diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2008-01-28 16:52:50 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2008-01-28 16:52:50 -0500 |
commit | e189f3495c4e30fc84fc9241096edf3932e23439 (patch) | |
tree | 5916c89ace81537a02ae01869386ba6caafdab9c /arch/sh/mm/cache-sh5.c | |
parent | f4798748dee00c807a63f5518f08b3df161e0f6d (diff) | |
parent | 6582d7b7376aa587d74b08c74457dc28abc1a9fa (diff) |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
* git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6: (197 commits)
sh: add spi header and r2d platform data V3
sh: update r7780rp interrupt code
sh: remove consistent alloc stuff from the machine vector
sh: use declared coherent memory for dreamcast pci ethernet adapter
sh: declared coherent memory support V2
sh: Add support for SDK7780 board.
sh: constify function pointer tables
sh: Kill off -traditional for linker script.
cdrom: Add support for Sega Dreamcast GD-ROM.
sh: Kill off hs7751rvoip reference from arch/sh/Kconfig.
sh: Drop r7780rp_defconfig, use r7780mp_defconfig as kbuild default.
sh: Kill off dead HS771RVoIP board support.
sh: r7785rp: Fix up DECLARE_INTC_DESC() arg mismatch.
sh: r7785rp: Hook up the rest of the HL7785 FPGA IRQ vectors.
sh: r2d - enable sm501 usb host function
sh: remove voyagergx
sh: r2d - add lcd planel timings to sm501 platform data
sh: Add OHCI and UDC platform devices for SH7720.
sh: intc - remove default interrupt priority tables
sh: Correct pte size mismatch for X2 TLB.
...
Diffstat (limited to 'arch/sh/mm/cache-sh5.c')
-rw-r--r-- | arch/sh/mm/cache-sh5.c | 1029 |
1 files changed, 1029 insertions, 0 deletions
diff --git a/arch/sh/mm/cache-sh5.c b/arch/sh/mm/cache-sh5.c new file mode 100644 index 000000000000..4617e3aeee73 --- /dev/null +++ b/arch/sh/mm/cache-sh5.c | |||
@@ -0,0 +1,1029 @@ | |||
1 | /* | ||
2 | * arch/sh/mm/cache-sh5.c | ||
3 | * | ||
4 | * Original version Copyright (C) 2000, 2001 Paolo Alberelli | ||
5 | * Second version Copyright (C) benedict.gaster@superh.com 2002 | ||
6 | * Third version Copyright Richard.Curnow@superh.com 2003 | ||
7 | * Hacks to third version Copyright (C) 2003 Paul Mundt | ||
8 | * | ||
9 | * This file is subject to the terms and conditions of the GNU General Public | ||
10 | * License. See the file "COPYING" in the main directory of this archive | ||
11 | * for more details. | ||
12 | */ | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/mman.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/threads.h> | ||
17 | #include <asm/page.h> | ||
18 | #include <asm/pgtable.h> | ||
19 | #include <asm/processor.h> | ||
20 | #include <asm/cache.h> | ||
21 | #include <asm/tlb.h> | ||
22 | #include <asm/io.h> | ||
23 | #include <asm/uaccess.h> | ||
24 | #include <asm/mmu_context.h> | ||
25 | #include <asm/pgalloc.h> /* for flush_itlb_range */ | ||
26 | |||
27 | #include <linux/proc_fs.h> | ||
28 | |||
29 | /* This function is in entry.S */ | ||
30 | extern unsigned long switch_and_save_asid(unsigned long new_asid); | ||
31 | |||
32 | /* Wired TLB entry for the D-cache */ | ||
33 | static unsigned long long dtlb_cache_slot; | ||
34 | |||
35 | /** | ||
36 | * sh64_cache_init() | ||
37 | * | ||
38 | * This is pretty much just a straightforward clone of the SH | ||
39 | * detect_cpu_and_cache_system(). | ||
40 | * | ||
41 | * This function is responsible for setting up all of the cache | ||
42 | * info dynamically as well as taking care of CPU probing and | ||
43 | * setting up the relevant subtype data. | ||
44 | * | ||
45 | * FIXME: For the time being, we only really support the SH5-101 | ||
46 | * out of the box, and don't support dynamic probing for things | ||
47 | * like the SH5-103 or even cut2 of the SH5-101. Implement this | ||
48 | * later! | ||
49 | */ | ||
50 | int __init sh64_cache_init(void) | ||
51 | { | ||
52 | /* | ||
53 | * First, setup some sane values for the I-cache. | ||
54 | */ | ||
55 | cpu_data->icache.ways = 4; | ||
56 | cpu_data->icache.sets = 256; | ||
57 | cpu_data->icache.linesz = L1_CACHE_BYTES; | ||
58 | |||
59 | /* | ||
60 | * FIXME: This can probably be cleaned up a bit as well.. for example, | ||
61 | * do we really need the way shift _and_ the way_step_shift ?? Judging | ||
62 | * by the existing code, I would guess no.. is there any valid reason | ||
63 | * why we need to be tracking this around? | ||
64 | */ | ||
65 | cpu_data->icache.way_shift = 13; | ||
66 | cpu_data->icache.entry_shift = 5; | ||
67 | cpu_data->icache.set_shift = 4; | ||
68 | cpu_data->icache.way_step_shift = 16; | ||
69 | cpu_data->icache.asid_shift = 2; | ||
70 | |||
71 | /* | ||
72 | * way offset = cache size / associativity, so just don't factor in | ||
73 | * associativity in the first place.. | ||
74 | */ | ||
75 | cpu_data->icache.way_ofs = cpu_data->icache.sets * | ||
76 | cpu_data->icache.linesz; | ||
77 | |||
78 | cpu_data->icache.asid_mask = 0x3fc; | ||
79 | cpu_data->icache.idx_mask = 0x1fe0; | ||
80 | cpu_data->icache.epn_mask = 0xffffe000; | ||
81 | cpu_data->icache.flags = 0; | ||
82 | |||
83 | /* | ||
84 | * Next, setup some sane values for the D-cache. | ||
85 | * | ||
86 | * On the SH5, these are pretty consistent with the I-cache settings, | ||
87 | * so we just copy over the existing definitions.. these can be fixed | ||
88 | * up later, especially if we add runtime CPU probing. | ||
89 | * | ||
90 | * Though in the meantime it saves us from having to duplicate all of | ||
91 | * the above definitions.. | ||
92 | */ | ||
93 | cpu_data->dcache = cpu_data->icache; | ||
94 | |||
95 | /* | ||
96 | * Setup any cache-related flags here | ||
97 | */ | ||
98 | #if defined(CONFIG_DCACHE_WRITE_THROUGH) | ||
99 | set_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)); | ||
100 | #elif defined(CONFIG_DCACHE_WRITE_BACK) | ||
