Corporation | ||
5 | * Copyright (C) 2003 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | /* This file implements cache control for the rather simple cache used on | ||
15 | some V850E CPUs, specifically the NB85E/TEG CPU-core and the V850E/ME2 | ||
16 | CPU. V850E2 processors have their own (better) cache | ||
17 | implementation. */ | ||
18 | |||
19 | #include <asm/entry.h> | ||
20 | #include <asm/cacheflush.h> | ||
21 | #include <asm/v850e_cache.h> | ||
22 | |||
23 | #define WAIT_UNTIL_CLEAR(value) while (value) {} | ||
24 | |||
25 | /* Set caching params via the BHC and DCC registers. */ | ||
26 | void v850e_cache_enable (u16 bhc, u16 icc, u16 dcc) | ||
27 | { | ||
28 | unsigned long *r0_ram = (unsigned long *)R0_RAM_ADDR; | ||
29 | register u16 bhc_val asm ("r6") = bhc; | ||
30 | |||
31 | /* Read the instruction cache control register (ICC) and confirm | ||
32 | that bits 0 and 1 (TCLR0, TCLR1) are all cleared. */ | ||
33 | WAIT_UNTIL_CLEAR (V850E_CACHE_ICC & 0x3); | ||
34 | V850E_CACHE_ICC = icc; | ||
35 | |||
36 | #ifdef V850E_CACHE_DCC | ||
37 | /* Configure data-cache. */ | ||
38 | V850E_CACHE_DCC = dcc; | ||
39 | #endif /* V850E_CACHE_DCC */ | ||
40 | |||
41 | /* Configure caching for various memory regions by writing the BHC | ||
42 | register. The documentation says that an instruction _cannot_ | ||
43 | enable/disable caching for the memory region in which the | ||
44 | instruction itself exists; to work around this, we store | ||
45 | appropriate instructions into the on-chip RAM area (which is never | ||
46 | cached), and briefly jump there to do the work. */ | ||
47 | #ifdef V850E_CACHE_WRITE_IBS | ||
48 | *r0_ram++ = 0xf0720760; /* st.h r0, 0xfffff072[r0] */ | ||
49 | #endif | ||
50 | *r0_ram++ = 0xf06a3760; /* st.h r6, 0xfffff06a[r0] */ | ||
51 | *r0_ram = 0x5640006b; /* jmp [r11] */ | ||
52 | |||
53 | asm ("mov hilo(1f), r11; jmp [%1]; 1:;" | ||
54 | :: "r" (bhc_val), "r" (R0_RAM_ADDR) : "r11"); | ||
55 | } | ||
56 | |||
57 | static void clear_icache (void) | ||
58 | { | ||
59 | /* 1. Read the instruction cache control register (ICC) and confirm | ||
60 | that bits 0 and 1 (TCLR0, TCLR1) are all cleared. */ | ||
61 | WAIT_UNTIL_CLEAR (V850E_CACHE_ICC & 0x3); | ||
62 | |||
63 | /* 2. Read the ICC register and confirm that bit 12 (LOCK0) is | ||
64 | cleared. Bit 13 of the ICC register is always cleared. */ | ||
65 | WAIT_UNTIL_CLEAR (V850E_CACHE_ICC & 0x1000); | ||
66 | |||
67 | /* 3. Set the TCLR0 and TCLR1 bits of the ICC register as follows, | ||
68 | when clearing way 0 and way 1 at the same time: | ||
69 | (a) Set the TCLR0 and TCLR1 bits. | ||
70 | (b) Read the TCLR0 and TCLR1 bits to confirm that these bits | ||
71 | are cleared. | ||
72 | (c) Perform (a) and (b) above again. */ | ||
73 | V850E_CACHE_ICC |= 0x3; | ||
74 | WAIT_UNTIL_CLEAR (V850E_CACHE_ICC & 0x3); | ||
75 | |||
76 | #ifdef V850E_CACHE_REPEAT_ICC_WRITE | ||
77 | /* Do it again. */ | ||
78 | V850E_CACHE_ICC |= 0x3; | ||
79 | WAIT_UNTIL_CLEAR (V850E_CACHE_ICC & 0x3); | ||
80 | #endif | ||
81 | } | ||
82 | |||
83 | #ifdef V850E_CACHE_DCC | ||
