diff options
author | Sam Ravnborg <sam@ravnborg.org> | 2008-12-03 06:11:52 -0500 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2008-12-04 12:17:21 -0500 |
commit | a88b5ba8bd8ac18aad65ee6c6a254e2e74876db3 (patch) | |
tree | eb3d0ffaf53c3f7ec6083752c2097cecd1cb892a /arch/sparc/kernel/smp_64.c | |
parent | d670bd4f803c8b646acd20f3ba21e65458293faf (diff) |
sparc,sparc64: unify kernel/
o Move all files from sparc64/kernel/ to sparc/kernel
- rename as appropriate
o Update sparc/Makefile to the changes
o Update sparc/kernel/Makefile to include the sparc64 files
NOTE: This commit changes link order on sparc64!
Link order had to change for either of sparc32 and sparc64.
And assuming sparc64 see more testing than sparc32 change link
order on sparc64 where issues will be caught faster.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'arch/sparc/kernel/smp_64.c')
-rw-r--r-- | arch/sparc/kernel/smp_64.c | 1412 |
1 files changed, 1412 insertions, 0 deletions
diff --git a/arch/sparc/kernel/smp_64.c b/arch/sparc/kernel/smp_64.c new file mode 100644 index 000000000000..b5225c81556c --- /dev/null +++ b/arch/sparc/kernel/smp_64.c | |||
@@ -0,0 +1,1412 @@ | |||
1 | /* smp.c: Sparc64 SMP support. | ||
2 | * | ||
3 | * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) | ||
4 | */ | ||
5 | |||
6 | #include <linux/module.h> | ||
7 | #include <linux/kernel.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/mm.h> | ||
10 | #include <linux/pagemap.h> | ||
11 | #include <linux/threads.h> | ||
12 | #include <linux/smp.h> | ||
13 | #include <linux/interrupt.h> | ||
14 | #include <linux/kernel_stat.h> | ||
15 | #include <linux/delay.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/spinlock.h> | ||
18 | #include <linux/fs.h> | ||
19 | #include <linux/seq_file.h> | ||
20 | #include <linux/cache.h> | ||
21 | #include <linux/jiffies.h> | ||
22 | #include <linux/profile.h> | ||
23 | #include <linux/lmb.h> | ||
24 | #include <linux/cpu.h> | ||
25 | |||
26 | #include <asm/head.h> | ||
27 | #include <asm/ptrace.h> | ||
28 | #include <asm/atomic.h> | ||
29 | #include <asm/tlbflush.h> | ||
30 | #include <asm/mmu_context.h> | ||
31 | #include <asm/cpudata.h> | ||
32 | #include <asm/hvtramp.h> | ||
33 | #include <asm/io.h> | ||
34 | #include <asm/timer.h> | ||
35 | |||
36 | #include <asm/irq.h> | ||
37 | #include <asm/irq_regs.h> | ||
38 | #include <asm/page.h> | ||
39 | #include <asm/pgtable.h> | ||
40 | #include <asm/oplib.h> | ||
41 | #include <asm/uaccess.h> | ||
42 | #include <asm/starfire.h> | ||
43 | #include <asm/tlb.h> | ||
44 | #include <asm/sections.h> | ||
45 | #include <asm/prom.h> | ||
46 | #include <asm/mdesc.h> | ||
47 | #include <asm/ldc.h> | ||
48 | #include <asm/hypervisor.h> | ||
49 | |||
50 | int sparc64_multi_core __read_mostly; | ||
51 | |||
52 | cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE; | ||
53 | cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE; | ||
54 | DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; | ||
55 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly = | ||
56 | { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; | ||
57 | |||
58 | EXPORT_SYMBOL(cpu_possible_map); | ||
59 | EXPORT_SYMBOL(cpu_online_map); | ||
60 | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); | ||
61 | EXPORT_SYMBOL(cpu_core_map); | ||
62 | |||
63 | static cpumask_t smp_commenced_mask; | ||
64 | |||
65 | void smp_info(struct seq_file *m) | ||
66 | { | ||
67 | int i; | ||
68 | |||
69 | seq_printf(m, "State:\n"); | ||
70 | for_each_online_cpu(i) | ||
71 | seq_printf(m, "CPU%d:\t\tonline\n", i); | ||
72 | } | ||
73 | |||
74 | void smp_bogo(struct seq_file *m) | ||
75 | { | ||
76 | int i; | ||
77 | |||
78 | for_each_online_cpu(i) | ||
79 | seq_printf(m, | ||
80 | "Cpu%dClkTck\t: %016lx\n", | ||
81 | i, cpu_data(i).clock_tick); | ||
82 | } | ||
83 | |||
84 | extern void setup_sparc64_timer(void); | ||
85 | |||
86 | static volatile unsigned long callin_flag = 0; | ||
87 | |||
88 | void __cpuinit smp_callin(void) | ||
89 | { | ||
90 | int cpuid = hard_smp_processor_id(); | ||
91 | |||
92 | __local_per_cpu_offset = __per_cpu_offset(cpuid); | ||
93 | |||
94 | if (tlb_type == hypervisor) | ||
95 | sun4v_ktsb_register(); | ||
96 | |||
97 | __flush_tlb_all(); | ||
98 | |||
99 | setup_sparc64_timer(); | ||
100 | |||
101 | if (cheetah_pcache_forced_on) | ||
102 | cheetah_enable_pcache(); | ||
103 | |||
104 | local_irq_enable(); | ||
105 | |||
106 | callin_flag = 1; | ||
107 | __asm__ __volatile__("membar #Sync\n\t" | ||
108 | "flush %%g6" : : : "memory"); | ||
109 | |||
110 | /* Clear this or we will die instantly when we | ||
111 | * schedule back to this idler... | ||
112 | */ | ||
113 | current_thread_info()->new_child = 0; | ||
114 | |||
115 | /* Attach to the address space of init_task. */ | ||
116 | atomic_inc(&init_mm.mm_count); | ||
117 | current->active_mm = &init_mm; | ||
118 | |||
119 | /* inform the notifiers about the new cpu */ | ||
120 | notify_cpu_starting(cpuid); | ||
121 | |||
122 | while (!cpu_isset(cpuid, smp_commenced_mask)) | ||
123 | rmb(); | ||
124 | |||
125 | ipi_call_lock(); | ||
126 | cpu_set(cpuid, cpu_online_map); | ||
127 | ipi_call_unlock(); | ||
128 | |||
129 | /* idle thread is expected to have preempt disabled */ | ||
130 | preempt_disable(); | ||
131 | } | ||
132 | |||
133 | void cpu_panic(void) | ||
134 | { | ||
135 | printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); | ||
136 | panic("SMP bolixed\n"); | ||
137 | } | ||
138 | |||
139 | /* This tick register synchronization scheme is taken entirely from | ||
140 | * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. | ||
141 | * | ||
142 | * The only change I've made is to rework it so that the master | ||
143 | * initiates the synchonization instead of the slave. -DaveM | ||
144 | */ | ||
145 | |||
146 | #define MASTER 0 | ||
147 | #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) | ||
148 | |||
149 | #define NUM_ROUNDS 64 /* magic value */ | ||
