aboutsummaryrefslogtreecommitdiffstats
path: root/arch/tile/mm/init.c
diff options
context:
space:
mode:
authorChris Metcalf <cmetcalf@tilera.com>2010-05-28 23:09:12 -0400
committerChris Metcalf <cmetcalf@tilera.com>2010-06-04 17:11:18 -0400
commit867e359b97c970a60626d5d76bbe2a8fadbf38fb (patch)
treec5ccbb7f5172e8555977119608ecb1eee3cc37e3 /arch/tile/mm/init.c
parent5360bd776f73d0a7da571d72a09a03f237e99900 (diff)
arch/tile: core support for Tilera 32-bit chips.
This change is the core kernel support for TILEPro and TILE64 chips. No driver support (except the console driver) is included yet. This includes the relevant Linux headers in asm/; the low-level low-level "Tile architecture" headers in arch/, which are shared with the hypervisor, etc., and are build-system agnostic; and the relevant hypervisor headers in hv/. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Reviewed-by: Paul Mundt <lethal@linux-sh.org>
Diffstat (limited to 'arch/tile/mm/init.c')
-rw-r--r--arch/tile/mm/init.c1082
1 files changed, 1082 insertions, 0 deletions
diff --git a/arch/tile/mm/init.c b/arch/tile/mm/init.c
new file mode 100644
index 000000000000..125ac53b60fc
--- /dev/null
+++ b/arch/tile/mm/init.c
@@ -0,0 +1,1082 @@
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
13 * more details.
14 */
15
16#include <linux/module.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/hugetlb.h>
27#include <linux/swap.h>
28#include <linux/smp.h>
29#include <linux/init.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/poison.h>
33#include <linux/bootmem.h>
34#include <linux/slab.h>
35#include <linux/proc_fs.h>
36#include <linux/efi.h>
37#include <linux/memory_hotplug.h>
38#include <linux/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/processor.h>
41#include <asm/system.h>
42#include <asm/pgtable.h>
43#include <asm/pgalloc.h>
44#include <asm/dma.h>
45#include <asm/fixmap.h>
46#include <asm/tlb.h>
47#include <asm/tlbflush.h>
48#include <asm/sections.h>
49#include <asm/setup.h>
50#include <asm/homecache.h>
51#include <hv/hypervisor.h>
52#include <arch/chip.h>
53
54#include "migrate.h"
55
56/*
57 * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)"
58 * in the Tile Kconfig, but this generates configure warnings.
59 * Do it here and force people to get it right to compile this file.
60 * The problem is that with 4KB small pages and 16MB huge pages,
61 * the default value doesn't allow us to group enough small pages
62 * together to make up a huge page.
63 */
64#if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1
65# error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size"
66#endif
67
68#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
69
70unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
71
72DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
73
74/* Create an L2 page table */
75static pte_t * __init alloc_pte(void)
76{
77 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
78}
79
80/*
81 * L2 page tables per controller. We allocate these all at once from
82 * the bootmem allocator and store them here. This saves on kernel L2
83 * page table memory, compared to allocating a full 64K page per L2
84 * page table, and also means that in cases where we use huge pages,
85 * we are guaranteed to later be able to shatter those huge pages and
86 * switch to using these page tables instead, without requiring
87 * further allocation. Each l2_ptes[] entry points to the first page
88 * table for the first hugepage-size piece of memory on the
89 * controller; other page tables are just indexed directly, i.e. the
90 * L2 page tables are contiguous in memory for each controller.
91 */
92static pte_t *l2_ptes[MAX_NUMNODES];
93static int num_l2_ptes[MAX_NUMNODES];
94
95static void init_prealloc_ptes(int node, int pages)
96{
97 BUG_ON(pages & (HV_L2_ENTRIES-1));
98 if (pages) {
99 num_l2_ptes[node] = pages;
100 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
101 HV_PAGE_TABLE_ALIGN, 0);
102 }
103}
104
105pte_t *get_prealloc_pte(unsigned long pfn)
106{
107 int node = pfn_to_nid(pfn);
108 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
109 BUG_ON(node >= MAX_NUMNODES);
110 BUG_ON(pfn >= num_l2_ptes[node]);
111 return &l2_ptes[node][pfn];
112}
113
114/*
115 * What caching do we expect pages from the heap to have when
116 * they are allocated during bootup? (Once we've installed the
117 * "real" swapper_pg_dir.)