84 | /* Flush or clear (or both) the data cache, depending on the value of FLAGS; | ||
85 | the procedure is the same for both, just the control bits used differ (and | ||
86 | both may be performed simultaneously). */ | ||
87 | static void dcache_op (unsigned short flags) | ||
88 | { | ||
89 | /* 1. Read the data cache control register (DCC) and confirm that bits | ||
90 | 0, 1, 4, and 5 (DC00, DC01, DC04, DC05) are all cleared. */ | ||
91 | WAIT_UNTIL_CLEAR (V850E_CACHE_DCC & 0x33); | ||
92 | |||
93 | /* 2. Clear DCC register bit 12 (DC12), bit 13 (DC13), or both | ||
94 | depending on the way for which tags are to be cleared. */ | ||
95 | V850E_CACHE_DCC &= ~0xC000; | ||
96 | |||
97 | /* 3. Set DCC register bit 0 (DC00), bit 1 (DC01) or both depending on | ||
98 | the way for which tags are to be cleared. | ||
99 | ... | ||
100 | Set DCC register bit 4 (DC04), bit 5 (DC05), or both depending | ||
101 | on the way to be data flushed. */ | ||
102 | V850E_CACHE_DCC |= flags; | ||
103 | |||
104 | /* 4. Read DCC register bit DC00, DC01 [DC04, DC05], or both depending | ||
105 | on the way for which tags were cleared [flushed] and confirm | ||
106 | that that bit is cleared. */ | ||
107 | WAIT_UNTIL_CLEAR (V850E_CACHE_DCC & flags); | ||
108 | } | ||
109 | #endif /* V850E_CACHE_DCC */ | ||
110 | |||
111 | /* Flushes the contents of the dcache to memory. */ | ||
112 | static inline void flush_dcache (void) | ||
113 | { | ||
114 | #ifdef V850E_CACHE_DCC | ||
115 | /* We only need to do something if in write-back mode. */ | ||
116 | if (V850E_CACHE_DCC & 0x0400) | ||
117 | dcache_op (0x30); | ||
118 | #endif /* V850E_CACHE_DCC */ | ||
119 | } | ||
120 | |||
121 | /* Flushes the contents of the dcache to memory, and then clears it. */ | ||
122 | static inline void clear_dcache (void) | ||
123 | { | ||
124 | #ifdef V850E_CACHE_DCC | ||
125 | /* We only need to do something if the dcache is enabled. */ | ||
126 | if (V850E_CACHE_DCC & 0x0C00) | ||
127 | dcache_op (0x33); | ||
128 | #endif /* V850E_CACHE_DCC */ | ||
129 | } | ||
130 | |||
131 | /* Clears the dcache without flushing to memory first. */ | ||
132 | static inline void clear_dcache_no_flush (void) | ||
133 | { | ||
134 | #ifdef V850E_CACHE_DCC | ||
135 | /* We only need to do something if the dcache is enabled. */ | ||
136 | if (V850E_CACHE_DCC & 0x0C00) | ||
137 | dcache_op (0x3); | ||
138 | #endif /* V850E_CACHE_DCC */ | ||
139 | } | ||
140 | |||
141 | static inline void cache_exec_after_store (void) | ||
142 | { | ||
143 | flush_dcache (); | ||
144 | clear_icache (); | ||
145 | } | ||
146 | |||
147 | |||
148 | /* Exported functions. */ | ||
149 | |||
150 | void flush_icache (void) | ||
151 | { | ||
152 | cache_exec_after_store (); | ||
153 | } | ||
154 | |||
155 | void flush_icache_range (unsigned long start, unsigned long end) | ||
156 | { | ||
157 | cache_exec_after_store (); | ||
158 | } | ||
159 | |||
160 | void flush_icache_page (struct vm_area_struct *vma, struct page *page) | ||
161 | { | ||
162 | cache_exec_after_store (); | ||
163 | } | ||
164 | |||
165 | void flush_icache_user_range (struct vm_area_struct *vma, struct page *page, | ||
166 | unsigned long adr, int len) | ||