150 | #define NUM_ITERS 5 /* likewise */ | ||
151 | |||
152 | static DEFINE_SPINLOCK(itc_sync_lock); | ||
153 | static unsigned long go[SLAVE + 1]; | ||
154 | |||
155 | #define DEBUG_TICK_SYNC 0 | ||
156 | |||
157 | static inline long get_delta (long *rt, long *master) | ||
158 | { | ||
159 | unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; | ||
160 | unsigned long tcenter, t0, t1, tm; | ||
161 | unsigned long i; | ||
162 | |||
163 | for (i = 0; i < NUM_ITERS; i++) { | ||
164 | t0 = tick_ops->get_tick(); | ||
165 | go[MASTER] = 1; | ||
166 | membar_safe("#StoreLoad"); | ||
167 | while (!(tm = go[SLAVE])) | ||
168 | rmb(); | ||
169 | go[SLAVE] = 0; | ||
170 | wmb(); | ||
171 | t1 = tick_ops->get_tick(); | ||
172 | |||
173 | if (t1 - t0 < best_t1 - best_t0) | ||
174 | best_t0 = t0, best_t1 = t1, best_tm = tm; | ||
175 | } | ||
176 | |||
177 | *rt = best_t1 - best_t0; | ||
178 | *master = best_tm - best_t0; | ||
179 | |||
180 | /* average best_t0 and best_t1 without overflow: */ | ||
181 | tcenter = (best_t0/2 + best_t1/2); | ||
182 | if (best_t0 % 2 + best_t1 % 2 == 2) | ||
183 | tcenter++; | ||
184 | return tcenter - best_tm; | ||
185 | } | ||
186 | |||
187 | void smp_synchronize_tick_client(void) | ||
188 | { | ||
189 | long i, delta, adj, adjust_latency = 0, done = 0; | ||
190 | unsigned long flags, rt, master_time_stamp, bound; | ||
191 | #if DEBUG_TICK_SYNC | ||
192 | struct { | ||
193 | long rt; /* roundtrip time */ | ||
194 | long master; /* master's timestamp */ | ||
195 | long diff; /* difference between midpoint and master's timestamp */ | ||
196 | long lat; /* estimate of itc adjustment latency */ | ||
197 | } t[NUM_ROUNDS]; | ||
198 | #endif | ||
199 | |||
200 | go[MASTER] = 1; | ||
201 | |||
202 | while (go[MASTER]) | ||
203 | rmb(); | ||
204 | |||
205 | local_irq_save(flags); | ||
206 | { | ||
207 | for (i = 0; i < NUM_ROUNDS; i++) { | ||
208 | delta = get_delta(&rt, &master_time_stamp); | ||
209 | if (delta == 0) { | ||
210 | done = 1; /* let's lock on to this... */ | ||
211 | bound = rt; | ||
212 | } | ||
213 | |||
214 | if (!done) { | ||
215 | if (i > 0) { | ||
216 | adjust_latency += -delta; | ||
217 | adj = -delta + adjust_latency/4; | ||
218 | } else | ||
219 | adj = -delta; | ||
220 | |||
221 | tick_ops->add_tick(adj); | ||
222 | } | ||
223 | #if DEBUG_TICK_SYNC | ||
224 | t[i].rt = rt; | ||
225 | t[i].master = master_time_stamp; | ||
226 | t[i].diff = delta; | ||
227 | t[i].lat = adjust_latency/4; | ||
228 | #endif | ||
229 | } | ||
230 | } | ||
231 | local_irq_restore(flags); | ||
232 | |||
233 | #if DEBUG_TICK_SYNC | ||
234 | for (i = 0; i < NUM_ROUNDS; i++) | ||
235 | printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", | ||
236 | t[i].rt, t[i].master, t[i].diff, t[i].lat); | ||
237 | #endif | ||
238 | |||
239 | printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " | ||
240 | "(last diff %ld cycles, maxerr %lu cycles)\n", | ||
241 | smp_processor_id(), delta, rt); | ||
242 | } | ||
243 | |||
244 | static void smp_start_sync_tick_client(int cpu); | ||
245 | |||
246 | static void smp_synchronize_one_tick(int cpu) | ||
247 | { | ||
248 | unsigned long flags, i; | ||
249 | |||
250 | go[MASTER] = 0; | ||
251 | |||
252 | smp_start_sync_tick_client(cpu); | ||
253 | |||
254 | /* wait for client to be ready */ | ||
255 | while (!go[MASTER]) | ||
256 | rmb(); | ||
257 | |||
258 | /* now let the client proceed into his loop */ | ||
259 | go[MASTER] = 0; | ||
260 | membar_safe("#StoreLoad"); | ||
261 | |||
262 | spin_lock_irqsave(&itc_sync_lock, flags); | ||
263 | { | ||
264 | for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { | ||
265 | while (!go[MASTER]) | ||
266 | rmb(); | ||
267 | go[MASTER] = 0; | ||
268 | wmb(); | ||
269 | go[SLAVE] = tick_ops->get_tick(); | ||
270 | membar_safe("#StoreLoad"); | ||
271 | } | ||
272 | } | ||
273 | spin_unlock_irqrestore(&itc_sync_lock, flags); | ||
274 | } | ||
275 | |||
276 | #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) | ||
277 | /* XXX Put this in some common place. XXX */ | ||
278 | static unsigned long kimage_addr_to_ra(void *p) | ||
279 | { | ||
280 | unsigned long val = (unsigned long) p; | ||
281 | |||
282 | return kern_base + (val - KERNBASE); | ||
283 | } | ||
284 | |||
285 | static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg) | ||
286 | { | ||
287 | extern unsigned long sparc64_ttable_tl0; | ||
288 | extern unsigned long kern_locked_tte_data; | ||
289 | struct hvtramp_descr *hdesc; | ||
290 | unsigned long trampoline_ra; | ||
291 | struct trap_per_cpu *tb; | ||
292 | u64 tte_vaddr, tte_data; | ||
293 | unsigned long hv_err; | ||
294 | int i; | ||
295 | |||
296 | hdesc = kzalloc(sizeof(*hdesc) + | ||
297 | (sizeof(struct hvtramp_mapping) * | ||
298 | num_kernel_image_mappings - 1), | ||
299 | GFP_KERNEL); | ||
300 | if (!hdesc) { | ||
301 | printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " | ||
302 | "hvtramp_descr.\n"); | ||
303 | return; | ||
304 | } | ||
305 | |||
306 | hdesc->cpu = cpu; | ||
307 | hdesc->num_mappings = num_kernel_image_mappings; | ||
308 | |||
309 | tb = &trap_block[cpu]; | ||
310 | tb->hdesc = hdesc; | ||
311 | |||
312 | hdesc->fault_info_va = (unsigned long) &tb->fault_info; | ||
313 | hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); | ||
314 | |||
315 | hdesc->thread_reg = thread_reg; | ||
316 | |||
317 | tte_vaddr = (unsigned long) KERNBASE; | ||
318 | tte_data = kern_locked_tte_data; | ||
319 | |||
320 | for (i = 0; i < hdesc->num_mappings; i++) { | ||
321 | hdesc->maps[i].vaddr = tte_vaddr; | ||
322 | hdesc->maps[i].tte = tte_data; | ||
323 | tte_vaddr += 0x400000; | ||
324 | tte_data += 0x400000; | ||
325 | } | ||
326 | |||
327 | trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); | ||
328 | |||
329 | hv_err = sun4v_cpu_start(cpu, trampoline_ra, | ||
330 | kimage_addr_to_ra(&sparc64_ttable_tl0), | ||
331 | __pa(hdesc)); | ||
332 | if (hv_err) | ||
333 | printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " | ||
