diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/sh64/mm/cache.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/sh64/mm/cache.c')
-rw-r--r-- | arch/sh64/mm/cache.c | 1041 |
1 files changed, 1041 insertions, 0 deletions
diff --git a/arch/sh64/mm/cache.c b/arch/sh64/mm/cache.c new file mode 100644 index 000000000000..3b87e25ea773 --- /dev/null +++ b/arch/sh64/mm/cache.c | |||
@@ -0,0 +1,1041 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * arch/sh64/mm/cache.c | ||
7 | * | ||
8 | * Original version Copyright (C) 2000, 2001 Paolo Alberelli | ||
9 | * Second version Copyright (C) benedict.gaster@superh.com 2002 | ||
10 | * Third version Copyright Richard.Curnow@superh.com 2003 | ||
11 | * Hacks to third version Copyright (C) 2003 Paul Mundt | ||
12 | */ | ||
13 | |||
14 | /****************************************************************************/ | ||
15 | |||
16 | #include <linux/config.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/mman.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <linux/threads.h> | ||
21 | #include <asm/page.h> | ||
22 | #include <asm/pgtable.h> | ||
23 | #include <asm/processor.h> | ||
24 | #include <asm/cache.h> | ||
25 | #include <asm/tlb.h> | ||
26 | #include <asm/io.h> | ||
27 | #include <asm/uaccess.h> | ||
28 | #include <asm/mmu_context.h> | ||
29 | #include <asm/pgalloc.h> /* for flush_itlb_range */ | ||
30 | |||
31 | #include <linux/proc_fs.h> | ||
32 | |||
33 | /* This function is in entry.S */ | ||
34 | extern unsigned long switch_and_save_asid(unsigned long new_asid); | ||
35 | |||
36 | /* Wired TLB entry for the D-cache */ | ||
37 | static unsigned long long dtlb_cache_slot; | ||
38 | |||
39 | /** | ||
40 | * sh64_cache_init() | ||
41 | * | ||
42 | * This is pretty much just a straightforward clone of the SH | ||
43 | * detect_cpu_and_cache_system(). | ||
44 | * | ||
45 | * This function is responsible for setting up all of the cache | ||
46 | * info dynamically as well as taking care of CPU probing and | ||
47 | * setting up the relevant subtype data. | ||
48 | * | ||
49 | * FIXME: For the time being, we only really support the SH5-101 | ||
50 | * out of the box, and don't support dynamic probing for things | ||
51 | * like the SH5-103 or even cut2 of the SH5-101. Implement this | ||
52 | * later! | ||
53 | */ | ||
54 | int __init sh64_cache_init(void) | ||
55 | { | ||
56 | /* | ||
57 | * First, setup some sane values for the I-cache. | ||
58 | */ | ||
59 | cpu_data->icache.ways = 4; | ||
60 | cpu_data->icache.sets = 256; | ||
61 | cpu_data->icache.linesz = L1_CACHE_BYTES; | ||
62 | |||
63 | /* | ||
64 | * FIXME: This can probably be cleaned up a bit as well.. for example, | ||
65 | * do we really need the way shift _and_ the way_step_shift ?? Judging | ||
66 | * by the existing code, I would guess no.. is there any valid reason | ||
67 | * why we need to be tracking this around? | ||
68 | */ | ||
69 | cpu_data->icache.way_shift = 13; | ||
70 | cpu_data->icache.entry_shift = 5; | ||
71 | cpu_data->icache.set_shift = 4; | ||
72 | cpu_data->icache.way_step_shift = 16; | ||
73 | cpu_data->icache.asid_shift = 2; | ||
74 | |||
75 | /* | ||
76 | * way offset = cache size / associativity, so just don't factor in | ||
77 | * associativity in the first place.. | ||
78 | */ | ||
79 | cpu_data->icache.way_ofs = cpu_data->icache.sets * | ||
80 | cpu_data->icache.linesz; | ||
81 | |||
82 | cpu_data->icache.asid_mask = 0x3fc; | ||
83 | cpu_data->icache.idx_mask = 0x1fe0; | ||
84 | cpu_data->icache.epn_mask = 0xffffe000; | ||
85 | cpu_data->icache.flags = 0; | ||
86 | |||
87 | /* | ||
88 | * Next, setup some sane values for the D-cache. | ||
89 | * | ||
90 | * On the SH5, these are pretty consistent with the I-cache settings, | ||
91 | * so we just copy over the existing definitions.. these can be fixed | ||
92 | * up later, especially if we add runtime CPU probing. | ||
93 | * | ||
94 | * Though in the meantime it saves us from having to duplicate all of | ||
95 | * the above definitions.. | ||
96 | */ | ||
97 | cpu_data->dcache = cpu_data->icache; | ||
98 | |||
99 | /* | ||
100 | * Setup any cache-related flags here | ||
101 | */ | ||
102 | #if defined(CONFIG_DCACHE_WRITE_THROUGH) | ||
103 | set_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)); | ||
104 | #elif defined(CONFIG_DCACHE_WRITE_BACK) | ||
105 | set_bit(SH_CACHE_MODE_WB, &(cpu_data->dcache.flags)); | ||
106 | #endif | ||
107 | |||
108 | /* | ||
109 | * We also need to reserve a slot for the D-cache in the DTLB, so we | ||
110 | * do this now .. | ||
111 | */ | ||
112 | dtlb_cache_slot = sh64_get_wired_dtlb_entry(); | ||
113 | |||
114 | return 0; | ||
115 | } | ||
116 | |||
117 | #ifdef CONFIG_DCACHE_DISABLED | ||
118 | #define sh64_dcache_purge_all() do { } while (0) | ||
119 | #define sh64_dcache_purge_coloured_phy_page(paddr, eaddr) do { } while (0) | ||
120 | #define sh64_dcache_purge_user_range(mm, start, end) do { } while (0) | ||
121 | #define sh64_dcache_purge_phy_page(paddr) do { } while (0) | ||
122 | #define sh64_dcache_purge_virt_page(mm, eaddr) do { } while (0) | ||
123 | #define sh64_dcache_purge_kernel_range(start, end) do { } while (0) | ||
124 | #define sh64_dcache_wback_current_user_range(start, end) do { } while (0) | ||
125 | #endif | ||
126 | |||
127 | /*##########################################################################*/ | ||
128 | |||
129 | /* From here onwards, a rewrite of the implementation, | ||
130 | by Richard.Curnow@superh.com. | ||
131 | |||
132 | The major changes in this compared to the old version are; | ||
133 | 1. use more selective purging through OCBP instead of using ALLOCO to purge | ||