101 | set_bit(SH_CACHE_MODE_WB, &(cpu_data->dcache.flags)); | ||
102 | #endif | ||
103 | |||
104 | /* | ||
105 | * We also need to reserve a slot for the D-cache in the DTLB, so we | ||
106 | * do this now .. | ||
107 | */ | ||
108 | dtlb_cache_slot = sh64_get_wired_dtlb_entry(); | ||
109 | |||
110 | return 0; | ||
111 | } | ||
112 | |||
113 | #ifdef CONFIG_DCACHE_DISABLED | ||
114 | #define sh64_dcache_purge_all() do { } while (0) | ||
115 | #define sh64_dcache_purge_coloured_phy_page(paddr, eaddr) do { } while (0) | ||
116 | #define sh64_dcache_purge_user_range(mm, start, end) do { } while (0) | ||
117 | #define sh64_dcache_purge_phy_page(paddr) do { } while (0) | ||
118 | #define sh64_dcache_purge_virt_page(mm, eaddr) do { } while (0) | ||
119 | #define sh64_dcache_purge_kernel_range(start, end) do { } while (0) | ||
120 | #define sh64_dcache_wback_current_user_range(start, end) do { } while (0) | ||
121 | #endif | ||
122 | |||
123 | /*##########################################################################*/ | ||
124 | |||
125 | /* From here onwards, a rewrite of the implementation, | ||
126 | by Richard.Curnow@superh.com. | ||
127 | |||
128 | The major changes in this compared to the old version are; | ||
129 | 1. use more selective purging through OCBP instead of using ALLOCO to purge | ||
130 | by natural replacement. This avoids purging out unrelated cache lines | ||
131 | that happen to be in the same set. | ||
132 | 2. exploit the APIs copy_user_page and clear_user_page better | ||
133 | 3. be more selective about I-cache purging, in particular use invalidate_all | ||
134 | more sparingly. | ||
135 | |||
136 | */ | ||
137 | |||
138 | /*########################################################################## | ||
139 | SUPPORT FUNCTIONS | ||
140 | ##########################################################################*/ | ||
141 | |||
142 | /****************************************************************************/ | ||
143 | /* The following group of functions deal with mapping and unmapping a temporary | ||
144 | page into the DTLB slot that have been set aside for our exclusive use. */ | ||
145 | /* In order to accomplish this, we use the generic interface for adding and | ||
146 | removing a wired slot entry as defined in arch/sh/mm/tlb-sh5.c */ | ||
147 | /****************************************************************************/ | ||
148 | |||
149 | static unsigned long slot_own_flags; | ||
150 | |||
151 | static inline void sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid, unsigned long paddr) | ||
152 | { | ||
153 | local_irq_save(slot_own_flags); | ||
154 | sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr); | ||
155 | } | ||
156 | |||
157 | static inline void sh64_teardown_dtlb_cache_slot(void) | ||
158 | { | ||
159 | sh64_teardown_tlb_slot(dtlb_cache_slot); | ||
160 | local_irq_restore(slot_own_flags); | ||
161 | } | ||
162 | |||
163 | /****************************************************************************/ | ||
164 | |||
165 | #ifndef CONFIG_ICACHE_DISABLED | ||
166 | |||
167 | static void __inline__ sh64_icache_inv_all(void) | ||
168 | { | ||
169 | unsigned long long addr, flag, data; | ||
170 | unsigned int flags; | ||
171 | |||
172 | addr=ICCR0; | ||
173 | flag=ICCR0_ICI; | ||
174 | data=0; | ||
175 | |||
176 | /* Make this a critical section for safety (probably not strictly necessary.) */ | ||
177 | local_irq_save(flags); | ||
178 | |||
179 | /* Without %1 it gets unexplicably wrong */ | ||
180 | asm volatile("getcfg %3, 0, %0\n\t" | ||
181 | "or %0, %2, %0\n\t" | ||
182 | "putcfg %3, 0, %0\n\t" | ||
183 | "synci" | ||
184 | : "=&r" (data) | ||
185 | : "0" (data), "r" (flag), "r" (addr)); | ||
186 | |||
187 | local_irq_restore(flags); | ||
188 | } | ||
189 | |||
190 | static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end) | ||
191 | { | ||
192 | /* Invalidate range of addresses [start,end] from the I-cache, where | ||
193 | * the addresses lie in the kernel superpage. */ | ||
194 | |||
195 | unsigned long long ullend, addr, aligned_start; | ||
196 | #if (NEFF == 32) | ||
197 | aligned_start = (unsigned long long)(signed long long)(signed long) start; | ||
198 | #else | ||
199 | #error "NEFF != 32" | ||
200 | #endif | ||
201 | aligned_start &= L1_CACHE_ALIGN_MASK; | ||
202 | addr = aligned_start; | ||
203 | #if (NEFF == 32) | ||
204 | ullend = (unsigned long long) (signed long long) (signed long) end; | ||
205 | #else | ||
206 | #error "NEFF != 32" | ||
207 | #endif | ||
208 | while (addr <= ullend) { | ||
209 | asm __volatile__ ("icbi %0, 0" : : "r" (addr)); | ||
210 | addr += L1_CACHE_BYTES; | ||
211 | } | ||
212 | } | ||
213 | |||
214 | static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr) | ||
215 | { | ||
216 | /* If we get called, we know that vma->vm_flags contains VM_EXEC. | ||
217 | Also, eaddr is page-aligned. */ | ||
218 | |||
219 | unsigned long long addr, end_addr; | ||
220 | unsigned long flags = 0; | ||
221 | unsigned long running_asid, vma_asid; | ||
222 | addr = eaddr; | ||
223 | end_addr = addr + PAGE_SIZE; | ||
224 | |||
225 | /* Check whether we can use the current ASID for the I-cache | ||
226 | invalidation. For example, if we're called via | ||
227 | access_process_vm->flush_cache_page->here, (e.g. when reading from | ||
228 | /proc), 'running_asid' will be that of the reader, not of the | ||
229 | victim. | ||
230 | |||
231 | Also, note the risk that we might get pre-empted between the ASID | ||
232 | compare and blocking IRQs, and before we regain control, the | ||
233 | pid->ASID mapping changes. However, the whole cache will get | ||
234 | invalidated when the mapping is renewed, so the worst that can | ||
235 | happen is that the loop below ends up invalidating somebody else's | ||