167 | { | ||
168 | cache_exec_after_store (); | ||
169 | } | ||
170 | |||
171 | void flush_cache_sigtramp (unsigned long addr) | ||
172 | { | ||
173 | cache_exec_after_store (); | ||
174 | } | ||
diff --git a/arch/v850/kernel/v850e_intc.c b/arch/v850/kernel/v850e_intc.c new file mode 100644 index 000000000000..8d39a52ee6d1 --- /dev/null +++ b/arch/v850/kernel/v850e_intc.c | |||
@@ -0,0 +1,104 @@ | |||
1 | /* | ||
2 | * arch/v850/kernel/v850e_intc.c -- V850E interrupt controller (INTC) | ||
3 | * | ||
4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/irq.h> | ||
17 | |||
18 | #include <asm/v850e_intc.h> | ||
19 | |||
20 | static void irq_nop (unsigned irq) { } | ||
21 | |||
22 | static unsigned v850e_intc_irq_startup (unsigned irq) | ||
23 | { | ||
24 | v850e_intc_clear_pending_irq (irq); | ||
25 | v850e_intc_enable_irq (irq); | ||
26 | return 0; | ||
27 | } | ||
28 | |||
29 | static void v850e_intc_end_irq (unsigned irq) | ||
30 | { | ||
31 | unsigned long psw, temp; | ||
32 | |||
33 | /* Clear the highest-level bit in the In-service priority register | ||
34 | (ISPR), to allow this interrupt (or another of the same or | ||
35 | lesser priority) to happen again. | ||
36 | |||
37 | The `reti' instruction normally does this automatically when the | ||
38 | PSW bits EP and NP are zero, but we can't always rely on reti | ||
39 | being used consistently to return after an interrupt (another | ||
40 | process can be scheduled, for instance, which can delay the | ||
41 | associated reti for a long time, or this process may be being | ||
42 | single-stepped, which uses the `dbret' instruction to return | ||
43 | from the kernel). | ||
44 | |||
45 | We also set the PSW EP bit, which prevents reti from also | ||
46 | trying to modify the ISPR itself. */ | ||
47 | |||
48 | /* Get PSW and disable interrupts. */ | ||
49 | asm volatile ("stsr psw, %0; di" : "=r" (psw)); | ||
50 | /* We don't want to do anything for NMIs (they don't use the ISPR). */ | ||
51 | if (! (psw & 0xC0)) { | ||
52 | /* Transition to `trap' state, so that an eventual real | ||
53 | reti instruction won't modify the ISPR. */ | ||
54 | psw |= 0x40; | ||
55 | /* Fake an interrupt return, which automatically clears the | ||
56 | appropriate bit in the ISPR. */ | ||
57 | asm volatile ("mov hilo(1f), %0;" | ||
58 | "ldsr %0, eipc; ldsr %1, eipsw;" | ||
59 | "reti;" | ||
60 | "1:" | ||
61 | : "=&r" (temp) : "r" (psw)); | ||
62 | } | ||
63 | } | ||
64 | |||
65 | /* Initialize HW_IRQ_TYPES for INTC-controlled irqs described in array | ||
66 | INITS (which is terminated by an entry with the name field == 0). */ | ||
67 | void __init v850e_intc_init_irq_types (struct v850e_intc_irq_init *inits, | ||
68 | struct hw_interrupt_type *hw_irq_types) | ||
69 | { | ||
70 | struct v850e_intc_irq_init *init; | ||
71 | for (init = inits; init->name; init++) { | ||
72 | unsigned i; | ||
73 | struct hw_interrupt_type *hwit = hw_irq_types++; | ||
74 | |||
75 | hwit->typename = init->name; | ||
76 | |||
77 | hwit->startup = v850e_intc_irq_startup; | ||
78 | hwit->shutdown = v850e_intc_disable_irq; | ||