118 */
119static int initial_heap_home(void)
120{
121#if CHIP_HAS_CBOX_HOME_MAP()
122 if (hash_default)
123 return PAGE_HOME_HASH;
124#endif
125 return smp_processor_id();
126}
127
128/*
129 * Place a pointer to an L2 page table in a middle page
130 * directory entry.
131 */
132static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
133{
134 phys_addr_t pa = __pa(page_table);
135 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
136 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
137 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
138 pteval = pte_set_home(pteval, initial_heap_home());
139 *(pte_t *)pmd = pteval;
140 if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
141 BUG();
142}
143
144#ifdef __tilegx__
145
146#if HV_L1_SIZE != HV_L2_SIZE
147# error Rework assumption that L1 and L2 page tables are same size.
148#endif
149
150/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
151static inline pmd_t *alloc_pmd(void)
152{
153 return (pmd_t *)alloc_pte();
154}
155
156static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
157{
158 assign_pte((pmd_t *)pud, (pte_t *)pmd);
159}
160
161#endif /* __tilegx__ */
162
163/* Replace the given pmd with a full PTE table. */
164void __init shatter_pmd(pmd_t *pmd)
165{
166 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
167 assign_pte(pmd, pte);
168}
169
170#ifdef CONFIG_HIGHMEM
171/*
172 * This function initializes a certain range of kernel virtual memory
173 * with new bootmem page tables, everywhere page tables are missing in
174 * the given range.
175 */
176
177/*
178 * NOTE: The pagetables are allocated contiguous on the physical space
179 * so we can cache the place of the first one and move around without
180 * checking the pgd every time.
181 */
182static void __init page_table_range_init(unsigned long start,
183 unsigned long end, pgd_t *pgd_base)
184{
185 pgd_t *pgd;
186 int pgd_idx;
187 unsigned long vaddr;
188
189 vaddr = start;
190 pgd_idx = pgd_index(vaddr);
191 pgd = pgd_base + pgd_idx;
192
193 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
194 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
195 if (pmd_none(*pmd))
196 assign_pte(pmd, alloc_pte());
197 vaddr += PMD_SIZE;
198 }
199}
200#endif /* CONFIG_HIGHMEM */
201
202
203#if CHIP_HAS_CBOX_HOME_MAP()
204
205static int __initdata ktext_hash = 1; /* .text pages */
206static int __initdata kdata_hash = 1; /* .data and .bss pages */
207int __write_once hash_default = 1; /* kernel allocator pages */
208EXPORT_SYMBOL(hash_default);
209int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
210#endif /* CHIP_HAS_CBOX_HOME_MAP */
211
212/*
213 * CPUs to use to for striping the pages of kernel data. If hash-for-home
214 * is available, this is only relevant if kcache_hash sets up the
215 * .data and .bss to be page-homed, and we don't want the default mode
216 * of using the full set of kernel cpus for the striping.
217 */
218static __initdata struct cpumask kdata_mask;
219static __initdata int kdata_arg_seen;
220
221int __write_once kdata_huge; /* if no homecaching, small pages */
222
223
224/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
225static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
226{
227 prot = pte_set_home(prot, home);
228#if CHIP_HAS_CBOX_HOME_MAP()
229 if (home == PAGE_HOME_IMMUTABLE) {
230 if (ktext_hash)
231 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
232 else
233 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
234 }
235#endif
236 return prot;
237}
238
239/*
240 * For a given kernel data VA, how should it be cached?
241 * We return the complete pgprot_t with caching bits set.
242 */
243static pgprot_t __init init_pgprot(ulong address)
244{
245 int cpu;
246 unsigned long page;
247 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
248
249#if CHIP_HAS_CBOX_HOME_MAP()
250 /* For kdata=huge, everything is just hash-for-home. */
251 if (kdata_huge)
252 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
253#endif
254
255 /* We map the aliased pages of permanent text inaccessible. */
256 if (address < (ulong) _sinittext - CODE_DELTA)
257 return PAGE_NONE;
258
259 /*
260 * We map read-only data non-coherent for performance. We could
261 * use neighborhood caching on TILE64, but it's not clear it's a win.
262 */
263 if ((address >= (ulong) __start_rodata &&
264 address < (ulong) __end_rodata) ||
265 address == (ulong) empty_zero_page) {
266 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
267 }
268
269 /* As a performance optimization, keep the boot init stack here. */
270 if (address >= (ulong)&init_thread_union &&
271 address < (ulong)&init_thread_union + THREAD_SIZE)
272 return construct_pgprot(PAGE_KERNEL, smp_processor_id());
273
274#ifndef __tilegx__
275#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
276 /* Force the atomic_locks[] array page to be hash-for-home. */
277 if (address == (ulong) atomic_locks)
278 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
279#endif
280#endif
281
282 /*
283 * Everything else that isn't data or bss is heap, so mark it
284 * with the initial heap home (hash-for-home, or this cpu). This
285 * includes any addresses after the loaded image; any address before
286 * _einittext (since we already captured the case of text before
287 * _sinittext); and any init-data pages.