236 | cache entries. | ||
237 | */ | ||
238 | |||
239 | running_asid = get_asid(); | ||
240 | vma_asid = (vma->vm_mm->context & MMU_CONTEXT_ASID_MASK); | ||
241 | if (running_asid != vma_asid) { | ||
242 | local_irq_save(flags); | ||
243 | switch_and_save_asid(vma_asid); | ||
244 | } | ||
245 | while (addr < end_addr) { | ||
246 | /* Worth unrolling a little */ | ||
247 | asm __volatile__("icbi %0, 0" : : "r" (addr)); | ||
248 | asm __volatile__("icbi %0, 32" : : "r" (addr)); | ||
249 | asm __volatile__("icbi %0, 64" : : "r" (addr)); | ||
250 | asm __volatile__("icbi %0, 96" : : "r" (addr)); | ||
251 | addr += 128; | ||
252 | } | ||
253 | if (running_asid != vma_asid) { | ||
254 | switch_and_save_asid(running_asid); | ||
255 | local_irq_restore(flags); | ||
256 | } | ||
257 | } | ||
258 | |||
259 | /****************************************************************************/ | ||
260 | |||
261 | static void sh64_icache_inv_user_page_range(struct mm_struct *mm, | ||
262 | unsigned long start, unsigned long end) | ||
263 | { | ||
264 | /* Used for invalidating big chunks of I-cache, i.e. assume the range | ||
265 | is whole pages. If 'start' or 'end' is not page aligned, the code | ||
266 | is conservative and invalidates to the ends of the enclosing pages. | ||
267 | This is functionally OK, just a performance loss. */ | ||
268 | |||
269 | /* See the comments below in sh64_dcache_purge_user_range() regarding | ||
270 | the choice of algorithm. However, for the I-cache option (2) isn't | ||
271 | available because there are no physical tags so aliases can't be | ||
272 | resolved. The icbi instruction has to be used through the user | ||
273 | mapping. Because icbi is cheaper than ocbp on a cache hit, it | ||
274 | would be cheaper to use the selective code for a large range than is | ||
275 | possible with the D-cache. Just assume 64 for now as a working | ||
276 | figure. | ||
277 | */ | ||
278 | |||
279 | int n_pages; | ||
280 | |||
281 | if (!mm) return; | ||
282 | |||
283 | n_pages = ((end - start) >> PAGE_SHIFT); | ||
284 | if (n_pages >= 64) { | ||
285 | sh64_icache_inv_all(); | ||
286 | } else { | ||
287 | unsigned long aligned_start; | ||
288 | unsigned long eaddr; | ||
289 | unsigned long after_last_page_start; | ||
290 | unsigned long mm_asid, current_asid; | ||
291 | unsigned long long flags = 0ULL; | ||
292 | |||
293 | mm_asid = mm->context & MMU_CONTEXT_ASID_MASK; | ||
294 | current_asid = get_asid(); | ||
295 | |||
296 | if (mm_asid != current_asid) { | ||
297 | /* Switch ASID and run the invalidate loop under cli */ | ||
298 | local_irq_save(flags); | ||
299 | switch_and_save_asid(mm_asid); | ||
300 | } | ||
301 | |||
302 | aligned_start = start & PAGE_MASK; | ||
303 | after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK); | ||
304 | |||
305 | while (aligned_start < after_last_page_start) { | ||
306 | struct vm_area_struct *vma; | ||
307 | unsigned long vma_end; | ||
308 | vma = find_vma(mm, aligned_start); | ||
309 | if (!vma || (aligned_start <= vma->vm_end)) { | ||
310 | /* Avoid getting stuck in an error condition */ | ||
311 | aligned_start += PAGE_SIZE; | ||
312 | continue; | ||
313 | } | ||
314 | vma_end = vma->vm_end; | ||
315 | if (vma->vm_flags & VM_EXEC) { | ||
316 | /* Executable */ | ||
317 | eaddr = aligned_start; | ||
318 | while (eaddr < vma_end) { | ||
319 | sh64_icache_inv_user_page(vma, eaddr); | ||
320 | eaddr += PAGE_SIZE; | ||
321 | } | ||
322 | } | ||
323 | aligned_start = vma->vm_end; /* Skip to start of next region */ | ||
324 | } | ||
325 | if (mm_asid != current_asid) { | ||
326 | switch_and_save_asid(current_asid); | ||
327 | local_irq_restore(flags); | ||
328 | } | ||
329 | } | ||
330 | } | ||
331 | |||
332 | static void sh64_icache_inv_user_small_range(struct mm_struct *mm, | ||
333 | unsigned long start, int len) | ||
334 | { | ||
335 | |||
336 | /* Invalidate a small range of user context I-cache, not necessarily | ||
337 | page (or even cache-line) aligned. */ | ||
338 | |||
339 | unsigned long long eaddr = start; | ||
340 | unsigned long long eaddr_end = start + len; | ||
341 | unsigned long current_asid, mm_asid; | ||
342 | unsigned long long flags; | ||
343 | unsigned long long epage_start; | ||
344 | |||
345 | /* Since this is used inside ptrace, the ASID in the mm context | ||
346 | typically won't match current_asid. We'll have to switch ASID to do | ||
347 | this. For safety, and given that the range will be small, do all | ||
348 | this under cli. | ||
349 | |||
350 | Note, there is a hazard that the ASID in mm->context is no longer | ||
351 | actually associated with mm, i.e. if the mm->context has started a | ||
352 | new cycle since mm was last active. However, this is just a | ||
353 | performance issue: all that happens is that we invalidate lines | ||
354 | belonging to another mm, so the owning process has to refill them | ||
355 | when that mm goes live again. mm itself can't have any cache | ||
356 | entries because there will have been a flush_cache_all when the new | ||
357 | mm->context cycle started. */ | ||
358 | |||
359 | /* Align to start of cache line. Otherwise, suppose len==8 and start | ||
360 | was at 32N+28 : the last 4 bytes wouldn't get invalidated. */ | ||
361 | eaddr = start & L1_CACHE_ALIGN_MASK; | ||
362 | eaddr_end = start + len; | ||
363 | |||
364 | local_irq_save(flags); | ||
365 | mm_asid = mm->context & MMU_CONTEXT_ASID_MASK; | ||
366 | current_asid = switch_and_save_asid(mm_asid); | ||
367 | |||
368 | epage_start = eaddr & PAGE_MASK; | ||
369 | |||
370 | while (eaddr < eaddr_end) | ||
371 | { | ||
372 | asm __volatile__("icbi %0, 0" : : "r" (eaddr)); | ||
373 | eaddr += L1_CACHE_BYTES; | ||
374 | } | ||
375 | switch_and_save_asid(current_asid); | ||