134 | by natural replacement. This avoids purging out unrelated cache lines | ||
135 | that happen to be in the same set. | ||
136 | 2. exploit the APIs copy_user_page and clear_user_page better | ||
137 | 3. be more selective about I-cache purging, in particular use invalidate_all | ||
138 | more sparingly. | ||
139 | |||
140 | */ | ||
141 | |||
142 | /*########################################################################## | ||
143 | SUPPORT FUNCTIONS | ||
144 | ##########################################################################*/ | ||
145 | |||
146 | /****************************************************************************/ | ||
147 | /* The following group of functions deal with mapping and unmapping a temporary | ||
148 | page into the DTLB slot that have been set aside for our exclusive use. */ | ||
149 | /* In order to accomplish this, we use the generic interface for adding and | ||
150 | removing a wired slot entry as defined in arch/sh64/mm/tlb.c */ | ||
151 | /****************************************************************************/ | ||
152 | |||
153 | static unsigned long slot_own_flags; | ||
154 | |||
155 | static inline void sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid, unsigned long paddr) | ||
156 | { | ||
157 | local_irq_save(slot_own_flags); | ||
158 | sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr); | ||
159 | } | ||
160 | |||
161 | static inline void sh64_teardown_dtlb_cache_slot(void) | ||
162 | { | ||
163 | sh64_teardown_tlb_slot(dtlb_cache_slot); | ||
164 | local_irq_restore(slot_own_flags); | ||
165 | } | ||
166 | |||
167 | /****************************************************************************/ | ||
168 | |||
169 | #ifndef CONFIG_ICACHE_DISABLED | ||
170 | |||
171 | static void __inline__ sh64_icache_inv_all(void) | ||
172 | { | ||
173 | unsigned long long addr, flag, data; | ||
174 | unsigned int flags; | ||
175 | |||
176 | addr=ICCR0; | ||
177 | flag=ICCR0_ICI; | ||
178 | data=0; | ||
179 | |||
180 | /* Make this a critical section for safety (probably not strictly necessary.) */ | ||
181 | local_irq_save(flags); | ||
182 | |||
183 | /* Without %1 it gets unexplicably wrong */ | ||
184 | asm volatile("getcfg %3, 0, %0\n\t" | ||
185 | "or %0, %2, %0\n\t" | ||
186 | "putcfg %3, 0, %0\n\t" | ||
187 | "synci" | ||
188 | : "=&r" (data) | ||
189 | : "0" (data), "r" (flag), "r" (addr)); | ||
190 | |||
191 | local_irq_restore(flags); | ||
192 | } | ||
193 | |||
194 | static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end) | ||
195 | { | ||
196 | /* Invalidate range of addresses [start,end] from the I-cache, where | ||
197 | * the addresses lie in the kernel superpage. */ | ||
198 | |||
199 | unsigned long long ullend, addr, aligned_start; | ||
200 | #if (NEFF == 32) | ||
201 | aligned_start = (unsigned long long)(signed long long)(signed long) start; | ||
202 | #else | ||
203 | #error "NEFF != 32" | ||
204 | #endif | ||
205 | aligned_start &= L1_CACHE_ALIGN_MASK; | ||
206 | addr = aligned_start; | ||
207 | #if (NEFF == 32) | ||
208 | ullend = (unsigned long long) (signed long long) (signed long) end; | ||
209 | #else | ||
210 | #error "NEFF != 32" | ||
211 | #endif | ||
212 | while (addr <= ullend) { | ||
213 | asm __volatile__ ("icbi %0, 0" : : "r" (addr)); | ||
214 | addr += L1_CACHE_BYTES; | ||
215 | } | ||
216 | } | ||
217 | |||
218 | static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr) | ||
219 | { | ||
220 | /* If we get called, we know that vma->vm_flags contains VM_EXEC. | ||
221 | Also, eaddr is page-aligned. */ | ||
222 | |||
223 | unsigned long long addr, end_addr; | ||
224 | unsigned long flags = 0; | ||
225 | unsigned long running_asid, vma_asid; | ||
226 | addr = eaddr; | ||
227 | end_addr = addr + PAGE_SIZE; | ||
228 | |||
229 | /* Check whether we can use the current ASID for the I-cache | ||
230 | invalidation. For example, if we're called via | ||
231 | access_process_vm->flush_cache_page->here, (e.g. when reading from | ||
232 | /proc), 'running_asid' will be that of the reader, not of the | ||
233 | victim. | ||
234 | |||
235 | Also, note the risk that we might get pre-empted between the ASID | ||
236 | compare and blocking IRQs, and before we regain control, the | ||
237 | pid->ASID mapping changes. However, the whole cache will get | ||
238 | invalidated when the mapping is renewed, so the worst that can | ||
239 | happen is that the loop below ends up invalidating somebody else's | ||
240 | cache entries. | ||
241 | */ | ||
242 | |||
243 | running_asid = get_asid(); | ||
244 | vma_asid = (vma->vm_mm->context & MMU_CONTEXT_ASID_MASK); | ||
245 | if (running_asid != vma_asid) { | ||
246 | local_irq_save(flags); | ||
247 | switch_and_save_asid(vma_asid); | ||
248 | } | ||
249 | while (addr < end_addr) { | ||
250 | /* Worth unrolling a little */ | ||
251 | asm __volatile__("icbi %0, 0" : : "r" (addr)); | ||
252 | asm __volatile__("icbi %0, 32" : : "r" (addr)); | ||
253 | asm __volatile__("icbi %0, 64" : : "r" (addr)); | ||
254 | asm __volatile__("icbi %0, 96" : : "r" (addr)); | ||
255 | addr += 128; | ||
256 | } | ||
257 | if (running_asid != vma_asid) { | ||
258 | switch_and_save_asid(running_asid); | ||
259 | local_irq_restore(flags); | ||
260 | } | ||
261 | } | ||
262 | |||
263 | /****************************************************************************/ | ||
264 | |||
265 | static void sh64_icache_inv_user_page_range(struct mm_struct *mm, | ||
266 | unsigned long start, unsigned long end) | ||
267 | { | ||
268 | /* Used for invalidating big chunks of I-cache, i.e. assume the range | ||