79 | hwit->enable = v850e_intc_enable_irq; | ||
80 | hwit->disable = v850e_intc_disable_irq; | ||
81 | hwit->ack = irq_nop; | ||
82 | hwit->end = v850e_intc_end_irq; | ||
83 | |||
84 | /* Initialize kernel IRQ infrastructure for this interrupt. */ | ||
85 | init_irq_handlers(init->base, init->num, init->interval, hwit); | ||
86 | |||
87 | /* Set the interrupt priorities. */ | ||
88 | for (i = 0; i < init->num; i++) { | ||
89 | unsigned irq = init->base + i * init->interval; | ||
90 | |||
91 | /* If the interrupt is currently enabled (all | ||
92 | interrupts are initially disabled), then | ||
93 | assume whoever enabled it has set things up | ||
94 | properly, and avoid messing with it. */ | ||
95 | if (! v850e_intc_irq_enabled (irq)) | ||
96 | /* This write also (1) disables the | ||
97 | interrupt, and (2) clears any pending | ||
98 | interrupts. */ | ||
99 | V850E_INTC_IC (irq) | ||
100 | = (V850E_INTC_IC_PR (init->priority) | ||
101 | | V850E_INTC_IC_MK); | ||
102 | } | ||
103 | } | ||
104 | } | ||
diff --git a/arch/v850/kernel/v850e_timer_d.c b/arch/v850/kernel/v850e_timer_d.c new file mode 100644 index 000000000000..d2a4ece2574c --- /dev/null +++ b/arch/v850/kernel/v850e_timer_d.c | |||
@@ -0,0 +1,54 @@ | |||
1 | /* | ||
2 | * include/asm-v850/v850e_timer_d.c -- `Timer D' component often used | ||
3 | * with V850E CPUs | ||
4 | * | ||
5 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
6 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <linux/kernel.h> | ||
16 | |||
17 | #include <asm/v850e_utils.h> | ||
18 | #include <asm/v850e_timer_d.h> | ||
19 | |||
20 | /* Start interval timer TIMER (0-3). The timer will issue the | ||
21 | corresponding INTCMD interrupt RATE times per second. | ||
22 | This function does not enable the interrupt. */ | ||
23 | void v850e_timer_d_configure (unsigned timer, unsigned rate) | ||
24 | { | ||
25 | unsigned divlog2, count; | ||
26 | |||
27 | /* Calculate params for timer. */ | ||
28 | if (! calc_counter_params ( | ||
29 | V850E_TIMER_D_BASE_FREQ, rate, | ||
30 | V850E_TIMER_D_TMCD_CS_MIN, V850E_TIMER_D_TMCD_CS_MAX, 16, | ||
31 | &divlog2, &count)) | ||
32 | printk (KERN_WARNING | ||
33 | "Cannot find interval timer %d setting suitable" | ||
34 | " for rate of %dHz.\n" | ||
35 | "Using rate of %dHz instead.\n", | ||
36 | timer, rate, | ||
37 | (V850E_TIMER_D_BASE_FREQ >> divlog2) >> 16); | ||
38 | |||
39 | /* Do the actual hardware timer initialization: */ | ||
40 | |||
41 | /* Enable timer. */ | ||
42 | V850E_TIMER_D_TMCD(timer) = V850E_TIMER_D_TMCD_CAE; | ||
43 | /* Set clock divider. */ | ||
44 | V850E_TIMER_D_TMCD(timer) | ||
45 | = V850E_TIMER_D_TMCD_CAE | ||
46 | | V850E_TIMER_D_TMCD_CS(divlog2); | ||
47 | /* Set timer compare register. */ | ||
48 | V850E_TIMER_D_CMD(timer) = count; | ||
49 | /* Start counting. */ | ||
50 | V850E_TIMER_D_TMCD(timer) | ||
51 | = V850E_TIMER_D_TMCD_CAE | ||
52 | | V850E_TIMER_D_TMCD_CS(divlog2) | ||
53 | | V850E_TIMER_D_TMCD_CE; | ||
54 | } | ||
diff --git a/arch/v850/kernel/v850e_utils.c b/arch/v850/kernel/v850e_utils.c new file mode 100644 index 000000000000..e6807ef8dee6 --- /dev/null +++ b/arch/v850/kernel/v850e_utils.c | |||