288 *
289 * All the LOWMEM pages that we mark this way will get their
290 * struct page homecache properly marked later, in set_page_homes().
291 * The HIGHMEM pages we leave with a default zero for their
292 * homes, but with a zero free_time we don't have to actually
293 * do a flush action the first time we use them, either.
294 */
295 if (address >= (ulong) _end || address < (ulong) _sdata ||
296 (address >= (ulong) _sinitdata &&
297 address < (ulong) _einitdata))
298 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
299
300#if CHIP_HAS_CBOX_HOME_MAP()
301 /* Use hash-for-home if requested for data/bss. */
302 if (kdata_hash)
303 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
304#endif
305
306 /*
307 * Otherwise we just hand out consecutive cpus. To avoid
308 * requiring this function to hold state, we just walk forward from
309 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
310 * the requested address, while walking cpu home around kdata_mask.
311 * This is typically no more than a dozen or so iterations.
312 */
313 BUG_ON(_einitdata != __bss_start);
314 for (page = (ulong)_sdata, cpu = NR_CPUS; ; ) {
315 cpu = cpumask_next(cpu, &kdata_mask);
316 if (cpu == NR_CPUS)
317 cpu = cpumask_first(&kdata_mask);
318 if (page >= address)
319 break;
320 page += PAGE_SIZE;
321 if (page == (ulong)__start_rodata)
322 page = (ulong)__end_rodata;
323 if (page == (ulong)&init_thread_union)
324 page += THREAD_SIZE;
325 if (page == (ulong)_sinitdata)
326 page = (ulong)_einitdata;
327 if (page == (ulong)empty_zero_page)
328 page += PAGE_SIZE;
329#ifndef __tilegx__
330#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
331 if (page == (ulong)atomic_locks)
332 page += PAGE_SIZE;
333#endif
334#endif
335
336 }
337 return construct_pgprot(PAGE_KERNEL, cpu);
338}
339
340/*
341 * This function sets up how we cache the kernel text. If we have
342 * hash-for-home support, normally that is used instead (see the
343 * kcache_hash boot flag for more information). But if we end up
344 * using a page-based caching technique, this option sets up the
345 * details of that. In addition, the "ktext=nocache" option may
346 * always be used to disable local caching of text pages, if desired.
347 */
348
349static int __initdata ktext_arg_seen;
350static int __initdata ktext_small;
351static int __initdata ktext_local;
352static int __initdata ktext_all;
353static int __initdata ktext_nondataplane;
354static int __initdata ktext_nocache;
355static struct cpumask __initdata ktext_mask;
356
357static int __init setup_ktext(char *str)
358{
359 if (str == NULL)
360 return -EINVAL;
361
362 /* If you have a leading "nocache", turn off ktext caching */
363 if (strncmp(str, "nocache", 7) == 0) {
364 ktext_nocache = 1;
365 printk("ktext: disabling local caching of kernel text\n");
366 str += 7;
367 if (*str == ',')
368 ++str;
369 if (*str == '\0')
370 return 0;
371 }
372
373 ktext_arg_seen = 1;
374
375 /* Default setting on Tile64: use a huge page */
376 if (strcmp(str, "huge") == 0)
377 printk("ktext: using one huge locally cached page\n");
378
379 /* Pay TLB cost but get no cache benefit: cache small pages locally */
380 else if (strcmp(str, "local") == 0) {
381 ktext_small = 1;
382 ktext_local = 1;
383 printk("ktext: using small pages with local caching\n");
384 }
385
386 /* Neighborhood cache ktext pages on all cpus. */
387 else if (strcmp(str, "all") == 0) {
388 ktext_small = 1;
389 ktext_all = 1;
390 printk("ktext: using maximal caching neighborhood\n");
391 }
392
393
394 /* Neighborhood ktext pages on specified mask */
395 else if (cpulist_parse(str, &ktext_mask) == 0) {
396 char buf[NR_CPUS * 5];
397 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
398 if (cpumask_weight(&ktext_mask) > 1) {
399 ktext_small = 1;
400 printk("ktext: using caching neighborhood %s "
401 "with small pages\n", buf);
402 } else {
403 printk("ktext: caching on cpu %s with one huge page\n",
404 buf);
405 }
406 }
407
408 else if (*str)
409 return -EINVAL;
410
411 return 0;
412}
413
414early_param("ktext", setup_ktext);
415
416
417static inline pgprot_t ktext_set_nocache(pgprot_t prot)
418{
419 if (!ktext_nocache)
420 prot = hv_pte_set_nc(prot);
421#if CHIP_HAS_NC_AND_NOALLOC_BITS()
422 else
423 prot = hv_pte_set_no_alloc_l2(prot);
424#endif
425 return prot;
426}
427
428#ifndef __tilegx__
429static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
430{
431 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
432}
433#else
434static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
435{
436 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
437 if (pud_none(*pud))
438 assign_pmd(pud, alloc_pmd());
439 return pmd_offset(pud, va);
440}
441#endif
442
443/* Temporary page table we use for staging. */
444static pgd_t pgtables[PTRS_PER_PGD]
445 __attribute__((section(".init.page")));
446
447/*
448 * This maps the physical memory to kernel virtual address space, a total
449 * of max_low_pfn pages, by creating page tables starting from address
450 * PAGE_OFFSET.