269 | is whole pages. If 'start' or 'end' is not page aligned, the code | ||
270 | is conservative and invalidates to the ends of the enclosing pages. | ||
271 | This is functionally OK, just a performance loss. */ | ||
272 | |||
273 | /* See the comments below in sh64_dcache_purge_user_range() regarding | ||
274 | the choice of algorithm. However, for the I-cache option (2) isn't | ||
275 | available because there are no physical tags so aliases can't be | ||
276 | resolved. The icbi instruction has to be used through the user | ||
277 | mapping. Because icbi is cheaper than ocbp on a cache hit, it | ||
278 | would be cheaper to use the selective code for a large range than is | ||
279 | possible with the D-cache. Just assume 64 for now as a working | ||
280 | figure. | ||
281 | */ | ||
282 | |||
283 | int n_pages; | ||
284 | |||
285 | if (!mm) return; | ||
286 | |||
287 | n_pages = ((end - start) >> PAGE_SHIFT); | ||
288 | if (n_pages >= 64) { | ||
289 | sh64_icache_inv_all(); | ||
290 | } else { | ||
291 | unsigned long aligned_start; | ||
292 | unsigned long eaddr; | ||
293 | unsigned long after_last_page_start; | ||
294 | unsigned long mm_asid, current_asid; | ||
295 | unsigned long long flags = 0ULL; | ||
296 | |||
297 | mm_asid = mm->context & MMU_CONTEXT_ASID_MASK; | ||
298 | current_asid = get_asid(); | ||
299 | |||
300 | if (mm_asid != current_asid) { | ||
301 | /* Switch ASID and run the invalidate loop under cli */ | ||
302 | local_irq_save(flags); | ||
303 | switch_and_save_asid(mm_asid); | ||
304 | } | ||
305 | |||
306 | aligned_start = start & PAGE_MASK; | ||
307 | after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK); | ||
308 | |||
309 | while (aligned_start < after_last_page_start) { | ||
310 | struct vm_area_struct *vma; | ||
311 | unsigned long vma_end; | ||
312 | vma = find_vma(mm, aligned_start); | ||
313 | if (!vma || (aligned_start <= vma->vm_end)) { | ||
314 | /* Avoid getting stuck in an error condition */ | ||
315 | aligned_start += PAGE_SIZE; | ||
316 | continue; | ||
317 | } | ||
318 | vma_end = vma->vm_end; | ||
319 | if (vma->vm_flags & VM_EXEC) { | ||
320 | /* Executable */ | ||
321 | eaddr = aligned_start; | ||
322 | while (eaddr < vma_end) { | ||
323 | sh64_icache_inv_user_page(vma, eaddr); | ||
324 | eaddr += PAGE_SIZE; | ||
325 | } | ||
326 | } | ||
327 | aligned_start = vma->vm_end; /* Skip to start of next region */ | ||
328 | } | ||
329 | if (mm_asid != current_asid) { | ||
330 | switch_and_save_asid(current_asid); | ||
331 | local_irq_restore(flags); | ||
332 | } | ||
333 | } | ||
334 | } | ||
335 | |||
336 | static void sh64_icache_inv_user_small_range(struct mm_struct *mm, | ||
337 | unsigned long start, int len) | ||
338 | { | ||
339 | |||
340 | /* Invalidate a small range of user context I-cache, not necessarily | ||
341 | page (or even cache-line) aligned. */ | ||
342 | |||
343 | unsigned long long eaddr = start; | ||
344 | unsigned long long eaddr_end = start + len; | ||
345 | unsigned long current_asid, mm_asid; | ||
346 | unsigned long long flags; | ||
347 | unsigned long long epage_start; | ||
348 | |||
349 | /* Since this is used inside ptrace, the ASID in the mm context | ||
350 | typically won't match current_asid. We'll have to switch ASID to do | ||
351 | this. For safety, and given that the range will be small, do all | ||
352 | this under cli. | ||
353 | |||
354 | Note, there is a hazard that the ASID in mm->context is no longer | ||
355 | actually associated with mm, i.e. if the mm->context has started a | ||
356 | new cycle since mm was last active. However, this is just a | ||
357 | performance issue: all that happens is that we invalidate lines | ||
358 | belonging to another mm, so the owning process has to refill them | ||
359 | when that mm goes live again. mm itself can't have any cache | ||
360 | entries because there will have been a flush_cache_all when the new | ||
361 | mm->context cycle started. */ | ||
362 | |||
363 | /* Align to start of cache line. Otherwise, suppose len==8 and start | ||
364 | was at 32N+28 : the last 4 bytes wouldn't get invalidated. */ | ||
365 | eaddr = start & L1_CACHE_ALIGN_MASK; | ||
366 | eaddr_end = start + len; | ||
367 | |||
368 | local_irq_save(flags); | ||
369 | mm_asid = mm->context & MMU_CONTEXT_ASID_MASK; | ||
370 | current_asid = switch_and_save_asid(mm_asid); | ||
371 | |||
372 | epage_start = eaddr & PAGE_MASK; | ||
373 | |||
374 | while (eaddr < eaddr_end) | ||
375 | { | ||
376 | asm __volatile__("icbi %0, 0" : : "r" (eaddr)); | ||
377 | eaddr += L1_CACHE_BYTES; | ||
378 | } | ||
379 | switch_and_save_asid(current_asid); | ||
380 | local_irq_restore(flags); | ||
381 | } | ||
382 | |||
383 | static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end) | ||
384 | { | ||
385 | /* The icbi instruction never raises ITLBMISS. i.e. if there's not a | ||
386 | cache hit on the virtual tag the instruction ends there, without a | ||
387 | TLB lookup. */ | ||
388 | |||
389 | unsigned long long aligned_start; | ||
390 | unsigned long long ull_end; | ||
391 | unsigned long long addr; | ||
392 | |||
393 | ull_end = end; | ||
394 | |||
395 | /* Just invalidate over the range using the natural addresses. TLB | ||
396 | miss handling will be OK (TBC). Since it's for the current process, | ||
397 | either we're already in the right ASID context, or the ASIDs have | ||
398 | been recycled since we were last active in which case we might just | ||
399 | invalidate another processes I-cache entries : no worries, just a | ||
400 | performance drop for him. */ | ||
401 | aligned_start = start & L1_CACHE_ALIGN_MASK; | ||
402 | addr = aligned_start; | ||