376 | local_irq_restore(flags); | ||
377 | } | ||
378 | |||
379 | static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end) | ||
380 | { | ||
381 | /* The icbi instruction never raises ITLBMISS. i.e. if there's not a | ||
382 | cache hit on the virtual tag the instruction ends there, without a | ||
383 | TLB lookup. */ | ||
384 | |||
385 | unsigned long long aligned_start; | ||
386 | unsigned long long ull_end; | ||
387 | unsigned long long addr; | ||
388 | |||
389 | ull_end = end; | ||
390 | |||
391 | /* Just invalidate over the range using the natural addresses. TLB | ||
392 | miss handling will be OK (TBC). Since it's for the current process, | ||
393 | either we're already in the right ASID context, or the ASIDs have | ||
394 | been recycled since we were last active in which case we might just | ||
395 | invalidate another processes I-cache entries : no worries, just a | ||
396 | performance drop for him. */ | ||
397 | aligned_start = start & L1_CACHE_ALIGN_MASK; | ||
398 | addr = aligned_start; | ||
399 | while (addr < ull_end) { | ||
400 | asm __volatile__ ("icbi %0, 0" : : "r" (addr)); | ||
401 | asm __volatile__ ("nop"); | ||
402 | asm __volatile__ ("nop"); | ||
403 | addr += L1_CACHE_BYTES; | ||
404 | } | ||
405 | } | ||
406 | |||
407 | #endif /* !CONFIG_ICACHE_DISABLED */ | ||
408 | |||
409 | /****************************************************************************/ | ||
410 | |||
411 | #ifndef CONFIG_DCACHE_DISABLED | ||
412 | |||
413 | /* Buffer used as the target of alloco instructions to purge data from cache | ||
414 | sets by natural eviction. -- RPC */ | ||
415 | #define DUMMY_ALLOCO_AREA_SIZE L1_CACHE_SIZE_BYTES + (1024 * 4) | ||
416 | static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, }; | ||
417 | |||
418 | /****************************************************************************/ | ||
419 | |||
420 | static void __inline__ sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets) | ||
421 | { | ||
422 | /* Purge all ways in a particular block of sets, specified by the base | ||
423 | set number and number of sets. Can handle wrap-around, if that's | ||
424 | needed. */ | ||
425 | |||
426 | int dummy_buffer_base_set; | ||
427 | unsigned long long eaddr, eaddr0, eaddr1; | ||
428 | int j; | ||
429 | int set_offset; | ||
430 | |||
431 | dummy_buffer_base_set = ((int)&dummy_alloco_area & cpu_data->dcache.idx_mask) >> cpu_data->dcache.entry_shift; | ||
432 | set_offset = sets_to_purge_base - dummy_buffer_base_set; | ||
433 | |||
434 | for (j=0; j<n_sets; j++, set_offset++) { | ||
435 | set_offset &= (cpu_data->dcache.sets - 1); | ||
436 | eaddr0 = (unsigned long long)dummy_alloco_area + (set_offset << cpu_data->dcache.entry_shift); | ||
437 | |||
438 | /* Do one alloco which hits the required set per cache way. For | ||
439 | write-back mode, this will purge the #ways resident lines. There's | ||
440 | little point unrolling this loop because the allocos stall more if | ||
441 | they're too close together. */ | ||
442 | eaddr1 = eaddr0 + cpu_data->dcache.way_ofs * cpu_data->dcache.ways; | ||
443 | for (eaddr=eaddr0; eaddr<eaddr1; eaddr+=cpu_data->dcache.way_ofs) { | ||
444 | asm __volatile__ ("alloco %0, 0" : : "r" (eaddr)); | ||
445 | asm __volatile__ ("synco"); /* TAKum03020 */ | ||
446 | } | ||
447 | |||
448 | eaddr1 = eaddr0 + cpu_data->dcache.way_ofs * cpu_data->dcache.ways; | ||
449 | for (eaddr=eaddr0; eaddr<eaddr1; eaddr+=cpu_data->dcache.way_ofs) { | ||
450 | /* Load from each address. Required because alloco is a NOP if | ||
451 | the cache is write-through. Write-through is a config option. */ | ||
452 | if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags))) | ||
453 | *(volatile unsigned char *)(int)eaddr; | ||
454 | } | ||
455 | } | ||
456 | |||
457 | /* Don't use OCBI to invalidate the lines. That costs cycles directly. | ||
458 | If the dummy block is just left resident, it will naturally get | ||
459 | evicted as required. */ | ||
460 | |||
461 | return; | ||
462 | } | ||
463 | |||
464 | /****************************************************************************/ | ||
465 | |||
466 | static void sh64_dcache_purge_all(void) | ||
467 | { | ||
468 | /* Purge the entire contents of the dcache. The most efficient way to | ||
469 | achieve this is to use alloco instructions on a region of unused | ||
470 | memory equal in size to the cache, thereby causing the current | ||
471 | contents to be discarded by natural eviction. The alternative, | ||
472 | namely reading every tag, setting up a mapping for the corresponding | ||
473 | page and doing an OCBP for the line, would be much more expensive. | ||
474 | */ | ||
475 | |||
476 | sh64_dcache_purge_sets(0, cpu_data->dcache.sets); | ||
477 | |||
478 | return; | ||
479 | |||
480 | } | ||
481 | |||
482 | /****************************************************************************/ | ||
483 | |||
484 | static void sh64_dcache_purge_kernel_range(unsigned long start, unsigned long end) | ||
485 | { | ||
486 | /* Purge the range of addresses [start,end] from the D-cache. The | ||
487 | addresses lie in the superpage mapping. There's no harm if we | ||
488 | overpurge at either end - just a small performance loss. */ | ||
489 | unsigned long long ullend, addr, aligned_start; | ||
490 | #if (NEFF == 32) | ||
491 | aligned_start = (unsigned long long)(signed long long)(signed long) start; | ||
492 | #else | ||
493 | #error "NEFF != 32" | ||
494 | #endif | ||
495 | aligned_start &= L1_CACHE_ALIGN_MASK; | ||
496 | addr = aligned_start; | ||
497 | #if (NEFF == 32) | ||
498 | ullend = (unsigned long long) (signed long long) (signed long) end; | ||
499 | #else | ||
500 | #error "NEFF != 32" | ||
501 | #endif | ||
502 | while (addr <= ullend) { | ||
503 | asm __volatile__ ("ocbp %0, 0" : : "r" (addr)); | ||