451 *
452 * This routine transitions us from using a set of compiled-in large
453 * pages to using some more precise caching, including removing access
454 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
455 * marking read-only data as locally cacheable, striping the remaining
456 * .data and .bss across all the available tiles, and removing access
457 * to pages above the top of RAM (thus ensuring a page fault from a bad
458 * virtual address rather than a hypervisor shoot down for accessing
459 * memory outside the assigned limits).
460 */
461static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
462{
463 unsigned long address, pfn;
464 pmd_t *pmd;
465 pte_t *pte;
466 int pte_ofs;
467 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
468 struct cpumask kstripe_mask;
469 int rc, i;
470
471#if CHIP_HAS_CBOX_HOME_MAP()
472 if (ktext_arg_seen && ktext_hash) {
473 printk("warning: \"ktext\" boot argument ignored"
474 " if \"kcache_hash\" sets up text hash-for-home\n");
475 ktext_small = 0;
476 }
477
478 if (kdata_arg_seen && kdata_hash) {
479 printk("warning: \"kdata\" boot argument ignored"
480 " if \"kcache_hash\" sets up data hash-for-home\n");
481 }
482
483 if (kdata_huge && !hash_default) {
484 printk("warning: disabling \"kdata=huge\"; requires"
485 " kcache_hash=all or =allbutstack\n");
486 kdata_huge = 0;
487 }
488#endif
489
490 /*
491 * Set up a mask for cpus to use for kernel striping.
492 * This is normally all cpus, but minus dataplane cpus if any.
493 * If the dataplane covers the whole chip, we stripe over
494 * the whole chip too.
495 */
496 cpumask_copy(&kstripe_mask, cpu_possible_mask);
497 if (!kdata_arg_seen)
498 kdata_mask = kstripe_mask;
499
500 /* Allocate and fill in L2 page tables */
501 for (i = 0; i < MAX_NUMNODES; ++i) {
502#ifdef CONFIG_HIGHMEM
503 unsigned long end_pfn = node_lowmem_end_pfn[i];
504#else
505 unsigned long end_pfn = node_end_pfn[i];
506#endif
507 unsigned long end_huge_pfn = 0;
508
509 /* Pre-shatter the last huge page to allow per-cpu pages. */
510 if (kdata_huge)
511 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
512
513 pfn = node_start_pfn[i];
514
515 /* Allocate enough memory to hold L2 page tables for node. */
516 init_prealloc_ptes(i, end_pfn - pfn);
517
518 address = (unsigned long) pfn_to_kaddr(pfn);
519 while (pfn < end_pfn) {
520 BUG_ON(address & (HPAGE_SIZE-1));
521 pmd = get_pmd(pgtables, address);
522 pte = get_prealloc_pte(pfn);
523 if (pfn < end_huge_pfn) {
524 pgprot_t prot = init_pgprot(address);
525 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
526 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
527 pfn++, pte_ofs++, address += PAGE_SIZE)
528 pte[pte_ofs] = pfn_pte(pfn, prot);
529 } else {
530 if (kdata_huge)
531 printk(KERN_DEBUG "pre-shattered huge"
532 " page at %#lx\n", address);
533 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
534 pfn++, pte_ofs++, address += PAGE_SIZE) {
535 pgprot_t prot = init_pgprot(address);
536 pte[pte_ofs] = pfn_pte(pfn, prot);
537 }
538 assign_pte(pmd, pte);
539 }
540 }
541 }
542
543 /*
544 * Set or check ktext_map now that we have cpu_possible_mask
545 * and kstripe_mask to work with.
