diff options
| author | Ingo Molnar <mingo@elte.hu> | 2011-01-07 08:14:15 -0500 |
|---|---|---|
| committer | Ingo Molnar <mingo@elte.hu> | 2011-01-07 08:14:15 -0500 |
| commit | 1c2a48cf65580a276552151eb8f78d78c55b828e (patch) | |
| tree | 68ed0628a276b33cb5aa0ad4899c1afe0a33a69d /arch/tile | |
| parent | 0aa002fe602939370e9476e5ec32b562000a0425 (diff) | |
| parent | cb600d2f83c854ec3d6660063e4466431999489b (diff) | |
Merge branch 'linus' into x86/apic-cleanups
Conflicts:
arch/x86/include/asm/io_apic.h
Merge reason: Resolve the conflict, update to a more recent -rc base
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/tile')
25 files changed, 4835 insertions, 235 deletions
diff --git a/arch/tile/Kconfig b/arch/tile/Kconfig index 07ec8a865c1d..e11b5fcb70eb 100644 --- a/arch/tile/Kconfig +++ b/arch/tile/Kconfig | |||
| @@ -329,6 +329,18 @@ endmenu # Tilera-specific configuration | |||
| 329 | 329 | ||
| 330 | menu "Bus options" | 330 | menu "Bus options" |
| 331 | 331 | ||
| 332 | config PCI | ||
| 333 | bool "PCI support" | ||
| 334 | default y | ||
| 335 | select PCI_DOMAINS | ||
| 336 | ---help--- | ||
| 337 | Enable PCI root complex support, so PCIe endpoint devices can | ||
| 338 | be attached to the Tile chip. Many, but not all, PCI devices | ||
| 339 | are supported under Tilera's root complex driver. | ||
| 340 | |||
| 341 | config PCI_DOMAINS | ||
| 342 | bool | ||
| 343 | |||
| 332 | config NO_IOMEM | 344 | config NO_IOMEM |
| 333 | def_bool !PCI | 345 | def_bool !PCI |
| 334 | 346 | ||
diff --git a/arch/tile/include/asm/cacheflush.h b/arch/tile/include/asm/cacheflush.h index c5741da4eeac..14a3f8556ace 100644 --- a/arch/tile/include/asm/cacheflush.h +++ b/arch/tile/include/asm/cacheflush.h | |||
| @@ -137,4 +137,56 @@ static inline void finv_buffer(void *buffer, size_t size) | |||
| 137 | mb_incoherent(); | 137 | mb_incoherent(); |
| 138 | } | 138 | } |
| 139 | 139 | ||
| 140 | /* | ||
| 141 | * Flush & invalidate a VA range that is homed remotely on a single core, | ||
| 142 | * waiting until the memory controller holds the flushed values. | ||
| 143 | */ | ||
| 144 | static inline void finv_buffer_remote(void *buffer, size_t size) | ||
| 145 | { | ||
| 146 | char *p; | ||
| 147 | int i; | ||
| 148 | |||
| 149 | /* | ||
| 150 | * Flush and invalidate the buffer out of the local L1/L2 | ||
| 151 | * and request the home cache to flush and invalidate as well. | ||
| 152 | */ | ||
| 153 | __finv_buffer(buffer, size); | ||
| 154 | |||
| 155 | /* | ||
| 156 | * Wait for the home cache to acknowledge that it has processed | ||
| 157 | * all the flush-and-invalidate requests. This does not mean | ||
| 158 | * that the flushed data has reached the memory controller yet, | ||
| 159 | * but it does mean the home cache is processing the flushes. | ||
| 160 | */ | ||
| 161 | __insn_mf(); | ||
| 162 | |||
| 163 | /* | ||
| 164 | * Issue a load to the last cache line, which can't complete | ||
| 165 | * until all the previously-issued flushes to the same memory | ||
| 166 | * controller have also completed. If we weren't striping | ||
| 167 | * memory, that one load would be sufficient, but since we may | ||
| 168 | * be, we also need to back up to the last load issued to | ||
| 169 | * another memory controller, which would be the point where | ||
| 170 | * we crossed an 8KB boundary (the granularity of striping | ||
| 171 | * across memory controllers). Keep backing up and doing this | ||
| 172 | * until we are before the beginning of the buffer, or have | ||
| 173 | * hit all the controllers. | ||
| 174 | */ | ||
| 175 | for (i = 0, p = (char *)buffer + size - 1; | ||
| 176 | i < (1 << CHIP_LOG_NUM_MSHIMS()) && p >= (char *)buffer; | ||
| 177 | ++i) { | ||
| 178 | const unsigned long STRIPE_WIDTH = 8192; | ||
| 179 | |||
| 180 | /* Force a load instruction to issue. */ | ||
| 181 | *(volatile char *)p; | ||
| 182 | |||
| 183 | /* Jump to end of previous stripe. */ | ||
| 184 | p -= STRIPE_WIDTH; | ||
| 185 | p = (char *)((unsigned long)p | (STRIPE_WIDTH - 1)); | ||
| 186 | } | ||
| 187 | |||
| 188 | /* Wait for the loads (and thus flushes) to have completed. */ | ||
| 189 | __insn_mf(); | ||
| 190 | } | ||
| 191 | |||
| 140 | #endif /* _ASM_TILE_CACHEFLUSH_H */ | 192 | #endif /* _ASM_TILE_CACHEFLUSH_H */ |
diff --git a/arch/tile/include/asm/io.h b/arch/tile/include/asm/io.h index ee43328713ab..d3cbb9b14cbe 100644 --- a/arch/tile/include/asm/io.h +++ b/arch/tile/include/asm/io.h | |||
| @@ -55,9 +55,6 @@ extern void iounmap(volatile void __iomem *addr); | |||
| 55 | #define ioremap_writethrough(physaddr, size) ioremap(physaddr, size) | 55 | #define ioremap_writethrough(physaddr, size) ioremap(physaddr, size) |
| 56 | #define ioremap_fullcache(physaddr, size) ioremap(physaddr, size) | 56 | #define ioremap_fullcache(physaddr, size) ioremap(physaddr, size) |
| 57 | 57 | ||
| 58 | void __iomem *ioport_map(unsigned long port, unsigned int len); | ||
| 59 | extern inline void ioport_unmap(void __iomem *addr) {} | ||
| 60 | |||
| 61 | #define mmiowb() | 58 | #define mmiowb() |
| 62 | 59 | ||
| 63 | /* Conversion between virtual and physical mappings. */ | 60 | /* Conversion between virtual and physical mappings. */ |
| @@ -189,12 +186,22 @@ static inline void memcpy_toio(volatile void __iomem *dst, const void *src, | |||
| 189 | * we never run, uses them unconditionally. | 186 | * we never run, uses them unconditionally. |
| 190 | */ | 187 | */ |
| 191 | 188 | ||
| 192 | static inline int ioport_panic(void) | 189 | static inline long ioport_panic(void) |
| 193 | { | 190 | { |
| 194 | panic("inb/outb and friends do not exist on tile"); | 191 | panic("inb/outb and friends do not exist on tile"); |
| 195 | return 0; | 192 | return 0; |
| 196 | } | 193 | } |
| 197 | 194 | ||
| 195 | static inline void __iomem *ioport_map(unsigned long port, unsigned int len) | ||
| 196 | { | ||
| 197 | return (void __iomem *) ioport_panic(); | ||
| 198 | } | ||
| 199 | |||
| 200 | static inline void ioport_unmap(void __iomem *addr) | ||
| 201 | { | ||
| 202 | ioport_panic(); | ||
| 203 | } | ||
| 204 | |||
| 198 | static inline u8 inb(unsigned long addr) | 205 | static inline u8 inb(unsigned long addr) |
| 199 | { | 206 | { |
| 200 | return ioport_panic(); | 207 | return ioport_panic(); |
diff --git a/arch/tile/include/asm/pci-bridge.h b/arch/tile/include/asm/pci-bridge.h deleted file mode 100644 index e853b0e2793b..000000000000 --- a/arch/tile/include/asm/pci-bridge.h +++ /dev/null | |||
| @@ -1,117 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | #ifndef _ASM_TILE_PCI_BRIDGE_H | ||
| 16 | #define _ASM_TILE_PCI_BRIDGE_H | ||
| 17 | |||
| 18 | #include <linux/ioport.h> | ||
| 19 | #include <linux/pci.h> | ||
| 20 | |||
| 21 | struct device_node; | ||
| 22 | struct pci_controller; | ||
| 23 | |||
| 24 | /* | ||
| 25 | * pci_io_base returns the memory address at which you can access | ||
| 26 | * the I/O space for PCI bus number `bus' (or NULL on error). | ||
| 27 | */ | ||
| 28 | extern void __iomem *pci_bus_io_base(unsigned int bus); | ||
| 29 | extern unsigned long pci_bus_io_base_phys(unsigned int bus); | ||
| 30 | extern unsigned long pci_bus_mem_base_phys(unsigned int bus); | ||
| 31 | |||
| 32 | /* Allocate a new PCI host bridge structure */ | ||
| 33 | extern struct pci_controller *pcibios_alloc_controller(void); | ||
| 34 | |||
| 35 | /* Helper function for setting up resources */ | ||
| 36 | extern void pci_init_resource(struct resource *res, unsigned long start, | ||
| 37 | unsigned long end, int flags, char *name); | ||
| 38 | |||
| 39 | /* Get the PCI host controller for a bus */ | ||
| 40 | extern struct pci_controller *pci_bus_to_hose(int bus); | ||
| 41 | |||
| 42 | /* | ||
| 43 | * Structure of a PCI controller (host bridge) | ||
| 44 | */ | ||
| 45 | struct pci_controller { | ||
| 46 | int index; /* PCI domain number */ | ||
| 47 | struct pci_bus *root_bus; | ||
| 48 | |||
| 49 | int first_busno; | ||
| 50 | int last_busno; | ||
| 51 | |||
| 52 | int hv_cfg_fd[2]; /* config{0,1} fds for this PCIe controller */ | ||
| 53 | int hv_mem_fd; /* fd to Hypervisor for MMIO operations */ | ||
| 54 | |||
| 55 | struct pci_ops *ops; | ||
| 56 | |||
| 57 | int irq_base; /* Base IRQ from the Hypervisor */ | ||
| 58 | int plx_gen1; /* flag for PLX Gen 1 configuration */ | ||
| 59 | |||
| 60 | /* Address ranges that are routed to this controller/bridge. */ | ||
| 61 | struct resource mem_resources[3]; | ||
| 62 | }; | ||
| 63 | |||
| 64 | static inline struct pci_controller *pci_bus_to_host(struct pci_bus *bus) | ||
| 65 | { | ||
| 66 | return bus->sysdata; | ||
| 67 | } | ||
| 68 | |||
| 69 | extern void setup_indirect_pci_nomap(struct pci_controller *hose, | ||
| 70 | void __iomem *cfg_addr, void __iomem *cfg_data); | ||
| 71 | extern void setup_indirect_pci(struct pci_controller *hose, | ||
| 72 | u32 cfg_addr, u32 cfg_data); | ||
| 73 | extern void setup_grackle(struct pci_controller *hose); | ||
| 74 | |||
| 75 | extern unsigned char common_swizzle(struct pci_dev *, unsigned char *); | ||
| 76 | |||
| 77 | /* | ||
| 78 | * The following code swizzles for exactly one bridge. The routine | ||
| 79 | * common_swizzle below handles multiple bridges. But there are a | ||
| 80 | * some boards that don't follow the PCI spec's suggestion so we | ||
| 81 | * break this piece out separately. | ||
| 82 | */ | ||
| 83 | static inline unsigned char bridge_swizzle(unsigned char pin, | ||
| 84 | unsigned char idsel) | ||
| 85 | { | ||
| 86 | return (((pin-1) + idsel) % 4) + 1; | ||
| 87 | } | ||
| 88 | |||
| 89 | /* | ||
| 90 | * The following macro is used to lookup irqs in a standard table | ||
| 91 | * format for those PPC systems that do not already have PCI | ||
| 92 | * interrupts properly routed. | ||
| 93 | */ | ||
| 94 | /* FIXME - double check this */ | ||
| 95 | #define PCI_IRQ_TABLE_LOOKUP ({ \ | ||
| 96 | long _ctl_ = -1; \ | ||
| 97 | if (idsel >= min_idsel && idsel <= max_idsel && pin <= irqs_per_slot) \ | ||
| 98 | _ctl_ = pci_irq_table[idsel - min_idsel][pin-1]; \ | ||
| 99 | _ctl_; \ | ||
| 100 | }) | ||
| 101 | |||
| 102 | /* | ||
| 103 | * Scan the buses below a given PCI host bridge and assign suitable | ||
| 104 | * resources to all devices found. | ||
| 105 | */ | ||
| 106 | extern int pciauto_bus_scan(struct pci_controller *, int); | ||
| 107 | |||
| 108 | #ifdef CONFIG_PCI | ||
| 109 | extern unsigned long pci_address_to_pio(phys_addr_t address); | ||
| 110 | #else | ||
| 111 | static inline unsigned long pci_address_to_pio(phys_addr_t address) | ||
| 112 | { | ||
| 113 | return (unsigned long)-1; | ||
| 114 | } | ||
| 115 | #endif | ||
| 116 | |||
| 117 | #endif /* _ASM_TILE_PCI_BRIDGE_H */ | ||
diff --git a/arch/tile/include/asm/pci.h b/arch/tile/include/asm/pci.h index b0c15da2d5d5..c3fc458a0d32 100644 --- a/arch/tile/include/asm/pci.h +++ b/arch/tile/include/asm/pci.h | |||
| @@ -15,7 +15,29 @@ | |||
| 15 | #ifndef _ASM_TILE_PCI_H | 15 | #ifndef _ASM_TILE_PCI_H |
| 16 | #define _ASM_TILE_PCI_H | 16 | #define _ASM_TILE_PCI_H |
| 17 | 17 | ||
| 18 | #include <asm/pci-bridge.h> | 18 | #include <linux/pci.h> |
| 19 | |||
| 20 | /* | ||
| 21 | * Structure of a PCI controller (host bridge) | ||
| 22 | */ | ||
| 23 | struct pci_controller { | ||
| 24 | int index; /* PCI domain number */ | ||
| 25 | struct pci_bus *root_bus; | ||
| 26 | |||
| 27 | int first_busno; | ||
| 28 | int last_busno; | ||
| 29 | |||
| 30 | int hv_cfg_fd[2]; /* config{0,1} fds for this PCIe controller */ | ||
| 31 | int hv_mem_fd; /* fd to Hypervisor for MMIO operations */ | ||
| 32 | |||
| 33 | struct pci_ops *ops; | ||
| 34 | |||
| 35 | int irq_base; /* Base IRQ from the Hypervisor */ | ||
| 36 | int plx_gen1; /* flag for PLX Gen 1 configuration */ | ||
| 37 | |||
| 38 | /* Address ranges that are routed to this controller/bridge. */ | ||
| 39 | struct resource mem_resources[3]; | ||
| 40 | }; | ||
| 19 | 41 | ||
| 20 | /* | 42 | /* |
| 21 | * The hypervisor maps the entirety of CPA-space as bus addresses, so | 43 | * The hypervisor maps the entirety of CPA-space as bus addresses, so |
| @@ -24,56 +46,12 @@ | |||
| 24 | */ | 46 | */ |
| 25 | #define PCI_DMA_BUS_IS_PHYS 1 | 47 | #define PCI_DMA_BUS_IS_PHYS 1 |
| 26 | 48 | ||
| 27 | struct pci_controller *pci_bus_to_hose(int bus); | ||
| 28 | unsigned char __init common_swizzle(struct pci_dev *dev, unsigned char *pinp); | ||
| 29 | int __init tile_pci_init(void); | 49 | int __init tile_pci_init(void); |
| 30 | void pci_iounmap(struct pci_dev *dev, void __iomem *addr); | ||
| 31 | void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); | ||
| 32 | void __devinit pcibios_fixup_bus(struct pci_bus *bus); | ||
| 33 | 50 | ||
| 34 | int __devinit _tile_cfg_read(struct pci_controller *hose, | 51 | void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); |
| 35 | int bus, | 52 | static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {} |
| 36 | int slot, | ||
| 37 | int function, | ||
| 38 | int offset, | ||
| 39 | int size, | ||
| 40 | u32 *val); | ||
| 41 | int __devinit _tile_cfg_write(struct pci_controller *hose, | ||
| 42 | int bus, | ||
| 43 | int slot, | ||
| 44 | int function, | ||
| 45 | int offset, | ||
| 46 | int size, | ||
| 47 | u32 val); | ||
| 48 | 53 | ||
| 49 | /* | 54 | void __devinit pcibios_fixup_bus(struct pci_bus *bus); |
| 50 | * These are used to to config reads and writes in the early stages of | ||
| 51 | * setup before the driver infrastructure has been set up enough to be | ||
| 52 | * able to do config reads and writes. | ||
| 53 | */ | ||
| 54 | #define early_cfg_read(where, size, value) \ | ||
| 55 | _tile_cfg_read(controller, \ | ||
| 56 | current_bus, \ | ||
| 57 | pci_slot, \ | ||
| 58 | pci_fn, \ | ||
| 59 | where, \ | ||
| 60 | size, \ | ||
| 61 | value) | ||
| 62 | |||
| 63 | #define early_cfg_write(where, size, value) \ | ||
| 64 | _tile_cfg_write(controller, \ | ||
| 65 | current_bus, \ | ||
| 66 | pci_slot, \ | ||
| 67 | pci_fn, \ | ||
| 68 | where, \ | ||
| 69 | size, \ | ||
| 70 | value) | ||
| 71 | |||
| 72 | |||
| 73 | |||
| 74 | #define PCICFG_BYTE 1 | ||
| 75 | #define PCICFG_WORD 2 | ||
| 76 | #define PCICFG_DWORD 4 | ||
| 77 | 55 | ||
| 78 | #define TILE_NUM_PCIE 2 | 56 | #define TILE_NUM_PCIE 2 |
| 79 | 57 | ||
| @@ -88,33 +66,33 @@ static inline int pci_proc_domain(struct pci_bus *bus) | |||
| 88 | } | 66 | } |
| 89 | 67 | ||
| 90 | /* | 68 | /* |
| 91 | * I/O space is currently not supported. | 69 | * pcibios_assign_all_busses() tells whether or not the bus numbers |
| 70 | * should be reassigned, in case the BIOS didn't do it correctly, or | ||
| 71 | * in case we don't have a BIOS and we want to let Linux do it. | ||
| 92 | */ | 72 | */ |
| 73 | static inline int pcibios_assign_all_busses(void) | ||
| 74 | { | ||
| 75 | return 1; | ||
| 76 | } | ||
| 93 | 77 | ||
| 94 | #define TILE_PCIE_LOWER_IO 0x0 | 78 | /* |
| 95 | #define TILE_PCIE_UPPER_IO 0x10000 | 79 | * No special bus mastering setup handling. |
| 96 | #define TILE_PCIE_PCIE_IO_SIZE 0x0000FFFF | 80 | */ |
| 97 | |||
| 98 | #define _PAGE_NO_CACHE 0 | ||
| 99 | #define _PAGE_GUARDED 0 | ||
| 100 | |||
| 101 | |||
| 102 | #define pcibios_assign_all_busses() pci_assign_all_buses | ||
| 103 | extern int pci_assign_all_buses; | ||
| 104 | |||
| 105 | static inline void pcibios_set_master(struct pci_dev *dev) | 81 | static inline void pcibios_set_master(struct pci_dev *dev) |
| 106 | { | 82 | { |
| 107 | /* No special bus mastering setup handling */ | ||
| 108 | } | 83 | } |
| 109 | 84 | ||
| 110 | #define PCIBIOS_MIN_MEM 0 | 85 | #define PCIBIOS_MIN_MEM 0 |
| 111 | #define PCIBIOS_MIN_IO TILE_PCIE_LOWER_IO | 86 | #define PCIBIOS_MIN_IO 0 |
| 112 | 87 | ||
| 113 | /* | 88 | /* |
| 114 | * This flag tells if the platform is TILEmpower that needs | 89 | * This flag tells if the platform is TILEmpower that needs |
| 115 | * special configuration for the PLX switch chip. | 90 | * special configuration for the PLX switch chip. |
| 116 | */ | 91 | */ |
| 117 | extern int blade_pci; | 92 | extern int tile_plx_gen1; |
| 93 | |||
| 94 | /* Use any cpu for PCI. */ | ||
| 95 | #define cpumask_of_pcibus(bus) cpu_online_mask | ||
| 118 | 96 | ||
| 119 | /* implement the pci_ DMA API in terms of the generic device dma_ one */ | 97 | /* implement the pci_ DMA API in terms of the generic device dma_ one */ |
| 120 | #include <asm-generic/pci-dma-compat.h> | 98 | #include <asm-generic/pci-dma-compat.h> |
| @@ -122,7 +100,4 @@ extern int blade_pci; | |||
| 122 | /* generic pci stuff */ | 100 | /* generic pci stuff */ |
| 123 | #include <asm-generic/pci.h> | 101 | #include <asm-generic/pci.h> |
| 124 | 102 | ||
| 125 | /* Use any cpu for PCI. */ | ||
| 126 | #define cpumask_of_pcibus(bus) cpu_online_mask | ||
| 127 | |||
| 128 | #endif /* _ASM_TILE_PCI_H */ | 103 | #endif /* _ASM_TILE_PCI_H */ |
diff --git a/arch/tile/include/asm/processor.h b/arch/tile/include/asm/processor.h index 1747ff3946b2..a9e7c8760334 100644 --- a/arch/tile/include/asm/processor.h +++ b/arch/tile/include/asm/processor.h | |||
| @@ -292,8 +292,18 @@ extern int kstack_hash; | |||
| 292 | /* Are we using huge pages in the TLB for kernel data? */ | 292 | /* Are we using huge pages in the TLB for kernel data? */ |
| 293 | extern int kdata_huge; | 293 | extern int kdata_huge; |
| 294 | 294 | ||
| 295 | /* Support standard Linux prefetching. */ | ||
| 296 | #define ARCH_HAS_PREFETCH | ||
| 297 | #define prefetch(x) __builtin_prefetch(x) | ||
| 295 | #define PREFETCH_STRIDE CHIP_L2_LINE_SIZE() | 298 | #define PREFETCH_STRIDE CHIP_L2_LINE_SIZE() |
| 296 | 299 | ||
| 300 | /* Bring a value into the L1D, faulting the TLB if necessary. */ | ||
| 301 | #ifdef __tilegx__ | ||
| 302 | #define prefetch_L1(x) __insn_prefetch_l1_fault((void *)(x)) | ||
| 303 | #else | ||
| 304 | #define prefetch_L1(x) __insn_prefetch_L1((void *)(x)) | ||
| 305 | #endif | ||
| 306 | |||
| 297 | #else /* __ASSEMBLY__ */ | 307 | #else /* __ASSEMBLY__ */ |
| 298 | 308 | ||
| 299 | /* Do some slow action (e.g. read a slow SPR). */ | 309 | /* Do some slow action (e.g. read a slow SPR). */ |
diff --git a/arch/tile/include/asm/signal.h b/arch/tile/include/asm/signal.h index c1ee1d61d44c..81d92a45cd4b 100644 --- a/arch/tile/include/asm/signal.h +++ b/arch/tile/include/asm/signal.h | |||
| @@ -25,7 +25,7 @@ | |||
| 25 | 25 | ||
| 26 | #if defined(__KERNEL__) && !defined(__ASSEMBLY__) | 26 | #if defined(__KERNEL__) && !defined(__ASSEMBLY__) |
| 27 | struct pt_regs; | 27 | struct pt_regs; |
| 28 | int restore_sigcontext(struct pt_regs *, struct sigcontext __user *, long *); | 28 | int restore_sigcontext(struct pt_regs *, struct sigcontext __user *); |
| 29 | int setup_sigcontext(struct sigcontext __user *, struct pt_regs *); | 29 | int setup_sigcontext(struct sigcontext __user *, struct pt_regs *); |
| 30 | void do_signal(struct pt_regs *regs); | 30 | void do_signal(struct pt_regs *regs); |
| 31 | #endif | 31 | #endif |
diff --git a/arch/tile/include/hv/drv_xgbe_impl.h b/arch/tile/include/hv/drv_xgbe_impl.h new file mode 100644 index 000000000000..3a73b2b44913 --- /dev/null +++ b/arch/tile/include/hv/drv_xgbe_impl.h | |||
| @@ -0,0 +1,300 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | /** | ||
| 16 | * @file drivers/xgbe/impl.h | ||
| 17 | * Implementation details for the NetIO library. | ||
| 18 | */ | ||
| 19 | |||
| 20 | #ifndef __DRV_XGBE_IMPL_H__ | ||
| 21 | #define __DRV_XGBE_IMPL_H__ | ||
| 22 | |||
| 23 | #include <hv/netio_errors.h> | ||
| 24 | #include <hv/netio_intf.h> | ||
| 25 | #include <hv/drv_xgbe_intf.h> | ||
| 26 | |||
| 27 | |||
| 28 | /** How many groups we have (log2). */ | ||
| 29 | #define LOG2_NUM_GROUPS (12) | ||
| 30 | /** How many groups we have. */ | ||
| 31 | #define NUM_GROUPS (1 << LOG2_NUM_GROUPS) | ||
| 32 | |||
| 33 | /** Number of output requests we'll buffer per tile. */ | ||
| 34 | #define EPP_REQS_PER_TILE (32) | ||
| 35 | |||
| 36 | /** Words used in an eDMA command without checksum acceleration. */ | ||
| 37 | #define EDMA_WDS_NO_CSUM 8 | ||
| 38 | /** Words used in an eDMA command with checksum acceleration. */ | ||
| 39 | #define EDMA_WDS_CSUM 10 | ||
| 40 | /** Total available words in the eDMA command FIFO. */ | ||
| 41 | #define EDMA_WDS_TOTAL 128 | ||
| 42 | |||
| 43 | |||
| 44 | /* | ||
| 45 | * FIXME: These definitions are internal and should have underscores! | ||
| 46 | * NOTE: The actual numeric values here are intentional and allow us to | ||
| 47 | * optimize the concept "if small ... else if large ... else ...", by | ||
| 48 | * checking for the low bit being set, and then for non-zero. | ||
| 49 | * These are used as array indices, so they must have the values (0, 1, 2) | ||
| 50 | * in some order. | ||
| 51 | */ | ||
| 52 | #define SIZE_SMALL (1) /**< Small packet queue. */ | ||
| 53 | #define SIZE_LARGE (2) /**< Large packet queue. */ | ||
| 54 | #define SIZE_JUMBO (0) /**< Jumbo packet queue. */ | ||
| 55 | |||
| 56 | /** The number of "SIZE_xxx" values. */ | ||
| 57 | #define NETIO_NUM_SIZES 3 | ||
| 58 | |||
| 59 | |||
| 60 | /* | ||
| 61 | * Default numbers of packets for IPP drivers. These values are chosen | ||
| 62 | * such that CIPP1 will not overflow its L2 cache. | ||
| 63 | */ | ||
| 64 | |||
| 65 | /** The default number of small packets. */ | ||
| 66 | #define NETIO_DEFAULT_SMALL_PACKETS 2750 | ||
| 67 | /** The default number of large packets. */ | ||
| 68 | #define NETIO_DEFAULT_LARGE_PACKETS 2500 | ||
| 69 | /** The default number of jumbo packets. */ | ||
| 70 | #define NETIO_DEFAULT_JUMBO_PACKETS 250 | ||
| 71 | |||
| 72 | |||
| 73 | /** Log2 of the size of a memory arena. */ | ||
| 74 | #define NETIO_ARENA_SHIFT 24 /* 16 MB */ | ||
| 75 | /** Size of a memory arena. */ | ||
| 76 | #define NETIO_ARENA_SIZE (1 << NETIO_ARENA_SHIFT) | ||
| 77 | |||
| 78 | |||
| 79 | /** A queue of packets. | ||
| 80 | * | ||
| 81 | * This structure partially defines a queue of packets waiting to be | ||
| 82 | * processed. The queue as a whole is written to by an interrupt handler and | ||
| 83 | * read by non-interrupt code; this data structure is what's touched by the | ||
| 84 | * interrupt handler. The other part of the queue state, the read offset, is | ||
| 85 | * kept in user space, not in hypervisor space, so it is in a separate data | ||
| 86 | * structure. | ||
| 87 | * | ||
| 88 | * The read offset (__packet_receive_read in the user part of the queue | ||
| 89 | * structure) points to the next packet to be read. When the read offset is | ||
| 90 | * equal to the write offset, the queue is empty; therefore the queue must | ||
| 91 | * contain one more slot than the required maximum queue size. | ||
| 92 | * | ||
| 93 | * Here's an example of all 3 state variables and what they mean. All | ||
| 94 | * pointers move left to right. | ||
| 95 | * | ||
| 96 | * @code | ||
| 97 | * I I V V V V I I I I | ||
| 98 | * 0 1 2 3 4 5 6 7 8 9 10 | ||
| 99 | * ^ ^ ^ ^ | ||
| 100 | * | | | | ||
| 101 | * | | __last_packet_plus_one | ||
| 102 | * | __buffer_write | ||
| 103 | * __packet_receive_read | ||
| 104 | * @endcode | ||
| 105 | * | ||
| 106 | * This queue has 10 slots, and thus can hold 9 packets (_last_packet_plus_one | ||
| 107 | * = 10). The read pointer is at 2, and the write pointer is at 6; thus, | ||
| 108 | * there are valid, unread packets in slots 2, 3, 4, and 5. The remaining | ||
| 109 | * slots are invalid (do not contain a packet). | ||
| 110 | */ | ||
| 111 | typedef struct { | ||
| 112 | /** Byte offset of the next notify packet to be written: zero for the first | ||
| 113 | * packet on the queue, sizeof (netio_pkt_t) for the second packet on the | ||
| 114 | * queue, etc. */ | ||
| 115 | volatile uint32_t __packet_write; | ||
| 116 | |||
| 117 | /** Offset of the packet after the last valid packet (i.e., when any | ||
| 118 | * pointer is incremented to this value, it wraps back to zero). */ | ||
| 119 | uint32_t __last_packet_plus_one; | ||
| 120 | } | ||
| 121 | __netio_packet_queue_t; | ||
| 122 | |||
| 123 | |||
| 124 | /** A queue of buffers. | ||
| 125 | * | ||
| 126 | * This structure partially defines a queue of empty buffers which have been | ||
| 127 | * obtained via requests to the IPP. (The elements of the queue are packet | ||
| 128 | * handles, which are transformed into a full netio_pkt_t when the buffer is | ||
| 129 | * retrieved.) The queue as a whole is written to by an interrupt handler and | ||
| 130 | * read by non-interrupt code; this data structure is what's touched by the | ||
| 131 | * interrupt handler. The other parts of the queue state, the read offset and | ||
| 132 | * requested write offset, are kept in user space, not in hypervisor space, so | ||
| 133 | * they are in a separate data structure. | ||
| 134 | * | ||
| 135 | * The read offset (__buffer_read in the user part of the queue structure) | ||
| 136 | * points to the next buffer to be read. When the read offset is equal to the | ||
| 137 | * write offset, the queue is empty; therefore the queue must contain one more | ||
| 138 | * slot than the required maximum queue size. | ||
| 139 | * | ||
| 140 | * The requested write offset (__buffer_requested_write in the user part of | ||
| 141 | * the queue structure) points to the slot which will hold the next buffer we | ||
| 142 | * request from the IPP, once we get around to sending such a request. When | ||
| 143 | * the requested write offset is equal to the write offset, no requests for | ||
| 144 | * new buffers are outstanding; when the requested write offset is one greater | ||
| 145 | * than the read offset, no more requests may be sent. | ||
| 146 | * | ||
| 147 | * Note that, unlike the packet_queue, the buffer_queue places incoming | ||
| 148 | * buffers at decreasing addresses. This makes the check for "is it time to | ||
| 149 | * wrap the buffer pointer" cheaper in the assembly code which receives new | ||
| 150 | * buffers, and means that the value which defines the queue size, | ||
| 151 | * __last_buffer, is different than in the packet queue. Also, the offset | ||
| 152 | * used in the packet_queue is already scaled by the size of a packet; here we | ||
| 153 | * use unscaled slot indices for the offsets. (These differences are | ||
| 154 | * historical, and in the future it's possible that the packet_queue will look | ||
| 155 | * more like this queue.) | ||
| 156 | * | ||
| 157 | * @code | ||
| 158 | * Here's an example of all 4 state variables and what they mean. Remember: | ||
| 159 | * all pointers move right to left. | ||
| 160 | * | ||
| 161 | * V V V I I R R V V V | ||
| 162 | * 0 1 2 3 4 5 6 7 8 9 | ||
| 163 | * ^ ^ ^ ^ | ||
| 164 | * | | | | | ||
| 165 | * | | | __last_buffer | ||
| 166 | * | | __buffer_write | ||
| 167 | * | __buffer_requested_write | ||
| 168 | * __buffer_read | ||
| 169 | * @endcode | ||
| 170 | * | ||
| 171 | * This queue has 10 slots, and thus can hold 9 buffers (_last_buffer = 9). | ||
| 172 | * The read pointer is at 2, and the write pointer is at 6; thus, there are | ||
| 173 | * valid, unread buffers in slots 2, 1, 0, 9, 8, and 7. The requested write | ||
| 174 | * pointer is at 4; thus, requests have been made to the IPP for buffers which | ||
| 175 | * will be placed in slots 6 and 5 when they arrive. Finally, the remaining | ||
| 176 | * slots are invalid (do not contain a buffer). | ||
| 177 | */ | ||
| 178 | typedef struct | ||
| 179 | { | ||
| 180 | /** Ordinal number of the next buffer to be written: 0 for the first slot in | ||
| 181 | * the queue, 1 for the second slot in the queue, etc. */ | ||
| 182 | volatile uint32_t __buffer_write; | ||
| 183 | |||
| 184 | /** Ordinal number of the last buffer (i.e., when any pointer is decremented | ||
| 185 | * below zero, it is reloaded with this value). */ | ||
| 186 | uint32_t __last_buffer; | ||
| 187 | } | ||
| 188 | __netio_buffer_queue_t; | ||
| 189 | |||
| 190 | |||
| 191 | /** | ||
| 192 | * An object for providing Ethernet packets to a process. | ||
| 193 | */ | ||
| 194 | typedef struct __netio_queue_impl_t | ||
| 195 | { | ||
| 196 | /** The queue of packets waiting to be received. */ | ||
| 197 | __netio_packet_queue_t __packet_receive_queue; | ||
| 198 | /** The intr bit mask that IDs this device. */ | ||
| 199 | unsigned int __intr_id; | ||
| 200 | /** Offset to queues of empty buffers, one per size. */ | ||
| 201 | uint32_t __buffer_queue[NETIO_NUM_SIZES]; | ||
| 202 | /** The address of the first EPP tile, or -1 if no EPP. */ | ||
| 203 | /* ISSUE: Actually this is always "0" or "~0". */ | ||
| 204 | uint32_t __epp_location; | ||
| 205 | /** The queue ID that this queue represents. */ | ||
| 206 | unsigned int __queue_id; | ||
| 207 | /** Number of acknowledgements received. */ | ||
| 208 | volatile uint32_t __acks_received; | ||
| 209 | /** Last completion number received for packet_sendv. */ | ||
| 210 | volatile uint32_t __last_completion_rcv; | ||
| 211 | /** Number of packets allowed to be outstanding. */ | ||
| 212 | uint32_t __max_outstanding; | ||
| 213 | /** First VA available for packets. */ | ||
| 214 | void* __va_0; | ||
| 215 | /** First VA in second range available for packets. */ | ||
| 216 | void* __va_1; | ||
| 217 | /** Padding to align the "__packets" field to the size of a netio_pkt_t. */ | ||
| 218 | uint32_t __padding[3]; | ||
| 219 | /** The packets themselves. */ | ||
| 220 | netio_pkt_t __packets[0]; | ||
| 221 | } | ||
| 222 | netio_queue_impl_t; | ||
| 223 | |||
| 224 | |||
| 225 | /** | ||
| 226 | * An object for managing the user end of a NetIO queue. | ||
| 227 | */ | ||
| 228 | typedef struct __netio_queue_user_impl_t | ||
| 229 | { | ||
| 230 | /** The next incoming packet to be read. */ | ||
| 231 | uint32_t __packet_receive_read; | ||
| 232 | /** The next empty buffers to be read, one index per size. */ | ||
| 233 | uint8_t __buffer_read[NETIO_NUM_SIZES]; | ||
| 234 | /** Where the empty buffer we next request from the IPP will go, one index | ||
| 235 | * per size. */ | ||
| 236 | uint8_t __buffer_requested_write[NETIO_NUM_SIZES]; | ||
| 237 | /** PCIe interface flag. */ | ||
| 238 | uint8_t __pcie; | ||
| 239 | /** Number of packets left to be received before we send a credit update. */ | ||
| 240 | uint32_t __receive_credit_remaining; | ||
| 241 | /** Value placed in __receive_credit_remaining when it reaches zero. */ | ||
| 242 | uint32_t __receive_credit_interval; | ||
| 243 | /** First fast I/O routine index. */ | ||
| 244 | uint32_t __fastio_index; | ||
| 245 | /** Number of acknowledgements expected. */ | ||
| 246 | uint32_t __acks_outstanding; | ||
| 247 | /** Last completion number requested. */ | ||
| 248 | uint32_t __last_completion_req; | ||
| 249 | /** File descriptor for driver. */ | ||