504 | addr += L1_CACHE_BYTES; | ||
505 | } | ||
506 | return; | ||
507 | } | ||
508 | |||
509 | /* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for | ||
510 | anything else in the kernel */ | ||
511 | #define MAGIC_PAGE0_START 0xffffffffec000000ULL | ||
512 | |||
513 | static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr, unsigned long eaddr) | ||
514 | { | ||
515 | /* Purge the physical page 'paddr' from the cache. It's known that any | ||
516 | cache lines requiring attention have the same page colour as the the | ||
517 | address 'eaddr'. | ||
518 | |||
519 | This relies on the fact that the D-cache matches on physical tags | ||
520 | when no virtual tag matches. So we create an alias for the original | ||
521 | page and purge through that. (Alternatively, we could have done | ||
522 | this by switching ASID to match the original mapping and purged | ||
523 | through that, but that involves ASID switching cost + probably a | ||
524 | TLBMISS + refill anyway.) | ||
525 | */ | ||
526 | |||
527 | unsigned long long magic_page_start; | ||
528 | unsigned long long magic_eaddr, magic_eaddr_end; | ||
529 | |||
530 | magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK); | ||
531 | |||
532 | /* As long as the kernel is not pre-emptible, this doesn't need to be | ||
533 | under cli/sti. */ | ||
534 | |||
535 | sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr); | ||
536 | |||
537 | magic_eaddr = magic_page_start; | ||
538 | magic_eaddr_end = magic_eaddr + PAGE_SIZE; | ||
539 | while (magic_eaddr < magic_eaddr_end) { | ||
540 | /* Little point in unrolling this loop - the OCBPs are blocking | ||
541 | and won't go any quicker (i.e. the loop overhead is parallel | ||
542 | to part of the OCBP execution.) */ | ||
543 | asm __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr)); | ||
544 | magic_eaddr += L1_CACHE_BYTES; | ||
545 | } | ||
546 | |||
547 | sh64_teardown_dtlb_cache_slot(); | ||
548 | } | ||
549 | |||
550 | /****************************************************************************/ | ||
551 | |||
552 | static void sh64_dcache_purge_phy_page(unsigned long paddr) | ||
553 | { | ||
554 | /* Pure a page given its physical start address, by creating a | ||
555 | temporary 1 page mapping and purging across that. Even if we know | ||
556 | the virtual address (& vma or mm) of the page, the method here is | ||
557 | more elegant because it avoids issues of coping with page faults on | ||
558 | the purge instructions (i.e. no special-case code required in the | ||
559 | critical path in the TLB miss handling). */ | ||
560 | |||
561 | unsigned long long eaddr_start, eaddr, eaddr_end; | ||
562 | int i; | ||
563 | |||
564 | /* As long as the kernel is not pre-emptible, this doesn't need to be | ||
565 | under cli/sti. */ | ||
566 | |||
567 | eaddr_start = MAGIC_PAGE0_START; | ||
568 | for (i=0; i < (1 << CACHE_OC_N_SYNBITS); i++) { | ||
569 | sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr); | ||
570 | |||
571 | eaddr = eaddr_start; | ||
572 | eaddr_end = eaddr + PAGE_SIZE; | ||
573 | while (eaddr < eaddr_end) { | ||
574 | asm __volatile__ ("ocbp %0, 0" : : "r" (eaddr)); | ||
575 | eaddr += L1_CACHE_BYTES; | ||
576 | } | ||
577 | |||
578 | sh64_teardown_dtlb_cache_slot(); | ||
579 | eaddr_start += PAGE_SIZE; | ||
580 | } | ||
581 | } | ||
582 | |||
583 | static void sh64_dcache_purge_user_pages(struct mm_struct *mm, | ||
584 | unsigned long addr, unsigned long end) | ||
585 | { | ||
586 | pgd_t *pgd; | ||
587 | pmd_t *pmd; | ||
588 | pte_t *pte; | ||
589 | pte_t entry; | ||
590 | spinlock_t *ptl; | ||
591 | unsigned long paddr; | ||
592 | |||
593 | if (!mm) | ||
594 | return; /* No way to find physical address of page */ | ||
595 | |||
596 | pgd = pgd_offset(mm, addr); | ||
597 | if (pgd_bad(*pgd)) | ||
598 | return; | ||
599 | |||
600 | pmd = pmd_offset(pgd, addr); | ||
601 | if (pmd_none(*pmd) || pmd_bad(*pmd)) | ||
602 | return; | ||
603 | |||
604 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | ||
605 | do { | ||
606 | entry = *pte; | ||
607 | if (pte_none(entry) || !pte_present(entry)) | ||
608 | continue; | ||
609 | paddr = pte_val(entry) & PAGE_MASK; | ||
610 | sh64_dcache_purge_coloured_phy_page(paddr, addr); | ||
611 | } while (pte++, addr += PAGE_SIZE, addr != end); | ||
612 | pte_unmap_unlock(pte - 1, ptl); | ||
613 | } | ||
614 | /****************************************************************************/ | ||
615 | |||
616 | static void sh64_dcache_purge_user_range(struct mm_struct *mm, | ||
617 | unsigned long start, unsigned long end) | ||
618 | { | ||
619 | /* There are at least 5 choices for the implementation of this, with | ||
620 | pros (+), cons(-), comments(*): | ||
621 | |||
622 | 1. ocbp each line in the range through the original user's ASID | ||
623 | + no lines spuriously evicted | ||
624 | - tlbmiss handling (must either handle faults on demand => extra | ||
625 | special-case code in tlbmiss critical path), or map the page in | ||
626 | advance (=> flush_tlb_range in advance to avoid multiple hits) | ||
627 | - ASID switching | ||
628 | - expensive for large ranges | ||
629 | |||
630 | 2. temporarily map each page in the range to a special effective | ||
631 | address and ocbp through the temporary mapping; relies on the | ||
632 | fact that SH-5 OCB* always do TLB lookup and match on ptags (they | ||
633 | never look at the etags) | ||
634 | + no spurious evictions | ||
635 | - expensive for large ranges | ||
636 | * surely cheaper than (1) | ||
637 | |||
638 | 3. walk all the lines in the cache, check the tags, if a match | ||
639 | occurs create a page mapping to ocbp the line through | ||
640 | + no spurious evictions | ||
641 | - tag inspection overhead | ||
642 | - (especially for small ranges) | ||
