diff options
author | Chris Metcalf <cmetcalf@tilera.com> | 2011-02-28 15:48:39 -0500 |
---|---|---|
committer | Chris Metcalf <cmetcalf@tilera.com> | 2011-03-01 16:21:06 -0500 |
commit | 63b7ca6b04427aea9075d6f5f5f15b82e115bce4 (patch) | |
tree | 97a72ec3d243a46475e880b2c5703a167165f961 /arch/tile/lib/cacheflush.c | |
parent | 3cebbafd28e6f91677f3becffcdf9150b74a4e0c (diff) |
arch/tile: enhance existing finv_buffer_remote() routine
It now takes an additional argument so it can be used to
flush-and-invalidate pages that are cached using hash-for-home
as well those that are cached with coherence point on a single cpu.
This allows it to be used more widely for changing the coherence
point of arbitrary pages when necessary.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Diffstat (limited to 'arch/tile/lib/cacheflush.c')
-rw-r--r-- | arch/tile/lib/cacheflush.c | 102 |
1 files changed, 102 insertions, 0 deletions
diff --git a/arch/tile/lib/cacheflush.c b/arch/tile/lib/cacheflush.c index 11b6164c2097..35c1d8ca5f38 100644 --- a/arch/tile/lib/cacheflush.c +++ b/arch/tile/lib/cacheflush.c | |||
@@ -21,3 +21,105 @@ void __flush_icache_range(unsigned long start, unsigned long end) | |||
21 | { | 21 | { |
22 | invalidate_icache((const void *)start, end - start, PAGE_SIZE); | 22 | invalidate_icache((const void *)start, end - start, PAGE_SIZE); |
23 | } | 23 | } |
24 | |||
25 | |||
26 | /* Force a load instruction to issue. */ | ||
27 | static inline void force_load(char *p) | ||
28 | { | ||
29 | *(volatile char *)p; | ||
30 | } | ||
31 | |||
32 | /* | ||
33 | * Flush and invalidate a VA range that is homed remotely on a single | ||
34 | * core (if "!hfh") or homed via hash-for-home (if "hfh"), waiting | ||
35 | * until the memory controller holds the flushed values. | ||
36 | */ | ||
37 | void finv_buffer_remote(void *buffer, size_t size, int hfh) | ||
38 | { | ||
39 | char *p, *base; | ||
40 | size_t step_size, load_count; | ||
41 | const unsigned long STRIPE_WIDTH = 8192; | ||
42 | |||
43 | /* | ||
44 | * Flush and invalidate the buffer out of the local L1/L2 | ||
45 | * and request the home cache to flush and invalidate as well. | ||
46 | */ | ||
47 | __finv_buffer(buffer, size); | ||
48 | |||
49 | /* | ||
50 | * Wait for the home cache to acknowledge that it has processed | ||
51 | * all the flush-and-invalidate requests. This does not mean | ||
52 | * that the flushed data has reached the memory controller yet, | ||
53 | * but it does mean the home cache is processing the flushes. | ||
54 | */ | ||
55 | __insn_mf(); | ||
56 | |||
57 | /* | ||
58 | * Issue a load to the last cache line, which can't complete | ||
59 | * until all the previously-issued flushes to the same memory | ||
60 | * controller have also completed. If we weren't striping | ||
61 | * memory, that one load would be sufficient, but since we may | ||
62 | * be, we also need to back up to the last load issued to | ||
63 | * another memory controller, which would be the point where | ||
64 | * we crossed an 8KB boundary (the granularity of striping | ||
65 | * across memory controllers). Keep backing up and doing this | ||
66 | * until we are before the beginning of the buffer, or have | ||
67 | * hit all the controllers. | ||
68 | * | ||
69 | * If we are flushing a hash-for-home buffer, it's even worse. | ||
70 | * Each line may be homed on a different tile, and each tile | ||
71 | * may have up to four lines that are on different | ||
72 | * controllers. So as we walk backwards, we have to touch | ||
73 | * enough cache lines to satisfy these constraints. In | ||
74 | * practice this ends up being close enough to "load from | ||
75 | * every cache line on a full memory stripe on each | ||
76 | * controller" that we simply do that, to simplify the logic. | ||
77 | * | ||
78 | * FIXME: See bug 9535 for some issues with this code. | ||
79 | */ | ||
80 | if (hfh) { | ||
81 | step_size = L2_CACHE_BYTES; | ||
82 | load_count = (STRIPE_WIDTH / L2_CACHE_BYTES) * | ||
83 | (1 << CHIP_LOG_NUM_MSHIMS()); | ||
84 | } else { | ||
85 | step_size = STRIPE_WIDTH; | ||
86 | load_count = (1 << CHIP_LOG_NUM_MSHIMS()); | ||
87 | } | ||
88 | |||
89 | /* Load the last byte of the buffer. */ | ||
90 | p = (char *)buffer + size - 1; | ||
91 | force_load(p); | ||
92 | |||
93 | /* Bump down to the end of the previous stripe or cache line. */ | ||
94 | p -= step_size; | ||
95 | p = (char *)((unsigned long)p | (step_size - 1)); | ||
96 | |||
97 | /* Figure out how far back we need to go. */ | ||
98 | base = p - (step_size * (load_count - 2)); | ||
99 | if ((long)base < (long)buffer) | ||
100 | base = buffer; | ||
101 | |||
102 | /* | ||
103 | * Fire all the loads we need. The MAF only has eight entries | ||
104 | * so we can have at most eight outstanding loads, so we | ||
105 | * unroll by that amount. | ||
106 | */ | ||
107 | #pragma unroll 8 | ||
108 | for (; p >= base; p -= step_size) | ||
109 | force_load(p); | ||
110 | |||
111 | /* | ||
112 | * Repeat, but with inv's instead of loads, to get rid of the | ||
113 | * data we just loaded into our own cache and the old home L3. | ||
114 | * No need to unroll since inv's don't target a register. | ||
115 | */ | ||
116 | p = (char *)buffer + size - 1; | ||
117 | __insn_inv(p); | ||
118 | p -= step_size; | ||
119 | p = (char *)((unsigned long)p | (step_size - 1)); | ||
120 | for (; p >= base; p -= step_size) | ||
121 | __insn_inv(p); | ||
122 | |||
123 | /* Wait for the load+inv's (and thus finvs) to have completed. */ | ||
124 | __insn_mf(); | ||
125 | } | ||