| 250 | int __fd; | ||
| 251 | } | ||
| 252 | netio_queue_user_impl_t; | ||
| 253 | |||
| 254 | |||
| 255 | #define NETIO_GROUP_CHUNK_SIZE 64 /**< Max # groups in one IPP request */ | ||
| 256 | #define NETIO_BUCKET_CHUNK_SIZE 64 /**< Max # buckets in one IPP request */ | ||
| 257 | |||
| 258 | |||
| 259 | /** Internal structure used to convey packet send information to the | ||
| 260 | * hypervisor. FIXME: Actually, it's not used for that anymore, but | ||
| 261 | * netio_packet_send() still uses it internally. | ||
| 262 | */ | ||
| 263 | typedef struct | ||
| 264 | { | ||
| 265 | uint16_t flags; /**< Packet flags (__NETIO_SEND_FLG_xxx) */ | ||
| 266 | uint16_t transfer_size; /**< Size of packet */ | ||
| 267 | uint32_t va; /**< VA of start of packet */ | ||
| 268 | __netio_pkt_handle_t handle; /**< Packet handle */ | ||
| 269 | uint32_t csum0; /**< First checksum word */ | ||
| 270 | uint32_t csum1; /**< Second checksum word */ | ||
| 271 | } | ||
| 272 | __netio_send_cmd_t; | ||
| 273 | |||
| 274 | |||
| 275 | /** Flags used in two contexts: | ||
| 276 | * - As the "flags" member in the __netio_send_cmd_t, above; used only | ||
| 277 | * for netio_pkt_send_{prepare,commit}. | ||
| 278 | * - As part of the flags passed to the various send packet fast I/O calls. | ||
| 279 | */ | ||
| 280 | |||
| 281 | /** Need acknowledgement on this packet. Note that some code in the | ||
| 282 | * normal send_pkt fast I/O handler assumes that this is equal to 1. */ | ||
| 283 | #define __NETIO_SEND_FLG_ACK 0x1 | ||
| 284 | |||
| 285 | /** Do checksum on this packet. (Only used with the __netio_send_cmd_t; | ||
| 286 | * normal packet sends use a special fast I/O index to denote checksumming, | ||
| 287 | * and multi-segment sends test the checksum descriptor.) */ | ||
| 288 | #define __NETIO_SEND_FLG_CSUM 0x2 | ||
| 289 | |||
| 290 | /** Get a completion on this packet. Only used with multi-segment sends. */ | ||
| 291 | #define __NETIO_SEND_FLG_COMPLETION 0x4 | ||
| 292 | |||
| 293 | /** Position of the number-of-extra-segments value in the flags word. | ||
| 294 | Only used with multi-segment sends. */ | ||
| 295 | #define __NETIO_SEND_FLG_XSEG_SHIFT 3 | ||
| 296 | |||
| 297 | /** Width of the number-of-extra-segments value in the flags word. */ | ||
| 298 | #define __NETIO_SEND_FLG_XSEG_WIDTH 2 | ||
| 299 | |||
| 300 | #endif /* __DRV_XGBE_IMPL_H__ */ | ||
diff --git a/arch/tile/include/hv/drv_xgbe_intf.h b/arch/tile/include/hv/drv_xgbe_intf.h new file mode 100644 index 000000000000..146e47d5334b --- /dev/null +++ b/arch/tile/include/hv/drv_xgbe_intf.h | |||
| @@ -0,0 +1,615 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | /** | ||
| 16 | * @file drv_xgbe_intf.h | ||
| 17 | * Interface to the hypervisor XGBE driver. | ||
| 18 | */ | ||
| 19 | |||
| 20 | #ifndef __DRV_XGBE_INTF_H__ | ||
| 21 | #define __DRV_XGBE_INTF_H__ | ||
| 22 | |||
| 23 | /** | ||
| 24 | * An object for forwarding VAs and PAs to the hypervisor. | ||
| 25 | * @ingroup types | ||
| 26 | * | ||
| 27 | * This allows the supervisor to specify a number of areas of memory to | ||
| 28 | * store packet buffers. | ||
| 29 | */ | ||
| 30 | typedef struct | ||
| 31 | { | ||
| 32 | /** The physical address of the memory. */ | ||
| 33 | HV_PhysAddr pa; | ||
| 34 | /** Page table entry for the memory. This is only used to derive the | ||
| 35 | * memory's caching mode; the PA bits are ignored. */ | ||
| 36 | HV_PTE pte; | ||
| 37 | /** The virtual address of the memory. */ | ||
| 38 | HV_VirtAddr va; | ||
| 39 | /** Size (in bytes) of the memory area. */ | ||
| 40 | int size; | ||
| 41 | |||
| 42 | } | ||
| 43 | netio_ipp_address_t; | ||
| 44 | |||
| 45 | /** The various pread/pwrite offsets into the hypervisor-level driver. | ||
| 46 | * @ingroup types | ||
| 47 | */ | ||
| 48 | typedef enum | ||
| 49 | { | ||
| 50 | /** Inform the Linux driver of the address of the NetIO arena memory. | ||
| 51 | * This offset is actually only used to convey information from netio | ||
| 52 | * to the Linux driver; it never makes it from there to the hypervisor. | ||
| 53 | * Write-only; takes a uint32_t specifying the VA address. */ | ||
| 54 | NETIO_FIXED_ADDR = 0x5000000000000000ULL, | ||
| 55 | |||
| 56 | /** Inform the Linux driver of the size of the NetIO arena memory. | ||
| 57 | * This offset is actually only used to convey information from netio | ||
| 58 | * to the Linux driver; it never makes it from there to the hypervisor. | ||
| 59 | * Write-only; takes a uint32_t specifying the VA size. */ | ||
| 60 | NETIO_FIXED_SIZE = 0x5100000000000000ULL, | ||
| 61 | |||
| 62 | /** Register current tile with IPP. Write then read: write, takes a | ||
| 63 | * netio_input_config_t, read returns a pointer to a netio_queue_impl_t. */ | ||
| 64 | NETIO_IPP_INPUT_REGISTER_OFF = 0x6000000000000000ULL, | ||
| 65 | |||
| 66 | /** Unregister current tile from IPP. Write-only, takes a dummy argument. */ | ||
| 67 | NETIO_IPP_INPUT_UNREGISTER_OFF = 0x6100000000000000ULL, | ||
| 68 | |||
| 69 | /** Start packets flowing. Write-only, takes a dummy argument. */ | ||
| 70 | NETIO_IPP_INPUT_INIT_OFF = 0x6200000000000000ULL, | ||
| 71 | |||
| 72 | /** Stop packets flowing. Write-only, takes a dummy argument. */ | ||
| 73 | NETIO_IPP_INPUT_UNINIT_OFF = 0x6300000000000000ULL, | ||
| 74 | |||
| 75 | /** Configure group (typically we group on VLAN). Write-only: takes an | ||
| 76 | * array of netio_group_t's, low 24 bits of the offset is the base group | ||
| 77 | * number times the size of a netio_group_t. */ | ||
| 78 | NETIO_IPP_INPUT_GROUP_CFG_OFF = 0x6400000000000000ULL, | ||
| 79 | |||
| 80 | /** Configure bucket. Write-only: takes an array of netio_bucket_t's, low | ||
| 81 | * 24 bits of the offset is the base bucket number times the size of a | ||
| 82 | * netio_bucket_t. */ | ||
| 83 | NETIO_IPP_INPUT_BUCKET_CFG_OFF = 0x6500000000000000ULL, | ||
| 84 | |||
| 85 | /** Get/set a parameter. Read or write: read or write data is the parameter | ||
| 86 | * value, low 32 bits of the offset is a __netio_getset_offset_t. */ | ||
| 87 | NETIO_IPP_PARAM_OFF = 0x6600000000000000ULL, | ||
| 88 | |||
| 89 | /** Get fast I/O index. Read-only; returns a 4-byte base index value. */ | ||
| 90 | NETIO_IPP_GET_FASTIO_OFF = 0x6700000000000000ULL, | ||
| 91 | |||
| 92 | /** Configure hijack IP address. Packets with this IPv4 dest address | ||
| 93 | * go to bucket NETIO_NUM_BUCKETS - 1. Write-only: takes an IP address | ||
| 94 | * in some standard form. FIXME: Define the form! */ | ||
| 95 | NETIO_IPP_INPUT_HIJACK_CFG_OFF = 0x6800000000000000ULL, | ||
| 96 | |||
| 97 | /** | ||
| 98 | * Offsets beyond this point are reserved for the supervisor (although that | ||
| 99 | * enforcement must be done by the supervisor driver itself). | ||
| 100 | */ | ||
| 101 | NETIO_IPP_USER_MAX_OFF = 0x6FFFFFFFFFFFFFFFULL, | ||
| 102 | |||
| 103 | /** Register I/O memory. Write-only, takes a netio_ipp_address_t. */ | ||
| 104 | NETIO_IPP_IOMEM_REGISTER_OFF = 0x7000000000000000ULL, | ||
| 105 | |||
| 106 | /** Unregister I/O memory. Write-only, takes a netio_ipp_address_t. */ | ||
| 107 | NETIO_IPP_IOMEM_UNREGISTER_OFF = 0x7100000000000000ULL, | ||
| 108 | |||
| 109 | /* Offsets greater than 0x7FFFFFFF can't be used directly from Linux | ||
| 110 | * userspace code due to limitations in the pread/pwrite syscalls. */ | ||
| 111 | |||
| 112 | /** Drain LIPP buffers. */ | ||
| 113 | NETIO_IPP_DRAIN_OFF = 0xFA00000000000000ULL, | ||
| 114 | |||
| 115 | /** Supply a netio_ipp_address_t to be used as shared memory for the | ||
| 116 | * LEPP command queue. */ | ||
| 117 | NETIO_EPP_SHM_OFF = 0xFB00000000000000ULL, | ||
| 118 | |||
| 119 | /* 0xFC... is currently unused. */ | ||
| 120 | |||
| 121 | /** Stop IPP/EPP tiles. Write-only, takes a dummy argument. */ | ||
| 122 | NETIO_IPP_STOP_SHIM_OFF = 0xFD00000000000000ULL, | ||
| 123 | |||
| 124 | /** Start IPP/EPP tiles. Write-only, takes a dummy argument. */ | ||
| 125 | NETIO_IPP_START_SHIM_OFF = 0xFE00000000000000ULL, | ||
| 126 | |||
| 127 | /** Supply packet arena. Write-only, takes an array of | ||
| 128 | * netio_ipp_address_t values. */ | ||
| 129 | NETIO_IPP_ADDRESS_OFF = 0xFF00000000000000ULL, | ||
| 130 | } netio_hv_offset_t; | ||
| 131 | |||
| 132 | /** Extract the base offset from an offset */ | ||
| 133 | #define NETIO_BASE_OFFSET(off) ((off) & 0xFF00000000000000ULL) | ||
| 134 | /** Extract the local offset from an offset */ | ||
| 135 | #define NETIO_LOCAL_OFFSET(off) ((off) & 0x00FFFFFFFFFFFFFFULL) | ||
| 136 | |||
| 137 | |||
| 138 | /** | ||
| 139 | * Get/set offset. | ||
| 140 | */ | ||
| 141 | typedef union | ||
| 142 | { | ||
| 143 | struct | ||
| 144 | { | ||
| 145 | uint64_t addr:48; /**< Class-specific address */ | ||
| 146 | unsigned int class:8; /**< Class (e.g., NETIO_PARAM) */ | ||
| 147 | unsigned int opcode:8; /**< High 8 bits of NETIO_IPP_PARAM_OFF */ | ||
| 148 | } | ||
| 149 | bits; /**< Bitfields */ | ||
| 150 | uint64_t word; /**< Aggregated value to use as the offset */ | ||
| 151 | } | ||
| 152 | __netio_getset_offset_t; | ||
| 153 | |||
| 154 | /** | ||
| 155 | * Fast I/O index offsets (must be contiguous). | ||
| 156 | */ | ||
| 157 | typedef enum | ||
| 158 | { | ||
| 159 | NETIO_FASTIO_ALLOCATE = 0, /**< Get empty packet buffer */ | ||
| 160 | NETIO_FASTIO_FREE_BUFFER = 1, /**< Give buffer back to IPP */ | ||
| 161 | NETIO_FASTIO_RETURN_CREDITS = 2, /**< Give credits to IPP */ | ||
| 162 | NETIO_FASTIO_SEND_PKT_NOCK = 3, /**< Send a packet, no checksum */ | ||
| 163 | NETIO_FASTIO_SEND_PKT_CK = 4, /**< Send a packet, with checksum */ | ||
| 164 | NETIO_FASTIO_SEND_PKT_VEC = 5, /**< Send a vector of packets */ | ||
| 165 | NETIO_FASTIO_SENDV_PKT = 6, /**< Sendv one packet */ | ||
| 166 | NETIO_FASTIO_NUM_INDEX = 7, /**< Total number of fast I/O indices */ | ||
| 167 | } netio_fastio_index_t; | ||
| 168 | |||
| 169 | /** 3-word return type for Fast I/O call. */ | ||
| 170 | typedef struct | ||
| 171 | { | ||
| 172 | int err; /**< Error code. */ | ||
| 173 | uint32_t val0; /**< Value. Meaning depends upon the specific call. */ | ||
| 174 | uint32_t val1; /**< Value. Meaning depends upon the specific call. */ | ||
| 175 | } netio_fastio_rv3_t; | ||
| 176 | |||
| 177 | /** 0-argument fast I/O call */ | ||
| 178 | int __netio_fastio0(uint32_t fastio_index); | ||
| 179 | /** 1-argument fast I/O call */ | ||
| 180 | int __netio_fastio1(uint32_t fastio_index, uint32_t arg0); | ||
| 181 | /** 3-argument fast I/O call, 2-word return value */ | ||
| 182 | netio_fastio_rv3_t __netio_fastio3_rv3(uint32_t fastio_index, uint32_t arg0, | ||
| 183 | uint32_t arg1, uint32_t arg2); | ||
| 184 | /** 4-argument fast I/O call */ | ||
| 185 | int __netio_fastio4(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, | ||
| 186 | uint32_t arg2, uint32_t arg3); | ||
| 187 | /** 6-argument fast I/O call */ | ||
| 188 | int __netio_fastio6(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, | ||
| 189 | uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5); | ||
| 190 | /** 9-argument fast I/O call */ | ||
| 191 | int __netio_fastio9(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, | ||
| 192 | uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5, | ||
| 193 | uint32_t arg6, uint32_t arg7, uint32_t arg8); | ||
| 194 | |||
| 195 | /** Allocate an empty packet. | ||
| 196 | * @param fastio_index Fast I/O index. | ||
| 197 | * @param size Size of the packet to allocate. | ||
| 198 | */ | ||
| 199 | #define __netio_fastio_allocate(fastio_index, size) \ | ||
| 200 | __netio_fastio1((fastio_index) + NETIO_FASTIO_ALLOCATE, size) | ||
| 201 | |||
| 202 | /** Free a buffer. | ||
| 203 | * @param fastio_index Fast I/O index. | ||
| 204 | * @param handle Handle for the packet to free. | ||
| 205 | */ | ||
| 206 | #define __netio_fastio_free_buffer(fastio_index, handle) \ | ||
| 207 | __netio_fastio1((fastio_index) + NETIO_FASTIO_FREE_BUFFER, handle) | ||
| 208 | |||
| 209 | /** Increment our receive credits. | ||
| 210 | * @param fastio_index Fast I/O index. | ||
| 211 | * @param credits Number of credits to add. | ||
| 212 | */ | ||
| 213 | #define __netio_fastio_return_credits(fastio_index, credits) \ | ||
| 214 | __netio_fastio1((fastio_index) + NETIO_FASTIO_RETURN_CREDITS, credits) | ||
| 215 | |||
| 216 | /** Send packet, no checksum. | ||
| 217 | * @param fastio_index Fast I/O index. | ||
| 218 | * @param ackflag Nonzero if we want an ack. | ||
| 219 | * @param size Size of the packet. | ||
| 220 | * @param va Virtual address of start of packet. | ||
| 221 | * @param handle Packet handle. | ||
| 222 | */ | ||
| 223 | #define __netio_fastio_send_pkt_nock(fastio_index, ackflag, size, va, handle) \ | ||
| 224 | __netio_fastio4((fastio_index) + NETIO_FASTIO_SEND_PKT_NOCK, ackflag, \ | ||
| 225 | size, va, handle) | ||
| 226 | |||
| 227 | /** Send packet, calculate checksum. | ||
| 228 | * @param fastio_index Fast I/O index. | ||
| 229 | * @param ackflag Nonzero if we want an ack. | ||
| 230 | * @param size Size of the packet. | ||
| 231 | * @param va Virtual address of start of packet. | ||
| 232 | * @param handle Packet handle. | ||
| 233 | * @param csum0 Shim checksum header. | ||
| 234 | * @param csum1 Checksum seed. | ||
| 235 | */ | ||
| 236 | #define __netio_fastio_send_pkt_ck(fastio_index, ackflag, size, va, handle, \ | ||
| 237 | csum0, csum1) \ | ||
| 238 | __netio_fastio6((fastio_index) + NETIO_FASTIO_SEND_PKT_CK, ackflag, \ | ||
| 239 | size, va, handle, csum0, csum1) | ||
| 240 | |||
| 241 | |||
| 242 | /** Format for the "csum0" argument to the __netio_fastio_send routines | ||
| 243 | * and LEPP. Note that this is currently exactly identical to the | ||
| 244 | * ShimProtocolOffloadHeader. | ||
| 245 | */ | ||
| 246 | typedef union | ||
| 247 | { | ||
| 248 | struct | ||
| 249 | { | ||
| 250 | unsigned int start_byte:7; /**< The first byte to be checksummed */ | ||
| 251 | unsigned int count:14; /**< Number of bytes to be checksummed. */ | ||
| 252 | unsigned int destination_byte:7; /**< The byte to write the checksum to. */ | ||
| 253 | unsigned int reserved:4; /**< Reserved. */ | ||
| 254 | } bits; /**< Decomposed method of access. */ | ||
| 255 | unsigned int word; /**< To send out the IDN. */ | ||
| 256 | } __netio_checksum_header_t; | ||
| 257 | |||
| 258 | |||
| 259 | /** Sendv packet with 1 or 2 segments. | ||
| 260 | * @param fastio_index Fast I/O index. | ||
| 261 | * @param flags Ack/csum/notify flags in low 3 bits; number of segments minus | ||
| 262 | * 1 in next 2 bits; expected checksum in high 16 bits. | ||
| 263 | * @param confno Confirmation number to request, if notify flag set. | ||
| 264 | * @param csum0 Checksum descriptor; if zero, no checksum. | ||
| 265 | * @param va_F Virtual address of first segment. | ||
| 266 | * @param va_L Virtual address of last segment, if 2 segments. | ||
| 267 | * @param len_F_L Length of first segment in low 16 bits; length of last | ||
| 268 | * segment, if 2 segments, in high 16 bits. | ||
| 269 | */ | ||
| 270 | #define __netio_fastio_sendv_pkt_1_2(fastio_index, flags, confno, csum0, \ | ||
| 271 | va_F, va_L, len_F_L) \ | ||
| 272 | __netio_fastio6((fastio_index) + NETIO_FASTIO_SENDV_PKT, flags, confno, \ | ||
| 273 | csum0, va_F, va_L, len_F_L) | ||
| 274 | |||
| 275 | /** Send packet on PCIe interface. | ||
| 276 | * @param fastio_index Fast I/O index. | ||
| 277 | * @param flags Ack/csum/notify flags in low 3 bits. | ||
| 278 | * @param confno Confirmation number to request, if notify flag set. | ||
| 279 | * @param csum0 Checksum descriptor; Hard wired 0, not needed for PCIe. | ||
| 280 | * @param va_F Virtual address of the packet buffer. | ||
| 281 | * @param va_L Virtual address of last segment, if 2 segments. Hard wired 0. | ||
| 282 | * @param len_F_L Length of the packet buffer in low 16 bits. | ||
| 283 | */ | ||
| 284 | #define __netio_fastio_send_pcie_pkt(fastio_index, flags, confno, csum0, \ | ||
| 285 | va_F, va_L, len_F_L) \ | ||
| 286 | __netio_fastio6((fastio_index) + PCIE_FASTIO_SENDV_PKT, flags, confno, \ | ||
| 287 | csum0, va_F, va_L, len_F_L) | ||
| 288 | |||
| 289 | /** Sendv packet with 3 or 4 segments. | ||
| 290 | * @param fastio_index Fast I/O index. | ||
| 291 | * @param flags Ack/csum/notify flags in low 3 bits; number of segments minus | ||
| 292 | * 1 in next 2 bits; expected checksum in high 16 bits. | ||
| 293 | * @param confno Confirmation number to request, if notify flag set. | ||
| 294 | * @param csum0 Checksum descriptor; if zero, no checksum. | ||
| 295 | * @param va_F Virtual address of first segment. | ||
| 296 | * @param va_L Virtual address of last segment (third segment if 3 segments, | ||
| 297 | * fourth segment if 4 segments). | ||
| 298 | * @param len_F_L Length of first segment in low 16 bits; length of last | ||
| 299 | * segment in high 16 bits. | ||
| 300 | * @param va_M0 Virtual address of "middle 0" segment; this segment is sent | ||
| 301 | * second when there are three segments, and third if there are four. | ||
| 302 | * @param va_M1 Virtual address of "middle 1" segment; this segment is sent | ||
| 303 | * second when there are four segments. | ||
| 304 | * @param len_M0_M1 Length of middle 0 segment in low 16 bits; length of middle | ||
| 305 | * 1 segment, if 4 segments, in high 16 bits. | ||
| 306 | */ | ||
| 307 | #define __netio_fastio_sendv_pkt_3_4(fastio_index, flags, confno, csum0, va_F, \ | ||
| 308 | va_L, len_F_L, va_M0, va_M1, len_M0_M1) \ | ||
| 309 | __netio_fastio9((fastio_index) + NETIO_FASTIO_SENDV_PKT, flags, confno, \ | ||
| 310 | csum0, va_F, va_L, len_F_L, va_M0, va_M1, len_M0_M1) | ||
| 311 | |||
| 312 | /** Send vector of packets. | ||
| 313 | * @param fastio_index Fast I/O index. | ||
| 314 | * @param seqno Number of packets transmitted so far on this interface; | ||
| 315 | * used to decide which packets should be acknowledged. | ||
| 316 | * @param nentries Number of entries in vector. | ||
| 317 | * @param va Virtual address of start of vector entry array. | ||
| 318 | * @return 3-word netio_fastio_rv3_t structure. The structure's err member | ||
| 319 | * is an error code, or zero if no error. The val0 member is the | ||
| 320 | * updated value of seqno; it has been incremented by 1 for each | ||
| 321 | * packet sent. That increment may be less than nentries if an | ||
| 322 | * error occured, or if some of the entries in the vector contain | ||
| 323 | * handles equal to NETIO_PKT_HANDLE_NONE. The val1 member is the | ||
| 324 | * updated value of nentries; it has been decremented by 1 for each | ||
| 325 | * vector entry processed. Again, that decrement may be less than | ||
| 326 | * nentries (leaving the returned value positive) if an error | ||
| 327 | * occurred. | ||
| 328 | */ | ||
| 329 | #define __netio_fastio_send_pkt_vec(fastio_index, seqno, nentries, va) \ | ||
| 330 | __netio_fastio3_rv3((fastio_index) + NETIO_FASTIO_SEND_PKT_VEC, seqno, \ | ||
| 331 | nentries, va) | ||
| 332 | |||
| 333 | |||
| 334 | /** An egress DMA command for LEPP. */ | ||
| 335 | typedef struct | ||
| 336 | { | ||
| 337 | /** Is this a TSO transfer? | ||
| 338 | * | ||
| 339 | * NOTE: This field is always 0, to distinguish it from | ||
| 340 | * lepp_tso_cmd_t. It must come first! | ||
| 341 | */ | ||
| 342 | uint8_t tso : 1; | ||
| 343 | |||
| 344 | /** Unused padding bits. */ | ||
| 345 | uint8_t _unused : 3; | ||
| 346 | |||
| 347 | /** Should this packet be sent directly from caches instead of DRAM, | ||
| 348 | * using hash-for-home to locate the packet data? | ||
| 349 | */ | ||
| 350 | uint8_t hash_for_home : 1; | ||
| 351 | |||
| 352 | /** Should we compute a checksum? */ | ||
| 353 | uint8_t compute_checksum : 1; | ||
| 354 | |||
| 355 | /** Is this the final buffer for this packet? | ||
| 356 | * | ||
| 357 | * A single packet can be split over several input buffers (a "gather" | ||
| 358 | * operation). This flag indicates that this is the last buffer | ||
| 359 | * in a packet. | ||
| 360 | */ | ||
| 361 | uint8_t end_of_packet : 1; | ||
| 362 | |||
| 363 | /** Should LEPP advance 'comp_busy' when this DMA is fully finished? */ | ||
| 364 | uint8_t send_completion : 1; | ||
| 365 | |||
| 366 | /** High bits of Client Physical Address of the start of the buffer | ||
| 367 | * to be egressed. | ||
| 368 | * | ||
| 369 | * NOTE: Only 6 bits are actually needed here, as CPAs are | ||
| 370 | * currently 38 bits. So two bits could be scavenged from this. | ||
| 371 | */ | ||
| 372 | uint8_t cpa_hi; | ||
| 373 | |||
| 374 | /** The number of bytes to be egressed. */ | ||
| 375 | uint16_t length; | ||
| 376 | |||
| 377 | /** Low 32 bits of Client Physical Address of the start of the buffer | ||
| 378 | * to be egressed. | ||
| 379 | */ | ||
| 380 | uint32_t cpa_lo; | ||
| 381 | |||
| 382 | /** Checksum information (only used if 'compute_checksum'). */ | ||
| 383 | __netio_checksum_header_t checksum_data; | ||
| 384 | |||
| 385 | } lepp_cmd_t; | ||
| 386 | |||
| 387 | |||
| 388 | /** A chunk of physical memory for a TSO egress. */ | ||
| 389 | typedef struct | ||
| 390 | { | ||
| 391 | /** The low bits of the CPA. */ | ||
| 392 | uint32_t cpa_lo; | ||
| 393 | /** The high bits of the CPA. */ | ||
| 394 | uint16_t cpa_hi : 15; | ||
| 395 | /** Should this packet be sent directly from caches instead of DRAM, | ||
| 396 | * using hash-for-home to locate the packet data? | ||
| 397 | */ | ||
| 398 | uint16_t hash_for_home : 1; | ||
| 399 | /** The length in bytes. */ | ||
| 400 | uint16_t length; | ||
| 401 | } lepp_frag_t; | ||
| 402 | |||
| 403 | |||
| 404 | /** An LEPP command that handles TSO. */ | ||
| 405 | typedef struct | ||
| 406 | { | ||
| 407 | /** Is this a TSO transfer? | ||
| 408 | * | ||
| 409 | * NOTE: This field is always 1, to distinguish it from | ||
| 410 | * lepp_cmd_t. It must come first! | ||
| 411 | */ | ||
| 412 | uint8_t tso : 1; | ||
| 413 | |||
| 414 | /** Unused padding bits. */ | ||
| 415 | uint8_t _unused : 7; | ||
| 416 | |||
| 417 | /** Size of the header[] array in bytes. It must be in the range | ||
| 418 | * [40, 127], which are the smallest header for a TCP packet over | ||
| 419 | * Ethernet and the maximum possible prepend size supported by | ||
| 420 | * hardware, respectively. Note that the array storage must be | ||
| 421 | * padded out to a multiple of four bytes so that the following | ||
| 422 | * LEPP command is aligned properly. | ||
| 423 | */ | ||
| 424 | uint8_t header_size; | ||
| 425 | |||
| 426 | /** Byte offset of the IP header in header[]. */ | ||
| 427 | uint8_t ip_offset; | ||
| 428 | |||
| 429 | /** Byte offset of the TCP header in header[]. */ | ||
| 430 | uint8_t tcp_offset; | ||
| 431 | |||
| 432 | /** The number of bytes to use for the payload of each packet, | ||
| 433 | * except of course the last one, which may not have enough bytes. | ||
| 434 | * This means that each Ethernet packet except the last will have a | ||
| 435 | * size of header_size + payload_size. | ||
| 436 | */ | ||
| 437 | uint16_t payload_size; | ||
| 438 | |||
| 439 | /** The length of the 'frags' array that follows this struct. */ | ||
| 440 | uint16_t num_frags; | ||
| 441 | |||
| 442 | /** The actual frags. */ | ||
| 443 | lepp_frag_t frags[0 /* Variable-sized; num_frags entries. */]; | ||
| 444 | |||
| 445 | /* | ||
| 446 | * The packet header template logically follows frags[], | ||
| 447 | * but you can't declare that in C. | ||
| 448 | * | ||
| 449 | * uint32_t header[header_size_in_words_rounded_up]; | ||
| 450 | */ | ||
| 451 | |||
| 452 | } lepp_tso_cmd_t; | ||
| 453 | |||
| 454 | |||
| 455 | /** An LEPP completion ring entry. */ | ||
| 456 | typedef void* lepp_comp_t; | ||
| 457 | |||
| 458 | |||
| 459 | /** Maximum number of frags for one TSO command. This is adapted from | ||
| 460 | * linux's "MAX_SKB_FRAGS", and presumably over-estimates by one, for | ||
| 461 | * our page size of exactly 65536. We add one for a "body" fragment. | ||
| 462 | */ | ||
| 463 | #define LEPP_MAX_FRAGS (65536 / HV_PAGE_SIZE_SMALL + 2 + 1) | ||
| 464 | |||
| 465 | /** Total number of bytes needed for an lepp_tso_cmd_t. */ | ||
| 466 | #define LEPP_TSO_CMD_SIZE(num_frags, header_size) \ | ||
| 467 | (sizeof(lepp_tso_cmd_t) + \ | ||
| 468 | (num_frags) * sizeof(lepp_frag_t) + \ | ||
| 469 | (((header_size) + 3) & -4)) | ||
| 470 | |||
| 471 | /** The size of the lepp "cmd" queue. */ | ||
| 472 | #define LEPP_CMD_QUEUE_BYTES \ | ||
| 473 | (((CHIP_L2_CACHE_SIZE() - 2 * CHIP_L2_LINE_SIZE()) / \ | ||
| 474 | (sizeof(lepp_cmd_t) + sizeof(lepp_comp_t))) * sizeof(lepp_cmd_t)) | ||
| 475 | |||
| 476 | /** The largest possible command that can go in lepp_queue_t::cmds[]. */ | ||
| 477 | #define LEPP_MAX_CMD_SIZE LEPP_TSO_CMD_SIZE(LEPP_MAX_FRAGS, 128) | ||
| 478 | |||
| 479 | /** The largest possible value of lepp_queue_t::cmd_{head, tail} (inclusive). | ||
| 480 | */ | ||
| 481 | #define LEPP_CMD_LIMIT \ | ||
| 482 | (LEPP_CMD_QUEUE_BYTES - LEPP_MAX_CMD_SIZE) | ||
| 483 | |||
| 484 | /** The maximum number of completions in an LEPP queue. */ | ||
| 485 | #define LEPP_COMP_QUEUE_SIZE \ | ||
| 486 | ((LEPP_CMD_LIMIT + sizeof(lepp_cmd_t) - 1) / sizeof(lepp_cmd_t)) | ||
| 487 | |||
| 488 | /** Increment an index modulo the queue size. */ | ||
| 489 | #define LEPP_QINC(var) \ | ||
| 490 | (var = __insn_mnz(var - (LEPP_COMP_QUEUE_SIZE - 1), var + 1)) | ||
| 491 | |||
| 492 | /** A queue used to convey egress commands from the client to LEPP. */ | ||
| 493 | typedef struct | ||
| 494 | { | ||
| 495 | /** Index of first completion not yet processed by user code. | ||
| 496 | * If this is equal to comp_busy, there are no such completions. | ||
| 497 | * | ||
| 498 | * NOTE: This is only read/written by the user. | ||
| 499 | */ | ||
| 500 | unsigned int comp_head; | ||
| 501 | |||
| 502 | /** Index of first completion record not yet completed. | ||
| 503 | * If this is equal to comp_tail, there are no such completions. | ||
| 504 | * This index gets advanced (modulo LEPP_QUEUE_SIZE) whenever | ||
| 505 | * a command with the 'completion' bit set is finished. | ||
| 506 | * | ||
| 507 | * NOTE: This is only written by LEPP, only read by the user. | ||
| 508 | */ | ||
| 509 | volatile unsigned int comp_busy; | ||
| 510 | |||
| 511 | /** Index of the first empty slot in the completion ring. | ||
| 512 | * Entries from this up to but not including comp_head (in ring order) | ||
| 513 | * can be filled in with completion data. | ||
| 514 | * | ||
| 515 | * NOTE: This is only read/written by the user. | ||
| 516 | */ | ||
| 517 | unsigned int comp_tail; | ||
| 518 | |||
| 519 | /** Byte index of first command enqueued for LEPP but not yet processed. | ||
| 520 | * | ||
| 521 | * This is always divisible by sizeof(void*) and always <= LEPP_CMD_LIMIT. | ||
| 522 | * | ||
| 523 | * NOTE: LEPP advances this counter as soon as it no longer needs | ||
| 524 | * the cmds[] storage for this entry, but the transfer is not actually | ||
| 525 | * complete (i.e. the buffer pointed to by the command is no longer | ||
| 526 | * needed) until comp_busy advances. | ||
| 527 | * | ||
| 528 | * If this is equal to cmd_tail, the ring is empty. | ||
| 529 | * | ||
| 530 | * NOTE: This is only written by LEPP, only read by the user. | ||
| 531 | */ | ||
| 532 | volatile unsigned int cmd_head; | ||
| 533 | |||
| 534 | /** Byte index of first empty slot in the command ring. This field can | ||
| 535 | * be incremented up to but not equal to cmd_head (because that would | ||
| 536 | * mean the ring is empty). | ||
| 537 | * | ||
| 538 | * This is always divisible by sizeof(void*) and always <= LEPP_CMD_LIMIT. | ||
| 539 | * | ||
| 540 | * NOTE: This is read/written by the user, only read by LEPP. | ||
| 541 | */ | ||
| 542 | volatile unsigned int cmd_tail; | ||
| 543 | |||
| 544 | /** A ring of variable-sized egress DMA commands. | ||
| 545 | * | ||
| 546 | * NOTE: Only written by the user, only read by LEPP. | ||
| 547 | */ | ||
| 548 | char cmds[LEPP_CMD_QUEUE_BYTES] | ||
| 549 | __attribute__((aligned(CHIP_L2_LINE_SIZE()))); | ||
| 550 | |||
| 551 | /** A ring of user completion data. | ||
| 552 | * NOTE: Only read/written by the user. | ||
| 553 | */ | ||
| 554 | lepp_comp_t comps[LEPP_COMP_QUEUE_SIZE] | ||
| 555 | __attribute__((aligned(CHIP_L2_LINE_SIZE()))); | ||
| 556 | } lepp_queue_t; | ||
| 557 | |||
| 558 | |||
| 559 | /** An internal helper function for determining the number of entries | ||
| 560 | * available in a ring buffer, given that there is one sentinel. | ||
| 561 | */ | ||
| 562 | static inline unsigned int | ||
| 563 | _lepp_num_free_slots(unsigned int head, unsigned int tail) | ||
| 564 | { | ||
| 565 | /* | ||
| 566 | * One entry is reserved for use as a sentinel, to distinguish | ||
| 567 | * "empty" from "full". So we compute | ||
| 568 | * (head - tail - 1) % LEPP_QUEUE_SIZE, but without using a slow % operation. | ||
| 569 | */ | ||
| 570 | return (head - tail - 1) + ((head <= tail) ? LEPP_COMP_QUEUE_SIZE : 0); | ||
| 571 | } | ||
| 572 | |||
| 573 | |||
| 574 | /** Returns how many new comp entries can be enqueued. */ | ||
| 575 | static inline unsigned int | ||
| 576 | lepp_num_free_comp_slots(const lepp_queue_t* q) | ||
| 577 | { | ||
| 578 | return _lepp_num_free_slots(q->comp_head, q->comp_tail); | ||
| 579 | } | ||
| 580 | |||
| 581 | static inline int | ||
| 582 | lepp_qsub(int v1, int v2) | ||
| 583 | { | ||
| 584 | int delta = v1 - v2; | ||
| 585 | return delta + ((delta >> 31) & LEPP_COMP_QUEUE_SIZE); | ||
| 586 | } | ||
| 587 | |||
| 588 | |||
| 589 | /** FIXME: Check this from linux, via a new "pwrite()" call. */ | ||
| 590 | #define LIPP_VERSION 1 | ||
| 591 | |||
| 592 | |||
| 593 | /** We use exactly two bytes of alignment padding. */ | ||
| 594 | #define LIPP_PACKET_PADDING 2 | ||
| 595 | |||
| 596 | /** The minimum size of a "small" buffer (including the padding). */ | ||
| 597 | #define LIPP_SMALL_PACKET_SIZE 128 | ||
| 598 | |||
| 599 | /* | ||
| 600 | * NOTE: The following two values should total to less than around | ||
| 601 | * 13582, to keep the total size used for "lipp_state_t" below 64K. | ||
| 602 | */ | ||
| 603 | |||
| 604 | /** The maximum number of "small" buffers. | ||
| 605 | * This is enough for 53 network cpus with 128 credits. Note that | ||
| 606 | * if these are exhausted, we will fall back to using large buffers. | ||
| 607 | */ | ||
| 608 | #define LIPP_SMALL_BUFFERS 6785 | ||
| 609 | |||
| 610 | /** The maximum number of "large" buffers. | ||
| 611 | * This is enough for 53 network cpus with 128 credits. | ||
| 612 | */ | ||
| 613 | #define LIPP_LARGE_BUFFERS 6785 | ||
| 614 | |||
| 615 | #endif /* __DRV_XGBE_INTF_H__ */ | ||