643 | - potential cost of setting up/tearing down page mapping for | ||
644 | every line that matches the range | ||
645 | * cost partly independent of range size | ||
646 | |||
647 | 4. walk all the lines in the cache, check the tags, if a match | ||
648 | occurs use 4 * alloco to purge the line (+3 other probably | ||
649 | innocent victims) by natural eviction | ||
650 | + no tlb mapping overheads | ||
651 | - spurious evictions | ||
652 | - tag inspection overhead | ||
653 | |||
654 | 5. implement like flush_cache_all | ||
655 | + no tag inspection overhead | ||
656 | - spurious evictions | ||
657 | - bad for small ranges | ||
658 | |||
659 | (1) can be ruled out as more expensive than (2). (2) appears best | ||
660 | for small ranges. The choice between (3), (4) and (5) for large | ||
661 | ranges and the range size for the large/small boundary need | ||
662 | benchmarking to determine. | ||
663 | |||
664 | For now use approach (2) for small ranges and (5) for large ones. | ||
665 | |||
666 | */ | ||
667 | |||
668 | int n_pages; | ||
669 | |||
670 | n_pages = ((end - start) >> PAGE_SHIFT); | ||
671 | if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) { | ||
672 | #if 1 | ||
673 | sh64_dcache_purge_all(); | ||
674 | #else | ||
675 | unsigned long long set, way; | ||
676 | unsigned long mm_asid = mm->context & MMU_CONTEXT_ASID_MASK; | ||
677 | for (set = 0; set < cpu_data->dcache.sets; set++) { | ||
678 | unsigned long long set_base_config_addr = CACHE_OC_ADDRESS_ARRAY + (set << cpu_data->dcache.set_shift); | ||
679 | for (way = 0; way < cpu_data->dcache.ways; way++) { | ||
680 | unsigned long long config_addr = set_base_config_addr + (way << cpu_data->dcache.way_step_shift); | ||
681 | unsigned long long tag0; | ||
682 | unsigned long line_valid; | ||
683 | |||
684 | asm __volatile__("getcfg %1, 0, %0" : "=r" (tag0) : "r" (config_addr)); | ||
685 | line_valid = tag0 & SH_CACHE_VALID; | ||
686 | if (line_valid) { | ||
687 | unsigned long cache_asid; | ||
688 | unsigned long epn; | ||
689 | |||
690 | cache_asid = (tag0 & cpu_data->dcache.asid_mask) >> cpu_data->dcache.asid_shift; | ||
691 | /* The next line needs some | ||
692 | explanation. The virtual tags | ||
693 | encode bits [31:13] of the virtual | ||
694 | address, bit [12] of the 'tag' being | ||
695 | implied by the cache set index. */ | ||
696 | epn = (tag0 & cpu_data->dcache.epn_mask) | ((set & 0x80) << cpu_data->dcache.entry_shift); | ||
697 | |||
698 | if ((cache_asid == mm_asid) && (start <= epn) && (epn < end)) { | ||
699 | /* TODO : could optimise this | ||
700 | call by batching multiple | ||
701 | adjacent sets together. */ | ||
702 | sh64_dcache_purge_sets(set, 1); | ||
703 | break; /* Don't waste time inspecting other ways for this set */ | ||
704 | } | ||
705 | } | ||
706 | } | ||
707 | } | ||
708 | #endif | ||
709 | } else { | ||
710 | /* Small range, covered by a single page table page */ | ||
711 | start &= PAGE_MASK; /* should already be so */ | ||
712 | end = PAGE_ALIGN(end); /* should already be so */ | ||
713 | sh64_dcache_purge_user_pages(mm, start, end); | ||
714 | } | ||
715 | return; | ||
716 | } | ||
717 | |||
718 | static void sh64_dcache_wback_current_user_range(unsigned long start, unsigned long end) | ||
719 | { | ||
720 | unsigned long long aligned_start; | ||
721 | unsigned long long ull_end; | ||
722 | unsigned long long addr; | ||
723 | |||
724 | ull_end = end; | ||
725 | |||
726 | /* Just wback over the range using the natural addresses. TLB miss | ||
727 | handling will be OK (TBC) : the range has just been written to by | ||
728 | the signal frame setup code, so the PTEs must exist. | ||
729 | |||
730 | Note, if we have CONFIG_PREEMPT and get preempted inside this loop, | ||
731 | it doesn't matter, even if the pid->ASID mapping changes whilst | ||
732 | we're away. In that case the cache will have been flushed when the | ||
733 | mapping was renewed. So the writebacks below will be nugatory (and | ||
734 | we'll doubtless have to fault the TLB entry/ies in again with the | ||
735 | new ASID), but it's a rare case. | ||
736 | */ | ||
737 | aligned_start = start & L1_CACHE_ALIGN_MASK; | ||
738 | addr = aligned_start; | ||
739 | while (addr < ull_end) { | ||
740 | asm __volatile__ ("ocbwb %0, 0" : : "r" (addr)); | ||
741 | addr += L1_CACHE_BYTES; | ||
742 | } | ||
743 | } | ||
744 | |||
745 | /****************************************************************************/ | ||
746 | |||
747 | /* These *MUST* lie in an area of virtual address space that's otherwise unused. */ | ||
748 | #define UNIQUE_EADDR_START 0xe0000000UL | ||
749 | #define UNIQUE_EADDR_END 0xe8000000UL | ||
750 | |||
751 | static unsigned long sh64_make_unique_eaddr(unsigned long user_eaddr, unsigned long paddr) | ||
752 | { | ||
753 | /* Given a physical address paddr, and a user virtual address | ||
754 | user_eaddr which will eventually be mapped to it, create a one-off | ||
755 | kernel-private eaddr mapped to the same paddr. This is used for | ||
756 | creating special destination pages for copy_user_page and | ||
757 | clear_user_page */ | ||
758 | |||
759 | static unsigned long current_pointer = UNIQUE_EADDR_START; | ||
760 | unsigned long coloured_pointer; | ||
761 | |||
762 | if (current_pointer == UNIQUE_EADDR_END) { | ||
763 | sh64_dcache_purge_all(); | ||
764 | current_pointer = UNIQUE_EADDR_START; | ||
765 | } | ||
766 | |||
767 | coloured_pointer = (current_pointer & ~CACHE_OC_SYN_MASK) | (user_eaddr & CACHE_OC_SYN_MASK); | ||
768 | sh64_setup_dtlb_cache_slot(coloured_pointer, get_asid(), paddr); | ||
769 | |||
770 | current_pointer += (PAGE_SIZE << CACHE_OC_N_SYNBITS); | ||
771 | |||
772 | return coloured_pointer; | ||
773 | } | ||
774 | |||