546 */
547 if (ktext_all)
548 cpumask_copy(&ktext_mask, cpu_possible_mask);
549 else if (ktext_nondataplane)
550 ktext_mask = kstripe_mask;
551 else if (!cpumask_empty(&ktext_mask)) {
552 /* Sanity-check any mask that was requested */
553 struct cpumask bad;
554 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
555 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
556 if (!cpumask_empty(&bad)) {
557 char buf[NR_CPUS * 5];
558 cpulist_scnprintf(buf, sizeof(buf), &bad);
559 printk("ktext: not using unavailable cpus %s\n", buf);
560 }
561 if (cpumask_empty(&ktext_mask)) {
562 printk("ktext: no valid cpus; caching on %d.\n",
563 smp_processor_id());
564 cpumask_copy(&ktext_mask,
565 cpumask_of(smp_processor_id()));
566 }
567 }
568
569 address = MEM_SV_INTRPT;
570 pmd = get_pmd(pgtables, address);
571 if (ktext_small) {
572 /* Allocate an L2 PTE for the kernel text */
573 int cpu = 0;
574 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
575 PAGE_HOME_IMMUTABLE);
576
577 if (ktext_local) {
578 if (ktext_nocache)
579 prot = hv_pte_set_mode(prot,
580 HV_PTE_MODE_UNCACHED);
581 else
582 prot = hv_pte_set_mode(prot,
583 HV_PTE_MODE_CACHE_NO_L3);
584 } else {
585 prot = hv_pte_set_mode(prot,
586 HV_PTE_MODE_CACHE_TILE_L3);
587 cpu = cpumask_first(&ktext_mask);
588
589 prot = ktext_set_nocache(prot);
590 }
591
592 BUG_ON(address != (unsigned long)_stext);
593 pfn = 0; /* code starts at PA 0 */
594 pte = alloc_pte();
595 for (pte_ofs = 0; address < (unsigned long)_einittext;
596 pfn++, pte_ofs++, address += PAGE_SIZE) {
597 if (!ktext_local) {
598 prot = set_remote_cache_cpu(prot, cpu);
599 cpu = cpumask_next(cpu, &ktext_mask);
600 if (cpu == NR_CPUS)
601 cpu = cpumask_first(&ktext_mask);
602 }
603 pte[pte_ofs] = pfn_pte(pfn, prot);
604 }
605 assign_pte(pmd, pte);
606 } else {
607 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
608 pteval = pte_mkhuge(pteval);
609#if CHIP_HAS_CBOX_HOME_MAP()
610 if (ktext_hash) {
611 pteval = hv_pte_set_mode(pteval,
612 HV_PTE_MODE_CACHE_HASH_L3);
613 pteval = ktext_set_nocache(pteval);
614 } else
615#endif /* CHIP_HAS_CBOX_HOME_MAP() */
616 if (cpumask_weight(&ktext_mask) == 1) {
617 pteval = set_remote_cache_cpu(pteval,
618 cpumask_first(&ktext_mask));
619 pteval = hv_pte_set_mode(pteval,
620 HV_PTE_MODE_CACHE_TILE_L3);
621 pteval = ktext_set_nocache(pteval);
622 } else if (ktext_nocache)
623 pteval = hv_pte_set_mode(pteval,
624 HV_PTE_MODE_UNCACHED);
625 else
626 pteval = hv_pte_set_mode(pteval,
627 HV_PTE_MODE_CACHE_NO_L3);
628 *(pte_t *)pmd = pteval;
629 }
630
631 /* Set swapper_pgprot here so it is flushed to memory right away. */
632 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
633
634 /*
635 * Since we may be changing the caching of the stack and page
636 * table itself, we invoke an assembly helper to do the
637 * following steps:
638 *
639 * - flush the cache so we start with an empty slate
640 * - install pgtables[] as the real page table
641 * - flush the TLB so the new page table takes effect
642 */
643 rc = flush_and_install_context(__pa(pgtables),
644 init_pgprot((unsigned long)pgtables),
645 __get_cpu_var(current_asid),
646 cpumask_bits(my_cpu_mask));
647 BUG_ON(rc != 0);
648
649 /* Copy the page table back to the normal swapper_pg_dir. */
650 memcpy(pgd_base, pgtables, sizeof(pgtables));
651 __install_page_table(pgd_base, __get_cpu_var(current_asid),
652 swapper_pgprot);
653}
654
655/*
656 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
657 * is valid. The argument is a physical page number.