@@ -0,0 +1,62 @@ | |||
1 | /* | ||
2 | * include/asm-v850/v850e_utils.h -- Utility functions associated with | ||
3 | * V850E CPUs | ||
4 | * | ||
5 | * Copyright (C) 2001,02,03 NEC Electronics Corporation | ||
6 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General | ||
9 | * Public License. See the file COPYING in the main directory of this | ||
10 | * archive for more details. | ||
11 | * | ||
12 | * Written by Miles Bader <miles@gnu.org> | ||
13 | */ | ||
14 | |||
15 | #include <asm/v850e_utils.h> | ||
16 | |||
17 | /* Calculate counter clock-divider and count values to attain the | ||
18 | desired frequency RATE from the base frequency BASE_FREQ. The | ||
19 | counter is expected to have a clock-divider, which can divide the | ||
20 | system cpu clock by a power of two value from MIN_DIVLOG2 to | ||
21 | MAX_DIV_LOG2, and a word-size of COUNTER_SIZE bits (the counter | ||
22 | counts up and resets whenever it's equal to the compare register, | ||
23 | generating an interrupt or whatever when it does so). The returned | ||
24 | values are: *DIVLOG2 -- log2 of the desired clock divider and *COUNT | ||
25 | -- the counter compare value to use. Returns true if it was possible | ||
26 | to find a reasonable value, otherwise false (and the other return | ||
27 | values will be set to be as good as possible). */ | ||
28 | int calc_counter_params (unsigned long base_freq, | ||
29 | unsigned long rate, | ||
30 | unsigned min_divlog2, unsigned max_divlog2, | ||
31 | unsigned counter_size, | ||
32 | unsigned *divlog2, unsigned *count) | ||
33 | { | ||
34 | unsigned _divlog2; | ||
35 | int ok = 0; | ||
36 | |||
37 | /* Find the lowest clock divider setting that can represent RATE. */ | ||
38 | for (_divlog2 = min_divlog2; _divlog2 <= max_divlog2; _divlog2++) { | ||
39 | /* Minimum interrupt rate possible using this divider. */ | ||
40 | unsigned min_int_rate | ||
41 | = (base_freq >> _divlog2) >> counter_size; | ||
42 | |||
43 | if (min_int_rate <= rate) { | ||
44 | /* This setting is the highest resolution | ||
45 | setting that's slow enough enough to attain | ||
46 | RATE interrupts per second, so use it. */ | ||
47 | ok = 1; | ||
48 | break; | ||
49 | } | ||
50 | } | ||
51 | |||
52 | if (_divlog2 > max_divlog2) | ||
53 | /* Can't find correct setting. */ | ||
54 | _divlog2 = max_divlog2; | ||
55 | |||
56 | if (divlog2) | ||
57 | *divlog2 = _divlog2; | ||
58 | if (count) | ||
59 | *count = ((base_freq >> _divlog2) + rate/2) / rate; | ||
60 | |||
61 | return ok; | ||
62 | } | ||
diff --git a/arch/v850/kernel/vmlinux.lds.S b/arch/v850/kernel/vmlinux.lds.S new file mode 100644 index 000000000000..bbd3429bcffc --- /dev/null +++ b/arch/v850/kernel/vmlinux.lds.S | |||
@@ -0,0 +1,285 @@ | |||
1 | /* | ||
2 | * arch/v850/vmlinux.lds.S -- kernel linker script for v850 platforms | ||
3 | * | ||
4 | * Copyright (C) 2002,03,04 NEC Electronics Corporation | ||
5 | * Copyright (C) 2002,03,04 Miles Bader <miles@gnu.org> | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General | ||
8 | * Public License. See the file COPYING in the main directory of this | ||