334 | "gives error %lu\n", hv_err); | ||
335 | } | ||
336 | #endif | ||
337 | |||
338 | extern unsigned long sparc64_cpu_startup; | ||
339 | |||
340 | /* The OBP cpu startup callback truncates the 3rd arg cookie to | ||
341 | * 32-bits (I think) so to be safe we have it read the pointer | ||
342 | * contained here so we work on >4GB machines. -DaveM | ||
343 | */ | ||
344 | static struct thread_info *cpu_new_thread = NULL; | ||
345 | |||
346 | static int __cpuinit smp_boot_one_cpu(unsigned int cpu) | ||
347 | { | ||
348 | struct trap_per_cpu *tb = &trap_block[cpu]; | ||
349 | unsigned long entry = | ||
350 | (unsigned long)(&sparc64_cpu_startup); | ||
351 | unsigned long cookie = | ||
352 | (unsigned long)(&cpu_new_thread); | ||
353 | struct task_struct *p; | ||
354 | int timeout, ret; | ||
355 | |||
356 | p = fork_idle(cpu); | ||
357 | if (IS_ERR(p)) | ||
358 | return PTR_ERR(p); | ||
359 | callin_flag = 0; | ||
360 | cpu_new_thread = task_thread_info(p); | ||
361 | |||
362 | if (tlb_type == hypervisor) { | ||
363 | #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) | ||
364 | if (ldom_domaining_enabled) | ||
365 | ldom_startcpu_cpuid(cpu, | ||
366 | (unsigned long) cpu_new_thread); | ||
367 | else | ||
368 | #endif | ||
369 | prom_startcpu_cpuid(cpu, entry, cookie); | ||
370 | } else { | ||
371 | struct device_node *dp = of_find_node_by_cpuid(cpu); | ||
372 | |||
373 | prom_startcpu(dp->node, entry, cookie); | ||
374 | } | ||
375 | |||
376 | for (timeout = 0; timeout < 50000; timeout++) { | ||
377 | if (callin_flag) | ||
378 | break; | ||
379 | udelay(100); | ||
380 | } | ||
381 | |||
382 | if (callin_flag) { | ||
383 | ret = 0; | ||
384 | } else { | ||
385 | printk("Processor %d is stuck.\n", cpu); | ||
386 | ret = -ENODEV; | ||
387 | } | ||
388 | cpu_new_thread = NULL; | ||
389 | |||
390 | if (tb->hdesc) { | ||
391 | kfree(tb->hdesc); | ||
392 | tb->hdesc = NULL; | ||
393 | } | ||
394 | |||
395 | return ret; | ||
396 | } | ||
397 | |||
398 | static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) | ||
399 | { | ||
400 | u64 result, target; | ||
401 | int stuck, tmp; | ||
402 | |||
403 | if (this_is_starfire) { | ||
404 | /* map to real upaid */ | ||
405 | cpu = (((cpu & 0x3c) << 1) | | ||
406 | ((cpu & 0x40) >> 4) | | ||
407 | (cpu & 0x3)); | ||
408 | } | ||
409 | |||
410 | target = (cpu << 14) | 0x70; | ||
411 | again: | ||
412 | /* Ok, this is the real Spitfire Errata #54. | ||
413 | * One must read back from a UDB internal register | ||
414 | * after writes to the UDB interrupt dispatch, but | ||
415 | * before the membar Sync for that write. | ||
416 | * So we use the high UDB control register (ASI 0x7f, | ||
417 | * ADDR 0x20) for the dummy read. -DaveM | ||
418 | */ | ||
419 | tmp = 0x40; | ||
420 | __asm__ __volatile__( | ||
421 | "wrpr %1, %2, %%pstate\n\t" | ||
422 | "stxa %4, [%0] %3\n\t" | ||
423 | "stxa %5, [%0+%8] %3\n\t" | ||
424 | "add %0, %8, %0\n\t" | ||
425 | "stxa %6, [%0+%8] %3\n\t" | ||
426 | "membar #Sync\n\t" | ||
427 | "stxa %%g0, [%7] %3\n\t" | ||
428 | "membar #Sync\n\t" | ||
429 | "mov 0x20, %%g1\n\t" | ||
430 | "ldxa [%%g1] 0x7f, %%g0\n\t" | ||
431 | "membar #Sync" | ||
432 | : "=r" (tmp) | ||
433 | : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), | ||
434 | "r" (data0), "r" (data1), "r" (data2), "r" (target), | ||
435 | "r" (0x10), "0" (tmp) | ||
436 | : "g1"); | ||
437 | |||
438 | /* NOTE: PSTATE_IE is still clear. */ | ||
439 | stuck = 100000; | ||
440 | do { | ||
441 | __asm__ __volatile__("ldxa [%%g0] %1, %0" | ||
442 | : "=r" (result) | ||
443 | : "i" (ASI_INTR_DISPATCH_STAT)); | ||
444 | if (result == 0) { | ||
445 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
446 | : : "r" (pstate)); | ||
447 | return; | ||
448 | } | ||
449 | stuck -= 1; | ||
450 | if (stuck == 0) | ||
451 | break; | ||
452 | } while (result & 0x1); | ||
453 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
454 | : : "r" (pstate)); | ||
455 | if (stuck == 0) { | ||
456 | printk("CPU[%d]: mondo stuckage result[%016lx]\n", | ||
457 | smp_processor_id(), result); | ||
458 | } else { | ||
459 | udelay(2); | ||
460 | goto again; | ||
461 | } | ||
462 | } | ||
463 | |||
464 | static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) | ||
465 | { | ||
466 | u64 *mondo, data0, data1, data2; | ||
467 | u16 *cpu_list; | ||
468 | u64 pstate; | ||
469 | int i; | ||
470 | |||
471 | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | ||
472 | cpu_list = __va(tb->cpu_list_pa); | ||
473 | mondo = __va(tb->cpu_mondo_block_pa); | ||
474 | data0 = mondo[0]; | ||
475 | data1 = mondo[1]; | ||
476 | data2 = mondo[2]; | ||
477 | for (i = 0; i < cnt; i++) | ||
478 | spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); | ||
479 | } | ||
480 | |||
481 | /* Cheetah now allows to send the whole 64-bytes of data in the interrupt | ||
482 | * packet, but we have no use for that. However we do take advantage of | ||
483 | * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). | ||
484 | */ | ||
485 | static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) | ||
486 | { | ||
487 | int nack_busy_id, is_jbus, need_more; | ||
488 | u64 *mondo, pstate, ver, busy_mask; | ||
489 | u16 *cpu_list; | ||
490 | |||
491 | cpu_list = __va(tb->cpu_list_pa); | ||
492 | mondo = __va(tb->cpu_mondo_block_pa); | ||
493 | |||
494 | /* Unfortunately, someone at Sun had the brilliant idea to make the | ||
495 | * busy/nack fields hard-coded by ITID number for this Ultra-III | ||
496 | * derivative processor. | ||
497 | */ | ||
498 | __asm__ ("rdpr %%ver, %0" : "=r" (ver)); | ||
499 | is_jbus = ((ver >> 32) == __JALAPENO_ID || | ||
500 | (ver >> 32) == __SERRANO_ID); | ||
501 | |||
502 | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | ||
503 | |||
504 | retry: | ||
505 | need_more = 0; | ||
506 | __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" | ||
507 | : : "r" (pstate), "i" (PSTATE_IE)); | ||
508 | |||
509 | /* Setup the dispatch data registers. */ | ||