775 | /****************************************************************************/ | ||
776 | |||
777 | static void sh64_copy_user_page_coloured(void *to, void *from, unsigned long address) | ||
778 | { | ||
779 | void *coloured_to; | ||
780 | |||
781 | /* Discard any existing cache entries of the wrong colour. These are | ||
782 | present quite often, if the kernel has recently used the page | ||
783 | internally, then given it up, then it's been allocated to the user. | ||
784 | */ | ||
785 | sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long) to); | ||
786 | |||
787 | coloured_to = (void *) sh64_make_unique_eaddr(address, __pa(to)); | ||
788 | sh64_page_copy(from, coloured_to); | ||
789 | |||
790 | sh64_teardown_dtlb_cache_slot(); | ||
791 | } | ||
792 | |||
793 | static void sh64_clear_user_page_coloured(void *to, unsigned long address) | ||
794 | { | ||
795 | void *coloured_to; | ||
796 | |||
797 | /* Discard any existing kernel-originated lines of the wrong colour (as | ||
798 | above) */ | ||
799 | sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long) to); | ||
800 | |||
801 | coloured_to = (void *) sh64_make_unique_eaddr(address, __pa(to)); | ||
802 | sh64_page_clear(coloured_to); | ||
803 | |||
804 | sh64_teardown_dtlb_cache_slot(); | ||
805 | } | ||
806 | |||
807 | #endif /* !CONFIG_DCACHE_DISABLED */ | ||
808 | |||
809 | /****************************************************************************/ | ||
810 | |||
811 | /*########################################################################## | ||
812 | EXTERNALLY CALLABLE API. | ||
813 | ##########################################################################*/ | ||
814 | |||
815 | /* These functions are described in Documentation/cachetlb.txt. | ||
816 | Each one of these functions varies in behaviour depending on whether the | ||
817 | I-cache and/or D-cache are configured out. | ||
818 | |||
819 | Note that the Linux term 'flush' corresponds to what is termed 'purge' in | ||
820 | the sh/sh64 jargon for the D-cache, i.e. write back dirty data then | ||
821 | invalidate the cache lines, and 'invalidate' for the I-cache. | ||
822 | */ | ||
823 | |||
824 | #undef FLUSH_TRACE | ||
825 | |||
826 | void flush_cache_all(void) | ||
827 | { | ||
828 | /* Invalidate the entire contents of both caches, after writing back to | ||
829 | memory any dirty data from the D-cache. */ | ||
830 | sh64_dcache_purge_all(); | ||
831 | sh64_icache_inv_all(); | ||
832 | } | ||
833 | |||
834 | /****************************************************************************/ | ||
835 | |||
836 | void flush_cache_mm(struct mm_struct *mm) | ||
837 | { | ||
838 | /* Invalidate an entire user-address space from both caches, after | ||
839 | writing back dirty data (e.g. for shared mmap etc). */ | ||
840 | |||
841 | /* This could be coded selectively by inspecting all the tags then | ||
842 | doing 4*alloco on any set containing a match (as for | ||
843 | flush_cache_range), but fork/exit/execve (where this is called from) | ||
844 | are expensive anyway. */ | ||
845 | |||
846 | /* Have to do a purge here, despite the comments re I-cache below. | ||
847 | There could be odd-coloured dirty data associated with the mm still | ||
848 | in the cache - if this gets written out through natural eviction | ||
849 | after the kernel has reused the page there will be chaos. | ||
850 | */ | ||
851 | |||
852 | sh64_dcache_purge_all(); | ||
853 | |||
854 | /* The mm being torn down won't ever be active again, so any Icache | ||
855 | lines tagged with its ASID won't be visible for the rest of the | ||
856 | lifetime of this ASID cycle. Before the ASID gets reused, there | ||
857 | will be a flush_cache_all. Hence we don't need to touch the | ||
858 | I-cache. This is similar to the lack of action needed in | ||
859 | flush_tlb_mm - see fault.c. */ | ||
860 | } | ||
861 | |||
862 | /****************************************************************************/ | ||
863 | |||
864 | void flush_cache_range(struct vm_area_struct *vma, unsigned long start, | ||
865 | unsigned long end) | ||
866 | { | ||
867 | struct mm_struct *mm = vma->vm_mm; | ||
868 | |||
869 | /* Invalidate (from both caches) the range [start,end) of virtual | ||
870 | addresses from the user address space specified by mm, after writing | ||
871 | back any dirty data. | ||
872 | |||
873 | Note, 'end' is 1 byte beyond the end of the range to flush. */ | ||
874 | |||
875 | sh64_dcache_purge_user_range(mm, start, end); | ||
876 | sh64_icache_inv_user_page_range(mm, start, end); | ||
877 | } | ||
878 | |||
879 | /****************************************************************************/ | ||
880 | |||
881 | void flush_cache_page(struct vm_area_struct *vma, unsigned long eaddr, unsigned long pfn) | ||
882 | { | ||
883 | /* Invalidate any entries in either cache for the vma within the user | ||
884 | address space vma->vm_mm for the page starting at virtual address | ||
885 | 'eaddr'. This seems to be used primarily in breaking COW. Note, | ||
886 | the I-cache must be searched too in case the page in question is | ||
887 | both writable and being executed from (e.g. stack trampolines.) | ||
888 | |||
889 | Note, this is called with pte lock held. | ||
890 | */ | ||
891 | |||
892 | sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT); | ||
893 | |||
894 | if (vma->vm_flags & VM_EXEC) { | ||
895 | sh64_icache_inv_user_page(vma, eaddr); | ||
896 | } | ||
897 | } | ||
898 | |||
899 | /****************************************************************************/ | ||
900 | |||
901 | #ifndef CONFIG_DCACHE_DISABLED | ||
902 | |||
903 | void copy_user_page(void *to, void *from, unsigned long address, struct page *page) | ||
904 | { | ||
905 | /* 'from' and 'to' are kernel virtual addresses (within the superpage | ||