403 | while (addr < ull_end) { | ||
404 | asm __volatile__ ("icbi %0, 0" : : "r" (addr)); | ||
405 | asm __volatile__ ("nop"); | ||
406 | asm __volatile__ ("nop"); | ||
407 | addr += L1_CACHE_BYTES; | ||
408 | } | ||
409 | } | ||
410 | |||
411 | #endif /* !CONFIG_ICACHE_DISABLED */ | ||
412 | |||
413 | /****************************************************************************/ | ||
414 | |||
415 | #ifndef CONFIG_DCACHE_DISABLED | ||
416 | |||
417 | /* Buffer used as the target of alloco instructions to purge data from cache | ||
418 | sets by natural eviction. -- RPC */ | ||
419 | #define DUMMY_ALLOCO_AREA_SIZE L1_CACHE_SIZE_BYTES + (1024 * 4) | ||
420 | static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, }; | ||
421 | |||
422 | /****************************************************************************/ | ||
423 | |||
424 | static void __inline__ sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets) | ||
425 | { | ||
426 | /* Purge all ways in a particular block of sets, specified by the base | ||
427 | set number and number of sets. Can handle wrap-around, if that's | ||
428 | needed. */ | ||
429 | |||
430 | int dummy_buffer_base_set; | ||
431 | unsigned long long eaddr, eaddr0, eaddr1; | ||
432 | int j; | ||
433 | int set_offset; | ||
434 | |||
435 | dummy_buffer_base_set = ((int)&dummy_alloco_area & cpu_data->dcache.idx_mask) >> cpu_data->dcache.entry_shift; | ||
436 | set_offset = sets_to_purge_base - dummy_buffer_base_set; | ||
437 | |||
438 | for (j=0; j<n_sets; j++, set_offset++) { | ||
439 | set_offset &= (cpu_data->dcache.sets - 1); | ||
440 | eaddr0 = (unsigned long long)dummy_alloco_area + (set_offset << cpu_data->dcache.entry_shift); | ||
441 | |||
442 | /* Do one alloco which hits the required set per cache way. For | ||
443 | write-back mode, this will purge the #ways resident lines. There's | ||
444 | little point unrolling this loop because the allocos stall more if | ||
445 | they're too close together. */ | ||
446 | eaddr1 = eaddr0 + cpu_data->dcache.way_ofs * cpu_data->dcache.ways; | ||
447 | for (eaddr=eaddr0; eaddr<eaddr1; eaddr+=cpu_data->dcache.way_ofs) { | ||
448 | asm __volatile__ ("alloco %0, 0" : : "r" (eaddr)); | ||
449 | asm __volatile__ ("synco"); /* TAKum03020 */ | ||
450 | } | ||
451 | |||
452 | eaddr1 = eaddr0 + cpu_data->dcache.way_ofs * cpu_data->dcache.ways; | ||
453 | for (eaddr=eaddr0; eaddr<eaddr1; eaddr+=cpu_data->dcache.way_ofs) { | ||
454 | /* Load from each address. Required because alloco is a NOP if | ||
455 | the cache is write-through. Write-through is a config option. */ | ||
456 | if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags))) | ||
457 | *(volatile unsigned char *)(int)eaddr; | ||
458 | } | ||
459 | } | ||
460 | |||
461 | /* Don't use OCBI to invalidate the lines. That costs cycles directly. | ||
462 | If the dummy block is just left resident, it will naturally get | ||
463 | evicted as required. */ | ||
464 | |||
465 | return; | ||
466 | } | ||
467 | |||
468 | /****************************************************************************/ | ||
469 | |||
470 | static void sh64_dcache_purge_all(void) | ||
471 | { | ||
472 | /* Purge the entire contents of the dcache. The most efficient way to | ||
473 | achieve this is to use alloco instructions on a region of unused | ||
474 | memory equal in size to the cache, thereby causing the current | ||
475 | contents to be discarded by natural eviction. The alternative, | ||
476 | namely reading every tag, setting up a mapping for the corresponding | ||
477 | page and doing an OCBP for the line, would be much more expensive. | ||
478 | */ | ||
479 | |||
480 | sh64_dcache_purge_sets(0, cpu_data->dcache.sets); | ||
481 | |||
482 | return; | ||
483 | |||
484 | } | ||
485 | |||
486 | /****************************************************************************/ | ||
487 | |||
488 | static void sh64_dcache_purge_kernel_range(unsigned long start, unsigned long end) | ||
489 | { | ||
490 | /* Purge the range of addresses [start,end] from the D-cache. The | ||
491 | addresses lie in the superpage mapping. There's no harm if we | ||
492 | overpurge at either end - just a small performance loss. */ | ||
493 | unsigned long long ullend, addr, aligned_start; | ||
494 | #if (NEFF == 32) | ||
495 | aligned_start = (unsigned long long)(signed long long)(signed long) start; | ||
496 | #else | ||
497 | #error "NEFF != 32" | ||
498 | #endif | ||
499 | aligned_start &= L1_CACHE_ALIGN_MASK; | ||
500 | addr = aligned_start; | ||
501 | #if (NEFF == 32) | ||
502 | ullend = (unsigned long long) (signed long long) (signed long) end; | ||
503 | #else | ||
504 | #error "NEFF != 32" | ||
505 | #endif | ||
506 | while (addr <= ullend) { | ||
507 | asm __volatile__ ("ocbp %0, 0" : : "r" (addr)); | ||
508 | addr += L1_CACHE_BYTES; | ||
509 | } | ||
510 | return; | ||
511 | } | ||
512 | |||
513 | /* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for | ||
514 | anything else in the kernel */ | ||
515 | #define MAGIC_PAGE0_START 0xffffffffec000000ULL | ||
516 | |||
517 | static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr, unsigned long eaddr) | ||
518 | { | ||
519 | /* Purge the physical page 'paddr' from the cache. It's known that any | ||
520 | cache lines requiring attention have the same page colour as the the | ||
521 | address 'eaddr'. | ||
522 | |||
523 | This relies on the fact that the D-cache matches on physical tags | ||
524 | when no virtual tag matches. So we create an alias for the original | ||
525 | page and purge through that. (Alternatively, we could have done | ||
526 | this by switching ASID to match the original mapping and purged | ||