510 | __asm__ __volatile__("stxa %0, [%3] %6\n\t" | ||
511 | "stxa %1, [%4] %6\n\t" | ||
512 | "stxa %2, [%5] %6\n\t" | ||
513 | "membar #Sync\n\t" | ||
514 | : /* no outputs */ | ||
515 | : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), | ||
516 | "r" (0x40), "r" (0x50), "r" (0x60), | ||
517 | "i" (ASI_INTR_W)); | ||
518 | |||
519 | nack_busy_id = 0; | ||
520 | busy_mask = 0; | ||
521 | { | ||
522 | int i; | ||
523 | |||
524 | for (i = 0; i < cnt; i++) { | ||
525 | u64 target, nr; | ||
526 | |||
527 | nr = cpu_list[i]; | ||
528 | if (nr == 0xffff) | ||
529 | continue; | ||
530 | |||
531 | target = (nr << 14) | 0x70; | ||
532 | if (is_jbus) { | ||
533 | busy_mask |= (0x1UL << (nr * 2)); | ||
534 | } else { | ||
535 | target |= (nack_busy_id << 24); | ||
536 | busy_mask |= (0x1UL << | ||
537 | (nack_busy_id * 2)); | ||
538 | } | ||
539 | __asm__ __volatile__( | ||
540 | "stxa %%g0, [%0] %1\n\t" | ||
541 | "membar #Sync\n\t" | ||
542 | : /* no outputs */ | ||
543 | : "r" (target), "i" (ASI_INTR_W)); | ||
544 | nack_busy_id++; | ||
545 | if (nack_busy_id == 32) { | ||
546 | need_more = 1; | ||
547 | break; | ||
548 | } | ||
549 | } | ||
550 | } | ||
551 | |||
552 | /* Now, poll for completion. */ | ||
553 | { | ||
554 | u64 dispatch_stat, nack_mask; | ||
555 | long stuck; | ||
556 | |||
557 | stuck = 100000 * nack_busy_id; | ||
558 | nack_mask = busy_mask << 1; | ||
559 | do { | ||
560 | __asm__ __volatile__("ldxa [%%g0] %1, %0" | ||
561 | : "=r" (dispatch_stat) | ||
562 | : "i" (ASI_INTR_DISPATCH_STAT)); | ||
563 | if (!(dispatch_stat & (busy_mask | nack_mask))) { | ||
564 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
565 | : : "r" (pstate)); | ||
566 | if (unlikely(need_more)) { | ||
567 | int i, this_cnt = 0; | ||
568 | for (i = 0; i < cnt; i++) { | ||
569 | if (cpu_list[i] == 0xffff) | ||
570 | continue; | ||
571 | cpu_list[i] = 0xffff; | ||
572 | this_cnt++; | ||
573 | if (this_cnt == 32) | ||
574 | break; | ||
575 | } | ||
576 | goto retry; | ||
577 | } | ||
578 | return; | ||
579 | } | ||
580 | if (!--stuck) | ||
581 | break; | ||
582 | } while (dispatch_stat & busy_mask); | ||
583 | |||
584 | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | ||
585 | : : "r" (pstate)); | ||
586 | |||
587 | if (dispatch_stat & busy_mask) { | ||
588 | /* Busy bits will not clear, continue instead | ||
589 | * of freezing up on this cpu. | ||
590 | */ | ||
591 | printk("CPU[%d]: mondo stuckage result[%016lx]\n", | ||
592 | smp_processor_id(), dispatch_stat); | ||
593 | } else { | ||
594 | int i, this_busy_nack = 0; | ||
595 | |||
596 | /* Delay some random time with interrupts enabled | ||
597 | * to prevent deadlock. | ||
598 | */ | ||
599 | udelay(2 * nack_busy_id); | ||
600 | |||
601 | /* Clear out the mask bits for cpus which did not | ||
602 | * NACK us. | ||
603 | */ | ||
604 | for (i = 0; i < cnt; i++) { | ||
605 | u64 check_mask, nr; | ||
606 | |||
607 | nr = cpu_list[i]; | ||
608 | if (nr == 0xffff) | ||
609 | continue; | ||
610 | |||
611 | if (is_jbus) | ||
612 | check_mask = (0x2UL << (2*nr)); | ||
613 | else | ||
614 | check_mask = (0x2UL << | ||
615 | this_busy_nack); | ||
616 | if ((dispatch_stat & check_mask) == 0) | ||
617 | cpu_list[i] = 0xffff; | ||
618 | this_busy_nack += 2; | ||
619 | if (this_busy_nack == 64) | ||
620 | break; | ||
621 | } | ||
622 | |||
623 | goto retry; | ||
624 | } | ||
625 | } | ||
626 | } | ||
627 | |||
628 | /* Multi-cpu list version. */ | ||
629 | static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) | ||
630 | { | ||
631 | int retries, this_cpu, prev_sent, i, saw_cpu_error; | ||
632 | unsigned long status; | ||
633 | u16 *cpu_list; | ||
634 | |||
635 | this_cpu = smp_processor_id(); | ||
636 | |||
637 | cpu_list = __va(tb->cpu_list_pa); | ||
638 | |||
639 | saw_cpu_error = 0; | ||
640 | retries = 0; | ||
641 | prev_sent = 0; | ||
642 | do { | ||
643 | int forward_progress, n_sent; | ||
644 | |||
645 | status = sun4v_cpu_mondo_send(cnt, | ||
646 | tb->cpu_list_pa, | ||
647 | tb->cpu_mondo_block_pa); | ||
648 | |||
649 | /* HV_EOK means all cpus received the xcall, we're done. */ | ||
650 | if (likely(status == HV_EOK)) | ||
651 | break; | ||
652 | |||
653 | /* First, see if we made any forward progress. | ||
654 | * | ||
655 | * The hypervisor indicates successful sends by setting | ||
656 | * cpu list entries to the value 0xffff. | ||
657 | */ | ||
658 | n_sent = 0; | ||
659 | for (i = 0; i < cnt; i++) { | ||
660 | if (likely(cpu_list[i] == 0xffff)) | ||
661 | n_sent++; | ||
662 | } | ||
663 | |||
664 | forward_progress = 0; | ||
665 | if (n_sent > prev_sent) | ||
666 | forward_progress = 1; | ||
667 | |||
668 | prev_sent = n_sent; | ||
669 | |||
670 | /* If we get a HV_ECPUERROR, then one or more of the cpus | ||
671 | * in the list are in error state. Use the cpu_state() | ||
672 | * hypervisor call to find out which cpus are in error state. | ||
673 | */ | ||
674 | if (unlikely(status == HV_ECPUERROR)) { | ||
675 | for (i = 0; i < cnt; i++) { | ||
676 | long err; | ||
677 | u16 cpu; | ||
678 | |||
679 | cpu = cpu_list[i]; | ||
680 | if (cpu == 0xffff) | ||
681 | continue; | ||
682 | |||
683 | err = sun4v_cpu_state(cpu); | ||
684 | if (err == HV_CPU_STATE_ERROR) { | ||
685 | saw_cpu_error = (cpu + 1); | ||
686 | cpu_list[i] = 0xffff; | ||
687 | } | ||
688 | } | ||
689 | } else if (unlikely(status != HV_EWOULDBLOCK)) | ||
690 | goto fatal_mondo_error; | ||
691 | |||
692 | /* Don't bother rewriting the CPU list, just leave the | ||
693 | * 0xffff and non-0xffff entries in there and the | ||
694 | * hypervisor will do the right thing. | ||
695 | * | ||
696 | * Only advance timeout state if we didn't make any | ||
697 | * forward progress. | ||
698 | */ | ||
699 | if (unlikely(!forward_progress)) { | ||
700 | if (unlikely(++retries > 10000)) | ||
701 | goto fatal_mondo_timeout; | ||
702 | |||
703 | /* Delay a little bit to let other cpus catch up | ||
704 | * on their cpu mondo queue work. | ||
705 | */ | ||
706 | udelay(2 * cnt); | ||
707 | } | ||