658 *
659 * On Tile, the only valid things for which we can just hand out unchecked
660 * PTEs are the kernel code and data. Anything else might change its
661 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
662 * Note that init_thread_union is released to heap soon after boot,
663 * so we include it in the init data.
664 *
665 * For TILE-Gx, we might want to consider allowing access to PA
666 * regions corresponding to PCI space, etc.
667 */
668int devmem_is_allowed(unsigned long pagenr)
669{
670 return pagenr < kaddr_to_pfn(_end) &&
671 !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
672 pagenr < kaddr_to_pfn(_einitdata)) &&
673 !(pagenr >= kaddr_to_pfn(_sinittext) ||
674 pagenr <= kaddr_to_pfn(_einittext-1));
675}
676
677#ifdef CONFIG_HIGHMEM
678static void __init permanent_kmaps_init(pgd_t *pgd_base)
679{
680 pgd_t *pgd;
681 pud_t *pud;
682 pmd_t *pmd;
683 pte_t *pte;
684 unsigned long vaddr;
685
686 vaddr = PKMAP_BASE;
687 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
688
689 pgd = swapper_pg_dir + pgd_index(vaddr);
690 pud = pud_offset(pgd, vaddr);
691 pmd = pmd_offset(pud, vaddr);
692 pte = pte_offset_kernel(pmd, vaddr);
693 pkmap_page_table = pte;
694}
695#endif /* CONFIG_HIGHMEM */
696
697
698static void __init init_free_pfn_range(unsigned long start, unsigned long end)
699{
700 unsigned long pfn;
701 struct page *page = pfn_to_page(start);
702
703 for (pfn = start; pfn < end; ) {
704 /* Optimize by freeing pages in large batches */
705 int order = __ffs(pfn);
706 int count, i;
707 struct page *p;
708
709 if (order >= MAX_ORDER)
710 order = MAX_ORDER-1;
711 count = 1 << order;
712 while (pfn + count > end) {
713 count >>= 1;
714 --order;
715 }
716 for (p = page, i = 0; i < count; ++i, ++p) {
717 __ClearPageReserved(p);
718 /*
719 * Hacky direct set to avoid unnecessary
720 * lock take/release for EVERY page here.
721 */
722 p->_count.counter = 0;
723 p->_mapcount.counter = -1;
724 }
725 init_page_count(page);
726 __free_pages(page, order);
727 totalram_pages += count;
728
729 page += count;
730 pfn += count;
731 }
732}
733
734static void __init set_non_bootmem_pages_init(void)
735{
736 struct zone *z;
737 for_each_zone(z) {
738 unsigned long start, end;
739 int nid = z->zone_pgdat->node_id;
740
741 start = z->zone_start_pfn;
742 if (start == 0)
743 continue; /* bootmem */
744 end = start + z->spanned_pages;
745 if (zone_idx(z) == ZONE_NORMAL) {
746 BUG_ON(start != node_start_pfn[nid]);
747 start = node_free_pfn[nid];
748 }
749#ifdef CONFIG_HIGHMEM
750 if (zone_idx(z) == ZONE_HIGHMEM)
751 totalhigh_pages += z->spanned_pages;
752#endif
753 if (kdata_huge) {
754 unsigned long percpu_pfn = node_percpu_pfn[nid];
755 if (start < percpu_pfn && end > percpu_pfn)
756 end = percpu_pfn;
757 }
758#ifdef CONFIG_PCI
759 if (start <= pci_reserve_start_pfn &&
760 end > pci_reserve_start_pfn) {
761 if (end > pci_reserve_end_pfn)
762 init_free_pfn_range(pci_reserve_end_pfn, end);
763 end = pci_reserve_start_pfn;
764 }
765#endif
766 init_free_pfn_range(start, end);
767 }
768}
769
770/*
771 * paging_init() sets up the page tables - note that all of lowmem is
772 * already mapped by head.S.