527 | through that, but that involves ASID switching cost + probably a | ||
528 | TLBMISS + refill anyway.) | ||
529 | */ | ||
530 | |||
531 | unsigned long long magic_page_start; | ||
532 | unsigned long long magic_eaddr, magic_eaddr_end; | ||
533 | |||
534 | magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK); | ||
535 | |||
536 | /* As long as the kernel is not pre-emptible, this doesn't need to be | ||
537 | under cli/sti. */ | ||
538 | |||
539 | sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr); | ||
540 | |||
541 | magic_eaddr = magic_page_start; | ||
542 | magic_eaddr_end = magic_eaddr + PAGE_SIZE; | ||
543 | while (magic_eaddr < magic_eaddr_end) { | ||
544 | /* Little point in unrolling this loop - the OCBPs are blocking | ||
545 | and won't go any quicker (i.e. the loop overhead is parallel | ||
546 | to part of the OCBP execution.) */ | ||
547 | asm __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr)); | ||
548 | magic_eaddr += L1_CACHE_BYTES; | ||
549 | } | ||
550 | |||
551 | sh64_teardown_dtlb_cache_slot(); | ||
552 | } | ||
553 | |||
554 | /****************************************************************************/ | ||
555 | |||
556 | static void sh64_dcache_purge_phy_page(unsigned long paddr) | ||
557 | { | ||
558 | /* Pure a page given its physical start address, by creating a | ||
559 | temporary 1 page mapping and purging across that. Even if we know | ||
560 | the virtual address (& vma or mm) of the page, the method here is | ||
561 | more elegant because it avoids issues of coping with page faults on | ||
562 | the purge instructions (i.e. no special-case code required in the | ||
563 | critical path in the TLB miss handling). */ | ||
564 | |||
565 | unsigned long long eaddr_start, eaddr, eaddr_end; | ||
566 | int i; | ||
567 | |||
568 | /* As long as the kernel is not pre-emptible, this doesn't need to be | ||
569 | under cli/sti. */ | ||
570 | |||
571 | eaddr_start = MAGIC_PAGE0_START; | ||
572 | for (i=0; i < (1 << CACHE_OC_N_SYNBITS); i++) { | ||
573 | sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr); | ||
574 | |||
575 | eaddr = eaddr_start; | ||
576 | eaddr_end = eaddr + PAGE_SIZE; | ||
577 | while (eaddr < eaddr_end) { | ||
578 | asm __volatile__ ("ocbp %0, 0" : : "r" (eaddr)); | ||
579 | eaddr += L1_CACHE_BYTES; | ||
580 | } | ||
581 | |||
582 | sh64_teardown_dtlb_cache_slot(); | ||
583 | eaddr_start += PAGE_SIZE; | ||
584 | } | ||
585 | } | ||
586 | |||
587 | static void sh64_dcache_purge_user_page(struct mm_struct *mm, unsigned long eaddr) | ||
588 | { | ||
589 | pgd_t *pgd; | ||
590 | pmd_t *pmd; | ||
591 | pte_t *pte; | ||
592 | pte_t entry; | ||
593 | unsigned long paddr; | ||
594 | |||
595 | /* NOTE : all the callers of this have mm->page_table_lock held, so the | ||
596 | following page table traversal is safe even on SMP/pre-emptible. */ | ||
597 | |||
598 | if (!mm) return; /* No way to find physical address of page */ | ||
599 | pgd = pgd_offset(mm, eaddr); | ||
600 | if (pgd_bad(*pgd)) return; | ||
601 | |||
602 | pmd = pmd_offset(pgd, eaddr); | ||
603 | if (pmd_none(*pmd) || pmd_bad(*pmd)) return; | ||
604 | |||
605 | pte = pte_offset_kernel(pmd, eaddr); | ||
606 | entry = *pte; | ||
607 | if (pte_none(entry) || !pte_present(entry)) return; | ||
608 | |||
609 | paddr = pte_val(entry) & PAGE_MASK; | ||
610 | |||
611 | sh64_dcache_purge_coloured_phy_page(paddr, eaddr); | ||
612 | |||
613 | } | ||
614 | /****************************************************************************/ | ||
615 | |||
616 | static void sh64_dcache_purge_user_range(struct mm_struct *mm, | ||
617 | unsigned long start, unsigned long end) | ||
618 | { | ||
619 | /* There are at least 5 choices for the implementation of this, with | ||
620 | pros (+), cons(-), comments(*): | ||
621 | |||
622 | 1. ocbp each line in the range through the original user's ASID | ||
623 | + no lines spuriously evicted | ||
624 | - tlbmiss handling (must either handle faults on demand => extra | ||
625 | special-case code in tlbmiss critical path), or map the page in | ||
626 | advance (=> flush_tlb_range in advance to avoid multiple hits) | ||
627 | - ASID switching | ||
628 | - expensive for large ranges | ||
629 | |||
630 | 2. temporarily map each page in the range to a special effective | ||
631 | address and ocbp through the temporary mapping; relies on the | ||
632 | fact that SH-5 OCB* always do TLB lookup and match on ptags (they | ||
633 | never look at the etags) | ||
634 | + no spurious evictions | ||
635 | - expensive for large ranges | ||
636 | * surely cheaper than (1) | ||
637 | |||
638 | 3. walk all the lines in the cache, check the tags, if a match | ||
639 | occurs create a page mapping to ocbp the line through | ||
640 | + no spurious evictions | ||
641 | - tag inspection overhead | ||
642 | - (especially for small ranges) | ||
643 | - potential cost of setting up/tearing down page mapping for | ||
644 | every line that matches the range | ||
645 | * cost partly independent of range size | ||
646 | |||
647 | 4. walk all the lines in the cache, check the tags, if a match | ||
648 | occurs use 4 * alloco to purge the line (+3 other probably | ||
649 | innocent victims) by natural eviction | ||
650 | + no tlb mapping overheads | ||
651 | - spurious evictions | ||
652 | - tag inspection overhead | ||
653 | |||
654 | 5. implement like flush_cache_all | ||
655 | + no tag inspection overhead | ||
656 | - spurious evictions | ||
657 | - bad for small ranges | ||
658 | |||
659 | (1) can be ruled out as more expensive than (2). (2) appears best | ||