708 | } while (1); | ||
709 | |||
710 | if (unlikely(saw_cpu_error)) | ||
711 | goto fatal_mondo_cpu_error; | ||
712 | |||
713 | return; | ||
714 | |||
715 | fatal_mondo_cpu_error: | ||
716 | printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " | ||
717 | "(including %d) were in error state\n", | ||
718 | this_cpu, saw_cpu_error - 1); | ||
719 | return; | ||
720 | |||
721 | fatal_mondo_timeout: | ||
722 | printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " | ||
723 | " progress after %d retries.\n", | ||
724 | this_cpu, retries); | ||
725 | goto dump_cpu_list_and_out; | ||
726 | |||
727 | fatal_mondo_error: | ||
728 | printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", | ||
729 | this_cpu, status); | ||
730 | printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " | ||
731 | "mondo_block_pa(%lx)\n", | ||
732 | this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); | ||
733 | |||
734 | dump_cpu_list_and_out: | ||
735 | printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); | ||
736 | for (i = 0; i < cnt; i++) | ||
737 | printk("%u ", cpu_list[i]); | ||
738 | printk("]\n"); | ||
739 | } | ||
740 | |||
741 | static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); | ||
742 | |||
743 | static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) | ||
744 | { | ||
745 | struct trap_per_cpu *tb; | ||
746 | int this_cpu, i, cnt; | ||
747 | unsigned long flags; | ||
748 | u16 *cpu_list; | ||
749 | u64 *mondo; | ||
750 | |||
751 | /* We have to do this whole thing with interrupts fully disabled. | ||
752 | * Otherwise if we send an xcall from interrupt context it will | ||
753 | * corrupt both our mondo block and cpu list state. | ||
754 | * | ||
755 | * One consequence of this is that we cannot use timeout mechanisms | ||
756 | * that depend upon interrupts being delivered locally. So, for | ||
757 | * example, we cannot sample jiffies and expect it to advance. | ||
758 | * | ||
759 | * Fortunately, udelay() uses %stick/%tick so we can use that. | ||
760 | */ | ||
761 | local_irq_save(flags); | ||
762 | |||
763 | this_cpu = smp_processor_id(); | ||
764 | tb = &trap_block[this_cpu]; | ||
765 | |||
766 | mondo = __va(tb->cpu_mondo_block_pa); | ||
767 | mondo[0] = data0; | ||
768 | mondo[1] = data1; | ||
769 | mondo[2] = data2; | ||
770 | wmb(); | ||
771 | |||
772 | cpu_list = __va(tb->cpu_list_pa); | ||
773 | |||
774 | /* Setup the initial cpu list. */ | ||
775 | cnt = 0; | ||
776 | for_each_cpu_mask_nr(i, *mask) { | ||
777 | if (i == this_cpu || !cpu_online(i)) | ||
778 | continue; | ||
779 | cpu_list[cnt++] = i; | ||
780 | } | ||
781 | |||
782 | if (cnt) | ||
783 | xcall_deliver_impl(tb, cnt); | ||
784 | |||
785 | local_irq_restore(flags); | ||
786 | } | ||
787 | |||
788 | /* Send cross call to all processors mentioned in MASK_P | ||
789 | * except self. Really, there are only two cases currently, | ||
790 | * "&cpu_online_map" and "&mm->cpu_vm_mask". | ||
791 | */ | ||
792 | static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) | ||
793 | { | ||
794 | u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); | ||
795 | |||
796 | xcall_deliver(data0, data1, data2, mask); | ||
797 | } | ||
798 | |||
799 | /* Send cross call to all processors except self. */ | ||
800 | static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) | ||
801 | { | ||
802 | smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map); | ||
803 | } | ||
804 | |||
805 | extern unsigned long xcall_sync_tick; | ||
806 | |||
807 | static void smp_start_sync_tick_client(int cpu) | ||
808 | { | ||
809 | xcall_deliver((u64) &xcall_sync_tick, 0, 0, | ||
810 | &cpumask_of_cpu(cpu)); | ||
811 | } | ||
812 | |||
813 | extern unsigned long xcall_call_function; | ||
814 | |||
815 | void arch_send_call_function_ipi(cpumask_t mask) | ||
816 | { | ||
817 | xcall_deliver((u64) &xcall_call_function, 0, 0, &mask); | ||
818 | } | ||
819 | |||
820 | extern unsigned long xcall_call_function_single; | ||
821 | |||
822 | void arch_send_call_function_single_ipi(int cpu) | ||
823 | { | ||
824 | xcall_deliver((u64) &xcall_call_function_single, 0, 0, | ||
825 | &cpumask_of_cpu(cpu)); | ||
826 | } | ||
827 | |||
828 | void smp_call_function_client(int irq, struct pt_regs *regs) | ||
829 | { | ||
830 | clear_softint(1 << irq); | ||
831 | generic_smp_call_function_interrupt(); | ||
832 | } | ||
833 | |||
834 | void smp_call_function_single_client(int irq, struct pt_regs *regs) | ||
835 | { | ||
836 | clear_softint(1 << irq); | ||
837 | generic_smp_call_function_single_interrupt(); | ||
838 | } | ||
839 | |||
840 | static void tsb_sync(void *info) | ||
841 | { | ||
842 | struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; | ||
843 | struct mm_struct *mm = info; | ||
844 | |||
845 | /* It is not valid to test "currrent->active_mm == mm" here. | ||
846 | * | ||
847 | * The value of "current" is not changed atomically with | ||
848 | * switch_mm(). But that's OK, we just need to check the | ||
849 | * current cpu's trap block PGD physical address. | ||
850 | */ | ||
851 | if (tp->pgd_paddr == __pa(mm->pgd)) | ||
852 | tsb_context_switch(mm); | ||
853 | } | ||
854 | |||
855 | void smp_tsb_sync(struct mm_struct *mm) | ||
856 | { | ||
857 | smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1); | ||
858 | } | ||
859 | |||
860 | extern unsigned long xcall_flush_tlb_mm; | ||
861 | extern unsigned long xcall_flush_tlb_pending; | ||
862 | extern unsigned long xcall_flush_tlb_kernel_range; | ||
863 | extern unsigned long xcall_fetch_glob_regs; | ||
864 | extern unsigned long xcall_receive_signal; | ||
865 | extern unsigned long xcall_new_mmu_context_version; | ||
866 | #ifdef CONFIG_KGDB | ||
867 | extern unsigned long xcall_kgdb_capture; | ||
868 | #endif | ||
869 | |||
870 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
871 | extern unsigned long xcall_flush_dcache_page_cheetah; | ||
872 | #endif | ||
873 | extern unsigned long xcall_flush_dcache_page_spitfire; | ||
874 | |||