diff --git a/arch/tile/include/hv/netio_errors.h b/arch/tile/include/hv/netio_errors.h new file mode 100644 index 000000000000..e1591bff61b5 --- /dev/null +++ b/arch/tile/include/hv/netio_errors.h | |||
| @@ -0,0 +1,122 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | /** | ||
| 16 | * Error codes returned from NetIO routines. | ||
| 17 | */ | ||
| 18 | |||
| 19 | #ifndef __NETIO_ERRORS_H__ | ||
| 20 | #define __NETIO_ERRORS_H__ | ||
| 21 | |||
| 22 | /** | ||
| 23 | * @addtogroup error | ||
| 24 | * | ||
| 25 | * @brief The error codes returned by NetIO functions. | ||
| 26 | * | ||
| 27 | * NetIO functions return 0 (defined as ::NETIO_NO_ERROR) on success, and | ||
| 28 | * a negative value if an error occurs. | ||
| 29 | * | ||
| 30 | * In cases where a NetIO function failed due to a error reported by | ||
| 31 | * system libraries, the error code will be the negation of the | ||
| 32 | * system errno at the time of failure. The @ref netio_strerror() | ||
| 33 | * function will deliver error strings for both NetIO and system error | ||
| 34 | * codes. | ||
| 35 | * | ||
| 36 | * @{ | ||
| 37 | */ | ||
| 38 | |||
| 39 | /** The set of all NetIO errors. */ | ||
| 40 | typedef enum | ||
| 41 | { | ||
| 42 | /** Operation successfully completed. */ | ||
| 43 | NETIO_NO_ERROR = 0, | ||
| 44 | |||
| 45 | /** A packet was successfully retrieved from an input queue. */ | ||
| 46 | NETIO_PKT = 0, | ||
| 47 | |||
| 48 | /** Largest NetIO error number. */ | ||
| 49 | NETIO_ERR_MAX = -701, | ||
| 50 | |||
| 51 | /** The tile is not registered with the IPP. */ | ||
| 52 | NETIO_NOT_REGISTERED = -701, | ||
| 53 | |||
| 54 | /** No packet was available to retrieve from the input queue. */ | ||
| 55 | NETIO_NOPKT = -702, | ||
| 56 | |||
| 57 | /** The requested function is not implemented. */ | ||
| 58 | NETIO_NOT_IMPLEMENTED = -703, | ||
| 59 | |||
| 60 | /** On a registration operation, the target queue already has the maximum | ||
| 61 | * number of tiles registered for it, and no more may be added. On a | ||
| 62 | * packet send operation, the output queue is full and nothing more can | ||
| 63 | * be queued until some of the queued packets are actually transmitted. */ | ||
| 64 | NETIO_QUEUE_FULL = -704, | ||
| 65 | |||
| 66 | /** The calling process or thread is not bound to exactly one CPU. */ | ||
| 67 | NETIO_BAD_AFFINITY = -705, | ||
| 68 | |||
| 69 | /** Cannot allocate memory on requested controllers. */ | ||
| 70 | NETIO_CANNOT_HOME = -706, | ||
| 71 | |||
| 72 | /** On a registration operation, the IPP specified is not configured | ||
| 73 | * to support the options requested; for instance, the application | ||
| 74 | * wants a specific type of tagged headers which the configured IPP | ||
| 75 | * doesn't support. Or, the supplied configuration information is | ||
| 76 | * not self-consistent, or is out of range; for instance, specifying | ||
| 77 | * both NETIO_RECV and NETIO_NO_RECV, or asking for more than | ||
| 78 | * NETIO_MAX_SEND_BUFFERS to be preallocated. On a VLAN or bucket | ||
| 79 | * configure operation, the number of items, or the base item, was | ||
| 80 | * out of range. | ||
| 81 | */ | ||
| 82 | NETIO_BAD_CONFIG = -707, | ||
| 83 | |||
| 84 | /** Too many tiles have registered to transmit packets. */ | ||
| 85 | NETIO_TOOMANY_XMIT = -708, | ||
| 86 | |||
| 87 | /** Packet transmission was attempted on a queue which was registered | ||
| 88 | with transmit disabled. */ | ||
| 89 | NETIO_UNREG_XMIT = -709, | ||
| 90 | |||
| 91 | /** This tile is already registered with the IPP. */ | ||
| 92 | NETIO_ALREADY_REGISTERED = -710, | ||
| 93 | |||
| 94 | /** The Ethernet link is down. The application should try again later. */ | ||
| 95 | NETIO_LINK_DOWN = -711, | ||
| 96 | |||
| 97 | /** An invalid memory buffer has been specified. This may be an unmapped | ||
| 98 | * virtual address, or one which does not meet alignment requirements. | ||
| 99 | * For netio_input_register(), this error may be returned when multiple | ||
| 100 | * processes specify different memory regions to be used for NetIO | ||
| 101 | * buffers. That can happen if these processes specify explicit memory | ||
| 102 | * regions with the ::NETIO_FIXED_BUFFER_VA flag, or if tmc_cmem_init() | ||
| 103 | * has not been called by a common ancestor of the processes. | ||
| 104 | */ | ||
| 105 | NETIO_FAULT = -712, | ||
| 106 | |||
| 107 | /** Cannot combine user-managed shared memory and cache coherence. */ | ||
| 108 | NETIO_BAD_CACHE_CONFIG = -713, | ||
| 109 | |||
| 110 | /** Smallest NetIO error number. */ | ||
| 111 | NETIO_ERR_MIN = -713, | ||
| 112 | |||
| 113 | #ifndef __DOXYGEN__ | ||
| 114 | /** Used internally to mean that no response is needed; never returned to | ||
| 115 | * an application. */ | ||
| 116 | NETIO_NO_RESPONSE = 1 | ||
| 117 | #endif | ||
| 118 | } netio_error_t; | ||
| 119 | |||
| 120 | /** @} */ | ||
| 121 | |||
| 122 | #endif /* __NETIO_ERRORS_H__ */ | ||
diff --git a/arch/tile/include/hv/netio_intf.h b/arch/tile/include/hv/netio_intf.h new file mode 100644 index 000000000000..8d20972aba2c --- /dev/null +++ b/arch/tile/include/hv/netio_intf.h | |||
| @@ -0,0 +1,2975 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | /** | ||
| 16 | * NetIO interface structures and macros. | ||
| 17 | */ | ||
| 18 | |||
| 19 | #ifndef __NETIO_INTF_H__ | ||
| 20 | #define __NETIO_INTF_H__ | ||
| 21 | |||
| 22 | #include <hv/netio_errors.h> | ||
| 23 | |||
| 24 | #ifdef __KERNEL__ | ||
| 25 | #include <linux/types.h> | ||
| 26 | #else | ||
| 27 | #include <stdint.h> | ||
| 28 | #endif | ||
| 29 | |||
| 30 | #if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__) | ||
| 31 | #include <assert.h> | ||
| 32 | #define netio_assert assert /**< Enable assertions from macros */ | ||
| 33 | #else | ||
| 34 | #define netio_assert(...) ((void)(0)) /**< Disable assertions from macros */ | ||
| 35 | #endif | ||
| 36 | |||
| 37 | /* | ||
| 38 | * If none of these symbols are defined, we're building libnetio in an | ||
| 39 | * environment where we have pthreads, so we'll enable locking. | ||
| 40 | */ | ||
| 41 | #if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__) && \ | ||
| 42 | !defined(__NEWLIB__) | ||
| 43 | #define _NETIO_PTHREAD /**< Include a mutex in netio_queue_t below */ | ||
| 44 | |||
| 45 | /* | ||
| 46 | * If NETIO_UNLOCKED is defined, we don't do use per-cpu locks on | ||
| 47 | * per-packet NetIO operations. We still do pthread locking on things | ||
| 48 | * like netio_input_register, though. This is used for building | ||
| 49 | * libnetio_unlocked. | ||
| 50 | */ | ||
| 51 | #ifndef NETIO_UNLOCKED | ||
| 52 | |||
| 53 | /* Avoid PLT overhead by using our own inlined per-cpu lock. */ | ||
| 54 | #include <sched.h> | ||
| 55 | typedef int _netio_percpu_mutex_t; | ||
| 56 | |||
| 57 | static __inline int | ||
| 58 | _netio_percpu_mutex_init(_netio_percpu_mutex_t* lock) | ||
| 59 | { | ||
| 60 | *lock = 0; | ||
| 61 | return 0; | ||
| 62 | } | ||
| 63 | |||
| 64 | static __inline int | ||
| 65 | _netio_percpu_mutex_lock(_netio_percpu_mutex_t* lock) | ||
| 66 | { | ||
| 67 | while (__builtin_expect(__insn_tns(lock), 0)) | ||
| 68 | sched_yield(); | ||
| 69 | return 0; | ||
| 70 | } | ||
| 71 | |||
| 72 | static __inline int | ||
| 73 | _netio_percpu_mutex_unlock(_netio_percpu_mutex_t* lock) | ||
| 74 | { | ||
| 75 | *lock = 0; | ||
| 76 | return 0; | ||
| 77 | } | ||
| 78 | |||
| 79 | #else /* NETIO_UNLOCKED */ | ||
| 80 | |||
| 81 | /* Don't do any locking for per-packet NetIO operations. */ | ||
| 82 | typedef int _netio_percpu_mutex_t; | ||
| 83 | #define _netio_percpu_mutex_init(L) | ||
| 84 | #define _netio_percpu_mutex_lock(L) | ||
| 85 | #define _netio_percpu_mutex_unlock(L) | ||
| 86 | |||
| 87 | #endif /* NETIO_UNLOCKED */ | ||
| 88 | #endif /* !__HV__, !__BOGUX, !__KERNEL__, !__NEWLIB__ */ | ||
| 89 | |||
| 90 | /** How many tiles can register for a given queue. | ||
| 91 | * @ingroup setup */ | ||
| 92 | #define NETIO_MAX_TILES_PER_QUEUE 64 | ||
| 93 | |||
| 94 | |||
| 95 | /** Largest permissible queue identifier. | ||
| 96 | * @ingroup setup */ | ||
| 97 | #define NETIO_MAX_QUEUE_ID 255 | ||
| 98 | |||
| 99 | |||
| 100 | #ifndef __DOXYGEN__ | ||
| 101 | |||
| 102 | /* Metadata packet checksum/ethertype flags. */ | ||
| 103 | |||
| 104 | /** The L4 checksum has not been calculated. */ | ||
| 105 | #define _NETIO_PKT_NO_L4_CSUM_SHIFT 0 | ||
| 106 | #define _NETIO_PKT_NO_L4_CSUM_RMASK 1 | ||
| 107 | #define _NETIO_PKT_NO_L4_CSUM_MASK \ | ||
| 108 | (_NETIO_PKT_NO_L4_CSUM_RMASK << _NETIO_PKT_NO_L4_CSUM_SHIFT) | ||
| 109 | |||
| 110 | /** The L3 checksum has not been calculated. */ | ||
| 111 | #define _NETIO_PKT_NO_L3_CSUM_SHIFT 1 | ||
| 112 | #define _NETIO_PKT_NO_L3_CSUM_RMASK 1 | ||
| 113 | #define _NETIO_PKT_NO_L3_CSUM_MASK \ | ||
| 114 | (_NETIO_PKT_NO_L3_CSUM_RMASK << _NETIO_PKT_NO_L3_CSUM_SHIFT) | ||
| 115 | |||
| 116 | /** The L3 checksum is incorrect (or perhaps has not been calculated). */ | ||
| 117 | #define _NETIO_PKT_BAD_L3_CSUM_SHIFT 2 | ||
| 118 | #define _NETIO_PKT_BAD_L3_CSUM_RMASK 1 | ||
| 119 | #define _NETIO_PKT_BAD_L3_CSUM_MASK \ | ||
| 120 | (_NETIO_PKT_BAD_L3_CSUM_RMASK << _NETIO_PKT_BAD_L3_CSUM_SHIFT) | ||
| 121 | |||
| 122 | /** The Ethernet packet type is unrecognized. */ | ||
| 123 | #define _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT 3 | ||
| 124 | #define _NETIO_PKT_TYPE_UNRECOGNIZED_RMASK 1 | ||
| 125 | #define _NETIO_PKT_TYPE_UNRECOGNIZED_MASK \ | ||
| 126 | (_NETIO_PKT_TYPE_UNRECOGNIZED_RMASK << \ | ||
| 127 | _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT) | ||
| 128 | |||
| 129 | /* Metadata packet type flags. */ | ||
| 130 | |||
| 131 | /** Where the packet type bits are; this field is the index into | ||
| 132 | * _netio_pkt_info. */ | ||
| 133 | #define _NETIO_PKT_TYPE_SHIFT 4 | ||
| 134 | #define _NETIO_PKT_TYPE_RMASK 0x3F | ||
| 135 | |||
| 136 | /** How many VLAN tags the packet has, and, if we have two, which one we | ||
| 137 | * actually grouped on. A VLAN within a proprietary (Marvell or Broadcom) | ||
| 138 | * tag is counted here. */ | ||
| 139 | #define _NETIO_PKT_VLAN_SHIFT 4 | ||
| 140 | #define _NETIO_PKT_VLAN_RMASK 0x3 | ||
| 141 | #define _NETIO_PKT_VLAN_MASK \ | ||
| 142 | (_NETIO_PKT_VLAN_RMASK << _NETIO_PKT_VLAN_SHIFT) | ||
| 143 | #define _NETIO_PKT_VLAN_NONE 0 /* No VLAN tag. */ | ||
| 144 | #define _NETIO_PKT_VLAN_ONE 1 /* One VLAN tag. */ | ||
| 145 | #define _NETIO_PKT_VLAN_TWO_OUTER 2 /* Two VLAN tags, outer one used. */ | ||
| 146 | #define _NETIO_PKT_VLAN_TWO_INNER 3 /* Two VLAN tags, inner one used. */ | ||
| 147 | |||
| 148 | /** Which proprietary tags the packet has. */ | ||
| 149 | #define _NETIO_PKT_TAG_SHIFT 6 | ||
| 150 | #define _NETIO_PKT_TAG_RMASK 0x3 | ||
| 151 | #define _NETIO_PKT_TAG_MASK \ | ||
| 152 | (_NETIO_PKT_TAG_RMASK << _NETIO_PKT_TAG_SHIFT) | ||
| 153 | #define _NETIO_PKT_TAG_NONE 0 /* No proprietary tags. */ | ||
| 154 | #define _NETIO_PKT_TAG_MRVL 1 /* Marvell HyperG.Stack tags. */ | ||
| 155 | #define _NETIO_PKT_TAG_MRVL_EXT 2 /* HyperG.Stack extended tags. */ | ||
| 156 | #define _NETIO_PKT_TAG_BRCM 3 /* Broadcom HiGig tags. */ | ||
| 157 | |||
| 158 | /** Whether a packet has an LLC + SNAP header. */ | ||
| 159 | #define _NETIO_PKT_SNAP_SHIFT 8 | ||
| 160 | #define _NETIO_PKT_SNAP_RMASK 0x1 | ||
| 161 | #define _NETIO_PKT_SNAP_MASK \ | ||
| 162 | (_NETIO_PKT_SNAP_RMASK << _NETIO_PKT_SNAP_SHIFT) | ||
| 163 | |||
| 164 | /* NOTE: Bits 9 and 10 are unused. */ | ||
| 165 | |||
| 166 | /** Length of any custom data before the L2 header, in words. */ | ||
| 167 | #define _NETIO_PKT_CUSTOM_LEN_SHIFT 11 | ||
| 168 | #define _NETIO_PKT_CUSTOM_LEN_RMASK 0x1F | ||
| 169 | #define _NETIO_PKT_CUSTOM_LEN_MASK \ | ||
| 170 | (_NETIO_PKT_CUSTOM_LEN_RMASK << _NETIO_PKT_CUSTOM_LEN_SHIFT) | ||
| 171 | |||
| 172 | /** The L4 checksum is incorrect (or perhaps has not been calculated). */ | ||
| 173 | #define _NETIO_PKT_BAD_L4_CSUM_SHIFT 16 | ||
| 174 | #define _NETIO_PKT_BAD_L4_CSUM_RMASK 0x1 | ||
| 175 | #define _NETIO_PKT_BAD_L4_CSUM_MASK \ | ||
| 176 | (_NETIO_PKT_BAD_L4_CSUM_RMASK << _NETIO_PKT_BAD_L4_CSUM_SHIFT) | ||
| 177 | |||
| 178 | /** Length of the L2 header, in words. */ | ||
| 179 | #define _NETIO_PKT_L2_LEN_SHIFT 17 | ||
| 180 | #define _NETIO_PKT_L2_LEN_RMASK 0x1F | ||
| 181 | #define _NETIO_PKT_L2_LEN_MASK \ | ||
| 182 | (_NETIO_PKT_L2_LEN_RMASK << _NETIO_PKT_L2_LEN_SHIFT) | ||
| 183 | |||
| 184 | |||
| 185 | /* Flags in minimal packet metadata. */ | ||
| 186 | |||
| 187 | /** We need an eDMA checksum on this packet. */ | ||
| 188 | #define _NETIO_PKT_NEED_EDMA_CSUM_SHIFT 0 | ||
| 189 | #define _NETIO_PKT_NEED_EDMA_CSUM_RMASK 1 | ||
| 190 | #define _NETIO_PKT_NEED_EDMA_CSUM_MASK \ | ||
| 191 | (_NETIO_PKT_NEED_EDMA_CSUM_RMASK << _NETIO_PKT_NEED_EDMA_CSUM_SHIFT) | ||
| 192 | |||
| 193 | /* Data within the packet information table. */ | ||
| 194 | |||
| 195 | /* Note that, for efficiency, code which uses these fields assumes that none | ||
| 196 | * of the shift values below are zero. See uses below for an explanation. */ | ||
| 197 | |||
| 198 | /** Offset within the L2 header of the innermost ethertype (in halfwords). */ | ||
| 199 | #define _NETIO_PKT_INFO_ETYPE_SHIFT 6 | ||
| 200 | #define _NETIO_PKT_INFO_ETYPE_RMASK 0x1F | ||
| 201 | |||
| 202 | /** Offset within the L2 header of the VLAN tag (in halfwords). */ | ||
| 203 | #define _NETIO_PKT_INFO_VLAN_SHIFT 11 | ||
| 204 | #define _NETIO_PKT_INFO_VLAN_RMASK 0x1F | ||
| 205 | |||
| 206 | #endif | ||
| 207 | |||
| 208 | |||
| 209 | /** The size of a memory buffer representing a small packet. | ||
| 210 | * @ingroup egress */ | ||
| 211 | #define SMALL_PACKET_SIZE 256 | ||
| 212 | |||
| 213 | /** The size of a memory buffer representing a large packet. | ||
| 214 | * @ingroup egress */ | ||
| 215 | #define LARGE_PACKET_SIZE 2048 | ||
| 216 | |||
| 217 | /** The size of a memory buffer representing a jumbo packet. | ||
| 218 | * @ingroup egress */ | ||
| 219 | #define JUMBO_PACKET_SIZE (12 * 1024) | ||
| 220 | |||
| 221 | |||
| 222 | /* Common ethertypes. | ||
| 223 | * @ingroup ingress */ | ||
| 224 | /** @{ */ | ||
| 225 | /** The ethertype of IPv4. */ | ||
| 226 | #define ETHERTYPE_IPv4 (0x0800) | ||
| 227 | /** The ethertype of ARP. */ | ||
| 228 | #define ETHERTYPE_ARP (0x0806) | ||
| 229 | /** The ethertype of VLANs. */ | ||
| 230 | #define ETHERTYPE_VLAN (0x8100) | ||
| 231 | /** The ethertype of a Q-in-Q header. */ | ||
| 232 | #define ETHERTYPE_Q_IN_Q (0x9100) | ||
| 233 | /** The ethertype of IPv6. */ | ||
| 234 | #define ETHERTYPE_IPv6 (0x86DD) | ||
| 235 | /** The ethertype of MPLS. */ | ||
| 236 | #define ETHERTYPE_MPLS (0x8847) | ||
| 237 | /** @} */ | ||
| 238 | |||
| 239 | |||
| 240 | /** The possible return values of NETIO_PKT_STATUS. | ||
| 241 | * @ingroup ingress | ||
| 242 | */ | ||
| 243 | typedef enum | ||
| 244 | { | ||
| 245 | /** No problems were detected with this packet. */ | ||
| 246 | NETIO_PKT_STATUS_OK, | ||
| 247 | /** The packet is undersized; this is expected behavior if the packet's | ||
| 248 | * ethertype is unrecognized, but otherwise the packet is likely corrupt. */ | ||
| 249 | NETIO_PKT_STATUS_UNDERSIZE, | ||
| 250 | /** The packet is oversized and some trailing bytes have been discarded. | ||
| 251 | This is expected behavior for short packets, since it's impossible to | ||
| 252 | precisely determine the amount of padding which may have been added to | ||
| 253 | them to make them meet the minimum Ethernet packet size. */ | ||
| 254 | NETIO_PKT_STATUS_OVERSIZE, | ||
| 255 | /** The packet was judged to be corrupt by hardware (for instance, it had | ||
| 256 | a bad CRC, or part of it was discarded due to lack of buffer space in | ||
| 257 | the I/O shim) and should be discarded. */ | ||
| 258 | NETIO_PKT_STATUS_BAD | ||
| 259 | } netio_pkt_status_t; | ||
| 260 | |||
| 261 | |||
| 262 | /** Log2 of how many buckets we have. */ | ||
| 263 | #define NETIO_LOG2_NUM_BUCKETS (10) | ||
| 264 | |||
| 265 | /** How many buckets we have. | ||
| 266 | * @ingroup ingress */ | ||
| 267 | #define NETIO_NUM_BUCKETS (1 << NETIO_LOG2_NUM_BUCKETS) | ||
| 268 | |||
| 269 | |||
| 270 | /** | ||
| 271 | * @brief A group-to-bucket identifier. | ||
| 272 | * | ||
| 273 | * @ingroup setup | ||
| 274 | * | ||
| 275 | * This tells us what to do with a given group. | ||
| 276 | */ | ||
| 277 | typedef union { | ||
| 278 | /** The header broken down into bits. */ | ||
| 279 | struct { | ||
| 280 | /** Whether we should balance on L4, if available */ | ||
| 281 | unsigned int __balance_on_l4:1; | ||
| 282 | /** Whether we should balance on L3, if available */ | ||
| 283 | unsigned int __balance_on_l3:1; | ||
| 284 | /** Whether we should balance on L2, if available */ | ||
| 285 | unsigned int __balance_on_l2:1; | ||
| 286 | /** Reserved for future use */ | ||
| 287 | unsigned int __reserved:1; | ||
| 288 | /** The base bucket to use to send traffic */ | ||
| 289 | unsigned int __bucket_base:NETIO_LOG2_NUM_BUCKETS; | ||
| 290 | /** The mask to apply to the balancing value. This must be one less | ||
| 291 | * than a power of two, e.g. 0x3 or 0xFF. | ||
| 292 | */ | ||
| 293 | unsigned int __bucket_mask:NETIO_LOG2_NUM_BUCKETS; | ||
| 294 | /** Pad to 32 bits */ | ||
| 295 | unsigned int __padding:(32 - 4 - 2 * NETIO_LOG2_NUM_BUCKETS); | ||
| 296 | } bits; | ||
| 297 | /** To send out the IDN. */ | ||
| 298 | unsigned int word; | ||
| 299 | } | ||
| 300 | netio_group_t; | ||
| 301 | |||
| 302 | |||
| 303 | /** | ||
| 304 | * @brief A VLAN-to-bucket identifier. | ||
| 305 | * | ||
| 306 | * @ingroup setup | ||
| 307 | * | ||
| 308 | * This tells us what to do with a given VLAN. | ||
| 309 | */ | ||
| 310 | typedef netio_group_t netio_vlan_t; | ||
| 311 | |||
| 312 | |||
| 313 | /** | ||
| 314 | * A bucket-to-queue mapping. | ||
| 315 | * @ingroup setup | ||
| 316 | */ | ||
| 317 | typedef unsigned char netio_bucket_t; | ||
| 318 | |||
| 319 | |||
| 320 | /** | ||
| 321 | * A packet size can always fit in a netio_size_t. | ||
| 322 | * @ingroup setup | ||
| 323 | */ | ||
| 324 | typedef unsigned int netio_size_t; | ||
| 325 | |||
| 326 | |||
| 327 | /** | ||
| 328 | * @brief Ethernet standard (ingress) packet metadata. | ||
| 329 | * | ||
| 330 | * @ingroup ingress | ||
| 331 | * | ||
| 332 | * This is additional data associated with each packet. | ||
| 333 | * This structure is opaque and accessed through the @ref ingress. | ||
| 334 | * | ||
| 335 | * Also, the buffer population operation currently assumes that standard | ||
| 336 | * metadata is at least as large as minimal metadata, and will need to be | ||
| 337 | * modified if that is no longer the case. | ||
| 338 | */ | ||
| 339 | typedef struct | ||
| 340 | { | ||
| 341 | #ifdef __DOXYGEN__ | ||
| 342 | /** This structure is opaque. */ | ||
| 343 | unsigned char opaque[24]; | ||
| 344 | #else | ||
| 345 | /** The overall ordinal of the packet */ | ||
| 346 | unsigned int __packet_ordinal; | ||
| 347 | /** The ordinal of the packet within the group */ | ||
| 348 | unsigned int __group_ordinal; | ||
| 349 | /** The best flow hash IPP could compute. */ | ||
| 350 | unsigned int __flow_hash; | ||
| 351 | /** Flags pertaining to checksum calculation, packet type, etc. */ | ||
| 352 | unsigned int __flags; | ||
| 353 | /** The first word of "user data". */ | ||
| 354 | unsigned int __user_data_0; | ||
| 355 | /** The second word of "user data". */ | ||
| 356 | unsigned int __user_data_1; | ||
| 357 | #endif | ||
| 358 | } | ||
| 359 | netio_pkt_metadata_t; | ||
| 360 | |||
| 361 | |||
| 362 | /** To ensure that the L3 header is aligned mod 4, the L2 header should be | ||
| 363 | * aligned mod 4 plus 2, since every supported L2 header is 4n + 2 bytes | ||
| 364 | * long. The standard way to do this is to simply add 2 bytes of padding | ||
| 365 | * before the L2 header. | ||
| 366 | */ | ||
| 367 | #define NETIO_PACKET_PADDING 2 | ||
| 368 | |||
| 369 | |||
| 370 | |||
| 371 | /** | ||
| 372 | * @brief Ethernet minimal (egress) packet metadata. | ||
| 373 | * | ||
| 374 | * @ingroup egress | ||
| 375 | * | ||
| 376 | * This structure represents information about packets which have | ||
| 377 | * been processed by @ref netio_populate_buffer() or | ||
| 378 | * @ref netio_populate_prepend_buffer(). This structure is opaque | ||
| 379 | * and accessed through the @ref egress. | ||
| 380 | * | ||
| 381 | * @internal This structure is actually copied into the memory used by | ||
| 382 | * standard metadata, which is assumed to be large enough. | ||
| 383 | */ | ||
| 384 | typedef struct | ||
| 385 | { | ||
| 386 | #ifdef __DOXYGEN__ | ||
| 387 | /** This structure is opaque. */ | ||
| 388 | unsigned char opaque[14]; | ||
| 389 | #else | ||
| 390 | /** The offset of the L2 header from the start of the packet data. */ | ||
| 391 | unsigned short l2_offset; | ||
| 392 | /** The offset of the L3 header from the start of the packet data. */ | ||
| 393 | unsigned short l3_offset; | ||
| 394 | /** Where to write the checksum. */ | ||
| 395 | unsigned char csum_location; | ||
| 396 | /** Where to start checksumming from. */ | ||
| 397 | unsigned char csum_start; | ||
| 398 | /** Flags pertaining to checksum calculation etc. */ | ||
| 399 | unsigned short flags; | ||
| 400 | /** The L2 length of the packet. */ | ||
| 401 | unsigned short l2_length; | ||
| 402 | /** The checksum with which to seed the checksum generator. */ | ||
| 403 | unsigned short csum_seed; | ||
| 404 | /** How much to checksum. */ | ||
| 405 | unsigned short csum_length; | ||
| 406 | #endif | ||
| 407 | } | ||
| 408 | netio_pkt_minimal_metadata_t; | ||
| 409 | |||
| 410 | |||
| 411 | #ifndef __DOXYGEN__ | ||
| 412 | |||
| 413 | /** | ||
| 414 | * @brief An I/O notification header. | ||
| 415 | * | ||
| 416 | * This is the first word of data received from an I/O shim in a notification | ||
| 417 | * packet. It contains framing and status information. | ||
| 418 | */ | ||
| 419 | typedef union | ||
| 420 | { | ||
| 421 | unsigned int word; /**< The whole word. */ | ||
| 422 | /** The various fields. */ | ||
| 423 | struct | ||
| 424 | { | ||
| 425 | unsigned int __channel:7; /**< Resource channel. */ | ||
| 426 | unsigned int __type:4; /**< Type. */ | ||
| 427 | unsigned int __ack:1; /**< Whether an acknowledgement is needed. */ | ||
| 428 | unsigned int __reserved:1; /**< Reserved. */ | ||
| 429 | unsigned int __protocol:1; /**< A protocol-specific word is added. */ | ||
| 430 | unsigned int __status:2; /**< Status of the transfer. */ | ||
| 431 | unsigned int __framing:2; /**< Framing of the transfer. */ | ||
| 432 | unsigned int __transfer_size:14; /**< Transfer size in bytes (total). */ | ||
| 433 | } bits; | ||
| 434 | } | ||
| 435 | __netio_pkt_notif_t; | ||
| 436 | |||
| 437 | |||
| 438 | /** | ||
| 439 | * Returns the base address of the packet. | ||
| 440 | */ | ||
| 441 | #define _NETIO_PKT_HANDLE_BASE(p) \ | ||
| 442 | ((unsigned char*)((p).word & 0xFFFFFFC0)) | ||
| 443 | |||
| 444 | /** | ||
| 445 | * Returns the base address of the packet. | ||
| 446 | */ | ||
| 447 | #define _NETIO_PKT_BASE(p) \ | ||
| 448 | _NETIO_PKT_HANDLE_BASE(p->__packet) | ||
| 449 | |||
| 450 | /** | ||
| 451 | * @brief An I/O notification packet (second word) | ||
| 452 | * | ||
| 453 | * This is the second word of data received from an I/O shim in a notification | ||
| 454 | * packet. This is the virtual address of the packet buffer, plus some flag | ||
| 455 | * bits. (The virtual address of the packet is always 256-byte aligned so we | ||
| 456 | * have room for 8 bits' worth of flags in the low 8 bits.) | ||
| 457 | * | ||
| 458 | * @internal | ||
| 459 | * NOTE: The low two bits must contain "__queue", so the "packet size" | ||
| 460 | * (SIZE_SMALL, SIZE_LARGE, or SIZE_JUMBO) can be determined quickly. | ||
| 461 | * | ||
| 462 | * If __addr or __offset are moved, _NETIO_PKT_BASE | ||
| 463 | * (defined right below this) must be changed. | ||
| 464 | */ | ||
| 465 | typedef union | ||
| 466 | { | ||
| 467 | unsigned int word; /**< The whole word. */ | ||
| 468 | /** The various fields. */ | ||
| 469 | struct | ||
| 470 | { | ||
| 471 | /** Which queue the packet will be returned to once it is sent back to | ||
| 472 | the IPP. This is one of the SIZE_xxx values. */ | ||
| 473 | unsigned int __queue:2; | ||
| 474 | |||
| 475 | /** The IPP handle of the sending IPP. */ | ||
| 476 | unsigned int __ipp_handle:2; | ||
| 477 | |||
| 478 | /** Reserved for future use. */ | ||
| 479 | unsigned int __reserved:1; | ||
| 480 | |||
| 481 | /** If 1, this packet has minimal (egress) metadata; otherwise, it | ||
| 482 | has standard (ingress) metadata. */ | ||
| 483 | unsigned int __minimal:1; | ||
| 484 | |||
| 485 | /** Offset of the metadata within the packet. This value is multiplied | ||
| 486 | * by 64 and added to the base packet address to get the metadata | ||
| 487 | * address. Note that this field is aligned within the word such that | ||
| 488 | * you can easily extract the metadata address with a 26-bit mask. */ | ||
| 489 | unsigned int __offset:2; | ||
| 490 | |||
| 491 | /** The top 24 bits of the packet's virtual address. */ | ||
| 492 | unsigned int __addr:24; | ||
| 493 | } bits; | ||
| 494 | } | ||
| 495 | __netio_pkt_handle_t; | ||
| 496 | |||
| 497 | #endif /* !__DOXYGEN__ */ | ||
| 498 | |||
| 499 | |||
| 500 | /** | ||
| 501 | * @brief A handle for an I/O packet's storage. | ||
| 502 | * @ingroup ingress | ||
| 503 | * | ||
| 504 | * netio_pkt_handle_t encodes the concept of a ::netio_pkt_t with its | ||
| 505 | * packet metadata removed. It is a much smaller type that exists to | ||
| 506 | * facilitate applications where the full ::netio_pkt_t type is too | ||
| 507 | * large, such as those that cache enormous numbers of packets or wish | ||
| 508 | * to transmit packet descriptors over the UDN. | ||
| 509 | * | ||
| 510 | * Because there is no metadata, most ::netio_pkt_t operations cannot be | ||
| 511 | * performed on a netio_pkt_handle_t. It supports only | ||
| 512 | * netio_free_handle() (to free the buffer) and | ||
| 513 | * NETIO_PKT_CUSTOM_DATA_H() (to access a pointer to its contents). | ||
| 514 | * The application must acquire any additional metadata it wants from the | ||
| 515 | * original ::netio_pkt_t and record it separately. | ||
| 516 | * | ||
| 517 | * A netio_pkt_handle_t can be extracted from a ::netio_pkt_t by calling | ||
| 518 | * NETIO_PKT_HANDLE(). An invalid handle (analogous to NULL) can be | ||
| 519 | * created by assigning the value ::NETIO_PKT_HANDLE_NONE. A handle can | ||
| 520 | * be tested for validity with NETIO_PKT_HANDLE_IS_VALID(). | ||
| 521 | */ | ||
| 522 | typedef struct | ||
| 523 | { | ||
| 524 | unsigned int word; /**< Opaque bits. */ | ||
| 525 | } netio_pkt_handle_t; | ||
| 526 | |||
| 527 | /** | ||
| 528 | * @brief A packet descriptor. | ||
| 529 | * | ||
| 530 | * @ingroup ingress | ||
| 531 | * @ingroup egress | ||
| 532 | * | ||
| 533 | * This data structure represents a packet. The structure is manipulated | ||
| 534 | * through the @ref ingress and the @ref egress. | ||
| 535 | * | ||
| 536 | * While the contents of a netio_pkt_t are opaque, the structure itself is | ||
| 537 | * portable. This means that it may be shared between all tiles which have | ||
| 538 | * done a netio_input_register() call for the interface on which the pkt_t | ||
| 539 | * was initially received (via netio_get_packet()) or retrieved (via | ||
| 540 | * netio_get_buffer()). The contents of a netio_pkt_t can be transmitted to | ||
| 541 | * another tile via shared memory, or via a UDN message, or by other means. | ||
| 542 | * The destination tile may then use the pkt_t as if it had originally been | ||
| 543 | * received locally; it may read or write the packet's data, read its | ||
| 544 | * metadata, free the packet, send the packet, transfer the netio_pkt_t to | ||
| 545 | * yet another tile, and so forth. | ||
| 546 | * | ||
| 547 | * Once a netio_pkt_t has been transferred to a second tile, the first tile | ||
| 548 | * should not reference the original copy; in particular, if more than one | ||
| 549 | * tile frees or sends the same netio_pkt_t, the IPP's packet free lists will | ||
| 550 | * become corrupted. Note also that each tile which reads or modifies | ||
| 551 | * packet data must obey the memory coherency rules outlined in @ref input. | ||
| 552 | */ | ||
| 553 | typedef struct | ||
| 554 | { | ||
| 555 | #ifdef __DOXYGEN__ | ||
| 556 | /** This structure is opaque. */ | ||
| 557 | unsigned char opaque[32]; | ||
| 558 | #else | ||
| 559 | /** For an ingress packet (one with standard metadata), this is the | ||
| 560 | * notification header we got from the I/O shim. For an egress packet | ||
| 561 | * (one with minimal metadata), this word is zero if the packet has not | ||
| 562 | * been populated, and nonzero if it has. */ | ||
| 563 | __netio_pkt_notif_t __notif_header; | ||
| 564 | |||
| 565 | /** Virtual address of the packet buffer, plus state flags. */ | ||
| 566 | __netio_pkt_handle_t __packet; | ||
| 567 | |||
| 568 | /** Metadata associated with the packet. */ | ||
| 569 | netio_pkt_metadata_t __metadata; | ||
| 570 | #endif | ||
| 571 | } | ||
| 572 | netio_pkt_t; | ||
| 573 | |||
| 574 | |||
| 575 | #ifndef __DOXYGEN__ | ||
| 576 | |||
| 577 | #define __NETIO_PKT_NOTIF_HEADER(pkt) ((pkt)->__notif_header) | ||
| 578 | #define __NETIO_PKT_IPP_HANDLE(pkt) ((pkt)->__packet.bits.__ipp_handle) | ||
| 579 | #define __NETIO_PKT_QUEUE(pkt) ((pkt)->__packet.bits.__queue) | ||
| 580 | #define __NETIO_PKT_NOTIF_HEADER_M(mda, pkt) ((pkt)->__notif_header) | ||
| 581 | #define __NETIO_PKT_IPP_HANDLE_M(mda, pkt) ((pkt)->__packet.bits.__ipp_handle) | ||
| 582 | #define __NETIO_PKT_MINIMAL(pkt) ((pkt)->__packet.bits.__minimal) | ||
| 583 | #define __NETIO_PKT_QUEUE_M(mda, pkt) ((pkt)->__packet.bits.__queue) | ||
| 584 | #define __NETIO_PKT_FLAGS_M(mda, pkt) ((mda)->__flags) | ||
| 585 | |||
| 586 | /* Packet information table, used by the attribute access functions below. */ | ||
| 587 | extern const uint16_t _netio_pkt_info[]; | ||
| 588 | |||
| 589 | #endif /* __DOXYGEN__ */ | ||
| 590 | |||
| 591 | |||
| 592 | #ifndef __DOXYGEN__ | ||
| 593 | /* These macros are deprecated and will disappear in a future MDE release. */ | ||
| 594 | #define NETIO_PKT_GOOD_CHECKSUM(pkt) \ | ||
| 595 | NETIO_PKT_L4_CSUM_CORRECT(pkt) | ||
| 596 | #define NETIO_PKT_GOOD_CHECKSUM_M(mda, pkt) \ | ||
| 597 | NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt) | ||
| 598 | #endif /* __DOXYGEN__ */ | ||
| 599 | |||
| 600 | |||
| 601 | /* Packet attribute access functions. */ | ||