660 | for small ranges. The choice between (3), (4) and (5) for large | ||
661 | ranges and the range size for the large/small boundary need | ||
662 | benchmarking to determine. | ||
663 | |||
664 | For now use approach (2) for small ranges and (5) for large ones. | ||
665 | |||
666 | */ | ||
667 | |||
668 | int n_pages; | ||
669 | |||
670 | n_pages = ((end - start) >> PAGE_SHIFT); | ||
671 | if (n_pages >= 64) { | ||
672 | #if 1 | ||
673 | sh64_dcache_purge_all(); | ||
674 | #else | ||
675 | unsigned long long set, way; | ||
676 | unsigned long mm_asid = mm->context & MMU_CONTEXT_ASID_MASK; | ||
677 | for (set = 0; set < cpu_data->dcache.sets; set++) { | ||
678 | unsigned long long set_base_config_addr = CACHE_OC_ADDRESS_ARRAY + (set << cpu_data->dcache.set_shift); | ||
679 | for (way = 0; way < cpu_data->dcache.ways; way++) { | ||
680 | unsigned long long config_addr = set_base_config_addr + (way << cpu_data->dcache.way_step_shift); | ||
681 | unsigned long long tag0; | ||
682 | unsigned long line_valid; | ||
683 | |||
684 | asm __volatile__("getcfg %1, 0, %0" : "=r" (tag0) : "r" (config_addr)); | ||
685 | line_valid = tag0 & SH_CACHE_VALID; | ||
686 | if (line_valid) { | ||
687 | unsigned long cache_asid; | ||
688 | unsigned long epn; | ||
689 | |||
690 | cache_asid = (tag0 & cpu_data->dcache.asid_mask) >> cpu_data->dcache.asid_shift; | ||
691 | /* The next line needs some | ||
692 | explanation. The virtual tags | ||
693 | encode bits [31:13] of the virtual | ||
694 | address, bit [12] of the 'tag' being | ||
695 | implied by the cache set index. */ | ||
696 | epn = (tag0 & cpu_data->dcache.epn_mask) | ((set & 0x80) << cpu_data->dcache.entry_shift); | ||
697 | |||
698 | if ((cache_asid == mm_asid) && (start <= epn) && (epn < end)) { | ||
699 | /* TODO : could optimise this | ||
700 | call by batching multiple | ||
701 | adjacent sets together. */ | ||
702 | sh64_dcache_purge_sets(set, 1); | ||
703 | break; /* Don't waste time inspecting other ways for this set */ | ||
704 | } | ||
705 | } | ||
706 | } | ||
707 | } | ||
708 | #endif | ||
709 | } else { | ||
710 | /* 'Small' range */ | ||
711 | unsigned long aligned_start; | ||
712 | unsigned long eaddr; | ||
713 | unsigned long last_page_start; | ||
714 | |||
715 | aligned_start = start & PAGE_MASK; | ||
716 | /* 'end' is 1 byte beyond the end of the range */ | ||
717 | last_page_start = (end - 1) & PAGE_MASK; | ||
718 | |||
719 | eaddr = aligned_start; | ||
720 | while (eaddr <= last_page_start) { | ||
721 | sh64_dcache_purge_user_page(mm, eaddr); | ||
722 | eaddr += PAGE_SIZE; | ||
723 | } | ||
724 | } | ||
725 | return; | ||
726 | } | ||
727 | |||
728 | static void sh64_dcache_wback_current_user_range(unsigned long start, unsigned long end) | ||
729 | { | ||
730 | unsigned long long aligned_start; | ||
731 | unsigned long long ull_end; | ||
732 | unsigned long long addr; | ||
733 | |||
734 | ull_end = end; | ||
735 | |||
736 | /* Just wback over the range using the natural addresses. TLB miss | ||
737 | handling will be OK (TBC) : the range has just been written to by | ||
738 | the signal frame setup code, so the PTEs must exist. | ||
739 | |||
740 | Note, if we have CONFIG_PREEMPT and get preempted inside this loop, | ||
741 | it doesn't matter, even if the pid->ASID mapping changes whilst | ||
742 | we're away. In that case the cache will have been flushed when the | ||
743 | mapping was renewed. So the writebacks below will be nugatory (and | ||
744 | we'll doubtless have to fault the TLB entry/ies in again with the | ||
745 | new ASID), but it's a rare case. | ||
746 | */ | ||
747 | aligned_start = start & L1_CACHE_ALIGN_MASK; | ||
748 | addr = aligned_start; | ||
749 | while (addr < ull_end) { | ||
750 | asm __volatile__ ("ocbwb %0, 0" : : "r" (addr)); | ||
751 | addr += L1_CACHE_BYTES; | ||
752 | } | ||
753 | } | ||
754 | |||
755 | /****************************************************************************/ | ||
756 | |||
757 | /* These *MUST* lie in an area of virtual address space that's otherwise unused. */ | ||
758 | #define UNIQUE_EADDR_START 0xe0000000UL | ||
759 | #define UNIQUE_EADDR_END 0xe8000000UL | ||
760 | |||
761 | static unsigned long sh64_make_unique_eaddr(unsigned long user_eaddr, unsigned long paddr) | ||
762 | { | ||
763 | /* Given a physical address paddr, and a user virtual address | ||
764 | user_eaddr which will eventually be mapped to it, create a one-off | ||
765 | kernel-private eaddr mapped to the same paddr. This is used for | ||
766 | creating special destination pages for copy_user_page and | ||
767 | clear_user_page */ | ||
768 | |||
769 | static unsigned long current_pointer = UNIQUE_EADDR_START; | ||
770 | unsigned long coloured_pointer; | ||
771 | |||
772 | if (current_pointer == UNIQUE_EADDR_END) { | ||
773 | sh64_dcache_purge_all(); | ||
774 | current_pointer = UNIQUE_EADDR_START; | ||
775 | } | ||
776 | |||
777 | coloured_pointer = (current_pointer & ~CACHE_OC_SYN_MASK) | (user_eaddr & CACHE_OC_SYN_MASK); | ||
778 | sh64_setup_dtlb_cache_slot(coloured_pointer, get_asid(), paddr); | ||
779 | |||
780 | current_pointer += (PAGE_SIZE << CACHE_OC_N_SYNBITS); | ||
781 | |||
782 | return coloured_pointer; | ||
783 | } | ||
784 | |||
785 | /****************************************************************************/ | ||
786 | |||
787 | static void sh64_copy_user_page_coloured(void *to, void *from, unsigned long address) | ||
788 | { | ||
789 | void *coloured_to; | ||
790 | |||
791 | /* Discard any existing cache entries of the wrong colour. These are | ||
792 | present quite often, if the kernel has recently used the page | ||