875 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
876 | extern atomic_t dcpage_flushes; | ||
877 | extern atomic_t dcpage_flushes_xcall; | ||
878 | #endif | ||
879 | |||
880 | static inline void __local_flush_dcache_page(struct page *page) | ||
881 | { | ||
882 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
883 | __flush_dcache_page(page_address(page), | ||
884 | ((tlb_type == spitfire) && | ||
885 | page_mapping(page) != NULL)); | ||
886 | #else | ||
887 | if (page_mapping(page) != NULL && | ||
888 | tlb_type == spitfire) | ||
889 | __flush_icache_page(__pa(page_address(page))); | ||
890 | #endif | ||
891 | } | ||
892 | |||
893 | void smp_flush_dcache_page_impl(struct page *page, int cpu) | ||
894 | { | ||
895 | int this_cpu; | ||
896 | |||
897 | if (tlb_type == hypervisor) | ||
898 | return; | ||
899 | |||
900 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
901 | atomic_inc(&dcpage_flushes); | ||
902 | #endif | ||
903 | |||
904 | this_cpu = get_cpu(); | ||
905 | |||
906 | if (cpu == this_cpu) { | ||
907 | __local_flush_dcache_page(page); | ||
908 | } else if (cpu_online(cpu)) { | ||
909 | void *pg_addr = page_address(page); | ||
910 | u64 data0 = 0; | ||
911 | |||
912 | if (tlb_type == spitfire) { | ||
913 | data0 = ((u64)&xcall_flush_dcache_page_spitfire); | ||
914 | if (page_mapping(page) != NULL) | ||
915 | data0 |= ((u64)1 << 32); | ||
916 | } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | ||
917 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
918 | data0 = ((u64)&xcall_flush_dcache_page_cheetah); | ||
919 | #endif | ||
920 | } | ||
921 | if (data0) { | ||
922 | xcall_deliver(data0, __pa(pg_addr), | ||
923 | (u64) pg_addr, &cpumask_of_cpu(cpu)); | ||
924 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
925 | atomic_inc(&dcpage_flushes_xcall); | ||
926 | #endif | ||
927 | } | ||
928 | } | ||
929 | |||
930 | put_cpu(); | ||
931 | } | ||
932 | |||
933 | void flush_dcache_page_all(struct mm_struct *mm, struct page *page) | ||
934 | { | ||
935 | void *pg_addr; | ||
936 | int this_cpu; | ||
937 | u64 data0; | ||
938 | |||
939 | if (tlb_type == hypervisor) | ||
940 | return; | ||
941 | |||
942 | this_cpu = get_cpu(); | ||
943 | |||
944 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
945 | atomic_inc(&dcpage_flushes); | ||
946 | #endif | ||
947 | data0 = 0; | ||
948 | pg_addr = page_address(page); | ||
949 | if (tlb_type == spitfire) { | ||
950 | data0 = ((u64)&xcall_flush_dcache_page_spitfire); | ||
951 | if (page_mapping(page) != NULL) | ||
952 | data0 |= ((u64)1 << 32); | ||
953 | } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | ||
954 | #ifdef DCACHE_ALIASING_POSSIBLE | ||
955 | data0 = ((u64)&xcall_flush_dcache_page_cheetah); | ||
956 | #endif | ||
957 | } | ||
958 | if (data0) { | ||
959 | xcall_deliver(data0, __pa(pg_addr), | ||
960 | (u64) pg_addr, &cpu_online_map); | ||
961 | #ifdef CONFIG_DEBUG_DCFLUSH | ||
962 | atomic_inc(&dcpage_flushes_xcall); | ||
963 | #endif | ||
964 | } | ||
965 | __local_flush_dcache_page(page); | ||
966 | |||
967 | put_cpu(); | ||
968 | } | ||
969 | |||
970 | void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) | ||
971 | { | ||
972 | struct mm_struct *mm; | ||
973 | unsigned long flags; | ||
974 | |||
975 | clear_softint(1 << irq); | ||
976 | |||
977 | /* See if we need to allocate a new TLB context because | ||
978 | * the version of the one we are using is now out of date. | ||
979 | */ | ||
980 | mm = current->active_mm; | ||
981 | if (unlikely(!mm || (mm == &init_mm))) | ||
982 | return; | ||
983 | |||
984 | spin_lock_irqsave(&mm->context.lock, flags); | ||
985 | |||
986 | if (unlikely(!CTX_VALID(mm->context))) | ||
987 | get_new_mmu_context(mm); | ||
988 | |||
989 | spin_unlock_irqrestore(&mm->context.lock, flags); | ||
990 | |||
991 | load_secondary_context(mm); | ||
992 | __flush_tlb_mm(CTX_HWBITS(mm->context), | ||
993 | SECONDARY_CONTEXT); | ||
994 | } | ||
995 | |||
996 | void smp_new_mmu_context_version(void) | ||
997 | { | ||
998 | smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); | ||
999 | } | ||
1000 | |||
1001 | #ifdef CONFIG_KGDB | ||
1002 | void kgdb_roundup_cpus(unsigned long flags) | ||
1003 | { | ||
1004 | smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); | ||
1005 | } | ||
1006 | #endif | ||
1007 | |||
1008 | void smp_fetch_global_regs(void) | ||
1009 | { | ||
1010 | smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); | ||
1011 | } | ||
1012 | |||
1013 | /* We know that the window frames of the user have been flushed | ||
1014 | * to the stack before we get here because all callers of us | ||
1015 | * are flush_tlb_*() routines, and these run after flush_cache_*() | ||
1016 | * which performs the flushw. | ||
1017 | * | ||
1018 | * The SMP TLB coherency scheme we use works as follows: | ||
1019 | * | ||
1020 | * 1) mm->cpu_vm_mask is a bit mask of which cpus an address | ||
1021 | * space has (potentially) executed on, this is the heuristic | ||
1022 | * we use to avoid doing cross calls. | ||
1023 | * | ||
1024 | * Also, for flushing from kswapd and also for clones, we | ||
1025 | * use cpu_vm_mask as the list of cpus to make run the TLB. | ||
1026 | * | ||
1027 | * 2) TLB context numbers are shared globally across all processors | ||
1028 | * in the system, this allows us to play several games to avoid | ||
1029 | * cross calls. | ||
1030 | * | ||
1031 | * One invariant is that when a cpu switches to a process, and | ||
1032 | * that processes tsk->active_mm->cpu_vm_mask does not have the | ||
1033 | * current cpu's bit set, that tlb context is flushed locally. | ||
1034 | * | ||
1035 | * If the address space is non-shared (ie. mm->count == 1) we avoid | ||
1036 | * cross calls when we want to flush the currently running process's | ||
1037 | * tlb state. This is done by clearing all cpu bits except the current | ||
1038 | * processor's in current->active_mm->cpu_vm_mask and performing the | ||
1039 | * flush locally only. This will force any subsequent cpus which run | ||