9 | * archive for more details. | ||
10 | * | ||
11 | * Written by Miles Bader <miles@gnu.org> | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #define VMLINUX_SYMBOL(_sym_) _##_sym_ | ||
16 | #include <asm-generic/vmlinux.lds.h> | ||
17 | |||
18 | /* For most platforms, this will define useful things like RAM addr/size. */ | ||
19 | #include <asm/machdep.h> | ||
20 | |||
21 | |||
22 | /* The following macros contain the usual definitions for various data areas. | ||
23 | The prefix `RAMK_' is used to indicate macros suitable for kernels loaded | ||
24 | into RAM, and similarly `ROMK_' for ROM-resident kernels. Note that all | ||
25 | symbols are prefixed with an extra `_' for compatibility with the v850 | ||
26 | toolchain. */ | ||
27 | |||
28 | |||
29 | /* Interrupt vectors. */ | ||
30 | #define INTV_CONTENTS \ | ||
31 | . = ALIGN (0x10) ; \ | ||
32 | __intv_start = . ; \ | ||
33 | *(.intv.reset) /* Reset vector */ \ | ||
34 | . = __intv_start + 0x10 ; \ | ||
35 | *(.intv.common) /* Vectors common to all v850e proc */\ | ||
36 | . = __intv_start + 0x80 ; \ | ||
37 | *(.intv.mach) /* Machine-specific int. vectors. */ \ | ||
38 | __intv_end = . ; | ||
39 | |||
40 | #define RODATA_CONTENTS \ | ||
41 | . = ALIGN (16) ; \ | ||
42 | *(.rodata) *(.rodata.*) \ | ||
43 | *(__vermagic) /* Kernel version magic */ \ | ||
44 | *(.rodata1) \ | ||
45 | /* Kernel symbol table: Normal symbols */ \ | ||
46 | ___start___ksymtab = .; \ | ||
47 | *(__ksymtab) \ | ||
48 | ___stop___ksymtab = .; \ | ||
49 | /* Kernel symbol table: GPL-only symbols */ \ | ||
50 | ___start___ksymtab_gpl = .; \ | ||
51 | *(__ksymtab_gpl) \ | ||
52 | ___stop___ksymtab_gpl = .; \ | ||
53 | /* Kernel symbol table: strings */ \ | ||
54 | *(__ksymtab_strings) \ | ||
55 | /* Kernel symbol table: Normal symbols */ \ | ||
56 | ___start___kcrctab = .; \ | ||
57 | *(__kcrctab) \ | ||
58 | ___stop___kcrctab = .; \ | ||
59 | /* Kernel symbol table: GPL-only symbols */ \ | ||
60 | ___start___kcrctab_gpl = .; \ | ||
61 | *(__kcrctab_gpl) \ | ||
62 | ___stop___kcrctab_gpl = .; \ | ||
63 | /* Built-in module parameters */ \ | ||
64 | ___start___param = .; \ | ||
65 | *(__param) \ | ||
66 | ___stop___param = .; | ||
67 | |||
68 | |||
69 | /* Kernel text segment, and some constant data areas. */ | ||
70 | #define TEXT_CONTENTS \ | ||
71 | __stext = . ; \ | ||
72 | *(.text) \ | ||
73 | SCHED_TEXT \ | ||
74 | *(.exit.text) /* 2.5 convention */ \ | ||
75 | *(.text.exit) /* 2.4 convention */ \ | ||
76 | *(.text.lock) \ | ||
77 | *(.exitcall.exit) \ | ||
78 | __real_etext = . ; /* There may be data after here. */ \ | ||
79 | RODATA_CONTENTS \ | ||
80 | . = ALIGN (4) ; \ | ||
81 | *(.call_table_data) \ | ||
82 | *(.call_table_text) \ | ||
83 | . = ALIGN (16) ; /* Exception table. */ \ | ||
84 | ___start___ex_table = . ; \ | ||
85 | *(__ex_table) \ | ||
86 | ___stop___ex_table = . ; \ | ||
87 | . = ALIGN (4) ; \ | ||
88 | __etext = . ; | ||
89 | |||
90 | /* Kernel data segment. */ | ||
91 | #define DATA_CONTENTS \ | ||
92 | __sdata = . ; \ | ||
93 | *(.data) \ | ||
94 | *(.exit.data) /* 2.5 convention */ \ | ||
95 | *(.data.exit) /* 2.4 convention */ \ | ||