793 | internally, then given it up, then it's been allocated to the user. | ||
794 | */ | ||
795 | sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long) to); | ||
796 | |||
797 | coloured_to = (void *) sh64_make_unique_eaddr(address, __pa(to)); | ||
798 | sh64_page_copy(from, coloured_to); | ||
799 | |||
800 | sh64_teardown_dtlb_cache_slot(); | ||
801 | } | ||
802 | |||
803 | static void sh64_clear_user_page_coloured(void *to, unsigned long address) | ||
804 | { | ||
805 | void *coloured_to; | ||
806 | |||
807 | /* Discard any existing kernel-originated lines of the wrong colour (as | ||
808 | above) */ | ||
809 | sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long) to); | ||
810 | |||
811 | coloured_to = (void *) sh64_make_unique_eaddr(address, __pa(to)); | ||
812 | sh64_page_clear(coloured_to); | ||
813 | |||
814 | sh64_teardown_dtlb_cache_slot(); | ||
815 | } | ||
816 | |||
817 | #endif /* !CONFIG_DCACHE_DISABLED */ | ||
818 | |||
819 | /****************************************************************************/ | ||
820 | |||
821 | /*########################################################################## | ||
822 | EXTERNALLY CALLABLE API. | ||
823 | ##########################################################################*/ | ||
824 | |||
825 | /* These functions are described in Documentation/cachetlb.txt. | ||
826 | Each one of these functions varies in behaviour depending on whether the | ||
827 | I-cache and/or D-cache are configured out. | ||
828 | |||
829 | Note that the Linux term 'flush' corresponds to what is termed 'purge' in | ||
830 | the sh/sh64 jargon for the D-cache, i.e. write back dirty data then | ||
831 | invalidate the cache lines, and 'invalidate' for the I-cache. | ||
832 | */ | ||
833 | |||
834 | #undef FLUSH_TRACE | ||
835 | |||
836 | void flush_cache_all(void) | ||
837 | { | ||
838 | /* Invalidate the entire contents of both caches, after writing back to | ||
839 | memory any dirty data from the D-cache. */ | ||
840 | sh64_dcache_purge_all(); | ||
841 | sh64_icache_inv_all(); | ||
842 | } | ||
843 | |||
844 | /****************************************************************************/ | ||
845 | |||
846 | void flush_cache_mm(struct mm_struct *mm) | ||
847 | { | ||
848 | /* Invalidate an entire user-address space from both caches, after | ||
849 | writing back dirty data (e.g. for shared mmap etc). */ | ||
850 | |||
851 | /* This could be coded selectively by inspecting all the tags then | ||
852 | doing 4*alloco on any set containing a match (as for | ||
853 | flush_cache_range), but fork/exit/execve (where this is called from) | ||
854 | are expensive anyway. */ | ||
855 | |||
856 | /* Have to do a purge here, despite the comments re I-cache below. | ||
857 | There could be odd-coloured dirty data associated with the mm still | ||
858 | in the cache - if this gets written out through natural eviction | ||
859 | after the kernel has reused the page there will be chaos. | ||
860 | */ | ||
861 | |||
862 | sh64_dcache_purge_all(); | ||
863 | |||
864 | /* The mm being torn down won't ever be active again, so any Icache | ||
865 | lines tagged with its ASID won't be visible for the rest of the | ||
866 | lifetime of this ASID cycle. Before the ASID gets reused, there | ||
867 | will be a flush_cache_all. Hence we don't need to touch the | ||
868 | I-cache. This is similar to the lack of action needed in | ||
869 | flush_tlb_mm - see fault.c. */ | ||
870 | } | ||
871 | |||
872 | /****************************************************************************/ | ||
873 | |||
874 | void flush_cache_range(struct vm_area_struct *vma, unsigned long start, | ||
875 | unsigned long end) | ||
876 | { | ||
877 | struct mm_struct *mm = vma->vm_mm; | ||
878 | |||
879 | /* Invalidate (from both caches) the range [start,end) of virtual | ||
880 | addresses from the user address space specified by mm, after writing | ||
881 | back any dirty data. | ||
882 | |||
883 | Note(1), 'end' is 1 byte beyond the end of the range to flush. | ||
884 | |||
885 | Note(2), this is called with mm->page_table_lock held.*/ | ||
886 | |||
887 | sh64_dcache_purge_user_range(mm, start, end); | ||
888 | sh64_icache_inv_user_page_range(mm, start, end); | ||
889 | } | ||
890 | |||
891 | /****************************************************************************/ | ||
892 | |||
893 | void flush_cache_page(struct vm_area_struct *vma, unsigned long eaddr, unsigned long pfn) | ||
894 | { | ||
895 | /* Invalidate any entries in either cache for the vma within the user | ||
896 | address space vma->vm_mm for the page starting at virtual address | ||
897 | 'eaddr'. This seems to be used primarily in breaking COW. Note, | ||
898 | the I-cache must be searched too in case the page in question is | ||
899 | both writable and being executed from (e.g. stack trampolines.) | ||
900 | |||
901 | Note(1), this is called with mm->page_table_lock held. | ||
902 | */ | ||
903 | |||
904 | sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT); | ||
905 | |||
906 | if (vma->vm_flags & VM_EXEC) { | ||
907 | sh64_icache_inv_user_page(vma, eaddr); | ||
908 | } | ||
909 | } | ||
910 | |||
911 | /****************************************************************************/ | ||
912 | |||
913 | #ifndef CONFIG_DCACHE_DISABLED | ||
914 | |||
915 | void copy_user_page(void *to, void *from, unsigned long address, struct page *page) | ||
916 | { | ||
917 | /* 'from' and 'to' are kernel virtual addresses (within the superpage | ||
918 | mapping of the physical RAM). 'address' is the user virtual address | ||
919 | where the copy 'to' will be mapped after. This allows a custom | ||