1040 | * this task to flush the context from the local tlb if the process | ||
1041 | * migrates to another cpu (again). | ||
1042 | * | ||
1043 | * 3) For shared address spaces (threads) and swapping we bite the | ||
1044 | * bullet for most cases and perform the cross call (but only to | ||
1045 | * the cpus listed in cpu_vm_mask). | ||
1046 | * | ||
1047 | * The performance gain from "optimizing" away the cross call for threads is | ||
1048 | * questionable (in theory the big win for threads is the massive sharing of | ||
1049 | * address space state across processors). | ||
1050 | */ | ||
1051 | |||
1052 | /* This currently is only used by the hugetlb arch pre-fault | ||
1053 | * hook on UltraSPARC-III+ and later when changing the pagesize | ||
1054 | * bits of the context register for an address space. | ||
1055 | */ | ||
1056 | void smp_flush_tlb_mm(struct mm_struct *mm) | ||
1057 | { | ||
1058 | u32 ctx = CTX_HWBITS(mm->context); | ||
1059 | int cpu = get_cpu(); | ||
1060 | |||
1061 | if (atomic_read(&mm->mm_users) == 1) { | ||
1062 | mm->cpu_vm_mask = cpumask_of_cpu(cpu); | ||
1063 | goto local_flush_and_out; | ||
1064 | } | ||
1065 | |||
1066 | smp_cross_call_masked(&xcall_flush_tlb_mm, | ||
1067 | ctx, 0, 0, | ||
1068 | &mm->cpu_vm_mask); | ||
1069 | |||
1070 | local_flush_and_out: | ||
1071 | __flush_tlb_mm(ctx, SECONDARY_CONTEXT); | ||
1072 | |||
1073 | put_cpu(); | ||
1074 | } | ||
1075 | |||
1076 | void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) | ||
1077 | { | ||
1078 | u32 ctx = CTX_HWBITS(mm->context); | ||
1079 | int cpu = get_cpu(); | ||
1080 | |||
1081 | if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) | ||
1082 | mm->cpu_vm_mask = cpumask_of_cpu(cpu); | ||
1083 | else | ||
1084 | smp_cross_call_masked(&xcall_flush_tlb_pending, | ||
1085 | ctx, nr, (unsigned long) vaddrs, | ||
1086 | &mm->cpu_vm_mask); | ||
1087 | |||
1088 | __flush_tlb_pending(ctx, nr, vaddrs); | ||
1089 | |||
1090 | put_cpu(); | ||
1091 | } | ||
1092 | |||
1093 | void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) | ||
1094 | { | ||
1095 | start &= PAGE_MASK; | ||
1096 | end = PAGE_ALIGN(end); | ||
1097 | if (start != end) { | ||
1098 | smp_cross_call(&xcall_flush_tlb_kernel_range, | ||
1099 | 0, start, end); | ||
1100 | |||
1101 | __flush_tlb_kernel_range(start, end); | ||
1102 | } | ||
1103 | } | ||
1104 | |||
1105 | /* CPU capture. */ | ||
1106 | /* #define CAPTURE_DEBUG */ | ||
1107 | extern unsigned long xcall_capture; | ||
1108 | |||
1109 | static atomic_t smp_capture_depth = ATOMIC_INIT(0); | ||
1110 | static atomic_t smp_capture_registry = ATOMIC_INIT(0); | ||
1111 | static unsigned long penguins_are_doing_time; | ||
1112 | |||
1113 | void smp_capture(void) | ||
1114 | { | ||
1115 | int result = atomic_add_ret(1, &smp_capture_depth); | ||
1116 | |||
1117 | if (result == 1) { | ||
1118 | int ncpus = num_online_cpus(); | ||
1119 | |||
1120 | #ifdef CAPTURE_DEBUG | ||
1121 | printk("CPU[%d]: Sending penguins to jail...", | ||
1122 | smp_processor_id()); | ||
1123 | #endif | ||
1124 | penguins_are_doing_time = 1; | ||
1125 | atomic_inc(&smp_capture_registry); | ||
1126 | smp_cross_call(&xcall_capture, 0, 0, 0); | ||
1127 | while (atomic_read(&smp_capture_registry) != ncpus) | ||
1128 | rmb(); | ||
1129 | #ifdef CAPTURE_DEBUG | ||
1130 | printk("done\n"); | ||
1131 | #endif | ||
1132 | } | ||
1133 | } | ||
1134 | |||
1135 | void smp_release(void) | ||
1136 | { | ||
1137 | if (atomic_dec_and_test(&smp_capture_depth)) { | ||
1138 | #ifdef CAPTURE_DEBUG | ||
1139 | printk("CPU[%d]: Giving pardon to " | ||
1140 | "imprisoned penguins\n", | ||
1141 | smp_processor_id()); | ||
1142 | #endif | ||
1143 | penguins_are_doing_time = 0; | ||
1144 | membar_safe("#StoreLoad"); | ||
1145 | atomic_dec(&smp_capture_registry); | ||
1146 | } | ||
1147 | } | ||
1148 | |||
1149 | /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE | ||
1150 | * set, so they can service tlb flush xcalls... | ||
1151 | */ | ||
1152 | extern void prom_world(int); | ||
1153 | |||
1154 | void smp_penguin_jailcell(int irq, struct pt_regs *regs) | ||
1155 | { | ||
1156 | clear_softint(1 << irq); | ||
1157 | |||
1158 | preempt_disable(); | ||
1159 | |||
1160 | __asm__ __volatile__("flushw"); | ||
1161 | prom_world(1); | ||
1162 | atomic_inc(&smp_capture_registry); | ||
1163 | membar_safe("#StoreLoad"); | ||
1164 | while (penguins_are_doing_time) | ||
1165 | rmb(); | ||
1166 | atomic_dec(&smp_capture_registry); | ||
1167 | prom_world(0); | ||
1168 | |||
1169 | preempt_enable(); | ||
1170 | } | ||
1171 | |||
1172 | /* /proc/profile writes can call this, don't __init it please. */ | ||
1173 | int setup_profiling_timer(unsigned int multiplier) | ||
1174 | { | ||
1175 | return -EINVAL; | ||
1176 | } | ||
1177 | |||
1178 | void __init smp_prepare_cpus(unsigned int max_cpus) | ||
1179 | { | ||
1180 | } | ||
1181 | |||
1182 | void __devinit smp_prepare_boot_cpu(void) | ||
1183 | { | ||
1184 | } | ||
1185 | |||
1186 | void __init smp_setup_processor_id(void) | ||
1187 | { | ||
1188 | if (tlb_type == spitfire) | ||
1189 | xcall_deliver_impl = spitfire_xcall_deliver; | ||
1190 | else if (tlb_type == cheetah || tlb_type == cheetah_plus) | ||
1191 | xcall_deliver_impl = cheetah_xcall_deliver; | ||
1192 | else | ||
1193 | xcall_deliver_impl = hypervisor_xcall_deliver; | ||
1194 | } | ||
1195 | |||
1196 | void __devinit smp_fill_in_sib_core_maps(void) | ||
1197 | { | ||
1198 | unsigned int i; | ||
1199 | |||
1200 | for_each_present_cpu(i) { | ||
1201 | unsigned int j; | ||
1202 | |||
1203 | cpus_clear(cpu_core_map[i]); | ||
1204 | if (cpu_data(i).core_id == 0) { | ||
1205 | cpu_set(i, cpu_core_map[i]); | ||
1206 | continue; | ||
1207 | } | ||
1208 | |||
1209 | for_each_present_cpu(j) { | ||
1210 | if (cpu_data(i).core_id == | ||
1211 | cpu_data(j).core_id) | ||
1212 | cpu_set(j, cpu_core_map[i]); | ||
1213 | } | ||
1214 | } | ||
1215 | |||
1216 | for_each_present_cpu(i) { | ||
1217 | unsigned int j; | ||