| 602 | |||
| 603 | /** Return a pointer to the metadata for a packet. | ||
| 604 | * @ingroup ingress | ||
| 605 | * | ||
| 606 | * Calling this function once and passing the result to other retrieval | ||
| 607 | * functions with a "_M" suffix usually improves performance. This | ||
| 608 | * function must be called on an 'ingress' packet (i.e. one retrieved | ||
| 609 | * by @ref netio_get_packet(), on which @ref netio_populate_buffer() or | ||
| 610 | * @ref netio_populate_prepend_buffer have not been called). Use of this | ||
| 611 | * function on an 'egress' packet will cause an assertion failure. | ||
| 612 | * | ||
| 613 | * @param[in] pkt Packet on which to operate. | ||
| 614 | * @return A pointer to the packet's standard metadata. | ||
| 615 | */ | ||
| 616 | static __inline netio_pkt_metadata_t* | ||
| 617 | NETIO_PKT_METADATA(netio_pkt_t* pkt) | ||
| 618 | { | ||
| 619 | netio_assert(!pkt->__packet.bits.__minimal); | ||
| 620 | return &pkt->__metadata; | ||
| 621 | } | ||
| 622 | |||
| 623 | |||
| 624 | /** Return a pointer to the minimal metadata for a packet. | ||
| 625 | * @ingroup egress | ||
| 626 | * | ||
| 627 | * Calling this function once and passing the result to other retrieval | ||
| 628 | * functions with a "_MM" suffix usually improves performance. This | ||
| 629 | * function must be called on an 'egress' packet (i.e. one on which | ||
| 630 | * @ref netio_populate_buffer() or @ref netio_populate_prepend_buffer() | ||
| 631 | * have been called, or one retrieved by @ref netio_get_buffer()). Use of | ||
| 632 | * this function on an 'ingress' packet will cause an assertion failure. | ||
| 633 | * | ||
| 634 | * @param[in] pkt Packet on which to operate. | ||
| 635 | * @return A pointer to the packet's standard metadata. | ||
| 636 | */ | ||
| 637 | static __inline netio_pkt_minimal_metadata_t* | ||
| 638 | NETIO_PKT_MINIMAL_METADATA(netio_pkt_t* pkt) | ||
| 639 | { | ||
| 640 | netio_assert(pkt->__packet.bits.__minimal); | ||
| 641 | return (netio_pkt_minimal_metadata_t*) &pkt->__metadata; | ||
| 642 | } | ||
| 643 | |||
| 644 | |||
| 645 | /** Determine whether a packet has 'minimal' metadata. | ||
| 646 | * @ingroup pktfuncs | ||
| 647 | * | ||
| 648 | * This function will return nonzero if the packet is an 'egress' | ||
| 649 | * packet (i.e. one on which @ref netio_populate_buffer() or | ||
| 650 | * @ref netio_populate_prepend_buffer() have been called, or one | ||
| 651 | * retrieved by @ref netio_get_buffer()), and zero if the packet | ||
| 652 | * is an 'ingress' packet (i.e. one retrieved by @ref netio_get_packet(), | ||
| 653 | * which has not been converted into an 'egress' packet). | ||
| 654 | * | ||
| 655 | * @param[in] pkt Packet on which to operate. | ||
| 656 | * @return Nonzero if the packet has minimal metadata. | ||
| 657 | */ | ||
| 658 | static __inline unsigned int | ||
| 659 | NETIO_PKT_IS_MINIMAL(netio_pkt_t* pkt) | ||
| 660 | { | ||
| 661 | return pkt->__packet.bits.__minimal; | ||
| 662 | } | ||
| 663 | |||
| 664 | |||
| 665 | /** Return a handle for a packet's storage. | ||
| 666 | * @ingroup pktfuncs | ||
| 667 | * | ||
| 668 | * @param[in] pkt Packet on which to operate. | ||
| 669 | * @return A handle for the packet's storage. | ||
| 670 | */ | ||
| 671 | static __inline netio_pkt_handle_t | ||
| 672 | NETIO_PKT_HANDLE(netio_pkt_t* pkt) | ||
| 673 | { | ||
| 674 | netio_pkt_handle_t h; | ||
| 675 | h.word = pkt->__packet.word; | ||
| 676 | return h; | ||
| 677 | } | ||
| 678 | |||
| 679 | |||
| 680 | /** A special reserved value indicating the absence of a packet handle. | ||
| 681 | * | ||
| 682 | * @ingroup pktfuncs | ||
| 683 | */ | ||
| 684 | #define NETIO_PKT_HANDLE_NONE ((netio_pkt_handle_t) { 0 }) | ||
| 685 | |||
| 686 | |||
| 687 | /** Test whether a packet handle is valid. | ||
| 688 | * | ||
| 689 | * Applications may wish to use the reserved value NETIO_PKT_HANDLE_NONE | ||
| 690 | * to indicate no packet at all. This function tests to see if a packet | ||
| 691 | * handle is a real handle, not this special reserved value. | ||
| 692 | * | ||
| 693 | * @ingroup pktfuncs | ||
| 694 | * | ||
| 695 | * @param[in] handle Handle on which to operate. | ||
| 696 | * @return One if the packet handle is valid, else zero. | ||
| 697 | */ | ||
| 698 | static __inline unsigned int | ||
| 699 | NETIO_PKT_HANDLE_IS_VALID(netio_pkt_handle_t handle) | ||
| 700 | { | ||
| 701 | return handle.word != 0; | ||
| 702 | } | ||
| 703 | |||
| 704 | |||
| 705 | |||
| 706 | /** Return a pointer to the start of the packet's custom header. | ||
| 707 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 708 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 709 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 710 | * the custom header precedes the L2 header in the packet buffer. | ||
| 711 | * @ingroup ingress | ||
| 712 | * | ||
| 713 | * @param[in] handle Handle on which to operate. | ||
| 714 | * @return A pointer to start of the packet. | ||
| 715 | */ | ||
| 716 | static __inline unsigned char* | ||
| 717 | NETIO_PKT_CUSTOM_DATA_H(netio_pkt_handle_t handle) | ||
| 718 | { | ||
| 719 | return _NETIO_PKT_HANDLE_BASE(handle) + NETIO_PACKET_PADDING; | ||
| 720 | } | ||
| 721 | |||
| 722 | |||
| 723 | /** Return the length of the packet's custom header. | ||
| 724 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 725 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 726 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 727 | * the custom header precedes the L2 header in the packet buffer. | ||
| 728 | * | ||
| 729 | * @ingroup ingress | ||
| 730 | * | ||
| 731 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 732 | * @param[in] pkt Packet on which to operate. | ||
| 733 | * @return The length of the packet's custom header, in bytes. | ||
| 734 | */ | ||
| 735 | static __inline netio_size_t | ||
| 736 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 737 | { | ||
| 738 | /* | ||
| 739 | * Note that we effectively need to extract a quantity from the flags word | ||
| 740 | * which is measured in words, and then turn it into bytes by shifting | ||
| 741 | * it left by 2. We do this all at once by just shifting right two less | ||
| 742 | * bits, and shifting the mask up two bits. | ||
| 743 | */ | ||
| 744 | return ((mda->__flags >> (_NETIO_PKT_CUSTOM_LEN_SHIFT - 2)) & | ||
| 745 | (_NETIO_PKT_CUSTOM_LEN_RMASK << 2)); | ||
| 746 | } | ||
| 747 | |||
| 748 | |||
| 749 | /** Return the length of the packet, starting with the custom header. | ||
| 750 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 751 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 752 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 753 | * the custom header precedes the L2 header in the packet buffer. | ||
| 754 | * @ingroup ingress | ||
| 755 | * | ||
| 756 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 757 | * @param[in] pkt Packet on which to operate. | ||
| 758 | * @return The length of the packet, in bytes. | ||
| 759 | */ | ||
| 760 | static __inline netio_size_t | ||
| 761 | NETIO_PKT_CUSTOM_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 762 | { | ||
| 763 | return (__NETIO_PKT_NOTIF_HEADER(pkt).bits.__transfer_size - | ||
| 764 | NETIO_PACKET_PADDING); | ||
| 765 | } | ||
| 766 | |||
| 767 | |||
| 768 | /** Return a pointer to the start of the packet's custom header. | ||
| 769 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 770 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 771 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 772 | * the custom header precedes the L2 header in the packet buffer. | ||
| 773 | * @ingroup ingress | ||
| 774 | * | ||
| 775 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 776 | * @param[in] pkt Packet on which to operate. | ||
| 777 | * @return A pointer to start of the packet. | ||
| 778 | */ | ||
| 779 | static __inline unsigned char* | ||
| 780 | NETIO_PKT_CUSTOM_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 781 | { | ||
| 782 | return NETIO_PKT_CUSTOM_DATA_H(NETIO_PKT_HANDLE(pkt)); | ||
| 783 | } | ||
| 784 | |||
| 785 | |||
| 786 | /** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header. | ||
| 787 | * @ingroup ingress | ||
| 788 | * | ||
| 789 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 790 | * @param[in] pkt Packet on which to operate. | ||
| 791 | * @return The length of the packet's L2 header, in bytes. | ||
| 792 | */ | ||
| 793 | static __inline netio_size_t | ||
| 794 | NETIO_PKT_L2_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 795 | { | ||
| 796 | /* | ||
| 797 | * Note that we effectively need to extract a quantity from the flags word | ||
| 798 | * which is measured in words, and then turn it into bytes by shifting | ||
| 799 | * it left by 2. We do this all at once by just shifting right two less | ||
| 800 | * bits, and shifting the mask up two bits. We then add two bytes. | ||
| 801 | */ | ||
| 802 | return ((mda->__flags >> (_NETIO_PKT_L2_LEN_SHIFT - 2)) & | ||
| 803 | (_NETIO_PKT_L2_LEN_RMASK << 2)) + 2; | ||
| 804 | } | ||
| 805 | |||
| 806 | |||
| 807 | /** Return the length of the packet, starting with the L2 (Ethernet) header. | ||
| 808 | * @ingroup ingress | ||
| 809 | * | ||
| 810 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 811 | * @param[in] pkt Packet on which to operate. | ||
| 812 | * @return The length of the packet, in bytes. | ||
| 813 | */ | ||
| 814 | static __inline netio_size_t | ||
| 815 | NETIO_PKT_L2_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 816 | { | ||
| 817 | return (NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt) - | ||
| 818 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda,pkt)); | ||
| 819 | } | ||
| 820 | |||
| 821 | |||
| 822 | /** Return a pointer to the start of the packet's L2 (Ethernet) header. | ||
| 823 | * @ingroup ingress | ||
| 824 | * | ||
| 825 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 826 | * @param[in] pkt Packet on which to operate. | ||
| 827 | * @return A pointer to start of the packet. | ||
| 828 | */ | ||
| 829 | static __inline unsigned char* | ||
| 830 | NETIO_PKT_L2_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 831 | { | ||
| 832 | return (NETIO_PKT_CUSTOM_DATA_M(mda, pkt) + | ||
| 833 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt)); | ||
| 834 | } | ||
| 835 | |||
| 836 | |||
| 837 | /** Retrieve the length of the packet, starting with the L3 (generally, | ||
| 838 | * the IP) header. | ||
| 839 | * @ingroup ingress | ||
| 840 | * | ||
| 841 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 842 | * @param[in] pkt Packet on which to operate. | ||
| 843 | * @return Length of the packet's L3 header and data, in bytes. | ||
| 844 | */ | ||
| 845 | static __inline netio_size_t | ||
| 846 | NETIO_PKT_L3_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 847 | { | ||
| 848 | return (NETIO_PKT_L2_LENGTH_M(mda, pkt) - | ||
| 849 | NETIO_PKT_L2_HEADER_LENGTH_M(mda,pkt)); | ||
| 850 | } | ||
| 851 | |||
| 852 | |||
| 853 | /** Return a pointer to the packet's L3 (generally, the IP) header. | ||
| 854 | * @ingroup ingress | ||
| 855 | * | ||
| 856 | * Note that we guarantee word alignment of the L3 header. | ||
| 857 | * | ||
| 858 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 859 | * @param[in] pkt Packet on which to operate. | ||
| 860 | * @return A pointer to the packet's L3 header. | ||
| 861 | */ | ||
| 862 | static __inline unsigned char* | ||
| 863 | NETIO_PKT_L3_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 864 | { | ||
| 865 | return (NETIO_PKT_L2_DATA_M(mda, pkt) + | ||
| 866 | NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt)); | ||
| 867 | } | ||
| 868 | |||
| 869 | |||
| 870 | /** Return the ordinal of the packet. | ||
| 871 | * @ingroup ingress | ||
| 872 | * | ||
| 873 | * Each packet is given an ordinal number when it is delivered by the IPP. | ||
| 874 | * In the medium term, the ordinal is unique and monotonically increasing, | ||
| 875 | * being incremented by 1 for each packet; the ordinal of the first packet | ||
| 876 | * delivered after the IPP starts is zero. (Since the ordinal is of finite | ||
| 877 | * size, given enough input packets, it will eventually wrap around to zero; | ||
| 878 | * in the long term, therefore, ordinals are not unique.) The ordinals | ||
| 879 | * handed out by different IPPs are not disjoint, so two packets from | ||
| 880 | * different IPPs may have identical ordinals. Packets dropped by the | ||
| 881 | * IPP or by the I/O shim are not assigned ordinals. | ||
| 882 | * | ||
| 883 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 884 | * @param[in] pkt Packet on which to operate. | ||
| 885 | * @return The packet's per-IPP packet ordinal. | ||
| 886 | */ | ||
| 887 | static __inline unsigned int | ||
| 888 | NETIO_PKT_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 889 | { | ||
| 890 | return mda->__packet_ordinal; | ||
| 891 | } | ||
| 892 | |||
| 893 | |||
| 894 | /** Return the per-group ordinal of the packet. | ||
| 895 | * @ingroup ingress | ||
| 896 | * | ||
| 897 | * Each packet is given a per-group ordinal number when it is | ||
| 898 | * delivered by the IPP. By default, the group is the packet's VLAN, | ||
| 899 | * although IPP can be recompiled to use different values. In | ||
| 900 | * the medium term, the ordinal is unique and monotonically | ||
| 901 | * increasing, being incremented by 1 for each packet; the ordinal of | ||
| 902 | * the first packet distributed to a particular group is zero. | ||
| 903 | * (Since the ordinal is of finite size, given enough input packets, | ||
| 904 | * it will eventually wrap around to zero; in the long term, | ||
| 905 | * therefore, ordinals are not unique.) The ordinals handed out by | ||
| 906 | * different IPPs are not disjoint, so two packets from different IPPs | ||
| 907 | * may have identical ordinals; similarly, packets distributed to | ||
| 908 | * different groups may have identical ordinals. Packets dropped by | ||
| 909 | * the IPP or by the I/O shim are not assigned ordinals. | ||
| 910 | * | ||
| 911 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 912 | * @param[in] pkt Packet on which to operate. | ||
| 913 | * @return The packet's per-IPP, per-group ordinal. | ||
| 914 | */ | ||
| 915 | static __inline unsigned int | ||
| 916 | NETIO_PKT_GROUP_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 917 | { | ||
| 918 | return mda->__group_ordinal; | ||
| 919 | } | ||
| 920 | |||
| 921 | |||
| 922 | /** Return the VLAN ID assigned to the packet. | ||
| 923 | * @ingroup ingress | ||
| 924 | * | ||
| 925 | * This value is usually contained within the packet header. | ||
| 926 | * | ||
| 927 | * This value will be zero if the packet does not have a VLAN tag, or if | ||
| 928 | * this value was not extracted from the packet. | ||
| 929 | * | ||
| 930 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 931 | * @param[in] pkt Packet on which to operate. | ||
| 932 | * @return The packet's VLAN ID. | ||
| 933 | */ | ||
| 934 | static __inline unsigned short | ||
| 935 | NETIO_PKT_VLAN_ID_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 936 | { | ||
| 937 | int vl = (mda->__flags >> _NETIO_PKT_VLAN_SHIFT) & _NETIO_PKT_VLAN_RMASK; | ||
| 938 | unsigned short* pkt_p; | ||
| 939 | int index; | ||
| 940 | unsigned short val; | ||
| 941 | |||
| 942 | if (vl == _NETIO_PKT_VLAN_NONE) | ||
| 943 | return 0; | ||
| 944 | |||
| 945 | pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt); | ||
| 946 | index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK; | ||
| 947 | |||
| 948 | val = pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_VLAN_SHIFT) & | ||
| 949 | _NETIO_PKT_INFO_VLAN_RMASK]; | ||
| 950 | |||
| 951 | #ifdef __TILECC__ | ||
| 952 | return (__insn_bytex(val) >> 16) & 0xFFF; | ||
| 953 | #else | ||
| 954 | return (__builtin_bswap32(val) >> 16) & 0xFFF; | ||
| 955 | #endif | ||
| 956 | } | ||
| 957 | |||
| 958 | |||
| 959 | /** Return the ethertype of the packet. | ||
| 960 | * @ingroup ingress | ||
| 961 | * | ||
| 962 | * This value is usually contained within the packet header. | ||
| 963 | * | ||
| 964 | * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED_M() | ||
| 965 | * returns true, and otherwise, may not be well defined. | ||
| 966 | * | ||
| 967 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 968 | * @param[in] pkt Packet on which to operate. | ||
| 969 | * @return The packet's ethertype. | ||
| 970 | */ | ||
| 971 | static __inline unsigned short | ||
| 972 | NETIO_PKT_ETHERTYPE_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 973 | { | ||
| 974 | unsigned short* pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt); | ||
| 975 | int index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK; | ||
| 976 | |||
| 977 | unsigned short val = | ||
| 978 | pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_ETYPE_SHIFT) & | ||
| 979 | _NETIO_PKT_INFO_ETYPE_RMASK]; | ||
| 980 | |||
| 981 | return __builtin_bswap32(val) >> 16; | ||
| 982 | } | ||
| 983 | |||
| 984 | |||
| 985 | /** Return the flow hash computed on the packet. | ||
| 986 | * @ingroup ingress | ||
| 987 | * | ||
| 988 | * For TCP and UDP packets, this hash is calculated by hashing together | ||
| 989 | * the "5-tuple" values, specifically the source IP address, destination | ||
| 990 | * IP address, protocol type, source port and destination port. | ||
| 991 | * The hash value is intended to be helpful for millions of distinct | ||
| 992 | * flows. | ||
| 993 | * | ||
| 994 | * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is | ||
| 995 | * derived by hashing together the source and destination IP addresses. | ||
| 996 | * | ||
| 997 | * For MPLS-encapsulated packets, the flow hash is derived by hashing | ||
| 998 | * the first MPLS label. | ||
| 999 | * | ||
| 1000 | * For all other packets the flow hash is computed from the source | ||
| 1001 | * and destination Ethernet addresses. | ||
| 1002 | * | ||
| 1003 | * The hash is symmetric, meaning it produces the same value if the | ||
| 1004 | * source and destination are swapped. The only exceptions are | ||
| 1005 | * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple | ||
| 1006 | * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32 | ||
| 1007 | * (Encap Security Payload), which use only the destination address | ||
| 1008 | * since the source address is not meaningful. | ||
| 1009 | * | ||
| 1010 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1011 | * @param[in] pkt Packet on which to operate. | ||
| 1012 | * @return The packet's 32-bit flow hash. | ||
| 1013 | */ | ||
| 1014 | static __inline unsigned int | ||
| 1015 | NETIO_PKT_FLOW_HASH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1016 | { | ||
| 1017 | return mda->__flow_hash; | ||
| 1018 | } | ||
| 1019 | |||
| 1020 | |||
| 1021 | /** Return the first word of "user data" for the packet. | ||
| 1022 | * | ||
| 1023 | * The contents of the user data words depend on the IPP. | ||
| 1024 | * | ||
| 1025 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first | ||
| 1026 | * word of user data contains the least significant bits of the 64-bit | ||
| 1027 | * arrival cycle count (see @c get_cycle_count_low()). | ||
| 1028 | * | ||
| 1029 | * See the <em>System Programmer's Guide</em> for details. | ||
| 1030 | * | ||
| 1031 | * @ingroup ingress | ||
| 1032 | * | ||
| 1033 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1034 | * @param[in] pkt Packet on which to operate. | ||
| 1035 | * @return The packet's first word of "user data". | ||
| 1036 | */ | ||
| 1037 | static __inline unsigned int | ||
| 1038 | NETIO_PKT_USER_DATA_0_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1039 | { | ||
| 1040 | return mda->__user_data_0; | ||
| 1041 | } | ||
| 1042 | |||
| 1043 | |||
| 1044 | /** Return the second word of "user data" for the packet. | ||
| 1045 | * | ||
| 1046 | * The contents of the user data words depend on the IPP. | ||
| 1047 | * | ||
| 1048 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second | ||
| 1049 | * word of user data contains the most significant bits of the 64-bit | ||
| 1050 | * arrival cycle count (see @c get_cycle_count_high()). | ||
| 1051 | * | ||
| 1052 | * See the <em>System Programmer's Guide</em> for details. | ||
| 1053 | * | ||
| 1054 | * @ingroup ingress | ||
| 1055 | * | ||
| 1056 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1057 | * @param[in] pkt Packet on which to operate. | ||
| 1058 | * @return The packet's second word of "user data". | ||
| 1059 | */ | ||
| 1060 | static __inline unsigned int | ||
| 1061 | NETIO_PKT_USER_DATA_1_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1062 | { | ||
| 1063 | return mda->__user_data_1; | ||
| 1064 | } | ||
| 1065 | |||
| 1066 | |||
| 1067 | /** Determine whether the L4 (TCP/UDP) checksum was calculated. | ||
| 1068 | * @ingroup ingress | ||
| 1069 | * | ||
| 1070 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1071 | * @param[in] pkt Packet on which to operate. | ||
| 1072 | * @return Nonzero if the L4 checksum was calculated. | ||
| 1073 | */ | ||
| 1074 | static __inline unsigned int | ||
| 1075 | NETIO_PKT_L4_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1076 | { | ||
| 1077 | return !(mda->__flags & _NETIO_PKT_NO_L4_CSUM_MASK); | ||
| 1078 | } | ||
| 1079 | |||
| 1080 | |||
| 1081 | /** Determine whether the L4 (TCP/UDP) checksum was calculated and found to | ||
| 1082 | * be correct. | ||
| 1083 | * @ingroup ingress | ||
| 1084 | * | ||
| 1085 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1086 | * @param[in] pkt Packet on which to operate. | ||
| 1087 | * @return Nonzero if the checksum was calculated and is correct. | ||
| 1088 | */ | ||
| 1089 | static __inline unsigned int | ||
| 1090 | NETIO_PKT_L4_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1091 | { | ||
| 1092 | return !(mda->__flags & | ||
| 1093 | (_NETIO_PKT_BAD_L4_CSUM_MASK | _NETIO_PKT_NO_L4_CSUM_MASK)); | ||
| 1094 | } | ||
| 1095 | |||
| 1096 | |||
| 1097 | /** Determine whether the L3 (IP) checksum was calculated. | ||
| 1098 | * @ingroup ingress | ||
| 1099 | * | ||
| 1100 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1101 | * @param[in] pkt Packet on which to operate. | ||
| 1102 | * @return Nonzero if the L3 (IP) checksum was calculated. | ||
| 1103 | */ | ||
| 1104 | static __inline unsigned int | ||
| 1105 | NETIO_PKT_L3_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1106 | { | ||
| 1107 | return !(mda->__flags & _NETIO_PKT_NO_L3_CSUM_MASK); | ||
| 1108 | } | ||
| 1109 | |||
| 1110 | |||
| 1111 | /** Determine whether the L3 (IP) checksum was calculated and found to be | ||
| 1112 | * correct. | ||
| 1113 | * @ingroup ingress | ||
| 1114 | * | ||
| 1115 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1116 | * @param[in] pkt Packet on which to operate. | ||
| 1117 | * @return Nonzero if the checksum was calculated and is correct. | ||
| 1118 | */ | ||
| 1119 | static __inline unsigned int | ||
| 1120 | NETIO_PKT_L3_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1121 | { | ||
| 1122 | return !(mda->__flags & | ||
| 1123 | (_NETIO_PKT_BAD_L3_CSUM_MASK | _NETIO_PKT_NO_L3_CSUM_MASK)); | ||
| 1124 | } | ||
| 1125 | |||
| 1126 | |||
| 1127 | /** Determine whether the ethertype was recognized and L3 packet data was | ||
| 1128 | * processed. | ||
| 1129 | * @ingroup ingress | ||
| 1130 | * | ||
| 1131 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1132 | * @param[in] pkt Packet on which to operate. | ||
| 1133 | * @return Nonzero if the ethertype was recognized and L3 packet data was | ||
| 1134 | * processed. | ||
| 1135 | */ | ||
| 1136 | static __inline unsigned int | ||
| 1137 | NETIO_PKT_ETHERTYPE_RECOGNIZED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1138 | { | ||
| 1139 | return !(mda->__flags & _NETIO_PKT_TYPE_UNRECOGNIZED_MASK); | ||
| 1140 | } | ||
| 1141 | |||
| 1142 | |||
| 1143 | /** Retrieve the status of a packet and any errors that may have occurred | ||
| 1144 | * during ingress processing (length mismatches, CRC errors, etc.). | ||
| 1145 | * @ingroup ingress | ||
| 1146 | * | ||
| 1147 | * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED() | ||
| 1148 | * returns zero are always reported as underlength, as there is no a priori | ||
| 1149 | * means to determine their length. Normally, applications should use | ||
| 1150 | * @ref NETIO_PKT_BAD_M() instead of explicitly checking status with this | ||
| 1151 | * function. | ||
| 1152 | * | ||
| 1153 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1154 | * @param[in] pkt Packet on which to operate. | ||
| 1155 | * @return The packet's status. | ||
| 1156 | */ | ||
| 1157 | static __inline netio_pkt_status_t | ||
| 1158 | NETIO_PKT_STATUS_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1159 | { | ||
| 1160 | return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status; | ||
| 1161 | } | ||
| 1162 | |||
| 1163 | |||
| 1164 | /** Report whether a packet is bad (i.e., was shorter than expected based on | ||
| 1165 | * its headers, or had a bad CRC). | ||
| 1166 | * @ingroup ingress | ||
| 1167 | * | ||
| 1168 | * Note that this function does not verify L3 or L4 checksums. | ||
| 1169 | * | ||
| 1170 | * @param[in] mda Pointer to packet's standard metadata. | ||
| 1171 | * @param[in] pkt Packet on which to operate. | ||
| 1172 | * @return Nonzero if the packet is bad and should be discarded. | ||
| 1173 | */ | ||
| 1174 | static __inline unsigned int | ||
| 1175 | NETIO_PKT_BAD_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1176 | { | ||
| 1177 | return ((NETIO_PKT_STATUS_M(mda, pkt) & 1) && | ||
| 1178 | (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt) || | ||
| 1179 | NETIO_PKT_STATUS_M(mda, pkt) == NETIO_PKT_STATUS_BAD)); | ||
| 1180 | } | ||
| 1181 | |||
| 1182 | |||
| 1183 | /** Return the length of the packet, starting with the L2 (Ethernet) header. | ||
| 1184 | * @ingroup egress | ||
| 1185 | * | ||
| 1186 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1187 | * @param[in] pkt Packet on which to operate. | ||
| 1188 | * @return The length of the packet, in bytes. | ||
| 1189 | */ | ||
| 1190 | static __inline netio_size_t | ||
| 1191 | NETIO_PKT_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) | ||
| 1192 | { | ||
| 1193 | return mmd->l2_length; | ||
| 1194 | } | ||
| 1195 | |||
| 1196 | |||
| 1197 | /** Return the length of the L2 (Ethernet) header. | ||
| 1198 | * @ingroup egress | ||
| 1199 | * | ||
| 1200 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1201 | * @param[in] pkt Packet on which to operate. | ||
| 1202 | * @return The length of the packet's L2 header, in bytes. | ||
| 1203 | */ | ||
| 1204 | static __inline netio_size_t | ||
| 1205 | NETIO_PKT_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, | ||
| 1206 | netio_pkt_t* pkt) | ||
| 1207 | { | ||
| 1208 | return mmd->l3_offset - mmd->l2_offset; | ||
| 1209 | } | ||
| 1210 | |||
| 1211 | |||
| 1212 | /** Return the length of the packet, starting with the L3 (IP) header. | ||
| 1213 | * @ingroup egress | ||
| 1214 | * | ||
| 1215 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1216 | * @param[in] pkt Packet on which to operate. | ||
| 1217 | * @return Length of the packet's L3 header and data, in bytes. | ||
| 1218 | */ | ||
| 1219 | static __inline netio_size_t | ||
| 1220 | NETIO_PKT_L3_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) | ||
| 1221 | { | ||
| 1222 | return (NETIO_PKT_L2_LENGTH_MM(mmd, pkt) - | ||
| 1223 | NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt)); | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | |||
| 1227 | /** Return a pointer to the packet's L3 (generally, the IP) header. | ||
| 1228 | * @ingroup egress | ||
| 1229 | * | ||
| 1230 | * Note that we guarantee word alignment of the L3 header. | ||
| 1231 | * | ||
| 1232 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1233 | * @param[in] pkt Packet on which to operate. | ||
| 1234 | * @return A pointer to the packet's L3 header. | ||
| 1235 | */ | ||
| 1236 | static __inline unsigned char* | ||
| 1237 | NETIO_PKT_L3_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) | ||
| 1238 | { | ||
| 1239 | return _NETIO_PKT_BASE(pkt) + mmd->l3_offset; | ||
| 1240 | } | ||
| 1241 | |||
| 1242 | |||
| 1243 | /** Return a pointer to the packet's L2 (Ethernet) header. | ||
| 1244 | * @ingroup egress | ||
| 1245 | * | ||
| 1246 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1247 | * @param[in] pkt Packet on which to operate. | ||
| 1248 | * @return A pointer to start of the packet. | ||
| 1249 | */ | ||
| 1250 | static __inline unsigned char* | ||
| 1251 | NETIO_PKT_L2_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) | ||
| 1252 | { | ||
| 1253 | return _NETIO_PKT_BASE(pkt) + mmd->l2_offset; | ||
| 1254 | } | ||
| 1255 | |||
| 1256 | |||
| 1257 | /** Retrieve the status of a packet and any errors that may have occurred | ||
| 1258 | * during ingress processing (length mismatches, CRC errors, etc.). | ||
| 1259 | * @ingroup ingress | ||
| 1260 | * | ||
| 1261 | * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED() | ||
| 1262 | * returns zero are always reported as underlength, as there is no a priori | ||
| 1263 | * means to determine their length. Normally, applications should use | ||
| 1264 | * @ref NETIO_PKT_BAD() instead of explicitly checking status with this | ||
| 1265 | * function. | ||
| 1266 | * | ||
| 1267 | * @param[in] pkt Packet on which to operate. | ||
| 1268 | * @return The packet's status. | ||
| 1269 | */ | ||
| 1270 | static __inline netio_pkt_status_t | ||
| 1271 | NETIO_PKT_STATUS(netio_pkt_t* pkt) | ||
| 1272 | { | ||
| 1273 | netio_assert(!pkt->__packet.bits.__minimal); | ||
| 1274 | |||
| 1275 | return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status; | ||
| 1276 | } | ||
| 1277 | |||
| 1278 | |||
| 1279 | /** Report whether a packet is bad (i.e., was shorter than expected based on | ||
| 1280 | * its headers, or had a bad CRC). | ||
| 1281 | * @ingroup ingress | ||
| 1282 | * | ||
| 1283 | * Note that this function does not verify L3 or L4 checksums. | ||
| 1284 | * | ||
| 1285 | * @param[in] pkt Packet on which to operate. | ||
| 1286 | * @return Nonzero if the packet is bad and should be discarded. | ||
| 1287 | */ | ||
| 1288 | static __inline unsigned int | ||
| 1289 | NETIO_PKT_BAD(netio_pkt_t* pkt) | ||
| 1290 | { | ||
| 1291 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1292 | |||
| 1293 | return NETIO_PKT_BAD_M(mda, pkt); | ||
| 1294 | } | ||
| 1295 | |||
| 1296 | |||
| 1297 | /** Return the length of the packet's custom header. | ||