920 | mapping to be used to ensure that the new copy is placed in the | ||
921 | right cache sets for the user to see it without having to bounce it | ||
922 | out via memory. Note however : the call to flush_page_to_ram in | ||
923 | (generic)/mm/memory.c:(break_cow) undoes all this good work in that one | ||
924 | very important case! | ||
925 | |||
926 | TBD : can we guarantee that on every call, any cache entries for | ||
927 | 'from' are in the same colour sets as 'address' also? i.e. is this | ||
928 | always used just to deal with COW? (I suspect not). */ | ||
929 | |||
930 | /* There are two possibilities here for when the page 'from' was last accessed: | ||
931 | * by the kernel : this is OK, no purge required. | ||
932 | * by the/a user (e.g. for break_COW) : need to purge. | ||
933 | |||
934 | If the potential user mapping at 'address' is the same colour as | ||
935 | 'from' there is no need to purge any cache lines from the 'from' | ||
936 | page mapped into cache sets of colour 'address'. (The copy will be | ||
937 | accessing the page through 'from'). | ||
938 | */ | ||
939 | |||
940 | if (((address ^ (unsigned long) from) & CACHE_OC_SYN_MASK) != 0) { | ||
941 | sh64_dcache_purge_coloured_phy_page(__pa(from), address); | ||
942 | } | ||
943 | |||
944 | if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) { | ||
945 | /* No synonym problem on destination */ | ||
946 | sh64_page_copy(from, to); | ||
947 | } else { | ||
948 | sh64_copy_user_page_coloured(to, from, address); | ||
949 | } | ||
950 | |||
951 | /* Note, don't need to flush 'from' page from the cache again - it's | ||
952 | done anyway by the generic code */ | ||
953 | } | ||
954 | |||
955 | void clear_user_page(void *to, unsigned long address, struct page *page) | ||
956 | { | ||
957 | /* 'to' is a kernel virtual address (within the superpage | ||
958 | mapping of the physical RAM). 'address' is the user virtual address | ||
959 | where the 'to' page will be mapped after. This allows a custom | ||
960 | mapping to be used to ensure that the new copy is placed in the | ||
961 | right cache sets for the user to see it without having to bounce it | ||
962 | out via memory. | ||
963 | */ | ||
964 | |||
965 | if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) { | ||
966 | /* No synonym problem on destination */ | ||
967 | sh64_page_clear(to); | ||
968 | } else { | ||
969 | sh64_clear_user_page_coloured(to, address); | ||
970 | } | ||
971 | } | ||
972 | |||
973 | #endif /* !CONFIG_DCACHE_DISABLED */ | ||
974 | |||
975 | /****************************************************************************/ | ||
976 | |||
977 | void flush_dcache_page(struct page *page) | ||
978 | { | ||
979 | sh64_dcache_purge_phy_page(page_to_phys(page)); | ||
980 | wmb(); | ||
981 | } | ||
982 | |||
983 | /****************************************************************************/ | ||
984 | |||
985 | void flush_icache_range(unsigned long start, unsigned long end) | ||
986 | { | ||
987 | /* Flush the range [start,end] of kernel virtual adddress space from | ||
988 | the I-cache. The corresponding range must be purged from the | ||
989 | D-cache also because the SH-5 doesn't have cache snooping between | ||
990 | the caches. The addresses will be visible through the superpage | ||
991 | mapping, therefore it's guaranteed that there no cache entries for | ||
992 | the range in cache sets of the wrong colour. | ||
993 | |||
994 | Primarily used for cohering the I-cache after a module has | ||
995 | been loaded. */ | ||
996 | |||
997 | /* We also make sure to purge the same range from the D-cache since | ||
998 | flush_page_to_ram() won't be doing this for us! */ | ||
999 | |||
1000 | sh64_dcache_purge_kernel_range(start, end); | ||
1001 | wmb(); | ||
1002 | sh64_icache_inv_kernel_range(start, end); | ||
1003 | } | ||
1004 | |||
1005 | /****************************************************************************/ | ||
1006 | |||
1007 | void flush_icache_user_range(struct vm_area_struct *vma, | ||
1008 | struct page *page, unsigned long addr, int len) | ||
1009 | { | ||
1010 | /* Flush the range of user (defined by vma->vm_mm) address space | ||
1011 | starting at 'addr' for 'len' bytes from the cache. The range does | ||
1012 | not straddle a page boundary, the unique physical page containing | ||
1013 | the range is 'page'. This seems to be used mainly for invalidating | ||
1014 | an address range following a poke into the program text through the | ||
1015 | ptrace() call from another process (e.g. for BRK instruction | ||
1016 | insertion). */ | ||
1017 | |||
1018 | sh64_dcache_purge_coloured_phy_page(page_to_phys(page), addr); | ||
1019 | mb(); | ||
1020 | |||
1021 | if (vma->vm_flags & VM_EXEC) { | ||
1022 | sh64_icache_inv_user_small_range(vma->vm_mm, addr, len); | ||
1023 | } | ||
1024 | } | ||
1025 | |||
1026 | /*########################################################################## | ||
1027 | ARCH/SH64 PRIVATE CALLABLE API. | ||
1028 | ##########################################################################*/ | ||
1029 | |||
1030 | void flush_cache_sigtramp(unsigned long start, unsigned long end) | ||
1031 | { | ||
1032 | /* For the address range [start,end), write back the data from the | ||
1033 | D-cache and invalidate the corresponding region of the I-cache for | ||
1034 | the current process. Used to flush signal trampolines on the stack | ||
1035 | to make them executable. */ | ||
1036 | |||
1037 | sh64_dcache_wback_current_user_range(start, end); | ||
1038 | wmb(); | ||
1039 | sh64_icache_inv_current_user_range(start, end); | ||
1040 | } | ||
1041 | |||