1218 | |||
1219 | cpus_clear(per_cpu(cpu_sibling_map, i)); | ||
1220 | if (cpu_data(i).proc_id == -1) { | ||
1221 | cpu_set(i, per_cpu(cpu_sibling_map, i)); | ||
1222 | continue; | ||
1223 | } | ||
1224 | |||
1225 | for_each_present_cpu(j) { | ||
1226 | if (cpu_data(i).proc_id == | ||
1227 | cpu_data(j).proc_id) | ||
1228 | cpu_set(j, per_cpu(cpu_sibling_map, i)); | ||
1229 | } | ||
1230 | } | ||
1231 | } | ||
1232 | |||
1233 | int __cpuinit __cpu_up(unsigned int cpu) | ||
1234 | { | ||
1235 | int ret = smp_boot_one_cpu(cpu); | ||
1236 | |||
1237 | if (!ret) { | ||
1238 | cpu_set(cpu, smp_commenced_mask); | ||
1239 | while (!cpu_isset(cpu, cpu_online_map)) | ||
1240 | mb(); | ||
1241 | if (!cpu_isset(cpu, cpu_online_map)) { | ||
1242 | ret = -ENODEV; | ||
1243 | } else { | ||
1244 | /* On SUN4V, writes to %tick and %stick are | ||
1245 | * not allowed. | ||
1246 | */ | ||
1247 | if (tlb_type != hypervisor) | ||
1248 | smp_synchronize_one_tick(cpu); | ||
1249 | } | ||
1250 | } | ||
1251 | return ret; | ||
1252 | } | ||
1253 | |||
1254 | #ifdef CONFIG_HOTPLUG_CPU | ||
1255 | void cpu_play_dead(void) | ||
1256 | { | ||
1257 | int cpu = smp_processor_id(); | ||
1258 | unsigned long pstate; | ||
1259 | |||
1260 | idle_task_exit(); | ||
1261 | |||
1262 | if (tlb_type == hypervisor) { | ||
1263 | struct trap_per_cpu *tb = &trap_block[cpu]; | ||
1264 | |||
1265 | sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, | ||
1266 | tb->cpu_mondo_pa, 0); | ||
1267 | sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, | ||
1268 | tb->dev_mondo_pa, 0); | ||
1269 | sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, | ||
1270 | tb->resum_mondo_pa, 0); | ||
1271 | sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, | ||
1272 | tb->nonresum_mondo_pa, 0); | ||
1273 | } | ||
1274 | |||
1275 | cpu_clear(cpu, smp_commenced_mask); | ||
1276 | membar_safe("#Sync"); | ||
1277 | |||
1278 | local_irq_disable(); | ||
1279 | |||
1280 | __asm__ __volatile__( | ||
1281 | "rdpr %%pstate, %0\n\t" | ||
1282 | "wrpr %0, %1, %%pstate" | ||
1283 | : "=r" (pstate) | ||
1284 | : "i" (PSTATE_IE)); | ||
1285 | |||
1286 | while (1) | ||
1287 | barrier(); | ||
1288 | } | ||
1289 | |||
1290 | int __cpu_disable(void) | ||
1291 | { | ||
1292 | int cpu = smp_processor_id(); | ||
1293 | cpuinfo_sparc *c; | ||
1294 | int i; | ||
1295 | |||
1296 | for_each_cpu_mask(i, cpu_core_map[cpu]) | ||
1297 | cpu_clear(cpu, cpu_core_map[i]); | ||
1298 | cpus_clear(cpu_core_map[cpu]); | ||
1299 | |||
1300 | for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu)) | ||
1301 | cpu_clear(cpu, per_cpu(cpu_sibling_map, i)); | ||
1302 | cpus_clear(per_cpu(cpu_sibling_map, cpu)); | ||
1303 | |||
1304 | c = &cpu_data(cpu); | ||
1305 | |||
1306 | c->core_id = 0; | ||
1307 | c->proc_id = -1; | ||
1308 | |||
1309 | smp_wmb(); | ||
1310 | |||
1311 | /* Make sure no interrupts point to this cpu. */ | ||
1312 | fixup_irqs(); | ||
1313 | |||
1314 | local_irq_enable(); | ||
1315 | mdelay(1); | ||
1316 | local_irq_disable(); | ||
1317 | |||
1318 | ipi_call_lock(); | ||
1319 | cpu_clear(cpu, cpu_online_map); | ||
1320 | ipi_call_unlock(); | ||
1321 | |||
1322 | return 0; | ||
1323 | } | ||
1324 | |||
1325 | void __cpu_die(unsigned int cpu) | ||
1326 | { | ||
1327 | int i; | ||
1328 | |||
1329 | for (i = 0; i < 100; i++) { | ||
1330 | smp_rmb(); | ||
1331 | if (!cpu_isset(cpu, smp_commenced_mask)) | ||
1332 | break; | ||
1333 | msleep(100); | ||
1334 | } | ||
1335 | if (cpu_isset(cpu, smp_commenced_mask)) { | ||
1336 | printk(KERN_ERR "CPU %u didn't die...\n", cpu); | ||
1337 | } else { | ||
1338 | #if defined(CONFIG_SUN_LDOMS) | ||
1339 | unsigned long hv_err; | ||
1340 | int limit = 100; | ||
1341 | |||
1342 | do { | ||
1343 | hv_err = sun4v_cpu_stop(cpu); | ||
1344 | if (hv_err == HV_EOK) { | ||
1345 | cpu_clear(cpu, cpu_present_map); | ||
1346 | break; | ||
1347 | } | ||
1348 | } while (--limit > 0); | ||
1349 | if (limit <= 0) { | ||
1350 | printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", | ||
1351 | hv_err); | ||
1352 | } | ||
1353 | #endif | ||
1354 | } | ||
1355 | } | ||
1356 | #endif | ||
1357 | |||
1358 | void __init smp_cpus_done(unsigned int max_cpus) | ||
1359 | { | ||
1360 | } | ||
1361 | |||
1362 | void smp_send_reschedule(int cpu) | ||
1363 | { | ||
1364 | xcall_deliver((u64) &xcall_receive_signal, 0, 0, | ||
1365 | &cpumask_of_cpu(cpu)); | ||
1366 | } | ||
1367 | |||
1368 | void smp_receive_signal_client(int irq, struct pt_regs *regs) | ||
1369 | { | ||
1370 | clear_softint(1 << irq); | ||
1371 | } | ||
1372 | |||
1373 | /* This is a nop because we capture all other cpus | ||
1374 | * anyways when making the PROM active. | ||
1375 | */ | ||
1376 | void smp_send_stop(void) | ||
1377 | { | ||
1378 | } | ||
1379 | |||
1380 | unsigned long __per_cpu_base __read_mostly; | ||
1381 | unsigned long __per_cpu_shift __read_mostly; | ||
1382 | |||
1383 | EXPORT_SYMBOL(__per_cpu_base); | ||
1384 | EXPORT_SYMBOL(__per_cpu_shift); | ||
1385 | |||
1386 | void __init real_setup_per_cpu_areas(void) | ||
1387 | { | ||
1388 | unsigned long paddr, goal, size, i; | ||
1389 | char *ptr; | ||
1390 | |||
1391 | /* Copy section for each CPU (we discard the original) */ | ||
1392 | goal = PERCPU_ENOUGH_ROOM; | ||
1393 | |||
1394 | __per_cpu_shift = PAGE_SHIFT; | ||
1395 | for (size = PAGE_SIZE; size < goal; size <<= 1UL) | ||
1396 | __per_cpu_shift++; | ||
1397 | |||
1398 | paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE); | ||
1399 | if (!paddr) { | ||
1400 | prom_printf("Cannot allocate per-cpu memory.\n"); | ||
1401 | prom_halt(); | ||
1402 | } | ||
1403 | |||
1404 | ptr = __va(paddr); | ||
1405 | __per_cpu_base = ptr - __per_cpu_start; | ||
1406 | |||
1407 | for (i = 0; i < NR_CPUS; i++, ptr += size) | ||
1408 | memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); | ||
1409 | |||
1410 | /* Setup %g5 for the boot cpu. */ | ||
1411 | __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); | ||
1412 | } | ||