| 1298 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 1299 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 1300 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 1301 | * the custom header precedes the L2 header in the packet buffer. | ||
| 1302 | * @ingroup pktfuncs | ||
| 1303 | * | ||
| 1304 | * @param[in] pkt Packet on which to operate. | ||
| 1305 | * @return The length of the packet's custom header, in bytes. | ||
| 1306 | */ | ||
| 1307 | static __inline netio_size_t | ||
| 1308 | NETIO_PKT_CUSTOM_HEADER_LENGTH(netio_pkt_t* pkt) | ||
| 1309 | { | ||
| 1310 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1311 | |||
| 1312 | return NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt); | ||
| 1313 | } | ||
| 1314 | |||
| 1315 | |||
| 1316 | /** Return the length of the packet, starting with the custom header. | ||
| 1317 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 1318 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 1319 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 1320 | * the custom header precedes the L2 header in the packet buffer. | ||
| 1321 | * @ingroup pktfuncs | ||
| 1322 | * | ||
| 1323 | * @param[in] pkt Packet on which to operate. | ||
| 1324 | * @return The length of the packet, in bytes. | ||
| 1325 | */ | ||
| 1326 | static __inline netio_size_t | ||
| 1327 | NETIO_PKT_CUSTOM_LENGTH(netio_pkt_t* pkt) | ||
| 1328 | { | ||
| 1329 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1330 | |||
| 1331 | return NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt); | ||
| 1332 | } | ||
| 1333 | |||
| 1334 | |||
| 1335 | /** Return a pointer to the packet's custom header. | ||
| 1336 | * A custom header may or may not be present, depending upon the IPP; its | ||
| 1337 | * contents and alignment are also IPP-dependent. Currently, none of the | ||
| 1338 | * standard IPPs supplied by Tilera produce a custom header. If present, | ||
| 1339 | * the custom header precedes the L2 header in the packet buffer. | ||
| 1340 | * @ingroup pktfuncs | ||
| 1341 | * | ||
| 1342 | * @param[in] pkt Packet on which to operate. | ||
| 1343 | * @return A pointer to start of the packet. | ||
| 1344 | */ | ||
| 1345 | static __inline unsigned char* | ||
| 1346 | NETIO_PKT_CUSTOM_DATA(netio_pkt_t* pkt) | ||
| 1347 | { | ||
| 1348 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1349 | |||
| 1350 | return NETIO_PKT_CUSTOM_DATA_M(mda, pkt); | ||
| 1351 | } | ||
| 1352 | |||
| 1353 | |||
| 1354 | /** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header. | ||
| 1355 | * @ingroup pktfuncs | ||
| 1356 | * | ||
| 1357 | * @param[in] pkt Packet on which to operate. | ||
| 1358 | * @return The length of the packet's L2 header, in bytes. | ||
| 1359 | */ | ||
| 1360 | static __inline netio_size_t | ||
| 1361 | NETIO_PKT_L2_HEADER_LENGTH(netio_pkt_t* pkt) | ||
| 1362 | { | ||
| 1363 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 1364 | { | ||
| 1365 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1366 | |||
| 1367 | return NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt); | ||
| 1368 | } | ||
| 1369 | else | ||
| 1370 | { | ||
| 1371 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1372 | |||
| 1373 | return NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt); | ||
| 1374 | } | ||
| 1375 | } | ||
| 1376 | |||
| 1377 | |||
| 1378 | /** Return the length of the packet, starting with the L2 (Ethernet) header. | ||
| 1379 | * @ingroup pktfuncs | ||
| 1380 | * | ||
| 1381 | * @param[in] pkt Packet on which to operate. | ||
| 1382 | * @return The length of the packet, in bytes. | ||
| 1383 | */ | ||
| 1384 | static __inline netio_size_t | ||
| 1385 | NETIO_PKT_L2_LENGTH(netio_pkt_t* pkt) | ||
| 1386 | { | ||
| 1387 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 1388 | { | ||
| 1389 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1390 | |||
| 1391 | return NETIO_PKT_L2_LENGTH_MM(mmd, pkt); | ||
| 1392 | } | ||
| 1393 | else | ||
| 1394 | { | ||
| 1395 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1396 | |||
| 1397 | return NETIO_PKT_L2_LENGTH_M(mda, pkt); | ||
| 1398 | } | ||
| 1399 | } | ||
| 1400 | |||
| 1401 | |||
| 1402 | /** Return a pointer to the packet's L2 (Ethernet) header. | ||
| 1403 | * @ingroup pktfuncs | ||
| 1404 | * | ||
| 1405 | * @param[in] pkt Packet on which to operate. | ||
| 1406 | * @return A pointer to start of the packet. | ||
| 1407 | */ | ||
| 1408 | static __inline unsigned char* | ||
| 1409 | NETIO_PKT_L2_DATA(netio_pkt_t* pkt) | ||
| 1410 | { | ||
| 1411 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 1412 | { | ||
| 1413 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1414 | |||
| 1415 | return NETIO_PKT_L2_DATA_MM(mmd, pkt); | ||
| 1416 | } | ||
| 1417 | else | ||
| 1418 | { | ||
| 1419 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1420 | |||
| 1421 | return NETIO_PKT_L2_DATA_M(mda, pkt); | ||
| 1422 | } | ||
| 1423 | } | ||
| 1424 | |||
| 1425 | |||
| 1426 | /** Retrieve the length of the packet, starting with the L3 (generally, the IP) | ||
| 1427 | * header. | ||
| 1428 | * @ingroup pktfuncs | ||
| 1429 | * | ||
| 1430 | * @param[in] pkt Packet on which to operate. | ||
| 1431 | * @return Length of the packet's L3 header and data, in bytes. | ||
| 1432 | */ | ||
| 1433 | static __inline netio_size_t | ||
| 1434 | NETIO_PKT_L3_LENGTH(netio_pkt_t* pkt) | ||
| 1435 | { | ||
| 1436 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 1437 | { | ||
| 1438 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1439 | |||
| 1440 | return NETIO_PKT_L3_LENGTH_MM(mmd, pkt); | ||
| 1441 | } | ||
| 1442 | else | ||
| 1443 | { | ||
| 1444 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1445 | |||
| 1446 | return NETIO_PKT_L3_LENGTH_M(mda, pkt); | ||
| 1447 | } | ||
| 1448 | } | ||
| 1449 | |||
| 1450 | |||
| 1451 | /** Return a pointer to the packet's L3 (generally, the IP) header. | ||
| 1452 | * @ingroup pktfuncs | ||
| 1453 | * | ||
| 1454 | * Note that we guarantee word alignment of the L3 header. | ||
| 1455 | * | ||
| 1456 | * @param[in] pkt Packet on which to operate. | ||
| 1457 | * @return A pointer to the packet's L3 header. | ||
| 1458 | */ | ||
| 1459 | static __inline unsigned char* | ||
| 1460 | NETIO_PKT_L3_DATA(netio_pkt_t* pkt) | ||
| 1461 | { | ||
| 1462 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 1463 | { | ||
| 1464 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1465 | |||
| 1466 | return NETIO_PKT_L3_DATA_MM(mmd, pkt); | ||
| 1467 | } | ||
| 1468 | else | ||
| 1469 | { | ||
| 1470 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1471 | |||
| 1472 | return NETIO_PKT_L3_DATA_M(mda, pkt); | ||
| 1473 | } | ||
| 1474 | } | ||
| 1475 | |||
| 1476 | |||
| 1477 | /** Return the ordinal of the packet. | ||
| 1478 | * @ingroup ingress | ||
| 1479 | * | ||
| 1480 | * Each packet is given an ordinal number when it is delivered by the IPP. | ||
| 1481 | * In the medium term, the ordinal is unique and monotonically increasing, | ||
| 1482 | * being incremented by 1 for each packet; the ordinal of the first packet | ||
| 1483 | * delivered after the IPP starts is zero. (Since the ordinal is of finite | ||
| 1484 | * size, given enough input packets, it will eventually wrap around to zero; | ||
| 1485 | * in the long term, therefore, ordinals are not unique.) The ordinals | ||
| 1486 | * handed out by different IPPs are not disjoint, so two packets from | ||
| 1487 | * different IPPs may have identical ordinals. Packets dropped by the | ||
| 1488 | * IPP or by the I/O shim are not assigned ordinals. | ||
| 1489 | * | ||
| 1490 | * | ||
| 1491 | * @param[in] pkt Packet on which to operate. | ||
| 1492 | * @return The packet's per-IPP packet ordinal. | ||
| 1493 | */ | ||
| 1494 | static __inline unsigned int | ||
| 1495 | NETIO_PKT_ORDINAL(netio_pkt_t* pkt) | ||
| 1496 | { | ||
| 1497 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1498 | |||
| 1499 | return NETIO_PKT_ORDINAL_M(mda, pkt); | ||
| 1500 | } | ||
| 1501 | |||
| 1502 | |||
| 1503 | /** Return the per-group ordinal of the packet. | ||
| 1504 | * @ingroup ingress | ||
| 1505 | * | ||
| 1506 | * Each packet is given a per-group ordinal number when it is | ||
| 1507 | * delivered by the IPP. By default, the group is the packet's VLAN, | ||
| 1508 | * although IPP can be recompiled to use different values. In | ||
| 1509 | * the medium term, the ordinal is unique and monotonically | ||
| 1510 | * increasing, being incremented by 1 for each packet; the ordinal of | ||
| 1511 | * the first packet distributed to a particular group is zero. | ||
| 1512 | * (Since the ordinal is of finite size, given enough input packets, | ||
| 1513 | * it will eventually wrap around to zero; in the long term, | ||
| 1514 | * therefore, ordinals are not unique.) The ordinals handed out by | ||
| 1515 | * different IPPs are not disjoint, so two packets from different IPPs | ||
| 1516 | * may have identical ordinals; similarly, packets distributed to | ||
| 1517 | * different groups may have identical ordinals. Packets dropped by | ||
| 1518 | * the IPP or by the I/O shim are not assigned ordinals. | ||
| 1519 | * | ||
| 1520 | * @param[in] pkt Packet on which to operate. | ||
| 1521 | * @return The packet's per-IPP, per-group ordinal. | ||
| 1522 | */ | ||
| 1523 | static __inline unsigned int | ||
| 1524 | NETIO_PKT_GROUP_ORDINAL(netio_pkt_t* pkt) | ||
| 1525 | { | ||
| 1526 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1527 | |||
| 1528 | return NETIO_PKT_GROUP_ORDINAL_M(mda, pkt); | ||
| 1529 | } | ||
| 1530 | |||
| 1531 | |||
| 1532 | /** Return the VLAN ID assigned to the packet. | ||
| 1533 | * @ingroup ingress | ||
| 1534 | * | ||
| 1535 | * This is usually also contained within the packet header. If the packet | ||
| 1536 | * does not have a VLAN tag, the VLAN ID returned by this function is zero. | ||
| 1537 | * | ||
| 1538 | * @param[in] pkt Packet on which to operate. | ||
| 1539 | * @return The packet's VLAN ID. | ||
| 1540 | */ | ||
| 1541 | static __inline unsigned short | ||
| 1542 | NETIO_PKT_VLAN_ID(netio_pkt_t* pkt) | ||
| 1543 | { | ||
| 1544 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1545 | |||
| 1546 | return NETIO_PKT_VLAN_ID_M(mda, pkt); | ||
| 1547 | } | ||
| 1548 | |||
| 1549 | |||
| 1550 | /** Return the ethertype of the packet. | ||
| 1551 | * @ingroup ingress | ||
| 1552 | * | ||
| 1553 | * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED() | ||
| 1554 | * returns true, and otherwise, may not be well defined. | ||
| 1555 | * | ||
| 1556 | * @param[in] pkt Packet on which to operate. | ||
| 1557 | * @return The packet's ethertype. | ||
| 1558 | */ | ||
| 1559 | static __inline unsigned short | ||
| 1560 | NETIO_PKT_ETHERTYPE(netio_pkt_t* pkt) | ||
| 1561 | { | ||
| 1562 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1563 | |||
| 1564 | return NETIO_PKT_ETHERTYPE_M(mda, pkt); | ||
| 1565 | } | ||
| 1566 | |||
| 1567 | |||
| 1568 | /** Return the flow hash computed on the packet. | ||
| 1569 | * @ingroup ingress | ||
| 1570 | * | ||
| 1571 | * For TCP and UDP packets, this hash is calculated by hashing together | ||
| 1572 | * the "5-tuple" values, specifically the source IP address, destination | ||
| 1573 | * IP address, protocol type, source port and destination port. | ||
| 1574 | * The hash value is intended to be helpful for millions of distinct | ||
| 1575 | * flows. | ||
| 1576 | * | ||
| 1577 | * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is | ||
| 1578 | * derived by hashing together the source and destination IP addresses. | ||
| 1579 | * | ||
| 1580 | * For MPLS-encapsulated packets, the flow hash is derived by hashing | ||
| 1581 | * the first MPLS label. | ||
| 1582 | * | ||
| 1583 | * For all other packets the flow hash is computed from the source | ||
| 1584 | * and destination Ethernet addresses. | ||
| 1585 | * | ||
| 1586 | * The hash is symmetric, meaning it produces the same value if the | ||
| 1587 | * source and destination are swapped. The only exceptions are | ||
| 1588 | * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple | ||
| 1589 | * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32 | ||
| 1590 | * (Encap Security Payload), which use only the destination address | ||
| 1591 | * since the source address is not meaningful. | ||
| 1592 | * | ||
| 1593 | * @param[in] pkt Packet on which to operate. | ||
| 1594 | * @return The packet's 32-bit flow hash. | ||
| 1595 | */ | ||
| 1596 | static __inline unsigned int | ||
| 1597 | NETIO_PKT_FLOW_HASH(netio_pkt_t* pkt) | ||
| 1598 | { | ||
| 1599 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1600 | |||
| 1601 | return NETIO_PKT_FLOW_HASH_M(mda, pkt); | ||
| 1602 | } | ||
| 1603 | |||
| 1604 | |||
| 1605 | /** Return the first word of "user data" for the packet. | ||
| 1606 | * | ||
| 1607 | * The contents of the user data words depend on the IPP. | ||
| 1608 | * | ||
| 1609 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first | ||
| 1610 | * word of user data contains the least significant bits of the 64-bit | ||
| 1611 | * arrival cycle count (see @c get_cycle_count_low()). | ||
| 1612 | * | ||
| 1613 | * See the <em>System Programmer's Guide</em> for details. | ||
| 1614 | * | ||
| 1615 | * @ingroup ingress | ||
| 1616 | * | ||
| 1617 | * @param[in] pkt Packet on which to operate. | ||
| 1618 | * @return The packet's first word of "user data". | ||
| 1619 | */ | ||
| 1620 | static __inline unsigned int | ||
| 1621 | NETIO_PKT_USER_DATA_0(netio_pkt_t* pkt) | ||
| 1622 | { | ||
| 1623 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1624 | |||
| 1625 | return NETIO_PKT_USER_DATA_0_M(mda, pkt); | ||
| 1626 | } | ||
| 1627 | |||
| 1628 | |||
| 1629 | /** Return the second word of "user data" for the packet. | ||
| 1630 | * | ||
| 1631 | * The contents of the user data words depend on the IPP. | ||
| 1632 | * | ||
| 1633 | * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second | ||
| 1634 | * word of user data contains the most significant bits of the 64-bit | ||
| 1635 | * arrival cycle count (see @c get_cycle_count_high()). | ||
| 1636 | * | ||
| 1637 | * See the <em>System Programmer's Guide</em> for details. | ||
| 1638 | * | ||
| 1639 | * @ingroup ingress | ||
| 1640 | * | ||
| 1641 | * @param[in] pkt Packet on which to operate. | ||
| 1642 | * @return The packet's second word of "user data". | ||
| 1643 | */ | ||
| 1644 | static __inline unsigned int | ||
| 1645 | NETIO_PKT_USER_DATA_1(netio_pkt_t* pkt) | ||
| 1646 | { | ||
| 1647 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1648 | |||
| 1649 | return NETIO_PKT_USER_DATA_1_M(mda, pkt); | ||
| 1650 | } | ||
| 1651 | |||
| 1652 | |||
| 1653 | /** Determine whether the L4 (TCP/UDP) checksum was calculated. | ||
| 1654 | * @ingroup ingress | ||
| 1655 | * | ||
| 1656 | * @param[in] pkt Packet on which to operate. | ||
| 1657 | * @return Nonzero if the L4 checksum was calculated. | ||
| 1658 | */ | ||
| 1659 | static __inline unsigned int | ||
| 1660 | NETIO_PKT_L4_CSUM_CALCULATED(netio_pkt_t* pkt) | ||
| 1661 | { | ||
| 1662 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1663 | |||
| 1664 | return NETIO_PKT_L4_CSUM_CALCULATED_M(mda, pkt); | ||
| 1665 | } | ||
| 1666 | |||
| 1667 | |||
| 1668 | /** Determine whether the L4 (TCP/UDP) checksum was calculated and found to | ||
| 1669 | * be correct. | ||
| 1670 | * @ingroup ingress | ||
| 1671 | * | ||
| 1672 | * @param[in] pkt Packet on which to operate. | ||
| 1673 | * @return Nonzero if the checksum was calculated and is correct. | ||
| 1674 | */ | ||
| 1675 | static __inline unsigned int | ||
| 1676 | NETIO_PKT_L4_CSUM_CORRECT(netio_pkt_t* pkt) | ||
| 1677 | { | ||
| 1678 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1679 | |||
| 1680 | return NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt); | ||
| 1681 | } | ||
| 1682 | |||
| 1683 | |||
| 1684 | /** Determine whether the L3 (IP) checksum was calculated. | ||
| 1685 | * @ingroup ingress | ||
| 1686 | * | ||
| 1687 | * @param[in] pkt Packet on which to operate. | ||
| 1688 | * @return Nonzero if the L3 (IP) checksum was calculated. | ||
| 1689 | */ | ||
| 1690 | static __inline unsigned int | ||
| 1691 | NETIO_PKT_L3_CSUM_CALCULATED(netio_pkt_t* pkt) | ||
| 1692 | { | ||
| 1693 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1694 | |||
| 1695 | return NETIO_PKT_L3_CSUM_CALCULATED_M(mda, pkt); | ||
| 1696 | } | ||
| 1697 | |||
| 1698 | |||
| 1699 | /** Determine whether the L3 (IP) checksum was calculated and found to be | ||
| 1700 | * correct. | ||
| 1701 | * @ingroup ingress | ||
| 1702 | * | ||
| 1703 | * @param[in] pkt Packet on which to operate. | ||
| 1704 | * @return Nonzero if the checksum was calculated and is correct. | ||
| 1705 | */ | ||
| 1706 | static __inline unsigned int | ||
| 1707 | NETIO_PKT_L3_CSUM_CORRECT(netio_pkt_t* pkt) | ||
| 1708 | { | ||
| 1709 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1710 | |||
| 1711 | return NETIO_PKT_L3_CSUM_CORRECT_M(mda, pkt); | ||
| 1712 | } | ||
| 1713 | |||
| 1714 | |||
| 1715 | /** Determine whether the Ethertype was recognized and L3 packet data was | ||
| 1716 | * processed. | ||
| 1717 | * @ingroup ingress | ||
| 1718 | * | ||
| 1719 | * @param[in] pkt Packet on which to operate. | ||
| 1720 | * @return Nonzero if the Ethertype was recognized and L3 packet data was | ||
| 1721 | * processed. | ||
| 1722 | */ | ||
| 1723 | static __inline unsigned int | ||
| 1724 | NETIO_PKT_ETHERTYPE_RECOGNIZED(netio_pkt_t* pkt) | ||
| 1725 | { | ||
| 1726 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1727 | |||
| 1728 | return NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt); | ||
| 1729 | } | ||
| 1730 | |||
| 1731 | |||
| 1732 | /** Set an egress packet's L2 length, using a metadata pointer to speed the | ||
| 1733 | * computation. | ||
| 1734 | * @ingroup egress | ||
| 1735 | * | ||
| 1736 | * @param[in,out] mmd Pointer to packet's minimal metadata. | ||
| 1737 | * @param[in] pkt Packet on which to operate. | ||
| 1738 | * @param[in] len Packet L2 length, in bytes. | ||
| 1739 | */ | ||
| 1740 | static __inline void | ||
| 1741 | NETIO_PKT_SET_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt, | ||
| 1742 | int len) | ||
| 1743 | { | ||
| 1744 | mmd->l2_length = len; | ||
| 1745 | } | ||
| 1746 | |||
| 1747 | |||
| 1748 | /** Set an egress packet's L2 length. | ||
| 1749 | * @ingroup egress | ||
| 1750 | * | ||
| 1751 | * @param[in,out] pkt Packet on which to operate. | ||
| 1752 | * @param[in] len Packet L2 length, in bytes. | ||
| 1753 | */ | ||
| 1754 | static __inline void | ||
| 1755 | NETIO_PKT_SET_L2_LENGTH(netio_pkt_t* pkt, int len) | ||
| 1756 | { | ||
| 1757 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1758 | |||
| 1759 | NETIO_PKT_SET_L2_LENGTH_MM(mmd, pkt, len); | ||
| 1760 | } | ||
| 1761 | |||
| 1762 | |||
| 1763 | /** Set an egress packet's L2 header length, using a metadata pointer to | ||
| 1764 | * speed the computation. | ||
| 1765 | * @ingroup egress | ||
| 1766 | * | ||
| 1767 | * It is not normally necessary to call this routine; only the L2 length, | ||
| 1768 | * not the header length, is needed to transmit a packet. It may be useful if | ||
| 1769 | * the egress packet will later be processed by code which expects to use | ||
| 1770 | * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload. | ||
| 1771 | * | ||
| 1772 | * @param[in,out] mmd Pointer to packet's minimal metadata. | ||
| 1773 | * @param[in] pkt Packet on which to operate. | ||
| 1774 | * @param[in] len Packet L2 header length, in bytes. | ||
| 1775 | */ | ||
| 1776 | static __inline void | ||
| 1777 | NETIO_PKT_SET_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, | ||
| 1778 | netio_pkt_t* pkt, int len) | ||
| 1779 | { | ||
| 1780 | mmd->l3_offset = mmd->l2_offset + len; | ||
| 1781 | } | ||
| 1782 | |||
| 1783 | |||
| 1784 | /** Set an egress packet's L2 header length. | ||
| 1785 | * @ingroup egress | ||
| 1786 | * | ||
| 1787 | * It is not normally necessary to call this routine; only the L2 length, | ||
| 1788 | * not the header length, is needed to transmit a packet. It may be useful if | ||
| 1789 | * the egress packet will later be processed by code which expects to use | ||
| 1790 | * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload. | ||
| 1791 | * | ||
| 1792 | * @param[in,out] pkt Packet on which to operate. | ||
| 1793 | * @param[in] len Packet L2 header length, in bytes. | ||
| 1794 | */ | ||
| 1795 | static __inline void | ||
| 1796 | NETIO_PKT_SET_L2_HEADER_LENGTH(netio_pkt_t* pkt, int len) | ||
| 1797 | { | ||
| 1798 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1799 | |||
| 1800 | NETIO_PKT_SET_L2_HEADER_LENGTH_MM(mmd, pkt, len); | ||
| 1801 | } | ||
| 1802 | |||
| 1803 | |||
| 1804 | /** Set up an egress packet for hardware checksum computation, using a | ||
| 1805 | * metadata pointer to speed the operation. | ||
| 1806 | * @ingroup egress | ||
| 1807 | * | ||
| 1808 | * NetIO provides the ability to automatically calculate a standard | ||
| 1809 | * 16-bit Internet checksum on transmitted packets. The application | ||
| 1810 | * may specify the point in the packet where the checksum starts, the | ||
| 1811 | * number of bytes to be checksummed, and the two bytes in the packet | ||
| 1812 | * which will be replaced with the completed checksum. (If the range | ||
| 1813 | * of bytes to be checksummed includes the bytes to be replaced, the | ||
| 1814 | * initial values of those bytes will be included in the checksum.) | ||
| 1815 | * | ||
| 1816 | * For some protocols, the packet checksum covers data which is not present | ||
| 1817 | * in the packet, or is at least not contiguous to the main data payload. | ||
| 1818 | * For instance, the TCP checksum includes a "pseudo-header" which includes | ||
| 1819 | * the source and destination IP addresses of the packet. To accommodate | ||
| 1820 | * this, the checksum engine may be "seeded" with an initial value, which | ||
| 1821 | * the application would need to compute based on the specific protocol's | ||
| 1822 | * requirements. Note that the seed is given in host byte order (little- | ||
| 1823 | * endian), not network byte order (big-endian); code written to compute a | ||
| 1824 | * pseudo-header checksum in network byte order will need to byte-swap it | ||
| 1825 | * before use as the seed. | ||
| 1826 | * | ||
| 1827 | * Note that the checksum is computed as part of the transmission process, | ||
| 1828 | * so it will not be present in the packet upon completion of this routine. | ||
| 1829 | * | ||
| 1830 | * @param[in,out] mmd Pointer to packet's minimal metadata. | ||
| 1831 | * @param[in] pkt Packet on which to operate. | ||
| 1832 | * @param[in] start Offset within L2 packet of the first byte to include in | ||
| 1833 | * the checksum. | ||
| 1834 | * @param[in] length Number of bytes to include in the checksum. | ||
| 1835 | * the checksum. | ||
| 1836 | * @param[in] location Offset within L2 packet of the first of the two bytes | ||
| 1837 | * to be replaced with the calculated checksum. | ||
| 1838 | * @param[in] seed Initial value of the running checksum before any of the | ||
| 1839 | * packet data is added. | ||
| 1840 | */ | ||
| 1841 | static __inline void | ||
| 1842 | NETIO_PKT_DO_EGRESS_CSUM_MM(netio_pkt_minimal_metadata_t* mmd, | ||
| 1843 | netio_pkt_t* pkt, int start, int length, | ||
| 1844 | int location, uint16_t seed) | ||
| 1845 | { | ||
| 1846 | mmd->csum_start = start; | ||
| 1847 | mmd->csum_length = length; | ||
| 1848 | mmd->csum_location = location; | ||
| 1849 | mmd->csum_seed = seed; | ||
| 1850 | mmd->flags |= _NETIO_PKT_NEED_EDMA_CSUM_MASK; | ||
| 1851 | } | ||
| 1852 | |||
| 1853 | |||
| 1854 | /** Set up an egress packet for hardware checksum computation. | ||
| 1855 | * @ingroup egress | ||
| 1856 | * | ||
| 1857 | * NetIO provides the ability to automatically calculate a standard | ||
| 1858 | * 16-bit Internet checksum on transmitted packets. The application | ||
| 1859 | * may specify the point in the packet where the checksum starts, the | ||
| 1860 | * number of bytes to be checksummed, and the two bytes in the packet | ||
| 1861 | * which will be replaced with the completed checksum. (If the range | ||
| 1862 | * of bytes to be checksummed includes the bytes to be replaced, the | ||
| 1863 | * initial values of those bytes will be included in the checksum.) | ||
| 1864 | * | ||
| 1865 | * For some protocols, the packet checksum covers data which is not present | ||
| 1866 | * in the packet, or is at least not contiguous to the main data payload. | ||
| 1867 | * For instance, the TCP checksum includes a "pseudo-header" which includes | ||
| 1868 | * the source and destination IP addresses of the packet. To accommodate | ||
| 1869 | * this, the checksum engine may be "seeded" with an initial value, which | ||
| 1870 | * the application would need to compute based on the specific protocol's | ||
| 1871 | * requirements. Note that the seed is given in host byte order (little- | ||
| 1872 | * endian), not network byte order (big-endian); code written to compute a | ||
| 1873 | * pseudo-header checksum in network byte order will need to byte-swap it | ||
| 1874 | * before use as the seed. | ||
| 1875 | * | ||
| 1876 | * Note that the checksum is computed as part of the transmission process, | ||
| 1877 | * so it will not be present in the packet upon completion of this routine. | ||
| 1878 | * | ||
| 1879 | * @param[in,out] pkt Packet on which to operate. | ||
| 1880 | * @param[in] start Offset within L2 packet of the first byte to include in | ||
| 1881 | * the checksum. | ||
| 1882 | * @param[in] length Number of bytes to include in the checksum. | ||
| 1883 | * the checksum. | ||
| 1884 | * @param[in] location Offset within L2 packet of the first of the two bytes | ||
| 1885 | * to be replaced with the calculated checksum. | ||
| 1886 | * @param[in] seed Initial value of the running checksum before any of the | ||
| 1887 | * packet data is added. | ||
| 1888 | */ | ||
| 1889 | static __inline void | ||
| 1890 | NETIO_PKT_DO_EGRESS_CSUM(netio_pkt_t* pkt, int start, int length, | ||
| 1891 | int location, uint16_t seed) | ||
| 1892 | { | ||
| 1893 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1894 | |||
| 1895 | NETIO_PKT_DO_EGRESS_CSUM_MM(mmd, pkt, start, length, location, seed); | ||
| 1896 | } | ||
| 1897 | |||
| 1898 | |||
| 1899 | /** Return the number of bytes which could be prepended to a packet, using a | ||
| 1900 | * metadata pointer to speed the operation. | ||
| 1901 | * See @ref netio_populate_prepend_buffer() to get a full description of | ||
| 1902 | * prepending. | ||
| 1903 | * | ||
| 1904 | * @param[in,out] mda Pointer to packet's standard metadata. | ||
| 1905 | * @param[in] pkt Packet on which to operate. | ||
| 1906 | */ | ||
| 1907 | static __inline int | ||
| 1908 | NETIO_PKT_PREPEND_AVAIL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 1909 | { | ||
| 1910 | return (pkt->__packet.bits.__offset << 6) + | ||
| 1911 | NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt); | ||
| 1912 | } | ||
| 1913 | |||
| 1914 | |||
| 1915 | /** Return the number of bytes which could be prepended to a packet, using a | ||
| 1916 | * metadata pointer to speed the operation. | ||
| 1917 | * See @ref netio_populate_prepend_buffer() to get a full description of | ||
| 1918 | * prepending. | ||
| 1919 | * @ingroup egress | ||
| 1920 | * | ||
| 1921 | * @param[in,out] mmd Pointer to packet's minimal metadata. | ||
| 1922 | * @param[in] pkt Packet on which to operate. | ||
| 1923 | */ | ||
| 1924 | static __inline int | ||
| 1925 | NETIO_PKT_PREPEND_AVAIL_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt) | ||
| 1926 | { | ||
| 1927 | return (pkt->__packet.bits.__offset << 6) + mmd->l2_offset; | ||
| 1928 | } | ||
| 1929 | |||
| 1930 | |||
| 1931 | /** Return the number of bytes which could be prepended to a packet. | ||
| 1932 | * See @ref netio_populate_prepend_buffer() to get a full description of | ||
| 1933 | * prepending. | ||
| 1934 | * @ingroup egress | ||
| 1935 | * | ||
| 1936 | * @param[in] pkt Packet on which to operate. | ||
| 1937 | */ | ||
| 1938 | static __inline int | ||
| 1939 | NETIO_PKT_PREPEND_AVAIL(netio_pkt_t* pkt) | ||
| 1940 | { | ||
| 1941 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 1942 | { | ||
| 1943 | netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt); | ||
| 1944 | |||
| 1945 | return NETIO_PKT_PREPEND_AVAIL_MM(mmd, pkt); | ||
| 1946 | } | ||
| 1947 | else | ||
| 1948 | { | ||
| 1949 | netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt); | ||
| 1950 | |||
| 1951 | return NETIO_PKT_PREPEND_AVAIL_M(mda, pkt); | ||
| 1952 | } | ||
| 1953 | } | ||
| 1954 | |||
| 1955 | |||
| 1956 | /** Flush a packet's minimal metadata from the cache, using a metadata pointer | ||
| 1957 | * to speed the operation. | ||
| 1958 | * @ingroup egress | ||
| 1959 | * | ||
| 1960 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1961 | * @param[in] pkt Packet on which to operate. | ||
| 1962 | */ | ||
| 1963 | static __inline void | ||
| 1964 | NETIO_PKT_FLUSH_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd, | ||
| 1965 | netio_pkt_t* pkt) | ||
| 1966 | { | ||
| 1967 | } | ||
| 1968 | |||
| 1969 | |||
| 1970 | /** Invalidate a packet's minimal metadata from the cache, using a metadata | ||
| 1971 | * pointer to speed the operation. | ||
| 1972 | * @ingroup egress | ||
| 1973 | * | ||
| 1974 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1975 | * @param[in] pkt Packet on which to operate. | ||
| 1976 | */ | ||
| 1977 | static __inline void | ||
| 1978 | NETIO_PKT_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd, | ||
| 1979 | netio_pkt_t* pkt) | ||
| 1980 | { | ||
| 1981 | } | ||
| 1982 | |||
| 1983 | |||
| 1984 | /** Flush and then invalidate a packet's minimal metadata from the cache, | ||
| 1985 | * using a metadata pointer to speed the operation. | ||
| 1986 | * @ingroup egress | ||
| 1987 | * | ||
| 1988 | * @param[in] mmd Pointer to packet's minimal metadata. | ||
| 1989 | * @param[in] pkt Packet on which to operate. | ||
| 1990 | */ | ||
| 1991 | static __inline void | ||
| 1992 | NETIO_PKT_FLUSH_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd, | ||
| 1993 | netio_pkt_t* pkt) | ||
| 1994 | { | ||
| 1995 | } | ||
| 1996 | |||
| 1997 | |||
| 1998 | /** Flush a packet's metadata from the cache, using a metadata pointer | ||
| 1999 | * to speed the operation. | ||
| 2000 | * @ingroup ingress | ||
| 2001 | * | ||
| 2002 | * @param[in] mda Pointer to packet's minimal metadata. | ||