773 */
774void __init paging_init(void)
775{
776#ifdef CONFIG_HIGHMEM
777 unsigned long vaddr, end;
778#endif
779#ifdef __tilegx__
780 pud_t *pud;
781#endif
782 pgd_t *pgd_base = swapper_pg_dir;
783
784 kernel_physical_mapping_init(pgd_base);
785
786#ifdef CONFIG_HIGHMEM
787 /*
788 * Fixed mappings, only the page table structure has to be
789 * created - mappings will be set by set_fixmap():
790 */
791 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
792 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
793 page_table_range_init(vaddr, end, pgd_base);
794 permanent_kmaps_init(pgd_base);
795#endif
796
797#ifdef __tilegx__
798 /*
799 * Since GX allocates just one pmd_t array worth of vmalloc space,
800 * we go ahead and allocate it statically here, then share it
801 * globally. As a result we don't have to worry about any task
802 * changing init_mm once we get up and running, and there's no
803 * need for e.g. vmalloc_sync_all().
804 */
805 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
806 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
807 assign_pmd(pud, alloc_pmd());
808#endif
809}
810
811
812/*
813 * Walk the kernel page tables and derive the page_home() from
814 * the PTEs, so that set_pte() can properly validate the caching
815 * of all PTEs it sees.
816 */
817void __init set_page_homes(void)
818{
819}
820
821static void __init set_max_mapnr_init(void)
822{
823#ifdef CONFIG_FLATMEM
824 max_mapnr = max_low_pfn;
825#endif
826}
827
828void __init mem_init(void)
829{
830 int codesize, datasize, initsize;
831 int i;
832#ifndef __tilegx__
833 void *last;
834#endif
835
836#ifdef CONFIG_FLATMEM
837 if (!mem_map)
838 BUG();
839#endif
840
841#ifdef CONFIG_HIGHMEM
842 /* check that fixmap and pkmap do not overlap */
843 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
844 printk(KERN_ERR "fixmap and kmap areas overlap"
845 " - this will crash\n");
846 printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n",
847 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
848 FIXADDR_START);
849 BUG();
850 }
851#endif
852
853 set_max_mapnr_init();
854
855 /* this will put all bootmem onto the freelists */
856 totalram_pages += free_all_bootmem();
857
858 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
859 set_non_bootmem_pages_init();
860
861 codesize = (unsigned long)&_etext - (unsigned long)&_text;
862 datasize = (unsigned long)&_end - (unsigned long)&_sdata;
863 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
864 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
865
866 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
867 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
868 num_physpages << (PAGE_SHIFT-10),
869 codesize >> 10,
870 datasize >> 10,
871 initsize >> 10,
872 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
873 );
874
875 /*
876 * In debug mode, dump some interesting memory mappings.
877 */
878#ifdef CONFIG_HIGHMEM
879 printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
880 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
881 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
882 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
883#endif
884#ifdef CONFIG_HUGEVMAP
885 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
886 HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
887#endif
888 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
889 _VMALLOC_START, _VMALLOC_END - 1);
890#ifdef __tilegx__
891 for (i = MAX_NUMNODES-1; i >= 0; --i) {
892 struct pglist_data *node = &node_data[i];
893 if (node->node_present_pages) {
894 unsigned long start = (unsigned long)
895 pfn_to_kaddr(node->node_start_pfn);
896 unsigned long end = start +
897 (node->node_present_pages << PAGE_SHIFT);
898 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
899 i, start, end - 1);
900 }
901 }
902#else
903 last = high_memory;
904 for (i = MAX_NUMNODES-1; i >= 0; --i) {
905 if ((unsigned long)vbase_map[i] != -1UL) {
906 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
907 i, (unsigned long) (vbase_map[i]),
908 (unsigned long) (last-1));
909 last = vbase_map[i];
910 }
911 }
912#endif
913
914#ifndef __tilegx__
915 /*
916 * Convert from using one lock for all atomic operations to
917 * one per cpu.
918 */
919 __init_atomic_per_cpu();
920#endif
921}
922
923/*
924 * this is for the non-NUMA, single node SMP system case.
925 * Specifically, in the case of x86, we will always add
926 * memory to the highmem for now.
927 */
928#ifndef CONFIG_NEED_MULTIPLE_NODES
929int arch_add_memory(u64 start, u64 size)
930{
931 struct pglist_data *pgdata = &contig_page_data;
932 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
933 unsigned long start_pfn = start >> PAGE_SHIFT;
934 unsigned long nr_pages = size >> PAGE_SHIFT;
935
936 return __add_pages(zone, start_pfn, nr_pages);
937}
938
939int remove_memory(u64 start, u64 size)
940{
941 return -EINVAL;
942}
943#endif
944
945struct kmem_cache *pgd_cache;
946
947void __init pgtable_cache_init(void)
948{
949 pgd_cache = kmem_cache_create("pgd",
950 PTRS_PER_PGD*sizeof(pgd_t),
951 PTRS_PER_PGD*sizeof(pgd_t),
952 0,
953 NULL);
954 if (!pgd_cache)
955 panic("pgtable_cache_init(): Cannot create pgd cache");
956}
957
958#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
959/*
960 * The __w1data area holds data that is only written during initialization,
961 * and is read-only and thus freely cacheable thereafter. Fix the page
962 * table entries that cover that region accordingly.