96 | . = ALIGN (16) ; \ | ||
97 | *(.data.cacheline_aligned) \ | ||
98 | . = ALIGN (0x2000) ; \ | ||
99 | *(.data.init_task) \ | ||
100 | . = ALIGN (0x2000) ; \ | ||
101 | __edata = . ; | ||
102 | |||
103 | /* Kernel BSS segment. */ | ||
104 | #define BSS_CONTENTS \ | ||
105 | __sbss = . ; \ | ||
106 | *(.bss) \ | ||
107 | *(COMMON) \ | ||
108 | . = ALIGN (4) ; \ | ||
109 | __init_stack_end = . ; \ | ||
110 | __ebss = . ; | ||
111 | |||
112 | /* `initcall' tables. */ | ||
113 | #define INITCALL_CONTENTS \ | ||
114 | . = ALIGN (16) ; \ | ||
115 | ___setup_start = . ; \ | ||
116 | *(.init.setup) /* 2.5 convention */ \ | ||
117 | *(.setup.init) /* 2.4 convention */ \ | ||
118 | ___setup_end = . ; \ | ||
119 | ___initcall_start = . ; \ | ||
120 | *(.initcall.init) \ | ||
121 | *(.initcall1.init) \ | ||
122 | *(.initcall2.init) \ | ||
123 | *(.initcall3.init) \ | ||
124 | *(.initcall4.init) \ | ||
125 | *(.initcall5.init) \ | ||
126 | *(.initcall6.init) \ | ||
127 | *(.initcall7.init) \ | ||
128 | . = ALIGN (4) ; \ | ||
129 | ___initcall_end = . ; \ | ||
130 | ___con_initcall_start = .; \ | ||
131 | *(.con_initcall.init) \ | ||
132 | ___con_initcall_end = .; | ||
133 | |||
134 | /* Contents of `init' section for a kernel that's loaded into RAM. */ | ||
135 | #define RAMK_INIT_CONTENTS \ | ||
136 | RAMK_INIT_CONTENTS_NO_END \ | ||
137 | __init_end = . ; | ||
138 | /* Same as RAMK_INIT_CONTENTS, but doesn't define the `__init_end' symbol. */ | ||
139 | #define RAMK_INIT_CONTENTS_NO_END \ | ||
140 | . = ALIGN (4096) ; \ | ||
141 | __init_start = . ; \ | ||
142 | __sinittext = .; \ | ||
143 | *(.init.text) /* 2.5 convention */ \ | ||
144 | __einittext = .; \ | ||
145 | *(.init.data) \ | ||
146 | *(.text.init) /* 2.4 convention */ \ | ||
147 | *(.data.init) \ | ||
148 | INITCALL_CONTENTS \ | ||
149 | INITRAMFS_CONTENTS | ||
150 | |||
151 | /* The contents of `init' section for a ROM-resident kernel which | ||
152 | should go into RAM. */ | ||
153 | #define ROMK_INIT_RAM_CONTENTS \ | ||
154 | . = ALIGN (4096) ; \ | ||
155 | __init_start = . ; \ | ||
156 | *(.init.data) /* 2.5 convention */ \ | ||
157 | *(.data.init) /* 2.4 convention */ \ | ||
158 | __init_end = . ; \ | ||
159 | . = ALIGN (4096) ; | ||
160 | |||
161 | /* The contents of `init' section for a ROM-resident kernel which | ||
162 | should go into ROM. */ | ||
163 | #define ROMK_INIT_ROM_CONTENTS \ | ||
164 | _sinittext = .; \ | ||
165 | *(.init.text) /* 2.5 convention */ \ | ||
166 | _einittext = .; \ | ||
167 | *(.text.init) /* 2.4 convention */ \ | ||
168 | INITCALL_CONTENTS \ | ||
169 | INITRAMFS_CONTENTS | ||
170 | |||
171 | /* A root filesystem image, for kernels with an embedded root filesystem. */ | ||
172 | #define ROOT_FS_CONTENTS \ | ||
173 | __root_fs_image_start = . ; \ | ||
174 | *(.root) \ | ||
175 | __root_fs_image_end = . ; | ||
176 | /* The initramfs archive. */ | ||
177 | #define INITRAMFS_CONTENTS \ | ||
178 | . = ALIGN (4) ; \ | ||
179 | ___initramfs_start = . ; \ | ||
180 | *(.init.ramfs) \ | ||
181 | ___initramfs_end = . ; | ||
182 | /* Where the initial bootmap (bitmap for the boot-time memory allocator) | ||