| 2003 | * @param[in] pkt Packet on which to operate. | ||
| 2004 | */ | ||
| 2005 | static __inline void | ||
| 2006 | NETIO_PKT_FLUSH_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 2007 | { | ||
| 2008 | } | ||
| 2009 | |||
| 2010 | |||
| 2011 | /** Invalidate a packet's metadata from the cache, using a metadata | ||
| 2012 | * pointer to speed the operation. | ||
| 2013 | * @ingroup ingress | ||
| 2014 | * | ||
| 2015 | * @param[in] mda Pointer to packet's metadata. | ||
| 2016 | * @param[in] pkt Packet on which to operate. | ||
| 2017 | */ | ||
| 2018 | static __inline void | ||
| 2019 | NETIO_PKT_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 2020 | { | ||
| 2021 | } | ||
| 2022 | |||
| 2023 | |||
| 2024 | /** Flush and then invalidate a packet's metadata from the cache, | ||
| 2025 | * using a metadata pointer to speed the operation. | ||
| 2026 | * @ingroup ingress | ||
| 2027 | * | ||
| 2028 | * @param[in] mda Pointer to packet's metadata. | ||
| 2029 | * @param[in] pkt Packet on which to operate. | ||
| 2030 | */ | ||
| 2031 | static __inline void | ||
| 2032 | NETIO_PKT_FLUSH_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt) | ||
| 2033 | { | ||
| 2034 | } | ||
| 2035 | |||
| 2036 | |||
| 2037 | /** Flush a packet's minimal metadata from the cache. | ||
| 2038 | * @ingroup egress | ||
| 2039 | * | ||
| 2040 | * @param[in] pkt Packet on which to operate. | ||
| 2041 | */ | ||
| 2042 | static __inline void | ||
| 2043 | NETIO_PKT_FLUSH_MINIMAL_METADATA(netio_pkt_t* pkt) | ||
| 2044 | { | ||
| 2045 | } | ||
| 2046 | |||
| 2047 | |||
| 2048 | /** Invalidate a packet's minimal metadata from the cache. | ||
| 2049 | * @ingroup egress | ||
| 2050 | * | ||
| 2051 | * @param[in] pkt Packet on which to operate. | ||
| 2052 | */ | ||
| 2053 | static __inline void | ||
| 2054 | NETIO_PKT_INV_MINIMAL_METADATA(netio_pkt_t* pkt) | ||
| 2055 | { | ||
| 2056 | } | ||
| 2057 | |||
| 2058 | |||
| 2059 | /** Flush and then invalidate a packet's minimal metadata from the cache. | ||
| 2060 | * @ingroup egress | ||
| 2061 | * | ||
| 2062 | * @param[in] pkt Packet on which to operate. | ||
| 2063 | */ | ||
| 2064 | static __inline void | ||
| 2065 | NETIO_PKT_FLUSH_INV_MINIMAL_METADATA(netio_pkt_t* pkt) | ||
| 2066 | { | ||
| 2067 | } | ||
| 2068 | |||
| 2069 | |||
| 2070 | /** Flush a packet's metadata from the cache. | ||
| 2071 | * @ingroup ingress | ||
| 2072 | * | ||
| 2073 | * @param[in] pkt Packet on which to operate. | ||
| 2074 | */ | ||
| 2075 | static __inline void | ||
| 2076 | NETIO_PKT_FLUSH_METADATA(netio_pkt_t* pkt) | ||
| 2077 | { | ||
| 2078 | } | ||
| 2079 | |||
| 2080 | |||
| 2081 | /** Invalidate a packet's metadata from the cache. | ||
| 2082 | * @ingroup ingress | ||
| 2083 | * | ||
| 2084 | * @param[in] pkt Packet on which to operate. | ||
| 2085 | */ | ||
| 2086 | static __inline void | ||
| 2087 | NETIO_PKT_INV_METADATA(netio_pkt_t* pkt) | ||
| 2088 | { | ||
| 2089 | } | ||
| 2090 | |||
| 2091 | |||
| 2092 | /** Flush and then invalidate a packet's metadata from the cache. | ||
| 2093 | * @ingroup ingress | ||
| 2094 | * | ||
| 2095 | * @param[in] pkt Packet on which to operate. | ||
| 2096 | */ | ||
| 2097 | static __inline void | ||
| 2098 | NETIO_PKT_FLUSH_INV_METADATA(netio_pkt_t* pkt) | ||
| 2099 | { | ||
| 2100 | } | ||
| 2101 | |||
| 2102 | /** Number of NUMA nodes we can distribute buffers to. | ||
| 2103 | * @ingroup setup */ | ||
| 2104 | #define NETIO_NUM_NODE_WEIGHTS 16 | ||
| 2105 | |||
| 2106 | /** | ||
| 2107 | * @brief An object for specifying the characteristics of NetIO communication | ||
| 2108 | * endpoint. | ||
| 2109 | * | ||
| 2110 | * @ingroup setup | ||
| 2111 | * | ||
| 2112 | * The @ref netio_input_register() function uses this structure to define | ||
| 2113 | * how an application tile will communicate with an IPP. | ||
| 2114 | * | ||
| 2115 | * | ||
| 2116 | * Future updates to NetIO may add new members to this structure, | ||
| 2117 | * which can affect the success of the registration operation. Thus, | ||
| 2118 | * if dynamically initializing the structure, applications are urged to | ||
| 2119 | * zero it out first, for example: | ||
| 2120 | * | ||
| 2121 | * @code | ||
| 2122 | * netio_input_config_t config; | ||
| 2123 | * memset(&config, 0, sizeof (config)); | ||
| 2124 | * config.flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE; | ||
| 2125 | * config.num_receive_packets = NETIO_MAX_RECEIVE_PKTS; | ||
| 2126 | * config.queue_id = 0; | ||
| 2127 | * . | ||
| 2128 | * . | ||
| 2129 | * . | ||
| 2130 | * @endcode | ||
| 2131 | * | ||
| 2132 | * since that guarantees that any unused structure members, including | ||
| 2133 | * members which did not exist when the application was first developed, | ||
| 2134 | * will not have unexpected values. | ||
| 2135 | * | ||
| 2136 | * If statically initializing the structure, we strongly recommend use of | ||
| 2137 | * C99-style named initializers, for example: | ||
| 2138 | * | ||
| 2139 | * @code | ||
| 2140 | * netio_input_config_t config = { | ||
| 2141 | * .flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE, | ||
| 2142 | * .num_receive_packets = NETIO_MAX_RECEIVE_PKTS, | ||
| 2143 | * .queue_id = 0, | ||
| 2144 | * }, | ||
| 2145 | * @endcode | ||
| 2146 | * | ||
| 2147 | * instead of the old-style structure initialization: | ||
| 2148 | * | ||
| 2149 | * @code | ||
| 2150 | * // Bad example! Currently equivalent to the above, but don't do this. | ||
| 2151 | * netio_input_config_t config = { | ||
| 2152 | * NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE, NETIO_MAX_RECEIVE_PKTS, 0 | ||
| 2153 | * }, | ||
| 2154 | * @endcode | ||
| 2155 | * | ||
| 2156 | * since the C99 style requires no changes to the code if elements of the | ||
| 2157 | * config structure are rearranged. (It also makes the initialization much | ||
| 2158 | * easier to understand.) | ||
| 2159 | * | ||
| 2160 | * Except for items which address a particular tile's transmit or receive | ||
| 2161 | * characteristics, such as the ::NETIO_RECV flag, applications are advised | ||
| 2162 | * to specify the same set of configuration data on all registrations. | ||
| 2163 | * This prevents differing results if multiple tiles happen to do their | ||
| 2164 | * registration operations in a different order on different invocations of | ||
| 2165 | * the application. This is particularly important for things like link | ||
| 2166 | * management flags, and buffer size and homing specifications. | ||
| 2167 | * | ||
| 2168 | * Unless the ::NETIO_FIXED_BUFFER_VA flag is specified in flags, the NetIO | ||
| 2169 | * buffer pool is automatically created and mapped into the application's | ||
| 2170 | * virtual address space at an address chosen by the operating system, | ||
| 2171 | * using the common memory (cmem) facility in the Tilera Multicore | ||
| 2172 | * Components library. The cmem facility allows multiple processes to gain | ||
| 2173 | * access to shared memory which is mapped into each process at an | ||
| 2174 | * identical virtual address. In order for this to work, the processes | ||
| 2175 | * must have a common ancestor, which must create the common memory using | ||
| 2176 | * tmc_cmem_init(). | ||
| 2177 | * | ||
| 2178 | * In programs using the iLib process creation API, or in programs which use | ||
| 2179 | * only one process (which include programs using the pthreads library), | ||
| 2180 | * tmc_cmem_init() is called automatically. All other applications | ||
| 2181 | * must call it explicitly, before any child processes which might call | ||
| 2182 | * netio_input_register() are created. | ||
| 2183 | */ | ||
| 2184 | typedef struct | ||
| 2185 | { | ||
| 2186 | /** Registration characteristics. | ||
| 2187 | |||
| 2188 | This value determines several characteristics of the registration; | ||
| 2189 | flags for different types of behavior are ORed together to make the | ||
| 2190 | final flag value. Generally applications should specify exactly | ||
| 2191 | one flag from each of the following categories: | ||
| 2192 | |||
| 2193 | - Whether the application will be receiving packets on this queue | ||
| 2194 | (::NETIO_RECV or ::NETIO_NO_RECV). | ||
| 2195 | |||
| 2196 | - Whether the application will be transmitting packets on this queue, | ||
| 2197 | and if so, whether it will request egress checksum calculation | ||
| 2198 | (::NETIO_XMIT, ::NETIO_XMIT_CSUM, or ::NETIO_NO_XMIT). It is | ||
| 2199 | legal to call netio_get_buffer() without one of the XMIT flags, | ||
| 2200 | as long as ::NETIO_RECV is specified; in this case, the retrieved | ||
| 2201 | buffers must be passed to another tile for transmission. | ||
| 2202 | |||
| 2203 | - Whether the application expects any vendor-specific tags in | ||
| 2204 | its packets' L2 headers (::NETIO_TAG_NONE, ::NETIO_TAG_BRCM, | ||
| 2205 | or ::NETIO_TAG_MRVL). This must match the configuration of the | ||
| 2206 | target IPP. | ||
| 2207 | |||
| 2208 | To accommodate applications written to previous versions of the NetIO | ||
| 2209 | interface, none of the flags above are currently required; if omitted, | ||
| 2210 | NetIO behaves more or less as if ::NETIO_RECV | ::NETIO_XMIT_CSUM | | ||
| 2211 | ::NETIO_TAG_NONE were used. However, explicit specification of | ||
| 2212 | the relevant flags allows NetIO to do a better job of resource | ||
| 2213 | allocation, allows earlier detection of certain configuration errors, | ||
| 2214 | and may enable advanced features or higher performance in the future, | ||
| 2215 | so their use is strongly recommended. | ||
| 2216 | |||
| 2217 | Note that specifying ::NETIO_NO_RECV along with ::NETIO_NO_XMIT | ||
| 2218 | is a special case, intended primarily for use by programs which | ||
| 2219 | retrieve network statistics or do link management operations. | ||
| 2220 | When these flags are both specified, the resulting queue may not | ||
| 2221 | be used with NetIO routines other than netio_get(), netio_set(), | ||
| 2222 | and netio_input_unregister(). See @ref link for more information | ||
| 2223 | on link management. | ||
| 2224 | |||
| 2225 | Other flags are optional; their use is described below. | ||
| 2226 | */ | ||
| 2227 | int flags; | ||
| 2228 | |||
| 2229 | /** Interface name. This is a string which identifies the specific | ||
| 2230 | Ethernet controller hardware to be used. The format of the string | ||
| 2231 | is a device type and a device index, separated by a slash; so, | ||
| 2232 | the first 10 Gigabit Ethernet controller is named "xgbe/0", while | ||
| 2233 | the second 10/100/1000 Megabit Ethernet controller is named "gbe/1". | ||
| 2234 | */ | ||
| 2235 | const char* interface; | ||
| 2236 | |||
| 2237 | /** Receive packet queue size. This specifies the maximum number | ||
| 2238 | of ingress packets that can be received on this queue without | ||
| 2239 | being retrieved by @ref netio_get_packet(). If the IPP's distribution | ||
| 2240 | algorithm calls for a packet to be sent to this queue, and this | ||
| 2241 | number of packets are already pending there, the new packet | ||
| 2242 | will either be discarded, or sent to another tile registered | ||
| 2243 | for the same queue_id (see @ref drops). This value must | ||
| 2244 | be at least ::NETIO_MIN_RECEIVE_PKTS, can always be at least | ||
| 2245 | ::NETIO_MAX_RECEIVE_PKTS, and may be larger than that on certain | ||
| 2246 | interfaces. | ||
| 2247 | */ | ||
| 2248 | int num_receive_packets; | ||
| 2249 | |||
| 2250 | /** The queue ID being requested. Legal values for this range from 0 | ||
| 2251 | to ::NETIO_MAX_QUEUE_ID, inclusive. ::NETIO_MAX_QUEUE_ID is always | ||
| 2252 | greater than or equal to the number of tiles; this allows one queue | ||
| 2253 | for each tile, plus at least one additional queue. Some applications | ||
| 2254 | may wish to use the additional queue as a destination for unwanted | ||
| 2255 | packets, since packets delivered to queues for which no tiles have | ||
| 2256 | registered are discarded. | ||
| 2257 | */ | ||
| 2258 | unsigned int queue_id; | ||
| 2259 | |||
| 2260 | /** Maximum number of small send buffers to be held in the local empty | ||
| 2261 | buffer cache. This specifies the size of the area which holds | ||
| 2262 | empty small egress buffers requested from the IPP but not yet | ||
| 2263 | retrieved via @ref netio_get_buffer(). This value must be greater | ||
| 2264 | than zero if the application will ever use @ref netio_get_buffer() | ||
| 2265 | to allocate empty small egress buffers; it may be no larger than | ||
| 2266 | ::NETIO_MAX_SEND_BUFFERS. See @ref epp for more details on empty | ||
| 2267 | buffer caching. | ||
| 2268 | */ | ||
| 2269 | int num_send_buffers_small_total; | ||
| 2270 | |||
| 2271 | /** Number of small send buffers to be preallocated at registration. | ||
| 2272 | If this value is nonzero, the specified number of empty small egress | ||
| 2273 | buffers will be requested from the IPP during the netio_input_register | ||
| 2274 | operation; this may speed the execution of @ref netio_get_buffer(). | ||
| 2275 | This may be no larger than @ref num_send_buffers_small_total. See @ref | ||
| 2276 | epp for more details on empty buffer caching. | ||
| 2277 | */ | ||
| 2278 | int num_send_buffers_small_prealloc; | ||
| 2279 | |||
| 2280 | /** Maximum number of large send buffers to be held in the local empty | ||
| 2281 | buffer cache. This specifies the size of the area which holds empty | ||
| 2282 | large egress buffers requested from the IPP but not yet retrieved via | ||
| 2283 | @ref netio_get_buffer(). This value must be greater than zero if the | ||
| 2284 | application will ever use @ref netio_get_buffer() to allocate empty | ||
| 2285 | large egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS. | ||
| 2286 | See @ref epp for more details on empty buffer caching. | ||
| 2287 | */ | ||
| 2288 | int num_send_buffers_large_total; | ||
| 2289 | |||
| 2290 | /** Number of large send buffers to be preallocated at registration. | ||
| 2291 | If this value is nonzero, the specified number of empty large egress | ||
| 2292 | buffers will be requested from the IPP during the netio_input_register | ||
| 2293 | operation; this may speed the execution of @ref netio_get_buffer(). | ||
| 2294 | This may be no larger than @ref num_send_buffers_large_total. See @ref | ||
| 2295 | epp for more details on empty buffer caching. | ||
| 2296 | */ | ||
| 2297 | int num_send_buffers_large_prealloc; | ||
| 2298 | |||
| 2299 | /** Maximum number of jumbo send buffers to be held in the local empty | ||
| 2300 | buffer cache. This specifies the size of the area which holds empty | ||
| 2301 | jumbo egress buffers requested from the IPP but not yet retrieved via | ||
| 2302 | @ref netio_get_buffer(). This value must be greater than zero if the | ||
| 2303 | application will ever use @ref netio_get_buffer() to allocate empty | ||
| 2304 | jumbo egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS. | ||
| 2305 | See @ref epp for more details on empty buffer caching. | ||
| 2306 | */ | ||
| 2307 | int num_send_buffers_jumbo_total; | ||
| 2308 | |||
| 2309 | /** Number of jumbo send buffers to be preallocated at registration. | ||
| 2310 | If this value is nonzero, the specified number of empty jumbo egress | ||
| 2311 | buffers will be requested from the IPP during the netio_input_register | ||
| 2312 | operation; this may speed the execution of @ref netio_get_buffer(). | ||
| 2313 | This may be no larger than @ref num_send_buffers_jumbo_total. See @ref | ||
| 2314 | epp for more details on empty buffer caching. | ||
| 2315 | */ | ||
| 2316 | int num_send_buffers_jumbo_prealloc; | ||
| 2317 | |||
| 2318 | /** Total packet buffer size. This determines the total size, in bytes, | ||
| 2319 | of the NetIO buffer pool. Note that the maximum number of available | ||
| 2320 | buffers of each size is determined during hypervisor configuration | ||
| 2321 | (see the <em>System Programmer's Guide</em> for details); this just | ||
| 2322 | influences how much host memory is allocated for those buffers. | ||
| 2323 | |||
| 2324 | The buffer pool is allocated from common memory, which will be | ||
| 2325 | automatically initialized if needed. If your buffer pool is larger | ||
| 2326 | than 240 MB, you might need to explicitly call @c tmc_cmem_init(), | ||
| 2327 | as described in the Application Libraries Reference Manual (UG227). | ||
| 2328 | |||
| 2329 | Packet buffers are currently allocated in chunks of 16 MB; this | ||
| 2330 | value will be rounded up to the next larger multiple of 16 MB. | ||
| 2331 | If this value is zero, a default of 32 MB will be used; this was | ||
| 2332 | the value used by previous versions of NetIO. Note that taking this | ||
| 2333 | default also affects the placement of buffers on Linux NUMA nodes. | ||
| 2334 | See @ref buffer_node_weights for an explanation of buffer placement. | ||
| 2335 | |||
| 2336 | In order to successfully allocate packet buffers, Linux must have | ||
| 2337 | available huge pages on the relevant Linux NUMA nodes. See the | ||
| 2338 | <em>System Programmer's Guide</em> for information on configuring | ||
| 2339 | huge page support in Linux. | ||
| 2340 | */ | ||
| 2341 | uint64_t total_buffer_size; | ||
| 2342 | |||
| 2343 | /** Buffer placement weighting factors. | ||
| 2344 | |||
| 2345 | This array specifies the relative amount of buffering to place | ||
| 2346 | on each of the available Linux NUMA nodes. This array is | ||
| 2347 | indexed by the NUMA node, and the values in the array are | ||
| 2348 | proportional to the amount of buffer space to allocate on that | ||
| 2349 | node. | ||
| 2350 | |||
| 2351 | If memory striping is enabled in the Hypervisor, then there is | ||
| 2352 | only one logical NUMA node (node 0). In that case, NetIO will by | ||
| 2353 | default ignore the suggested buffer node weights, and buffers | ||
| 2354 | will be striped across the physical memory controllers. See | ||
| 2355 | UG209 System Programmer's Guide for a description of the | ||
| 2356 | hypervisor option that controls memory striping. | ||
| 2357 | |||
| 2358 | If memory striping is disabled, then there are up to four NUMA | ||
| 2359 | nodes, corresponding to the four DDRAM controllers in the TILE | ||
| 2360 | processor architecture. See UG100 Tile Processor Architecture | ||
| 2361 | Overview for a diagram showing the location of each of the DDRAM | ||
| 2362 | controllers relative to the tile array. | ||
| 2363 | |||
| 2364 | For instance, if memory striping is disabled, the following | ||
| 2365 | configuration strucure: | ||
| 2366 | |||
| 2367 | @code | ||
| 2368 | netio_input_config_t config = { | ||
| 2369 | . | ||
| 2370 | . | ||
| 2371 | . | ||
| 2372 | .total_buffer_size = 4 * 16 * 1024 * 1024; | ||
| 2373 | .buffer_node_weights = { 1, 0, 1, 0 }, | ||
| 2374 | }, | ||
| 2375 | @endcode | ||
| 2376 | |||
| 2377 | would result in 32 MB of buffers being placed on controller 0, and | ||
| 2378 | 32 MB on controller 2. (Since buffers are allocated in units of | ||
| 2379 | 16 MB, some sets of weights will not be able to be matched exactly.) | ||
| 2380 | |||
| 2381 | For the weights to be effective, @ref total_buffer_size must be | ||
| 2382 | nonzero. If @ref total_buffer_size is zero, causing the default | ||
| 2383 | 32 MB of buffer space to be used, then any specified weights will | ||
| 2384 | be ignored, and buffers will positioned as they were in previous | ||
| 2385 | versions of NetIO: | ||
| 2386 | |||
| 2387 | - For xgbe/0 and gbe/0, 16 MB of buffers will be placed on controller 1, | ||
| 2388 | and the other 16 MB will be placed on controller 2. | ||
| 2389 | |||
| 2390 | - For xgbe/1 and gbe/1, 16 MB of buffers will be placed on controller 2, | ||
| 2391 | and the other 16 MB will be placed on controller 3. | ||
| 2392 | |||
| 2393 | If @ref total_buffer_size is nonzero, but all weights are zero, | ||
| 2394 | then all buffer space will be allocated on Linux NUMA node zero. | ||
| 2395 | |||
| 2396 | By default, the specified buffer placement is treated as a hint; | ||
| 2397 | if sufficient free memory is not available on the specified | ||
| 2398 | controllers, the buffers will be allocated elsewhere. However, | ||
| 2399 | if the ::NETIO_STRICT_HOMING flag is specified in @ref flags, then a | ||
| 2400 | failure to allocate buffer space exactly as requested will cause the | ||
| 2401 | registration operation to fail with an error of ::NETIO_CANNOT_HOME. | ||
| 2402 | |||
| 2403 | Note that maximal network performance cannot be achieved with | ||
| 2404 | only one memory controller. | ||
| 2405 | */ | ||
| 2406 | uint8_t buffer_node_weights[NETIO_NUM_NODE_WEIGHTS]; | ||
| 2407 | |||
| 2408 | /** Fixed virtual address for packet buffers. Only valid when | ||
| 2409 | ::NETIO_FIXED_BUFFER_VA is specified in @ref flags; see the | ||
| 2410 | description of that flag for details. | ||
| 2411 | */ | ||
| 2412 | void* fixed_buffer_va; | ||
| 2413 | |||
| 2414 | /** | ||
| 2415 | Maximum number of outstanding send packet requests. This value is | ||
| 2416 | only relevant when an EPP is in use; it determines the number of | ||
| 2417 | slots in the EPP's outgoing packet queue which this tile is allowed | ||
| 2418 | to consume, and thus the number of packets which may be sent before | ||
| 2419 | the sending tile must wait for an acknowledgment from the EPP. | ||
| 2420 | Modifying this value is generally only helpful when using @ref | ||
| 2421 | netio_send_packet_vector(), where it can help improve performance by | ||
| 2422 | allowing a single vector send operation to process more packets. | ||
| 2423 | Typically it is not specified, and the default, which divides the | ||
| 2424 | outgoing packet slots evenly between all tiles on the chip, is used. | ||
| 2425 | |||
| 2426 | If a registration asks for more outgoing packet queue slots than are | ||
| 2427 | available, ::NETIO_TOOMANY_XMIT will be returned. The total number | ||
| 2428 | of packet queue slots which are available for all tiles for each EPP | ||
| 2429 | is subject to change, but is currently ::NETIO_TOTAL_SENDS_OUTSTANDING. | ||
| 2430 | |||
| 2431 | |||
| 2432 | This value is ignored if ::NETIO_XMIT is not specified in flags. | ||
| 2433 | If you want to specify a large value here for a specific tile, you are | ||
| 2434 | advised to specify NETIO_NO_XMIT on other, non-transmitting tiles so | ||
| 2435 | that they do not consume a default number of packet slots. Any tile | ||
| 2436 | transmitting is required to have at least ::NETIO_MIN_SENDS_OUTSTANDING | ||
| 2437 | slots allocated to it; values less than that will be silently | ||
| 2438 | increased by the NetIO library. | ||
| 2439 | */ | ||
| 2440 | int num_sends_outstanding; | ||
| 2441 | } | ||
| 2442 | netio_input_config_t; | ||
| 2443 | |||
| 2444 | |||
| 2445 | /** Registration flags; used in the @ref netio_input_config_t structure. | ||
| 2446 | * @addtogroup setup | ||
| 2447 | */ | ||
| 2448 | /** @{ */ | ||
| 2449 | |||
| 2450 | /** Fail a registration request if we can't put packet buffers | ||
| 2451 | on the specified memory controllers. */ | ||
| 2452 | #define NETIO_STRICT_HOMING 0x00000002 | ||
| 2453 | |||
| 2454 | /** This application expects no tags on its L2 headers. */ | ||
| 2455 | #define NETIO_TAG_NONE 0x00000004 | ||
| 2456 | |||
| 2457 | /** This application expects Marvell extended tags on its L2 headers. */ | ||
| 2458 | #define NETIO_TAG_MRVL 0x00000008 | ||
| 2459 | |||
| 2460 | /** This application expects Broadcom tags on its L2 headers. */ | ||
| 2461 | #define NETIO_TAG_BRCM 0x00000010 | ||
| 2462 | |||
| 2463 | /** This registration may call routines which receive packets. */ | ||
| 2464 | #define NETIO_RECV 0x00000020 | ||
| 2465 | |||
| 2466 | /** This registration may not call routines which receive packets. */ | ||
| 2467 | #define NETIO_NO_RECV 0x00000040 | ||
| 2468 | |||
| 2469 | /** This registration may call routines which transmit packets. */ | ||
| 2470 | #define NETIO_XMIT 0x00000080 | ||
| 2471 | |||
| 2472 | /** This registration may call routines which transmit packets with | ||
| 2473 | checksum acceleration. */ | ||
| 2474 | #define NETIO_XMIT_CSUM 0x00000100 | ||
| 2475 | |||
| 2476 | /** This registration may not call routines which transmit packets. */ | ||
| 2477 | #define NETIO_NO_XMIT 0x00000200 | ||
| 2478 | |||
| 2479 | /** This registration wants NetIO buffers mapped at an application-specified | ||
| 2480 | virtual address. | ||
| 2481 | |||
| 2482 | NetIO buffers are by default created by the TMC common memory facility, | ||
| 2483 | which must be configured by a common ancestor of all processes sharing | ||
| 2484 | a network interface. When this flag is specified, NetIO buffers are | ||
| 2485 | instead mapped at an address chosen by the application (and specified | ||
| 2486 | in @ref netio_input_config_t::fixed_buffer_va). This allows multiple | ||
| 2487 | unrelated but cooperating processes to share a NetIO interface. | ||
| 2488 | All processes sharing the same interface must specify this flag, | ||
| 2489 | and all must specify the same fixed virtual address. | ||
| 2490 | |||
| 2491 | @ref netio_input_config_t::fixed_buffer_va must be a | ||
| 2492 | multiple of 16 MB, and the packet buffers will occupy @ref | ||
| 2493 | netio_input_config_t::total_buffer_size bytes of virtual address | ||
| 2494 | space, beginning at that address. If any of those virtual addresses | ||
| 2495 | are currently occupied by other memory objects, like application or | ||
| 2496 | shared library code or data, @ref netio_input_register() will return | ||
| 2497 | ::NETIO_FAULT. While it is impossible to provide a fixed_buffer_va | ||
| 2498 | which will work for all applications, a good first guess might be to | ||
| 2499 | use 0xb0000000 minus @ref netio_input_config_t::total_buffer_size. | ||
| 2500 | If that fails, it might be helpful to consult the running application's | ||
| 2501 | virtual address description file (/proc/<em>pid</em>/maps) to see | ||
| 2502 | which regions of virtual address space are available. | ||
| 2503 | */ | ||
| 2504 | #define NETIO_FIXED_BUFFER_VA 0x00000400 | ||
| 2505 | |||
| 2506 | /** This registration call will not complete unless the network link | ||
| 2507 | is up. The process will wait several seconds for this to happen (the | ||
| 2508 | precise interval is link-dependent), but if the link does not come up, | ||
| 2509 | ::NETIO_LINK_DOWN will be returned. This flag is the default if | ||
| 2510 | ::NETIO_NOREQUIRE_LINK_UP is not specified. Note that this flag by | ||
| 2511 | itself does not request that the link be brought up; that can be done | ||
| 2512 | with the ::NETIO_AUTO_LINK_UPDN or ::NETIO_AUTO_LINK_UP flags (the | ||
| 2513 | latter is the default if no NETIO_AUTO_LINK_xxx flags are specified), | ||
| 2514 | or by explicitly setting the link's desired state via netio_set(). | ||
| 2515 | If the link is not brought up by one of those methods, and this flag | ||
| 2516 | is specified, the registration operation will return ::NETIO_LINK_DOWN. | ||
| 2517 | This flag is ignored if it is specified along with ::NETIO_NO_XMIT and | ||
| 2518 | ::NETIO_NO_RECV. See @ref link for more information on link | ||
| 2519 | management. | ||
| 2520 | */ | ||
| 2521 | #define NETIO_REQUIRE_LINK_UP 0x00000800 | ||
| 2522 | |||
| 2523 | /** This registration call will complete even if the network link is not up. | ||
| 2524 | Whenever the link is not up, packets will not be sent or received: | ||
| 2525 | netio_get_packet() will return ::NETIO_NOPKT once all queued packets | ||
| 2526 | have been drained, and netio_send_packet() and similar routines will | ||
| 2527 | return NETIO_QUEUE_FULL once the outgoing packet queue in the EPP | ||
| 2528 | or the I/O shim is full. See @ref link for more information on link | ||
| 2529 | management. | ||
| 2530 | */ | ||
| 2531 | #define NETIO_NOREQUIRE_LINK_UP 0x00001000 | ||
| 2532 | |||
| 2533 | #ifndef __DOXYGEN__ | ||
| 2534 | /* | ||
| 2535 | * These are part of the implementation of the NETIO_AUTO_LINK_xxx flags, | ||
| 2536 | * but should not be used directly by applications, and are thus not | ||
| 2537 | * documented. | ||
| 2538 | */ | ||
| 2539 | #define _NETIO_AUTO_UP 0x00002000 | ||
| 2540 | #define _NETIO_AUTO_DN 0x00004000 | ||
| 2541 | #define _NETIO_AUTO_PRESENT 0x00008000 | ||
| 2542 | #endif | ||
| 2543 | |||
| 2544 | /** Set the desired state of the link to up, allowing any speeds which are | ||
| 2545 | supported by the link hardware, as part of this registration operation. | ||
| 2546 | Do not take down the link automatically. This is the default if | ||
| 2547 | no other NETIO_AUTO_LINK_xxx flags are specified. This flag is ignored | ||
| 2548 | if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV. | ||
| 2549 | See @ref link for more information on link management. | ||
| 2550 | */ | ||
| 2551 | #define NETIO_AUTO_LINK_UP (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP) | ||
| 2552 | |||
| 2553 | /** Set the desired state of the link to up, allowing any speeds which are | ||
| 2554 | supported by the link hardware, as part of this registration operation. | ||
| 2555 | Set the desired state of the link to down the next time no tiles are | ||
| 2556 | registered for packet reception or transmission. This flag is ignored | ||
| 2557 | if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV. | ||
| 2558 | See @ref link for more information on link management. | ||
| 2559 | */ | ||
| 2560 | #define NETIO_AUTO_LINK_UPDN (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP | \ | ||
| 2561 | _NETIO_AUTO_DN) | ||
| 2562 | |||
| 2563 | /** Set the desired state of the link to down the next time no tiles are | ||
| 2564 | registered for packet reception or transmission. This flag is ignored | ||
| 2565 | if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV. | ||
| 2566 | See @ref link for more information on link management. | ||
| 2567 | */ | ||
| 2568 | #define NETIO_AUTO_LINK_DN (_NETIO_AUTO_PRESENT | _NETIO_AUTO_DN) | ||
| 2569 | |||
| 2570 | /** Do not bring up the link automatically as part of this registration | ||
| 2571 | operation. Do not take down the link automatically. This flag | ||
| 2572 | is ignored if it is specified along with ::NETIO_NO_XMIT and | ||
| 2573 | ::NETIO_NO_RECV. See @ref link for more information on link management. | ||
| 2574 | */ | ||
| 2575 | #define NETIO_AUTO_LINK_NONE _NETIO_AUTO_PRESENT | ||
| 2576 | |||
| 2577 | |||
| 2578 | /** Minimum number of receive packets. */ | ||