963 */
964static void mark_w1data_ro(void)
965{
966 /* Loop over page table entries */
967 unsigned long addr = (unsigned long)__w1data_begin;
968 BUG_ON((addr & (PAGE_SIZE-1)) != 0);
969 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
970 unsigned long pfn = kaddr_to_pfn((void *)addr);
971 struct page *page = pfn_to_page(pfn);
972 pte_t *ptep = virt_to_pte(NULL, addr);
973 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
974 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
975 }
976}
977#endif
978
979#ifdef CONFIG_DEBUG_PAGEALLOC
980static long __write_once initfree;
981#else
982static long __write_once initfree = 1;
983#endif
984
985/* Select whether to free (1) or mark unusable (0) the __init pages. */
986static int __init set_initfree(char *str)
987{
988 strict_strtol(str, 0, &initfree);
989 printk("initfree: %s free init pages\n", initfree ? "will" : "won't");
990 return 1;
991}
992__setup("initfree=", set_initfree);
993
994static void free_init_pages(char *what, unsigned long begin, unsigned long end)
995{
996 unsigned long addr = (unsigned long) begin;
997
998 if (kdata_huge && !initfree) {
999 printk("Warning: ignoring initfree=0:"
1000 " incompatible with kdata=huge\n");
1001 initfree = 1;
1002 }
1003 end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1004 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1005 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1006 /*
1007 * Note we just reset the home here directly in the
1008 * page table. We know this is safe because our caller
1009 * just flushed the caches on all the other cpus,
1010 * and they won't be touching any of these pages.
1011 */
1012 int pfn = kaddr_to_pfn((void *)addr);
1013 struct page *page = pfn_to_page(pfn);
1014 pte_t *ptep = virt_to_pte(NULL, addr);
1015 if (!initfree) {
1016 /*
1017 * If debugging page accesses then do not free
1018 * this memory but mark them not present - any
1019 * buggy init-section access will create a
1020 * kernel page fault:
1021 */
1022 pte_clear(&init_mm, addr, ptep);
1023 continue;
1024 }
1025 __ClearPageReserved(page);
1026 init_page_count(page);
1027 if (pte_huge(*ptep))
1028 BUG_ON(!kdata_huge);
1029 else
1030 set_pte_at(&init_mm, addr, ptep,
1031 pfn_pte(pfn, PAGE_KERNEL));
1032 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1033 free_page(addr);
1034 totalram_pages++;
1035 }
1036 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1037}
1038
1039void free_initmem(void)
1040{
1041 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1042
1043 /*
1044 * Evict the dirty initdata on the boot cpu, evict the w1data
1045 * wherever it's homed, and evict all the init code everywhere.
1046 * We are guaranteed that no one will touch the init pages any
1047 * more, and although other cpus may be touching the w1data,
1048 * we only actually change the caching on tile64, which won't
1049 * be keeping local copies in the other tiles' caches anyway.
1050 */
1051 homecache_evict(&cpu_cacheable_map);
1052
1053 /* Free the data pages that we won't use again after init. */
1054 free_init_pages("unused kernel data",
1055 (unsigned long)_sinitdata,
1056 (unsigned long)_einitdata);
1057
1058 /*
1059 * Free the pages mapped from 0xc0000000 that correspond to code
1060 * pages from 0xfd000000 that we won't use again after init.
1061 */
1062 free_init_pages("unused kernel text",
1063 (unsigned long)_sinittext - text_delta,
1064 (unsigned long)_einittext - text_delta);
1065
1066#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1067 /*
1068 * Upgrade the .w1data section to globally cached.
1069 * We don't do this on tilepro, since the cache architecture
1070 * pretty much makes it irrelevant, and in any case we end
1071 * up having racing issues with other tiles that may touch
1072 * the data after we flush the cache but before we update
1073 * the PTEs and flush the TLBs, causing sharer shootdowns
1074 * later. Even though this is to clean data, it seems like
1075 * an unnecessary complication.
1076 */
1077 mark_w1data_ro();
1078#endif
1079
1080 /* Do a global TLB flush so everyone sees the changes. */
1081 flush_tlb_all();
1082}