183 | should be place. */ | ||
184 | #define BOOTMAP_CONTENTS \ | ||
185 | . = ALIGN (4096) ; \ | ||
186 | __bootmap = . ; \ | ||
187 | . = . + 4096 ; /* enough for 128MB. */ | ||
188 | |||
189 | /* The contents of a `typical' kram area for a kernel in RAM. */ | ||
190 | #define RAMK_KRAM_CONTENTS \ | ||
191 | __kram_start = . ; \ | ||
192 | TEXT_CONTENTS \ | ||
193 | DATA_CONTENTS \ | ||
194 | BSS_CONTENTS \ | ||
195 | RAMK_INIT_CONTENTS \ | ||
196 | __kram_end = . ; \ | ||
197 | BOOTMAP_CONTENTS | ||
198 | |||
199 | |||
200 | /* Define output sections normally used for a ROM-resident kernel. | ||
201 | ROM and RAM should be appropriate memory areas to use for kernel | ||
202 | ROM and RAM data. This assumes that ROM starts at 0 (and thus can | ||
203 | hold the interrupt vectors). */ | ||
204 | #define ROMK_SECTIONS(ROM, RAM) \ | ||
205 | .rom : { \ | ||
206 | INTV_CONTENTS \ | ||
207 | TEXT_CONTENTS \ | ||
208 | ROMK_INIT_ROM_CONTENTS \ | ||
209 | ROOT_FS_CONTENTS \ | ||
210 | } > ROM \ | ||
211 | \ | ||
212 | __rom_copy_src_start = . ; \ | ||
213 | \ | ||
214 | .data : { \ | ||
215 | __kram_start = . ; \ | ||
216 | __rom_copy_dst_start = . ; \ | ||
217 | DATA_CONTENTS \ | ||
218 | ROMK_INIT_RAM_CONTENTS \ | ||
219 | __rom_copy_dst_end = . ; \ | ||
220 | } > RAM AT> ROM \ | ||
221 | \ | ||
222 | .bss ALIGN (4) : { \ | ||
223 | BSS_CONTENTS \ | ||
224 | __kram_end = . ; \ | ||
225 | BOOTMAP_CONTENTS \ | ||
226 | } > RAM | ||
227 | |||
228 | |||
229 | /* The 32-bit variable `jiffies' is just the lower 32-bits of `jiffies_64'. */ | ||
230 | _jiffies = _jiffies_64 ; | ||
231 | |||
232 | |||
233 | /* Include an appropriate platform-dependent linker-script (which | ||
234 | usually should use the above macros to do most of the work). */ | ||
235 | |||
236 | #ifdef CONFIG_V850E_SIM | ||
237 | # include "sim.ld" | ||
238 | #endif | ||
239 | |||
240 | #ifdef CONFIG_V850E2_SIM85E2 | ||
241 | # include "sim85e2.ld" | ||
242 | #endif | ||
243 | |||
244 | #ifdef CONFIG_V850E2_FPGA85E2C | ||
245 | # include "fpga85e2c.ld" | ||
246 | #endif | ||
247 | |||
248 | #ifdef CONFIG_V850E2_ANNA | ||
249 | # ifdef CONFIG_ROM_KERNEL | ||
250 | # include "anna-rom.ld" | ||
251 | # else | ||
252 | # include "anna.ld" | ||
253 | # endif | ||
254 | #endif | ||
255 | |||
256 | #ifdef CONFIG_V850E_AS85EP1 | ||
257 | # ifdef CONFIG_ROM_KERNEL | ||
258 | # include "as85ep1-rom.ld" | ||
259 | # else | ||
260 | # include "as85ep1.ld" | ||
261 | # endif | ||
262 | #endif | ||
263 | |||
264 | #ifdef CONFIG_RTE_CB_MA1 | ||
265 | # ifdef CONFIG_ROM_KERNEL | ||
266 | # include "rte_ma1_cb-rom.ld" | ||
267 | # else | ||
268 | # include "rte_ma1_cb.ld" | ||
269 | # endif | ||
270 | #endif | ||
271 | |||
272 | #ifdef CONFIG_RTE_CB_NB85E | ||
273 | # ifdef CONFIG_ROM_KERNEL | ||
274 | # include "rte_nb85e_cb-rom.ld" | ||
275 | # elif defined(CONFIG_RTE_CB_MULTI) | ||
276 | # include "rte_nb85e_cb-multi.ld" | ||
277 | # else | ||
278 | # include "rte_nb85e_cb.ld" | ||
279 | # endif | ||
280 | #endif | ||
281 | |||
282 | #ifdef CONFIG_RTE_CB_ME2 | ||
283 | # include "rte_me2_cb.ld" | ||
284 | #endif | ||
285 | |||