| 2579 | #define NETIO_MIN_RECEIVE_PKTS 16 | ||
| 2580 | |||
| 2581 | /** Lower bound on the maximum number of receive packets; may be higher | ||
| 2582 | than this on some interfaces. */ | ||
| 2583 | #define NETIO_MAX_RECEIVE_PKTS 128 | ||
| 2584 | |||
| 2585 | /** Maximum number of send buffers, per packet size. */ | ||
| 2586 | #define NETIO_MAX_SEND_BUFFERS 16 | ||
| 2587 | |||
| 2588 | /** Number of EPP queue slots, and thus outstanding sends, per EPP. */ | ||
| 2589 | #define NETIO_TOTAL_SENDS_OUTSTANDING 2015 | ||
| 2590 | |||
| 2591 | /** Minimum number of EPP queue slots, and thus outstanding sends, per | ||
| 2592 | * transmitting tile. */ | ||
| 2593 | #define NETIO_MIN_SENDS_OUTSTANDING 16 | ||
| 2594 | |||
| 2595 | |||
| 2596 | /**@}*/ | ||
| 2597 | |||
| 2598 | #ifndef __DOXYGEN__ | ||
| 2599 | |||
| 2600 | /** | ||
| 2601 | * An object for providing Ethernet packets to a process. | ||
| 2602 | */ | ||
| 2603 | struct __netio_queue_impl_t; | ||
| 2604 | |||
| 2605 | /** | ||
| 2606 | * An object for managing the user end of a NetIO queue. | ||
| 2607 | */ | ||
| 2608 | struct __netio_queue_user_impl_t; | ||
| 2609 | |||
| 2610 | #endif /* !__DOXYGEN__ */ | ||
| 2611 | |||
| 2612 | |||
| 2613 | /** A netio_queue_t describes a NetIO communications endpoint. | ||
| 2614 | * @ingroup setup | ||
| 2615 | */ | ||
| 2616 | typedef struct | ||
| 2617 | { | ||
| 2618 | #ifdef __DOXYGEN__ | ||
| 2619 | uint8_t opaque[8]; /**< This is an opaque structure. */ | ||
| 2620 | #else | ||
| 2621 | struct __netio_queue_impl_t* __system_part; /**< The system part. */ | ||
| 2622 | struct __netio_queue_user_impl_t* __user_part; /**< The user part. */ | ||
| 2623 | #ifdef _NETIO_PTHREAD | ||
| 2624 | _netio_percpu_mutex_t lock; /**< Queue lock. */ | ||
| 2625 | #endif | ||
| 2626 | #endif | ||
| 2627 | } | ||
| 2628 | netio_queue_t; | ||
| 2629 | |||
| 2630 | |||
| 2631 | /** | ||
| 2632 | * @brief Packet send context. | ||
| 2633 | * | ||
| 2634 | * @ingroup egress | ||
| 2635 | * | ||
| 2636 | * Packet send context for use with netio_send_packet_prepare and _commit. | ||
| 2637 | */ | ||
| 2638 | typedef struct | ||
| 2639 | { | ||
| 2640 | #ifdef __DOXYGEN__ | ||
| 2641 | uint8_t opaque[44]; /**< This is an opaque structure. */ | ||
| 2642 | #else | ||
| 2643 | uint8_t flags; /**< Defined below */ | ||
| 2644 | uint8_t datalen; /**< Number of valid words pointed to by data. */ | ||
| 2645 | uint32_t request[9]; /**< Request to be sent to the EPP or shim. Note | ||
| 2646 | that this is smaller than the 11-word maximum | ||
| 2647 | request size, since some constant values are | ||
| 2648 | not saved in the context. */ | ||
| 2649 | uint32_t *data; /**< Data to be sent to the EPP or shim via IDN. */ | ||
| 2650 | #endif | ||
| 2651 | } | ||
| 2652 | netio_send_pkt_context_t; | ||
| 2653 | |||
| 2654 | |||
| 2655 | #ifndef __DOXYGEN__ | ||
| 2656 | #define SEND_PKT_CTX_USE_EPP 1 /**< We're sending to an EPP. */ | ||
| 2657 | #define SEND_PKT_CTX_SEND_CSUM 2 /**< Request includes a checksum. */ | ||
| 2658 | #endif | ||
| 2659 | |||
| 2660 | /** | ||
| 2661 | * @brief Packet vector entry. | ||
| 2662 | * | ||
| 2663 | * @ingroup egress | ||
| 2664 | * | ||
| 2665 | * This data structure is used with netio_send_packet_vector() to send multiple | ||
| 2666 | * packets with one NetIO call. The structure should be initialized by | ||
| 2667 | * calling netio_pkt_vector_set(), rather than by setting the fields | ||
| 2668 | * directly. | ||
| 2669 | * | ||
| 2670 | * This structure is guaranteed to be a power of two in size, no | ||
| 2671 | * bigger than one L2 cache line, and to be aligned modulo its size. | ||
| 2672 | */ | ||
| 2673 | typedef struct | ||
| 2674 | #ifndef __DOXYGEN__ | ||
| 2675 | __attribute__((aligned(8))) | ||
| 2676 | #endif | ||
| 2677 | { | ||
| 2678 | /** Reserved for use by the user application. When initialized with | ||
| 2679 | * the netio_set_pkt_vector_entry() function, this field is guaranteed | ||
| 2680 | * to be visible to readers only after all other fields are already | ||
| 2681 | * visible. This way it can be used as a valid flag or generation | ||
| 2682 | * counter. */ | ||
| 2683 | uint8_t user_data; | ||
| 2684 | |||
| 2685 | /* Structure members below this point should not be accessed directly by | ||
| 2686 | * applications, as they may change in the future. */ | ||
| 2687 | |||
| 2688 | /** Low 8 bits of the packet address to send. The high bits are | ||
| 2689 | * acquired from the 'handle' field. */ | ||
| 2690 | uint8_t buffer_address_low; | ||
| 2691 | |||
| 2692 | /** Number of bytes to transmit. */ | ||
| 2693 | uint16_t size; | ||
| 2694 | |||
| 2695 | /** The raw handle from a netio_pkt_t. If this is NETIO_PKT_HANDLE_NONE, | ||
| 2696 | * this vector entry will be skipped and no packet will be transmitted. */ | ||
| 2697 | netio_pkt_handle_t handle; | ||
| 2698 | } | ||
| 2699 | netio_pkt_vector_entry_t; | ||
| 2700 | |||
| 2701 | |||
| 2702 | /** | ||
| 2703 | * @brief Initialize fields in a packet vector entry. | ||
| 2704 | * | ||
| 2705 | * @ingroup egress | ||
| 2706 | * | ||
| 2707 | * @param[out] v Pointer to the vector entry to be initialized. | ||
| 2708 | * @param[in] pkt Packet to be transmitted when the vector entry is passed to | ||
| 2709 | * netio_send_packet_vector(). Note that the packet's attributes | ||
| 2710 | * (e.g., its L2 offset and length) are captured at the time this | ||
| 2711 | * routine is called; subsequent changes in those attributes will not | ||
| 2712 | * be reflected in the packet which is actually transmitted. | ||
| 2713 | * Changes in the packet's contents, however, will be so reflected. | ||
| 2714 | * If this is NULL, no packet will be transmitted. | ||
| 2715 | * @param[in] user_data User data to be set in the vector entry. | ||
| 2716 | * This function guarantees that the "user_data" field will become | ||
| 2717 | * visible to a reader only after all other fields have become visible. | ||
| 2718 | * This allows a structure in a ring buffer to be written and read | ||
| 2719 | * by a polling reader without any locks or other synchronization. | ||
| 2720 | */ | ||
| 2721 | static __inline void | ||
| 2722 | netio_pkt_vector_set(volatile netio_pkt_vector_entry_t* v, netio_pkt_t* pkt, | ||
| 2723 | uint8_t user_data) | ||
| 2724 | { | ||
| 2725 | if (pkt) | ||
| 2726 | { | ||
| 2727 | if (NETIO_PKT_IS_MINIMAL(pkt)) | ||
| 2728 | { | ||
| 2729 | netio_pkt_minimal_metadata_t* mmd = | ||
| 2730 | (netio_pkt_minimal_metadata_t*) &pkt->__metadata; | ||
| 2731 | v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_MM(mmd, pkt) & 0xFF; | ||
| 2732 | v->size = NETIO_PKT_L2_LENGTH_MM(mmd, pkt); | ||
| 2733 | } | ||
| 2734 | else | ||
| 2735 | { | ||
| 2736 | netio_pkt_metadata_t* mda = &pkt->__metadata; | ||
| 2737 | v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_M(mda, pkt) & 0xFF; | ||
| 2738 | v->size = NETIO_PKT_L2_LENGTH_M(mda, pkt); | ||
| 2739 | } | ||
| 2740 | v->handle.word = pkt->__packet.word; | ||
| 2741 | } | ||
| 2742 | else | ||
| 2743 | { | ||
| 2744 | v->handle.word = 0; /* Set handle to NETIO_PKT_HANDLE_NONE. */ | ||
| 2745 | } | ||
| 2746 | |||
| 2747 | __asm__("" : : : "memory"); | ||
| 2748 | |||
| 2749 | v->user_data = user_data; | ||
| 2750 | } | ||
| 2751 | |||
| 2752 | |||
| 2753 | /** | ||
| 2754 | * Flags and structures for @ref netio_get() and @ref netio_set(). | ||
| 2755 | * @ingroup config | ||
| 2756 | */ | ||
| 2757 | |||
| 2758 | /** @{ */ | ||
| 2759 | /** Parameter class; addr is a NETIO_PARAM_xxx value. */ | ||
| 2760 | #define NETIO_PARAM 0 | ||
| 2761 | /** Interface MAC address. This address is only valid with @ref netio_get(). | ||
| 2762 | * The value is a 6-byte MAC address. Depending upon the overall system | ||
| 2763 | * design, a MAC address may or may not be available for each interface. */ | ||
| 2764 | #define NETIO_PARAM_MAC 0 | ||
| 2765 | |||
| 2766 | /** Determine whether to suspend output on the receipt of pause frames. | ||
| 2767 | * If the value is nonzero, the I/O shim will suspend output when a pause | ||
| 2768 | * frame is received. If the value is zero, pause frames will be ignored. */ | ||
| 2769 | #define NETIO_PARAM_PAUSE_IN 1 | ||
| 2770 | |||
| 2771 | /** Determine whether to send pause frames if the I/O shim packet FIFOs are | ||
| 2772 | * nearly full. If the value is zero, pause frames are not sent. If | ||
| 2773 | * the value is nonzero, it is the delay value which will be sent in any | ||
| 2774 | * pause frames which are output, in units of 512 bit times. */ | ||
| 2775 | #define NETIO_PARAM_PAUSE_OUT 2 | ||
| 2776 | |||
| 2777 | /** Jumbo frame support. The value is a 4-byte integer. If the value is | ||
| 2778 | * nonzero, the MAC will accept frames of up to 10240 bytes. If the value | ||
| 2779 | * is zero, the MAC will only accept frames of up to 1544 bytes. */ | ||
| 2780 | #define NETIO_PARAM_JUMBO 3 | ||
| 2781 | |||
| 2782 | /** I/O shim's overflow statistics register. The value is two 16-bit integers. | ||
| 2783 | * The first 16-bit value (or the low 16 bits, if the value is treated as a | ||
| 2784 | * 32-bit number) is the count of packets which were completely dropped and | ||
| 2785 | * not delivered by the shim. The second 16-bit value (or the high 16 bits, | ||
| 2786 | * if the value is treated as a 32-bit number) is the count of packets | ||
| 2787 | * which were truncated and thus only partially delivered by the shim. This | ||
| 2788 | * register is automatically reset to zero after it has been read. | ||
| 2789 | */ | ||
| 2790 | #define NETIO_PARAM_OVERFLOW 4 | ||
| 2791 | |||
| 2792 | /** IPP statistics. This address is only valid with @ref netio_get(). The | ||
| 2793 | * value is a netio_stat_t structure. Unlike the I/O shim statistics, the | ||
| 2794 | * IPP statistics are not all reset to zero on read; see the description | ||
| 2795 | * of the netio_stat_t for details. */ | ||
| 2796 | #define NETIO_PARAM_STAT 5 | ||
| 2797 | |||
| 2798 | /** Possible link state. The value is a combination of "NETIO_LINK_xxx" | ||
| 2799 | * flags. With @ref netio_get(), this will indicate which flags are | ||
| 2800 | * actually supported by the hardware. | ||
| 2801 | * | ||
| 2802 | * For historical reasons, specifying this value to netio_set() will have | ||
| 2803 | * the same behavior as using ::NETIO_PARAM_LINK_CONFIG, but this usage is | ||
| 2804 | * discouraged. | ||
| 2805 | */ | ||
| 2806 | #define NETIO_PARAM_LINK_POSSIBLE_STATE 6 | ||
| 2807 | |||
| 2808 | /** Link configuration. The value is a combination of "NETIO_LINK_xxx" flags. | ||
| 2809 | * With @ref netio_set(), this will attempt to immediately bring up the | ||
| 2810 | * link using whichever of the requested flags are supported by the | ||
| 2811 | * hardware, or take down the link if the flags are zero; if this is | ||
| 2812 | * not possible, an error will be returned. Many programs will want | ||
| 2813 | * to use ::NETIO_PARAM_LINK_DESIRED_STATE instead. | ||
| 2814 | * | ||
| 2815 | * For historical reasons, specifying this value to netio_get() will | ||
| 2816 | * have the same behavior as using ::NETIO_PARAM_LINK_POSSIBLE_STATE, | ||
| 2817 | * but this usage is discouraged. | ||
| 2818 | */ | ||
| 2819 | #define NETIO_PARAM_LINK_CONFIG NETIO_PARAM_LINK_POSSIBLE_STATE | ||
| 2820 | |||
| 2821 | /** Current link state. This address is only valid with @ref netio_get(). | ||
| 2822 | * The value is zero or more of the "NETIO_LINK_xxx" flags, ORed together. | ||
| 2823 | * If the link is down, the value ANDed with NETIO_LINK_SPEED will be | ||
| 2824 | * zero; if the link is up, the value ANDed with NETIO_LINK_SPEED will | ||
| 2825 | * result in exactly one of the NETIO_LINK_xxx values, indicating the | ||
| 2826 | * current speed. */ | ||
| 2827 | #define NETIO_PARAM_LINK_CURRENT_STATE 7 | ||
| 2828 | |||
| 2829 | /** Variant symbol for current state, retained for compatibility with | ||
| 2830 | * pre-MDE-2.1 programs. */ | ||
| 2831 | #define NETIO_PARAM_LINK_STATUS NETIO_PARAM_LINK_CURRENT_STATE | ||
| 2832 | |||
| 2833 | /** Packet Coherence protocol. This address is only valid with @ref netio_get(). | ||
| 2834 | * The value is nonzero if the interface is configured for cache-coherent DMA. | ||
| 2835 | */ | ||
| 2836 | #define NETIO_PARAM_COHERENT 8 | ||
| 2837 | |||
| 2838 | /** Desired link state. The value is a conbination of "NETIO_LINK_xxx" | ||
| 2839 | * flags, which specify the desired state for the link. With @ref | ||
| 2840 | * netio_set(), this will, in the background, attempt to bring up the link | ||
| 2841 | * using whichever of the requested flags are reasonable, or take down the | ||
| 2842 | * link if the flags are zero. The actual link up or down operation may | ||
| 2843 | * happen after this call completes. If the link state changes in the | ||
| 2844 | * future, the system will continue to try to get back to the desired link | ||
| 2845 | * state; for instance, if the link is brought up successfully, and then | ||
| 2846 | * the network cable is disconnected, the link will go down. However, the | ||
| 2847 | * desired state of the link is still up, so if the cable is reconnected, | ||
| 2848 | * the link will be brought up again. | ||
| 2849 | * | ||
| 2850 | * With @ref netio_get(), this will indicate the desired state for the | ||
| 2851 | * link, as set with a previous netio_set() call, or implicitly by a | ||
| 2852 | * netio_input_register() or netio_input_unregister() operation. This may | ||
| 2853 | * not reflect the current state of the link; to get that, use | ||
| 2854 | * ::NETIO_PARAM_LINK_CURRENT_STATE. */ | ||
| 2855 | #define NETIO_PARAM_LINK_DESIRED_STATE 9 | ||
| 2856 | |||
| 2857 | /** NetIO statistics structure. Retrieved using the ::NETIO_PARAM_STAT | ||
| 2858 | * address passed to @ref netio_get(). */ | ||
| 2859 | typedef struct | ||
| 2860 | { | ||
| 2861 | /** Number of packets which have been received by the IPP and forwarded | ||
| 2862 | * to a tile's receive queue for processing. This value wraps at its | ||
| 2863 | * maximum, and is not cleared upon read. */ | ||
| 2864 | uint32_t packets_received; | ||
| 2865 | |||
| 2866 | /** Number of packets which have been dropped by the IPP, because they could | ||
| 2867 | * not be received, or could not be forwarded to a tile. The former happens | ||
| 2868 | * when the IPP does not have a free packet buffer of suitable size for an | ||
| 2869 | * incoming frame. The latter happens when all potential destination tiles | ||
| 2870 | * for a packet, as defined by the group, bucket, and queue configuration, | ||
| 2871 | * have full receive queues. This value wraps at its maximum, and is not | ||
| 2872 | * cleared upon read. */ | ||
| 2873 | uint32_t packets_dropped; | ||
| 2874 | |||
| 2875 | /* | ||
| 2876 | * Note: the #defines after each of the following four one-byte values | ||
| 2877 | * denote their location within the third word of the netio_stat_t. They | ||
| 2878 | * are intended for use only by the IPP implementation and are thus omitted | ||
| 2879 | * from the Doxygen output. | ||
| 2880 | */ | ||
| 2881 | |||
| 2882 | /** Number of packets dropped because no worker was able to accept a new | ||
| 2883 | * packet. This value saturates at its maximum, and is cleared upon | ||
| 2884 | * read. */ | ||
| 2885 | uint8_t drops_no_worker; | ||
| 2886 | #ifndef __DOXYGEN__ | ||
| 2887 | #define NETIO_STAT_DROPS_NO_WORKER 0 | ||
| 2888 | #endif | ||
| 2889 | |||
| 2890 | /** Number of packets dropped because no small buffers were available. | ||
| 2891 | * This value saturates at its maximum, and is cleared upon read. */ | ||
| 2892 | uint8_t drops_no_smallbuf; | ||
| 2893 | #ifndef __DOXYGEN__ | ||
| 2894 | #define NETIO_STAT_DROPS_NO_SMALLBUF 1 | ||
| 2895 | #endif | ||
| 2896 | |||
| 2897 | /** Number of packets dropped because no large buffers were available. | ||
| 2898 | * This value saturates at its maximum, and is cleared upon read. */ | ||
| 2899 | uint8_t drops_no_largebuf; | ||
| 2900 | #ifndef __DOXYGEN__ | ||
| 2901 | #define NETIO_STAT_DROPS_NO_LARGEBUF 2 | ||
| 2902 | #endif | ||
| 2903 | |||
| 2904 | /** Number of packets dropped because no jumbo buffers were available. | ||
| 2905 | * This value saturates at its maximum, and is cleared upon read. */ | ||
| 2906 | uint8_t drops_no_jumbobuf; | ||
| 2907 | #ifndef __DOXYGEN__ | ||
| 2908 | #define NETIO_STAT_DROPS_NO_JUMBOBUF 3 | ||
| 2909 | #endif | ||
| 2910 | } | ||
| 2911 | netio_stat_t; | ||
| 2912 | |||
| 2913 | |||
| 2914 | /** Link can run, should run, or is running at 10 Mbps. */ | ||
| 2915 | #define NETIO_LINK_10M 0x01 | ||
| 2916 | |||
| 2917 | /** Link can run, should run, or is running at 100 Mbps. */ | ||
| 2918 | #define NETIO_LINK_100M 0x02 | ||
| 2919 | |||
| 2920 | /** Link can run, should run, or is running at 1 Gbps. */ | ||
| 2921 | #define NETIO_LINK_1G 0x04 | ||
| 2922 | |||
| 2923 | /** Link can run, should run, or is running at 10 Gbps. */ | ||
| 2924 | #define NETIO_LINK_10G 0x08 | ||
| 2925 | |||
| 2926 | /** Link should run at the highest speed supported by the link and by | ||
| 2927 | * the device connected to the link. Only usable as a value for | ||
| 2928 | * the link's desired state; never returned as a value for the current | ||
| 2929 | * or possible states. */ | ||
| 2930 | #define NETIO_LINK_ANYSPEED 0x10 | ||
| 2931 | |||
| 2932 | /** All legal link speeds. */ | ||
| 2933 | #define NETIO_LINK_SPEED (NETIO_LINK_10M | \ | ||
| 2934 | NETIO_LINK_100M | \ | ||
| 2935 | NETIO_LINK_1G | \ | ||
| 2936 | NETIO_LINK_10G | \ | ||
| 2937 | NETIO_LINK_ANYSPEED) | ||
| 2938 | |||
| 2939 | |||
| 2940 | /** MAC register class. Addr is a register offset within the MAC. | ||
| 2941 | * Registers within the XGbE and GbE MACs are documented in the Tile | ||
| 2942 | * Processor I/O Device Guide (UG104). MAC registers start at address | ||
| 2943 | * 0x4000, and do not include the MAC_INTERFACE registers. */ | ||
| 2944 | #define NETIO_MAC 1 | ||
| 2945 | |||
| 2946 | /** MDIO register class (IEEE 802.3 clause 22 format). Addr is the "addr" | ||
| 2947 | * member of a netio_mdio_addr_t structure. */ | ||
| 2948 | #define NETIO_MDIO 2 | ||
| 2949 | |||
| 2950 | /** MDIO register class (IEEE 802.3 clause 45 format). Addr is the "addr" | ||
| 2951 | * member of a netio_mdio_addr_t structure. */ | ||
| 2952 | #define NETIO_MDIO_CLAUSE45 3 | ||
| 2953 | |||
| 2954 | /** NetIO MDIO address type. Retrieved or provided using the ::NETIO_MDIO | ||
| 2955 | * address passed to @ref netio_get() or @ref netio_set(). */ | ||
| 2956 | typedef union | ||
| 2957 | { | ||
| 2958 | struct | ||
| 2959 | { | ||
| 2960 | unsigned int reg:16; /**< MDIO register offset. For clause 22 access, | ||
| 2961 | must be less than 32. */ | ||
| 2962 | unsigned int phy:5; /**< Which MDIO PHY to access. */ | ||
| 2963 | unsigned int dev:5; /**< Which MDIO device to access within that PHY. | ||
| 2964 | Applicable for clause 45 access only; ignored | ||
| 2965 | for clause 22 access. */ | ||
| 2966 | } | ||
| 2967 | bits; /**< Container for bitfields. */ | ||
| 2968 | uint64_t addr; /**< Value to pass to @ref netio_get() or | ||
| 2969 | * @ref netio_set(). */ | ||
| 2970 | } | ||
| 2971 | netio_mdio_addr_t; | ||
| 2972 | |||
| 2973 | /** @} */ | ||
| 2974 | |||
| 2975 | #endif /* __NETIO_INTF_H__ */ | ||
diff --git a/arch/tile/kernel/Makefile b/arch/tile/kernel/Makefile index 112b1e248f05..b4c8e8ec45dc 100644 --- a/arch/tile/kernel/Makefile +++ b/arch/tile/kernel/Makefile | |||
| @@ -15,3 +15,4 @@ obj-$(CONFIG_SMP) += smpboot.o smp.o tlb.o | |||
| 15 | obj-$(CONFIG_MODULES) += module.o | 15 | obj-$(CONFIG_MODULES) += module.o |
| 16 | obj-$(CONFIG_EARLY_PRINTK) += early_printk.o | 16 | obj-$(CONFIG_EARLY_PRINTK) += early_printk.o |
| 17 | obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o | 17 | obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o |
| 18 | obj-$(CONFIG_PCI) += pci.o | ||
diff --git a/arch/tile/kernel/compat.c b/arch/tile/kernel/compat.c index 67617a05e602..dbc213adf5e1 100644 --- a/arch/tile/kernel/compat.c +++ b/arch/tile/kernel/compat.c | |||
| @@ -21,7 +21,6 @@ | |||
| 21 | #include <linux/kdev_t.h> | 21 | #include <linux/kdev_t.h> |
| 22 | #include <linux/fs.h> | 22 | #include <linux/fs.h> |
| 23 | #include <linux/fcntl.h> | 23 | #include <linux/fcntl.h> |
| 24 | #include <linux/smp_lock.h> | ||
| 25 | #include <linux/uaccess.h> | 24 | #include <linux/uaccess.h> |
| 26 | #include <linux/signal.h> | 25 | #include <linux/signal.h> |
| 27 | #include <asm/syscalls.h> | 26 | #include <asm/syscalls.h> |
diff --git a/arch/tile/kernel/compat_signal.c b/arch/tile/kernel/compat_signal.c index fb64b99959d4..dbb0dfc7bece 100644 --- a/arch/tile/kernel/compat_signal.c +++ b/arch/tile/kernel/compat_signal.c | |||
| @@ -15,7 +15,6 @@ | |||
| 15 | #include <linux/sched.h> | 15 | #include <linux/sched.h> |
| 16 | #include <linux/mm.h> | 16 | #include <linux/mm.h> |
| 17 | #include <linux/smp.h> | 17 | #include <linux/smp.h> |
| 18 | #include <linux/smp_lock.h> | ||
| 19 | #include <linux/kernel.h> | 18 | #include <linux/kernel.h> |
| 20 | #include <linux/signal.h> | 19 | #include <linux/signal.h> |
| 21 | #include <linux/errno.h> | 20 | #include <linux/errno.h> |
| @@ -291,12 +290,12 @@ long compat_sys_sigaltstack(const struct compat_sigaltstack __user *uss_ptr, | |||
| 291 | return ret; | 290 | return ret; |
| 292 | } | 291 | } |
| 293 | 292 | ||
| 293 | /* The assembly shim for this function arranges to ignore the return value. */ | ||
| 294 | long compat_sys_rt_sigreturn(struct pt_regs *regs) | 294 | long compat_sys_rt_sigreturn(struct pt_regs *regs) |
| 295 | { | 295 | { |
| 296 | struct compat_rt_sigframe __user *frame = | 296 | struct compat_rt_sigframe __user *frame = |
| 297 | (struct compat_rt_sigframe __user *) compat_ptr(regs->sp); | 297 | (struct compat_rt_sigframe __user *) compat_ptr(regs->sp); |
| 298 | sigset_t set; | 298 | sigset_t set; |
| 299 | long r0; | ||
| 300 | 299 | ||
| 301 | if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) | 300 | if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) |
| 302 | goto badframe; | 301 | goto badframe; |
| @@ -309,13 +308,13 @@ long compat_sys_rt_sigreturn(struct pt_regs *regs) | |||
| 309 | recalc_sigpending(); | 308 | recalc_sigpending(); |
| 310 | spin_unlock_irq(¤t->sighand->siglock); | 309 | spin_unlock_irq(¤t->sighand->siglock); |
| 311 | 310 | ||
| 312 | if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &r0)) | 311 | if (restore_sigcontext(regs, &frame->uc.uc_mcontext)) |
| 313 | goto badframe; | 312 | goto badframe; |
| 314 | 313 | ||
| 315 | if (compat_sys_sigaltstack(&frame->uc.uc_stack, NULL, regs) != 0) | 314 | if (compat_sys_sigaltstack(&frame->uc.uc_stack, NULL, regs) != 0) |
| 316 | goto badframe; | 315 | goto badframe; |
| 317 | 316 | ||
| 318 | return r0; | 317 | return 0; |
| 319 | 318 | ||
| 320 | badframe: | 319 | badframe: |
| 321 | force_sig(SIGSEGV, current); | 320 | force_sig(SIGSEGV, current); |
diff --git a/arch/tile/kernel/intvec_32.S b/arch/tile/kernel/intvec_32.S index f5821626247f..5eed4a02bf62 100644 --- a/arch/tile/kernel/intvec_32.S +++ b/arch/tile/kernel/intvec_32.S | |||
| @@ -1342,8 +1342,8 @@ handle_syscall: | |||
| 1342 | lw r20, r20 | 1342 | lw r20, r20 |
| 1343 | 1343 | ||
| 1344 | /* Jump to syscall handler. */ | 1344 | /* Jump to syscall handler. */ |
| 1345 | jalr r20; .Lhandle_syscall_link: | 1345 | jalr r20 |
| 1346 | FEEDBACK_REENTER(handle_syscall) | 1346 | .Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */ |
| 1347 | 1347 | ||
| 1348 | /* | 1348 | /* |
| 1349 | * Write our r0 onto the stack so it gets restored instead | 1349 | * Write our r0 onto the stack so it gets restored instead |
| @@ -1352,6 +1352,9 @@ handle_syscall: | |||
| 1352 | PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) | 1352 | PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) |
| 1353 | sw r29, r0 | 1353 | sw r29, r0 |
| 1354 | 1354 | ||
| 1355 | .Lsyscall_sigreturn_skip: | ||
| 1356 | FEEDBACK_REENTER(handle_syscall) | ||
| 1357 | |||
| 1355 | /* Do syscall trace again, if requested. */ | 1358 | /* Do syscall trace again, if requested. */ |
| 1356 | lw r30, r31 | 1359 | lw r30, r31 |
| 1357 | andi r30, r30, _TIF_SYSCALL_TRACE | 1360 | andi r30, r30, _TIF_SYSCALL_TRACE |
| @@ -1536,9 +1539,24 @@ STD_ENTRY_LOCAL(bad_intr) | |||
| 1536 | }; \ | 1539 | }; \ |
| 1537 | STD_ENDPROC(_##x) | 1540 | STD_ENDPROC(_##x) |
| 1538 | 1541 | ||
| 1542 | /* | ||
| 1543 | * Special-case sigreturn to not write r0 to the stack on return. | ||
| 1544 | * This is technically more efficient, but it also avoids difficulties | ||
| 1545 | * in the 64-bit OS when handling 32-bit compat code, since we must not | ||
| 1546 | * sign-extend r0 for the sigreturn return-value case. | ||
| 1547 | */ | ||
| 1548 | #define PTREGS_SYSCALL_SIGRETURN(x, reg) \ | ||
| 1549 | STD_ENTRY(_##x); \ | ||
| 1550 | addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \ | ||
| 1551 | { \ | ||
| 1552 | PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \ | ||
| 1553 | j x \ | ||
| 1554 | }; \ | ||
| 1555 | STD_ENDPROC(_##x) | ||
| 1556 | |||
| 1539 | PTREGS_SYSCALL(sys_execve, r3) | 1557 | PTREGS_SYSCALL(sys_execve, r3) |
| 1540 | PTREGS_SYSCALL(sys_sigaltstack, r2) | 1558 | PTREGS_SYSCALL(sys_sigaltstack, r2) |
| 1541 | PTREGS_SYSCALL(sys_rt_sigreturn, r0) | 1559 | PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0) |
| 1542 | PTREGS_SYSCALL(sys_cmpxchg_badaddr, r1) | 1560 | PTREGS_SYSCALL(sys_cmpxchg_badaddr, r1) |
| 1543 | 1561 | ||
| 1544 | /* Save additional callee-saves to pt_regs, put address in r4 and jump. */ | 1562 | /* Save additional callee-saves to pt_regs, put address in r4 and jump. */ |
diff --git a/arch/tile/kernel/pci.c b/arch/tile/kernel/pci.c new file mode 100644 index 000000000000..a1ee25be9ad9 --- /dev/null +++ b/arch/tile/kernel/pci.c | |||
| @@ -0,0 +1,621 @@ | |||
| 1 | /* | ||
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or | ||
| 5 | * modify it under the terms of the GNU General Public License | ||
| 6 | * as published by the Free Software Foundation, version 2. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, but | ||
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
| 11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
| 12 | * more details. | ||
| 13 | */ | ||
| 14 | |||
| 15 | #include <linux/kernel.h> | ||
| 16 | #include <linux/pci.h> | ||
| 17 | #include <linux/delay.h> | ||
| 18 | #include <linux/string.h> | ||
| 19 | #include <linux/init.h> | ||
| 20 | #include <linux/capability.h> | ||
| 21 | #include <linux/sched.h> | ||
| 22 | #include <linux/errno.h> | ||
| 23 | #include <linux/bootmem.h> | ||
| 24 | #include <linux/irq.h> | ||
| 25 | #include <linux/io.h> | ||
| 26 | #include <linux/uaccess.h> | ||
| 27 | |||
| 28 | #include <asm/processor.h> | ||
| 29 | #include <asm/sections.h> | ||
| 30 | #include <asm/byteorder.h> | ||
| 31 | #include <asm/hv_driver.h> | ||
| 32 | #include <hv/drv_pcie_rc_intf.h> | ||
| 33 | |||
| 34 | |||
| 35 | /* | ||
| 36 | * Initialization flow and process | ||
| 37 | * ------------------------------- | ||
| 38 | * | ||
| 39 | * This files containes the routines to search for PCI buses, | ||
| 40 | * enumerate the buses, and configure any attached devices. | ||
| 41 | * | ||
| 42 | * There are two entry points here: | ||
| 43 | * 1) tile_pci_init | ||
| 44 | * This sets up the pci_controller structs, and opens the | ||
| 45 | * FDs to the hypervisor. This is called from setup_arch() early | ||
| 46 | * in the boot process. | ||
| 47 | * 2) pcibios_init | ||
| 48 | * This probes the PCI bus(es) for any attached hardware. It's | ||
| 49 | * called by subsys_initcall. All of the real work is done by the | ||
| 50 | * generic Linux PCI layer. | ||
| 51 | * | ||
| 52 | */ | ||
| 53 | |||
| 54 | /* | ||
| 55 | * This flag tells if the platform is TILEmpower that needs | ||
| 56 | * special configuration for the PLX switch chip. | ||
| 57 | */ | ||
| 58 | int __write_once tile_plx_gen1; | ||
| 59 | |||
| 60 | static struct pci_controller controllers[TILE_NUM_PCIE]; | ||
| 61 | static int num_controllers; | ||
| 62 | |||
| 63 | static struct pci_ops tile_cfg_ops; | ||
| 64 | |||
| 65 | |||
| 66 | /* | ||
| 67 | * We don't need to worry about the alignment of resources. | ||
| 68 | */ | ||
| 69 | resource_size_t pcibios_align_resource(void *data, const struct resource *res, | ||
| 70 | resource_size_t size, resource_size_t align) | ||
| 71 | { | ||
| 72 | return res->start; | ||
| 73 | } | ||
| 74 | EXPORT_SYMBOL(pcibios_align_resource); | ||
| 75 | |||
| 76 | /* | ||
| 77 | * Open a FD to the hypervisor PCI device. | ||
| 78 | * | ||
| 79 | * controller_id is the controller number, config type is 0 or 1 for | ||
| 80 | * config0 or config1 operations. | ||
| 81 | */ | ||
| 82 | static int __init tile_pcie_open(int controller_id, int config_type) | ||
| 83 | { | ||
| 84 | char filename[32]; | ||
| 85 | int fd; | ||
| 86 | |||
| 87 | sprintf(filename, "pcie/%d/config%d", controller_id, config_type); | ||
| 88 | |||
| 89 | fd = hv_dev_open((HV_VirtAddr)filename, 0); | ||
| 90 | |||
| 91 | return fd; | ||
| 92 | } | ||
| 93 | |||
| 94 | |||
| 95 | /* | ||
| 96 | * Get the IRQ numbers from the HV and set up the handlers for them. | ||
| 97 | */ | ||
| 98 | static int __init tile_init_irqs(int controller_id, | ||
| 99 | struct pci_controller *controller) | ||
| 100 | { | ||
| 101 | char filename[32]; | ||
| 102 | int fd; | ||
| 103 | int ret; | ||
| 104 | int x; | ||
| 105 | struct pcie_rc_config rc_config; | ||
| 106 | |||
| 107 | sprintf(filename, "pcie/%d/ctl", controller_id); | ||
| 108 | fd = hv_dev_open((HV_VirtAddr)filename, 0); | ||
| 109 | if (fd < 0) { | ||
| 110 | pr_err("PCI: hv_dev_open(%s) failed\n", filename); | ||
| 111 | return -1; | ||
| 112 | } | ||
| 113 | ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config), | ||
| 114 | sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF); | ||
| 115 | hv_dev_close(fd); | ||
| 116 | if (ret != sizeof(rc_config)) { | ||
| 117 | pr_err("PCI: wanted %zd bytes, got %d\n", | ||
| 118 | sizeof(rc_config), ret); | ||
| 119 | return -1; | ||
| 120 | } | ||
| 121 | /* Record irq_base so that we can map INTx to IRQ # later. */ | ||
| 122 | controller->irq_base = rc_config.intr; | ||
| 123 | |||
| 124 | for (x = 0; x < 4; x++) | ||
| 125 | tile_irq_activate(rc_config.intr + x, | ||
| 126 | TILE_IRQ_HW_CLEAR); | ||
| 127 | |||
| 128 | if (rc_config.plx_gen1) | ||
| 129 | controller->plx_gen1 = 1; | ||
| 130 | |||
| 131 | return 0; | ||
| 132 | } | ||
| 133 | |||