906 | mapping of the physical RAM). 'address' is the user virtual address | ||
907 | where the copy 'to' will be mapped after. This allows a custom | ||
908 | mapping to be used to ensure that the new copy is placed in the | ||
909 | right cache sets for the user to see it without having to bounce it | ||
910 | out via memory. Note however : the call to flush_page_to_ram in | ||
911 | (generic)/mm/memory.c:(break_cow) undoes all this good work in that one | ||
912 | very important case! | ||
913 | |||
914 | TBD : can we guarantee that on every call, any cache entries for | ||
915 | 'from' are in the same colour sets as 'address' also? i.e. is this | ||
916 | always used just to deal with COW? (I suspect not). */ | ||
917 | |||
918 | /* There are two possibilities here for when the page 'from' was last accessed: | ||
919 | * by the kernel : this is OK, no purge required. | ||
920 | * by the/a user (e.g. for break_COW) : need to purge. | ||
921 | |||
922 | If the potential user mapping at 'address' is the same colour as | ||
923 | 'from' there is no need to purge any cache lines from the 'from' | ||
924 | page mapped into cache sets of colour 'address'. (The copy will be | ||
925 | accessing the page through 'from'). | ||
926 | */ | ||
927 | |||
928 | if (((address ^ (unsigned long) from) & CACHE_OC_SYN_MASK) != 0) { | ||
929 | sh64_dcache_purge_coloured_phy_page(__pa(from), address); | ||
930 | } | ||
931 | |||
932 | if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) { | ||
933 | /* No synonym problem on destination */ | ||
934 | sh64_page_copy(from, to); | ||
935 | } else { | ||
936 | sh64_copy_user_page_coloured(to, from, address); | ||
937 | } | ||
938 | |||
939 | /* Note, don't need to flush 'from' page from the cache again - it's | ||
940 | done anyway by the generic code */ | ||
941 | } | ||
942 | |||
943 | void clear_user_page(void *to, unsigned long address, struct page *page) | ||
944 | { | ||
945 | /* 'to' is a kernel virtual address (within the superpage | ||
946 | mapping of the physical RAM). 'address' is the user virtual address | ||
947 | where the 'to' page will be mapped after. This allows a custom | ||
948 | mapping to be used to ensure that the new copy is placed in the | ||
949 | right cache sets for the user to see it without having to bounce it | ||
950 | out via memory. | ||
951 | */ | ||
952 | |||
953 | if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) { | ||
954 | /* No synonym problem on destination */ | ||
955 | sh64_page_clear(to); | ||
956 | } else { | ||
957 | sh64_clear_user_page_coloured(to, address); | ||
958 | } | ||
959 | } | ||
960 | |||
961 | #endif /* !CONFIG_DCACHE_DISABLED */ | ||
962 | |||
963 | /****************************************************************************/ | ||
964 | |||
965 | void flush_dcache_page(struct page *page) | ||
966 | { | ||
967 | sh64_dcache_purge_phy_page(page_to_phys(page)); | ||
968 | wmb(); | ||
969 | } | ||
970 | |||
971 | /****************************************************************************/ | ||
972 | |||
973 | void flush_icache_range(unsigned long start, unsigned long end) | ||
974 | { | ||
975 | /* Flush the range [start,end] of kernel virtual adddress space from | ||
976 | the I-cache. The corresponding range must be purged from the | ||
977 | D-cache also because the SH-5 doesn't have cache snooping between | ||
978 | the caches. The addresses will be visible through the superpage | ||
979 | mapping, therefore it's guaranteed that there no cache entries for | ||
980 | the range in cache sets of the wrong colour. | ||
981 | |||
982 | Primarily used for cohering the I-cache after a module has | ||
983 | been loaded. */ | ||
984 | |||
985 | /* We also make sure to purge the same range from the D-cache since | ||
986 | flush_page_to_ram() won't be doing this for us! */ | ||
987 | |||
988 | sh64_dcache_purge_kernel_range(start, end); | ||
989 | wmb(); | ||
990 | sh64_icache_inv_kernel_range(start, end); | ||
991 | } | ||
992 | |||
993 | /****************************************************************************/ | ||
994 | |||
995 | void flush_icache_user_range(struct vm_area_struct *vma, | ||
996 | struct page *page, unsigned long addr, int len) | ||
997 | { | ||
998 | /* Flush the range of user (defined by vma->vm_mm) address space | ||
999 | starting at 'addr' for 'len' bytes from the cache. The range does | ||
1000 | not straddle a page boundary, the unique physical page containing | ||
1001 | the range is 'page'. This seems to be used mainly for invalidating | ||
1002 | an address range following a poke into the program text through the | ||
1003 | ptrace() call from another process (e.g. for BRK instruction | ||
1004 | insertion). */ | ||
1005 | |||
1006 | sh64_dcache_purge_coloured_phy_page(page_to_phys(page), addr); | ||
1007 | mb(); | ||
1008 | |||
1009 | if (vma->vm_flags & VM_EXEC) { | ||
1010 | sh64_icache_inv_user_small_range(vma->vm_mm, addr, len); | ||
1011 | } | ||
1012 | } | ||
1013 | |||
1014 | /*########################################################################## | ||
1015 | ARCH/SH64 PRIVATE CALLABLE API. | ||
1016 | ##########################################################################*/ | ||
1017 | |||
1018 | void flush_cache_sigtramp(unsigned long start, unsigned long end) | ||
1019 | { | ||
1020 | /* For the address range [start,end), write back the data from the | ||
1021 | D-cache and invalidate the corresponding region of the I-cache for | ||
1022 | the current process. Used to flush signal trampolines on the stack | ||
1023 | to make them executable. */ | ||
1024 | |||
1025 | sh64_dcache_wback_current_user_range(start, end); | ||
1026 | wmb(); | ||
1027 | sh64_icache_inv_current_user_range(start, end); | ||
1028 | } | ||
1029 | |||