| 134 | /* | ||
| 135 | * First initialization entry point, called from setup_arch(). | ||
| 136 | * | ||
| 137 | * Find valid controllers and fill in pci_controller structs for each | ||
| 138 | * of them. | ||
| 139 | * | ||
| 140 | * Returns the number of controllers discovered. | ||
| 141 | */ | ||
| 142 | int __init tile_pci_init(void) | ||
| 143 | { | ||
| 144 | int i; | ||
| 145 | |||
| 146 | pr_info("PCI: Searching for controllers...\n"); | ||
| 147 | |||
| 148 | /* Do any configuration we need before using the PCIe */ | ||
| 149 | |||
| 150 | for (i = 0; i < TILE_NUM_PCIE; i++) { | ||
| 151 | int hv_cfg_fd0 = -1; | ||
| 152 | int hv_cfg_fd1 = -1; | ||
| 153 | int hv_mem_fd = -1; | ||
| 154 | char name[32]; | ||
| 155 | struct pci_controller *controller; | ||
| 156 | |||
| 157 | /* | ||
| 158 | * Open the fd to the HV. If it fails then this | ||
| 159 | * device doesn't exist. | ||
| 160 | */ | ||
| 161 | hv_cfg_fd0 = tile_pcie_open(i, 0); | ||
| 162 | if (hv_cfg_fd0 < 0) | ||
| 163 | continue; | ||
| 164 | hv_cfg_fd1 = tile_pcie_open(i, 1); | ||
| 165 | if (hv_cfg_fd1 < 0) { | ||
| 166 | pr_err("PCI: Couldn't open config fd to HV " | ||
| 167 | "for controller %d\n", i); | ||
| 168 | goto err_cont; | ||
| 169 | } | ||
| 170 | |||
| 171 | sprintf(name, "pcie/%d/mem", i); | ||
| 172 | hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0); | ||
| 173 | if (hv_mem_fd < 0) { | ||
| 174 | pr_err("PCI: Could not open mem fd to HV!\n"); | ||
| 175 | goto err_cont; | ||
| 176 | } | ||
| 177 | |||
| 178 | pr_info("PCI: Found PCI controller #%d\n", i); | ||
| 179 | |||
| 180 | controller = &controllers[num_controllers]; | ||
| 181 | |||
| 182 | if (tile_init_irqs(i, controller)) { | ||
| 183 | pr_err("PCI: Could not initialize " | ||
| 184 | "IRQs, aborting.\n"); | ||
| 185 | goto err_cont; | ||
| 186 | } | ||
| 187 | |||
| 188 | controller->index = num_controllers; | ||
| 189 | controller->hv_cfg_fd[0] = hv_cfg_fd0; | ||
| 190 | controller->hv_cfg_fd[1] = hv_cfg_fd1; | ||
| 191 | controller->hv_mem_fd = hv_mem_fd; | ||
| 192 | controller->first_busno = 0; | ||
| 193 | controller->last_busno = 0xff; | ||
| 194 | controller->ops = &tile_cfg_ops; | ||
| 195 | |||
| 196 | num_controllers++; | ||
| 197 | continue; | ||
| 198 | |||
| 199 | err_cont: | ||
| 200 | if (hv_cfg_fd0 >= 0) | ||
| 201 | hv_dev_close(hv_cfg_fd0); | ||
| 202 | if (hv_cfg_fd1 >= 0) | ||
| 203 | hv_dev_close(hv_cfg_fd1); | ||
| 204 | if (hv_mem_fd >= 0) | ||
| 205 | hv_dev_close(hv_mem_fd); | ||
| 206 | continue; | ||
| 207 | } | ||
| 208 | |||
| 209 | /* | ||
| 210 | * Before using the PCIe, see if we need to do any platform-specific | ||
| 211 | * configuration, such as the PLX switch Gen 1 issue on TILEmpower. | ||
| 212 | */ | ||
| 213 | for (i = 0; i < num_controllers; i++) { | ||
| 214 | struct pci_controller *controller = &controllers[i]; | ||
| 215 | |||
| 216 | if (controller->plx_gen1) | ||
| 217 | tile_plx_gen1 = 1; | ||
| 218 | } | ||
| 219 | |||
| 220 | return num_controllers; | ||
| 221 | } | ||
| 222 | |||
| 223 | /* | ||
| 224 | * (pin - 1) converts from the PCI standard's [1:4] convention to | ||
| 225 | * a normal [0:3] range. | ||
| 226 | */ | ||
| 227 | static int tile_map_irq(struct pci_dev *dev, u8 slot, u8 pin) | ||
| 228 | { | ||
| 229 | struct pci_controller *controller = | ||
| 230 | (struct pci_controller *)dev->sysdata; | ||
| 231 | return (pin - 1) + controller->irq_base; | ||
| 232 | } | ||
| 233 | |||
| 234 | |||
| 235 | static void __init fixup_read_and_payload_sizes(void) | ||
| 236 | { | ||
| 237 | struct pci_dev *dev = NULL; | ||
| 238 | int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */ | ||
| 239 | int max_read_size = 0x2; /* Limit to 512 byte reads. */ | ||
| 240 | u16 new_values; | ||
| 241 | |||
| 242 | /* Scan for the smallest maximum payload size. */ | ||
| 243 | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { | ||
| 244 | int pcie_caps_offset; | ||
| 245 | u32 devcap; | ||
| 246 | int max_payload; | ||
| 247 | |||
| 248 | pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); | ||
| 249 | if (pcie_caps_offset == 0) | ||
| 250 | continue; | ||
| 251 | |||
| 252 | pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP, | ||
| 253 | &devcap); | ||
| 254 | max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD; | ||
| 255 | if (max_payload < smallest_max_payload) | ||
| 256 | smallest_max_payload = max_payload; | ||
| 257 | } | ||
| 258 | |||
| 259 | /* Now, set the max_payload_size for all devices to that value. */ | ||
| 260 | new_values = (max_read_size << 12) | (smallest_max_payload << 5); | ||
| 261 | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { | ||
| 262 | int pcie_caps_offset; | ||
| 263 | u16 devctl; | ||
| 264 | |||
| 265 | pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); | ||
| 266 | if (pcie_caps_offset == 0) | ||
| 267 | continue; | ||
| 268 | |||
| 269 | pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, | ||
| 270 | &devctl); | ||
| 271 | devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ); | ||
| 272 | devctl |= new_values; | ||
| 273 | pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, | ||
| 274 | devctl); | ||
| 275 | } | ||
| 276 | } | ||
| 277 | |||
| 278 | |||
| 279 | /* | ||
| 280 | * Second PCI initialization entry point, called by subsys_initcall. | ||
| 281 | * | ||
| 282 | * The controllers have been set up by the time we get here, by a call to | ||
| 283 | * tile_pci_init. | ||
| 284 | */ | ||
| 285 | static int __init pcibios_init(void) | ||
| 286 | { | ||
| 287 | int i; | ||
| 288 | |||
| 289 | pr_info("PCI: Probing PCI hardware\n"); | ||
| 290 | |||
| 291 | /* | ||
| 292 | * Delay a bit in case devices aren't ready. Some devices are | ||
| 293 | * known to require at least 20ms here, but we use a more | ||
| 294 | * conservative value. | ||
| 295 | */ | ||
| 296 | mdelay(250); | ||
| 297 | |||
| 298 | /* Scan all of the recorded PCI controllers. */ | ||
| 299 | for (i = 0; i < num_controllers; i++) { | ||
| 300 | struct pci_controller *controller = &controllers[i]; | ||
| 301 | struct pci_bus *bus; | ||
| 302 | |||
| 303 | pr_info("PCI: initializing controller #%d\n", i); | ||
| 304 | |||
| 305 | /* | ||
| 306 | * This comes from the generic Linux PCI driver. | ||
| 307 | * | ||
| 308 | * It reads the PCI tree for this bus into the Linux | ||
| 309 | * data structures. | ||
| 310 | * | ||
| 311 | * This is inlined in linux/pci.h and calls into | ||
| 312 | * pci_scan_bus_parented() in probe.c. | ||
| 313 | */ | ||
| 314 | bus = pci_scan_bus(0, controller->ops, controller); | ||
| 315 | controller->root_bus = bus; | ||
| 316 | controller->last_busno = bus->subordinate; | ||
| 317 | |||
| 318 | } | ||
| 319 | |||
| 320 | /* Do machine dependent PCI interrupt routing */ | ||
| 321 | pci_fixup_irqs(pci_common_swizzle, tile_map_irq); | ||
| 322 | |||
| 323 | /* | ||
| 324 | * This comes from the generic Linux PCI driver. | ||
| 325 | * | ||
| 326 | * It allocates all of the resources (I/O memory, etc) | ||
| 327 | * associated with the devices read in above. | ||
| 328 | */ | ||
| 329 | |||
| 330 | pci_assign_unassigned_resources(); | ||
| 331 | |||
| 332 | /* Configure the max_read_size and max_payload_size values. */ | ||
| 333 | fixup_read_and_payload_sizes(); | ||
| 334 | |||
| 335 | /* Record the I/O resources in the PCI controller structure. */ | ||
| 336 | for (i = 0; i < num_controllers; i++) { | ||
| 337 | struct pci_bus *root_bus = controllers[i].root_bus; | ||
| 338 | struct pci_bus *next_bus; | ||
| 339 | struct pci_dev *dev; | ||
| 340 | |||
| 341 | list_for_each_entry(dev, &root_bus->devices, bus_list) { | ||
| 342 | /* Find the PCI host controller, ie. the 1st bridge. */ | ||
| 343 | if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && | ||
| 344 | (PCI_SLOT(dev->devfn) == 0)) { | ||
| 345 | next_bus = dev->subordinate; | ||
| 346 | controllers[i].mem_resources[0] = | ||
| 347 | *next_bus->resource[0]; | ||
| 348 | controllers[i].mem_resources[1] = | ||
| 349 | *next_bus->resource[1]; | ||
| 350 | controllers[i].mem_resources[2] = | ||
| 351 | *next_bus->resource[2]; | ||
| 352 | |||
| 353 | break; | ||
| 354 | } | ||
| 355 | } | ||
| 356 | |||
| 357 | } | ||
| 358 | |||
| 359 | return 0; | ||
| 360 | } | ||
| 361 | subsys_initcall(pcibios_init); | ||
| 362 | |||
| 363 | /* | ||
| 364 | * No bus fixups needed. | ||
| 365 | */ | ||
| 366 | void __devinit pcibios_fixup_bus(struct pci_bus *bus) | ||
| 367 | { | ||
| 368 | /* Nothing needs to be done. */ | ||
| 369 | } | ||
| 370 | |||
| 371 | /* | ||
| 372 | * This can be called from the generic PCI layer, but doesn't need to | ||
| 373 | * do anything. | ||
| 374 | */ | ||
| 375 | char __devinit *pcibios_setup(char *str) | ||
| 376 | { | ||
| 377 | /* Nothing needs to be done. */ | ||
| 378 | return str; | ||
| 379 | } | ||
| 380 | |||
| 381 | /* | ||
| 382 | * This is called from the generic Linux layer. | ||
| 383 | */ | ||
| 384 | void __init pcibios_update_irq(struct pci_dev *dev, int irq) | ||
| 385 | { | ||
| 386 | pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); | ||
| 387 | } | ||
| 388 | |||
| 389 | /* | ||
| 390 | * Enable memory and/or address decoding, as appropriate, for the | ||
| 391 | * device described by the 'dev' struct. | ||
| 392 | * | ||
| 393 | * This is called from the generic PCI layer, and can be called | ||
| 394 | * for bridges or endpoints. | ||
| 395 | */ | ||
| 396 | int pcibios_enable_device(struct pci_dev *dev, int mask) | ||
| 397 | { | ||
| 398 | u16 cmd, old_cmd; | ||
| 399 | u8 header_type; | ||
| 400 | int i; | ||
| 401 | struct resource *r; | ||
| 402 | |||
| 403 | pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); | ||
| 404 | |||
| 405 | pci_read_config_word(dev, PCI_COMMAND, &cmd); | ||
| 406 | old_cmd = cmd; | ||
| 407 | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | ||
| 408 | /* | ||
| 409 | * For bridges, we enable both memory and I/O decoding | ||
| 410 | * in call cases. | ||
| 411 | */ | ||
| 412 | cmd |= PCI_COMMAND_IO; | ||
| 413 | cmd |= PCI_COMMAND_MEMORY; | ||
| 414 | } else { | ||
| 415 | /* | ||
| 416 | * For endpoints, we enable memory and/or I/O decoding | ||
| 417 | * only if they have a memory resource of that type. | ||
| 418 | */ | ||
| 419 | for (i = 0; i < 6; i++) { | ||
| 420 | r = &dev->resource[i]; | ||
| 421 | if (r->flags & IORESOURCE_UNSET) { | ||
| 422 | pr_err("PCI: Device %s not available " | ||
| 423 | "because of resource collisions\n", | ||
| 424 | pci_name(dev)); | ||
| 425 | return -EINVAL; | ||
| 426 | } | ||
| 427 | if (r->flags & IORESOURCE_IO) | ||
| 428 | cmd |= PCI_COMMAND_IO; | ||
| 429 | if (r->flags & IORESOURCE_MEM) | ||
| 430 | cmd |= PCI_COMMAND_MEMORY; | ||
| 431 | } | ||
| 432 | } | ||
| 433 | |||
| 434 | /* | ||
| 435 | * We only write the command if it changed. | ||
| 436 | */ | ||
| 437 | if (cmd != old_cmd) | ||
| 438 | pci_write_config_word(dev, PCI_COMMAND, cmd); | ||
| 439 | return 0; | ||
| 440 | } | ||
| 441 | |||
| 442 | void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max) | ||
| 443 | { | ||
| 444 | unsigned long start = pci_resource_start(dev, bar); | ||
| 445 | unsigned long len = pci_resource_len(dev, bar); | ||
| 446 | unsigned long flags = pci_resource_flags(dev, bar); | ||
| 447 | |||
| 448 | if (!len) | ||
| 449 | return NULL; | ||
| 450 | if (max && len > max) | ||
| 451 | len = max; | ||
| 452 | |||
| 453 | if (!(flags & IORESOURCE_MEM)) { | ||
| 454 | pr_info("PCI: Trying to map invalid resource %#lx\n", flags); | ||
| 455 | start = 0; | ||
| 456 | } | ||
| 457 | |||
| 458 | return (void __iomem *)start; | ||
| 459 | } | ||
| 460 | EXPORT_SYMBOL(pci_iomap); | ||
| 461 | |||
| 462 | |||
| 463 | /**************************************************************** | ||
| 464 | * | ||
| 465 | * Tile PCI config space read/write routines | ||
| 466 | * | ||
| 467 | ****************************************************************/ | ||
| 468 | |||
| 469 | /* | ||
| 470 | * These are the normal read and write ops | ||
| 471 | * These are expanded with macros from pci_bus_read_config_byte() etc. | ||
| 472 | * | ||
| 473 | * devfn is the combined PCI slot & function. | ||
| 474 | * | ||
| 475 | * offset is in bytes, from the start of config space for the | ||
| 476 | * specified bus & slot. | ||
| 477 | */ | ||
| 478 | |||
| 479 | static int __devinit tile_cfg_read(struct pci_bus *bus, | ||
| 480 | unsigned int devfn, | ||
| 481 | int offset, | ||
| 482 | int size, | ||
| 483 | u32 *val) | ||
| 484 | { | ||
| 485 | struct pci_controller *controller = bus->sysdata; | ||
| 486 | int busnum = bus->number & 0xff; | ||
| 487 | int slot = (devfn >> 3) & 0x1f; | ||
| 488 | int function = devfn & 0x7; | ||
| 489 | u32 addr; | ||
| 490 | int config_mode = 1; | ||
| 491 | |||
| 492 | /* | ||
| 493 | * There is no bridge between the Tile and bus 0, so we | ||
| 494 | * use config0 to talk to bus 0. | ||
| 495 | * | ||
| 496 | * If we're talking to a bus other than zero then we | ||
| 497 | * must have found a bridge. | ||
| 498 | */ | ||
| 499 | if (busnum == 0) { | ||
| 500 | /* | ||
| 501 | * We fake an empty slot for (busnum == 0) && (slot > 0), | ||
| 502 | * since there is only one slot on bus 0. | ||
| 503 | */ | ||
| 504 | if (slot) { | ||
| 505 | *val = 0xFFFFFFFF; | ||
| 506 | return 0; | ||
| 507 | } | ||
| 508 | config_mode = 0; | ||
| 509 | } | ||
| 510 | |||
| 511 | addr = busnum << 20; /* Bus in 27:20 */ | ||
| 512 | addr |= slot << 15; /* Slot (device) in 19:15 */ | ||
| 513 | addr |= function << 12; /* Function is in 14:12 */ | ||
| 514 | addr |= (offset & 0xFFF); /* byte address in 0:11 */ | ||
| 515 | |||
| 516 | return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0, | ||
| 517 | (HV_VirtAddr)(val), size, addr); | ||
| 518 | } | ||
| 519 | |||
| 520 | |||
| 521 | /* | ||
| 522 | * See tile_cfg_read() for relevent comments. | ||
| 523 | * Note that "val" is the value to write, not a pointer to that value. | ||
| 524 | */ | ||
| 525 | static int __devinit tile_cfg_write(struct pci_bus *bus, | ||
| 526 | unsigned int devfn, | ||
| 527 | int offset, | ||
| 528 | int size, | ||
| 529 | u32 val) | ||
| 530 | { | ||
| 531 | struct pci_controller *controller = bus->sysdata; | ||
| 532 | int busnum = bus->number & 0xff; | ||
| 533 | int slot = (devfn >> 3) & 0x1f; | ||
| 534 | int function = devfn & 0x7; | ||
| 535 | u32 addr; | ||
| 536 | int config_mode = 1; | ||
| 537 | HV_VirtAddr valp = (HV_VirtAddr)&val; | ||
| 538 | |||
| 539 | /* | ||
| 540 | * For bus 0 slot 0 we use config 0 accesses. | ||
| 541 | */ | ||
| 542 | if (busnum == 0) { | ||
| 543 | /* | ||
| 544 | * We fake an empty slot for (busnum == 0) && (slot > 0), | ||
| 545 | * since there is only one slot on bus 0. | ||
| 546 | */ | ||
| 547 | if (slot) | ||
| 548 | return 0; | ||
| 549 | config_mode = 0; | ||
| 550 | } | ||
| 551 | |||
| 552 | addr = busnum << 20; /* Bus in 27:20 */ | ||
| 553 | addr |= slot << 15; /* Slot (device) in 19:15 */ | ||
| 554 | addr |= function << 12; /* Function is in 14:12 */ | ||
| 555 | addr |= (offset & 0xFFF); /* byte address in 0:11 */ | ||
| 556 | |||
| 557 | #ifdef __BIG_ENDIAN | ||
| 558 | /* Point to the correct part of the 32-bit "val". */ | ||
| 559 | valp += 4 - size; | ||
| 560 | #endif | ||
| 561 | |||
| 562 | return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0, | ||
| 563 | valp, size, addr); | ||
| 564 | } | ||
| 565 | |||
| 566 | |||
| 567 | static struct pci_ops tile_cfg_ops = { | ||
| 568 | .read = tile_cfg_read, | ||
| 569 | .write = tile_cfg_write, | ||
| 570 | }; | ||
| 571 | |||
| 572 | |||
| 573 | /* | ||
| 574 | * In the following, each PCI controller's mem_resources[1] | ||
| 575 | * represents its (non-prefetchable) PCI memory resource. | ||
| 576 | * mem_resources[0] and mem_resources[2] refer to its PCI I/O and | ||
| 577 | * prefetchable PCI memory resources, respectively. | ||
| 578 | * For more details, see pci_setup_bridge() in setup-bus.c. | ||
| 579 | * By comparing the target PCI memory address against the | ||
| 580 | * end address of controller 0, we can determine the controller | ||
| 581 | * that should accept the PCI memory access. | ||
| 582 | */ | ||
| 583 | #define TILE_READ(size, type) \ | ||
| 584 | type _tile_read##size(unsigned long addr) \ | ||
| 585 | { \ | ||
| 586 | type val; \ | ||
| 587 | int idx = 0; \ | ||
| 588 | if (addr > controllers[0].mem_resources[1].end && \ | ||
| 589 | addr > controllers[0].mem_resources[2].end) \ | ||
| 590 | idx = 1; \ | ||
| 591 | if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \ | ||
| 592 | (HV_VirtAddr)(&val), sizeof(type), addr)) \ | ||
| 593 | pr_err("PCI: read %zd bytes at 0x%lX failed\n", \ | ||
| 594 | sizeof(type), addr); \ | ||
| 595 | return val; \ | ||
| 596 | } \ | ||
| 597 | EXPORT_SYMBOL(_tile_read##size) | ||
| 598 | |||
| 599 | TILE_READ(b, u8); | ||
| 600 | TILE_READ(w, u16); | ||
| 601 | TILE_READ(l, u32); | ||
| 602 | TILE_READ(q, u64); | ||
| 603 | |||
| 604 | #define TILE_WRITE(size, type) \ | ||
| 605 | void _tile_write##size(type val, unsigned long addr) \ | ||
| 606 | { \ | ||
| 607 | int idx = 0; \ | ||
| 608 | if (addr > controllers[0].mem_resources[1].end && \ | ||
| 609 | addr > controllers[0].mem_resources[2].end) \ | ||
| 610 | idx = 1; \ | ||
| 611 | if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \ | ||
| 612 | (HV_VirtAddr)(&val), sizeof(type), addr)) \ | ||
| 613 | pr_err("PCI: write %zd bytes at 0x%lX failed\n", \ | ||
| 614 | sizeof(type), addr); \ | ||
| 615 | } \ | ||
| 616 | EXPORT_SYMBOL(_tile_write##size) | ||
| 617 | |||
| 618 | TILE_WRITE(b, u8); | ||
| 619 | TILE_WRITE(w, u16); | ||
| 620 | TILE_WRITE(l, u32); | ||
| 621 | TILE_WRITE(q, u64); | ||
diff --git a/arch/tile/kernel/process.c b/arch/tile/kernel/process.c index 8430f45daea6..e90eb53173b0 100644 --- a/arch/tile/kernel/process.c +++ b/arch/tile/kernel/process.c | |||
| @@ -212,6 +212,13 @@ int copy_thread(unsigned long clone_flags, unsigned long sp, | |||
| 212 | childregs->sp = sp; /* override with new user stack pointer */ | 212 | childregs->sp = sp; /* override with new user stack pointer */ |
| 213 | 213 | ||
| 214 | /* | 214 | /* |
| 215 | * If CLONE_SETTLS is set, set "tp" in the new task to "r4", | ||
| 216 | * which is passed in as arg #5 to sys_clone(). | ||
| 217 | */ | ||
| 218 | if (clone_flags & CLONE_SETTLS) | ||
| 219 | childregs->tp = regs->regs[4]; | ||
| 220 | |||
| 221 | /* | ||
| 215 | * Copy the callee-saved registers from the passed pt_regs struct | 222 | * Copy the callee-saved registers from the passed pt_regs struct |
| 216 | * into the context-switch callee-saved registers area. | 223 | * into the context-switch callee-saved registers area. |
| 217 | * This way when we start the interrupt-return sequence, the | 224 | * This way when we start the interrupt-return sequence, the |
| @@ -539,6 +546,7 @@ struct task_struct *__sched _switch_to(struct task_struct *prev, | |||
| 539 | return __switch_to(prev, next, next_current_ksp0(next)); | 546 | return __switch_to(prev, next, next_current_ksp0(next)); |
| 540 | } | 547 | } |
| 541 | 548 | ||
| 549 | /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */ | ||
| 542 | SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, | 550 | SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, |
| 543 | void __user *, parent_tidptr, void __user *, child_tidptr, | 551 | void __user *, parent_tidptr, void __user *, child_tidptr, |
| 544 | struct pt_regs *, regs) | 552 | struct pt_regs *, regs) |
diff --git a/arch/tile/kernel/setup.c b/arch/tile/kernel/setup.c index fb0b3cbeae14..f18573643ed1 100644 --- a/arch/tile/kernel/setup.c +++ b/arch/tile/kernel/setup.c | |||
| @@ -840,7 +840,7 @@ static int __init topology_init(void) | |||
| 840 | for_each_online_node(i) | 840 | for_each_online_node(i) |
| 841 | register_one_node(i); | 841 | register_one_node(i); |
| 842 | 842 | ||
| 843 | for_each_present_cpu(i) | 843 | for (i = 0; i < smp_height * smp_width; ++i) |
| 844 | register_cpu(&cpu_devices[i], i); | 844 | register_cpu(&cpu_devices[i], i); |
| 845 | 845 | ||
| 846 | return 0; | 846 | return 0; |
diff --git a/arch/tile/kernel/signal.c b/arch/tile/kernel/signal.c index 687719d4abd1..1260321155f1 100644 --- a/arch/tile/kernel/signal.c +++ b/arch/tile/kernel/signal.c | |||
| @@ -16,7 +16,6 @@ | |||
| 16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
| 17 | #include <linux/mm.h> | 17 | #include <linux/mm.h> |
| 18 | #include <linux/smp.h> | 18 | #include <linux/smp.h> |
| 19 | #include <linux/smp_lock.h> | ||
| 20 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
| 21 | #include <linux/signal.h> | 20 | #include <linux/signal.h> |
| 22 | #include <linux/errno.h> | 21 | #include <linux/errno.h> |
| @@ -53,7 +52,7 @@ SYSCALL_DEFINE3(sigaltstack, const stack_t __user *, uss, | |||
| 53 | */ | 52 | */ |
| 54 | 53 | ||
| 55 | int restore_sigcontext(struct pt_regs *regs, | 54 | int restore_sigcontext(struct pt_regs *regs, |
| 56 | struct sigcontext __user *sc, long *pr0) | 55 | struct sigcontext __user *sc) |
| 57 | { | 56 | { |
| 58 | int err = 0; | 57 | int err = 0; |
| 59 | int i; | 58 | int i; |
| @@ -76,17 +75,15 @@ int restore_sigcontext(struct pt_regs *regs, | |||
| 76 | 75 | ||
| 77 | regs->faultnum = INT_SWINT_1_SIGRETURN; | 76 | regs->faultnum = INT_SWINT_1_SIGRETURN; |
| 78 | 77 | ||
| 79 | err |= __get_user(*pr0, &sc->gregs[0]); | ||
| 80 | return err; | 78 | return err; |
| 81 | } | 79 | } |
| 82 | 80 | ||
| 83 | /* sigreturn() returns long since it restores r0 in the interrupted code. */ | 81 | /* The assembly shim for this function arranges to ignore the return value. */ |
| 84 | SYSCALL_DEFINE1(rt_sigreturn, struct pt_regs *, regs) | 82 | SYSCALL_DEFINE1(rt_sigreturn, struct pt_regs *, regs) |
| 85 | { | 83 | { |
| 86 | struct rt_sigframe __user *frame = | 84 | struct rt_sigframe __user *frame = |
| 87 | (struct rt_sigframe __user *)(regs->sp); | 85 | (struct rt_sigframe __user *)(regs->sp); |
| 88 | sigset_t set; | 86 | sigset_t set; |
| 89 | long r0; | ||
| 90 | 87 | ||
| 91 | if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) | 88 | if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) |
| 92 | goto badframe; | 89 | goto badframe; |
| @@ -99,13 +96,13 @@ SYSCALL_DEFINE1(rt_sigreturn, struct pt_regs *, regs) | |||
| 99 | recalc_sigpending(); | 96 | recalc_sigpending(); |
| 100 | spin_unlock_irq(¤t->sighand->siglock); | 97 | spin_unlock_irq(¤t->sighand->siglock); |
| 101 | 98 | ||
| 102 | if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &r0)) | 99 | if (restore_sigcontext(regs, &frame->uc.uc_mcontext)) |
| 103 | goto badframe; | 100 | goto badframe; |
| 104 | 101 | ||
| 105 | if (do_sigaltstack(&frame->uc.uc_stack, NULL, regs->sp) == -EFAULT) | 102 | if (do_sigaltstack(&frame->uc.uc_stack, NULL, regs->sp) == -EFAULT) |
| 106 | goto badframe; | 103 | goto badframe; |
| 107 | 104 | ||
| 108 | return r0; | 105 | return 0; |
| 109 | 106 | ||
| 110 | badframe: | 107 | badframe: |
| 111 | force_sig(SIGSEGV, current); | 108 | force_sig(SIGSEGV, current); |
diff --git a/arch/tile/kernel/smpboot.c b/arch/tile/kernel/smpboot.c index 74d62d098edf..b949edcec200 100644 --- a/arch/tile/kernel/smpboot.c +++ b/arch/tile/kernel/smpboot.c | |||
| @@ -18,7 +18,6 @@ | |||
| 18 | #include <linux/mm.h> | 18 | #include <linux/mm.h> |
| 19 | #include <linux/sched.h> | 19 | #include <linux/sched.h> |
| 20 | #include <linux/kernel_stat.h> | 20 | #include <linux/kernel_stat.h> |
| 21 | #include <linux/smp_lock.h> | ||
| 22 | #include <linux/bootmem.h> | 21 | #include <linux/bootmem.h> |
| 23 | #include <linux/notifier.h> | 22 | #include <linux/notifier.h> |
| 24 | #include <linux/cpu.h> | 23 | #include <linux/cpu.h> |
diff --git a/arch/tile/kernel/sys.c b/arch/tile/kernel/sys.c index 7e764669a022..e2187d24a9b4 100644 --- a/arch/tile/kernel/sys.c +++ b/arch/tile/kernel/sys.c | |||
| @@ -20,7 +20,6 @@ | |||
| 20 | #include <linux/sched.h> | 20 | #include <linux/sched.h> |
| 21 | #include <linux/mm.h> | 21 | #include <linux/mm.h> |
| 22 | #include <linux/smp.h> | 22 | #include <linux/smp.h> |
| 23 | #include <linux/smp_lock.h> | ||
| 24 | #include <linux/syscalls.h> | 23 | #include <linux/syscalls.h> |
| 25 | #include <linux/mman.h> | 24 | #include <linux/mman.h> |
| 26 | #include <linux/file.h> | 25 | #include <linux/file.h> |
diff --git a/arch/tile/lib/memchr_32.c b/arch/tile/lib/memchr_32.c index 6235283b4859..cc3d9badf030 100644 --- a/arch/tile/lib/memchr_32.c +++ b/arch/tile/lib/memchr_32.c | |||
| @@ -18,12 +18,24 @@ | |||
| 18 | 18 | ||
| 19 | void *memchr(const void *s, int c, size_t n) | 19 | void *memchr(const void *s, int c, size_t n) |
| 20 | { | 20 | { |
| 21 | const uint32_t *last_word_ptr; | ||
| 22 | const uint32_t *p; | ||
| 23 | const char *last_byte_ptr; | ||
| 24 | uintptr_t s_int; | ||
| 25 | uint32_t goal, before_mask, v, bits; | ||
| 26 | char *ret; | ||
| 27 | |||
| 28 | if (__builtin_expect(n == 0, 0)) { | ||
| 29 | /* Don't dereference any memory if the array is empty. */ | ||
| 30 | return NULL; | ||
| 31 | } | ||
| 32 | |||
| 21 | /* Get an aligned pointer. */ | 33 | /* Get an aligned pointer. */ |
| 22 | const uintptr_t s_int = (uintptr_t) s; | 34 | s_int = (uintptr_t) s; |
| 23 | const uint32_t *p = (const uint32_t *)(s_int & -4); | 35 | p = (const uint32_t *)(s_int & -4); |
| 24 | 36 | ||
| 25 | /* Create four copies of the byte for which we are looking. */ | 37 | /* Create four copies of the byte for which we are looking. */ |
| 26 | const uint32_t goal = 0x01010101 * (uint8_t) c; | 38 | goal = 0x01010101 * (uint8_t) c; |
| 27 | 39 | ||
| 28 | /* Read the first word, but munge it so that bytes before the array | 40 | /* Read the first word, but munge it so that bytes before the array |
| 29 | * will not match goal. | 41 | * will not match goal. |
| @@ -31,23 +43,14 @@ void *memchr(const void *s, int c, size_t n) | |||
| 31 | * Note that this shift count expression works because we know | 43 | * Note that this shift count expression works because we know |
| 32 | * shift counts are taken mod 32. | 44 | * shift counts are taken mod 32. |
| 33 | */ | 45 | */ |
| 34 | const uint32_t before_mask = (1 << (s_int << 3)) - 1; | 46 | before_mask = (1 << (s_int << 3)) - 1; |
| 35 | uint32_t v = (*p | before_mask) ^ (goal & before_mask); | 47 | v = (*p | before_mask) ^ (goal & before_mask); |
| 36 | 48 | ||
| 37 | /* Compute the address of the last byte. */ | 49 | /* Compute the address of the last byte. */ |
| 38 | const char *const last_byte_ptr = (const char *)s + n - 1; | 50 | last_byte_ptr = (const char *)s + n - 1; |
| 39 | 51 | ||
| 40 | /* Compute the address of the word containing the last byte. */ | 52 | /* Compute the address of the word containing the last byte. */ |
| 41 | const uint32_t *const last_word_ptr = | 53 | last_word_ptr = (const uint32_t *)((uintptr_t) last_byte_ptr & -4); |
| 42 | (const uint32_t *)((uintptr_t) last_byte_ptr & -4); | ||
| 43 | |||
| 44 | uint32_t bits; | ||
| 45 | char *ret; | ||
| 46 | |||
| 47 | if (__builtin_expect(n == 0, 0)) { | ||
| 48 | /* Don't dereference any memory if the array is empty. */ | ||
| 49 | return NULL; | ||
| 50 | } | ||
| 51 | 54 | ||
| 52 | while ((bits = __insn_seqb(v, goal)) == 0) { | 55 | while ((bits = __insn_seqb(v, goal)) == 0) { |
| 53 | if (__builtin_expect(p == last_word_ptr, 0)) { | 56 | if (__builtin_expect(p == last_word_ptr, 0)) { |
diff --git a/arch/tile/lib/spinlock_32.c b/arch/tile/lib/spinlock_32.c index 485e24d62c6b..5cd1c4004eca 100644 --- a/arch/tile/lib/spinlock_32.c +++ b/arch/tile/lib/spinlock_32.c | |||
| @@ -167,23 +167,30 @@ void arch_write_lock_slow(arch_rwlock_t *rwlock, u32 val) | |||
| 167 | * when we compare them. | 167 | * when we compare them. |
| 168 | */ | 168 | */ |
| 169 | u32 my_ticket_; | 169 | u32 my_ticket_; |
| 170 | u32 iterations = 0; | ||
| 170 | 171 | ||
| 171 | /* Take out the next ticket; this will also stop would-be readers. */ | 172 | /* |
| 172 | if (val & 1) | 173 | * Wait until there are no readers, then bump up the next |
| 173 | val = get_rwlock(rwlock); | 174 | * field and capture the ticket value. |
| 174 | rwlock->lock = __insn_addb(val, 1 << WR_NEXT_SHIFT); | 175 | */ |
| 176 | for (;;) { | ||
| 177 | if (!(val & 1)) { | ||
| 178 | if ((val >> RD_COUNT_SHIFT) == 0) | ||
| 179 | break; | ||
| 180 | rwlock->lock = val; | ||
| 181 | } | ||
| 182 | delay_backoff(iterations++); | ||
| 183 | val = __insn_tns((int *)&rwlock->lock); | ||
| 184 | } | ||
| 175 | 185 | ||
| 176 | /* Extract my ticket value from the original word. */ | 186 | /* Take out the next ticket and extract my ticket value. */ |
| 187 | rwlock->lock = __insn_addb(val, 1 << WR_NEXT_SHIFT); | ||
| 177 | my_ticket_ = val >> WR_NEXT_SHIFT; | 188 | my_ticket_ = val >> WR_NEXT_SHIFT; |
| 178 | 189 | ||
| 179 | /* | 190 | /* Wait until the "current" field matches our ticket. */ |
| 180 | * Wait until the "current" field matches our ticket, and | ||
| 181 | * there are no remaining readers. | ||
| 182 | */ | ||
| 183 | for (;;) { | 191 | for (;;) { |
| 184 | u32 curr_ = val >> WR_CURR_SHIFT; | 192 | u32 curr_ = val >> WR_CURR_SHIFT; |
| 185 | u32 readers = val >> RD_COUNT_SHIFT; | 193 | u32 delta = ((my_ticket_ - curr_) & WR_MASK); |
| 186 | u32 delta = ((my_ticket_ - curr_) & WR_MASK) + !!readers; | ||
| 187 | if (likely(delta == 0)) | 194 | if (likely(delta == 0)) |
| 188 | break; | 195 | break; |
| 189 | 196 | ||
diff --git a/arch/tile/mm/fault.c b/arch/tile/mm/fault.c index f295b4ac941d..dcebfc831cd6 100644 --- a/arch/tile/mm/fault.c +++ b/arch/tile/mm/fault.c | |||
| @@ -24,7 +24,6 @@ | |||
| 24 | #include <linux/mman.h> | 24 | #include <linux/mman.h> |
| 25 | #include <linux/mm.h> | 25 | #include <linux/mm.h> |
| 26 | #include <linux/smp.h> | 26 | #include <linux/smp.h> |
| 27 | #include <linux/smp_lock.h> | ||
| 28 | #include <linux/interrupt.h> | 27 | #include <linux/interrupt.h> |
| 29 | #include <linux/init.h> | 28 | #include <linux/init.h> |
| 30 | #include <linux/tty.h> | 29 | #include <linux/tty.h> |
diff --git a/arch/tile/mm/hugetlbpage.c b/arch/tile/mm/hugetlbpage.c index 24688b697a8d..201a582c4137 100644 --- a/arch/tile/mm/hugetlbpage.c +++ b/arch/tile/mm/hugetlbpage.c | |||
| @@ -21,7 +21,6 @@ | |||
| 21 | #include <linux/mm.h> | 21 | #include <linux/mm.h> |
| 22 | #include <linux/hugetlb.h> | 22 | #include <linux/hugetlb.h> |
| 23 | #include <linux/pagemap.h> | 23 | #include <linux/pagemap.h> |
| 24 | #include <linux/smp_lock.h> | ||
| 25 | #include <linux/slab.h> | 24 | #include <linux/slab.h> |
| 26 | #include <linux/err.h> | 25 | #include <linux/err.h> |
| 27 | #include <linux/sysctl.h> | 26 | #include <linux/sysctl.h> |
