diff options
author | Chris Smith <chris.smith@st.com> | 2008-09-05 04:15:39 -0400 |
---|---|---|
committer | Paul Mundt <lethal@linux-sh.org> | 2008-09-07 21:35:05 -0400 |
commit | d39f5450146ff39f66cfde9d5184420627d0ac51 (patch) | |
tree | f71bf54b0e633b5a0cf4ca9a72809ba26c813bda /arch/sh/kernel/kprobes.c | |
parent | b6c20e4290a1ef92bcef5ec9dd8e5c7d036153aa (diff) |
sh: Add kprobes support.
Initial support for kprobes/kretprobes for 32-bit SH platforms.
[ General cleanup and some rework for the kretprobe hash lock. -- PFM ]
Signed-off-by: Chris Smith <chris.smith@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Diffstat (limited to 'arch/sh/kernel/kprobes.c')
-rw-r--r-- | arch/sh/kernel/kprobes.c | 568 |
1 files changed, 568 insertions, 0 deletions
diff --git a/arch/sh/kernel/kprobes.c b/arch/sh/kernel/kprobes.c new file mode 100644 index 000000000000..c4f4a0923eb9 --- /dev/null +++ b/arch/sh/kernel/kprobes.c | |||
@@ -0,0 +1,568 @@ | |||
1 | /* | ||
2 | * Kernel probes (kprobes) for SuperH | ||
3 | * | ||
4 | * Copyright (C) 2007 Chris Smith <chris.smith@st.com> | ||
5 | * Copyright (C) 2006 Lineo Solutions, Inc. | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General Public | ||
8 | * License. See the file "COPYING" in the main directory of this archive | ||
9 | * for more details. | ||
10 | */ | ||
11 | #include <linux/kprobes.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/ptrace.h> | ||
14 | #include <linux/preempt.h> | ||
15 | #include <linux/kdebug.h> | ||
16 | #include <asm/cacheflush.h> | ||
17 | #include <asm/uaccess.h> | ||
18 | |||
19 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | ||
20 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | ||
21 | |||
22 | static struct kprobe saved_current_opcode; | ||
23 | static struct kprobe saved_next_opcode; | ||
24 | static struct kprobe saved_next_opcode2; | ||
25 | |||
26 | #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b) | ||
27 | #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b) | ||
28 | #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000) | ||
29 | #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023) | ||
30 | #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000) | ||
31 | #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003) | ||
32 | |||
33 | #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00) | ||
34 | #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00) | ||
35 | |||
36 | #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00) | ||
37 | #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900) | ||
38 | |||
39 | #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b) | ||
40 | #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b) | ||
41 | |||
42 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | ||
43 | { | ||
44 | kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr); | ||
45 | |||
46 | if (OPCODE_RTE(opcode)) | ||
47 | return -EFAULT; /* Bad breakpoint */ | ||
48 | |||
49 | p->opcode = opcode; | ||
50 | |||
51 | return 0; | ||
52 | } | ||
53 | |||
54 | void __kprobes arch_copy_kprobe(struct kprobe *p) | ||
55 | { | ||
56 | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | ||
57 | p->opcode = *p->addr; | ||
58 | } | ||
59 | |||
60 | void __kprobes arch_arm_kprobe(struct kprobe *p) | ||
61 | { | ||
62 | *p->addr = BREAKPOINT_INSTRUCTION; | ||
63 | flush_icache_range((unsigned long)p->addr, | ||
64 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | ||
65 | } | ||
66 | |||
67 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | ||
68 | { | ||
69 | *p->addr = p->opcode; | ||
70 | flush_icache_range((unsigned long)p->addr, | ||
71 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | ||
72 | } | ||
73 | |||
74 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | ||
75 | { | ||
76 | if (*p->addr == BREAKPOINT_INSTRUCTION) | ||
77 | return 1; | ||
78 | |||
79 | return 0; | ||
80 | } | ||
81 | |||
82 | /** | ||
83 | * If an illegal slot instruction exception occurs for an address | ||
84 | * containing a kprobe, remove the probe. | ||
85 | * | ||
86 | * Returns 0 if the exception was handled successfully, 1 otherwise. | ||
87 | */ | ||
88 | int __kprobes kprobe_handle_illslot(unsigned long pc) | ||
89 | { | ||
90 | struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); | ||
91 | |||
92 | if (p != NULL) { | ||
93 | printk("Warning: removing kprobe from delay slot: 0x%.8x\n", | ||
94 | (unsigned int)pc + 2); | ||
95 | unregister_kprobe(p); | ||
96 | return 0; | ||
97 | } | ||
98 | |||
99 | return 1; | ||
100 | } | ||
101 | |||
102 | void __kprobes arch_remove_kprobe(struct kprobe *p) | ||
103 | { | ||
104 | if (saved_next_opcode.addr != 0x0) { | ||
105 | arch_disarm_kprobe(p); | ||
106 | arch_disarm_kprobe(&saved_next_opcode); | ||
107 | saved_next_opcode.addr = 0x0; | ||
108 | saved_next_opcode.opcode = 0x0; | ||
109 | |||
110 | if (saved_next_opcode2.addr != 0x0) { | ||
111 | arch_disarm_kprobe(&saved_next_opcode2); | ||
112 | saved_next_opcode2.addr = 0x0; | ||
113 | saved_next_opcode2.opcode = 0x0; | ||
114 | } | ||
115 | } | ||
116 | } | ||
117 | |||
118 | static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
119 | { | ||
120 | kcb->prev_kprobe.kp = kprobe_running(); | ||
121 | kcb->prev_kprobe.status = kcb->kprobe_status; | ||
122 | } | ||
123 | |||
124 | static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) | ||
125 | { | ||
126 | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | ||
127 | kcb->kprobe_status = kcb->prev_kprobe.status; | ||
128 | } | ||
129 | |||
130 | static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | ||
131 | struct kprobe_ctlblk *kcb) | ||
132 | { | ||
133 | __get_cpu_var(current_kprobe) = p; | ||
134 | } | ||
135 | |||
136 | /* | ||
137 | * Singlestep is implemented by disabling the current kprobe and setting one | ||
138 | * on the next instruction, following branches. Two probes are set if the | ||
139 | * branch is conditional. | ||
140 | */ | ||
141 | static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | ||
142 | { | ||
143 | kprobe_opcode_t *addr = NULL; | ||
144 | saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc); | ||
145 | addr = saved_current_opcode.addr; | ||
146 | |||
147 | if (p != NULL) { | ||
148 | arch_disarm_kprobe(p); | ||
149 | |||
150 | if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { | ||
151 | unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); | ||
152 | saved_next_opcode.addr = | ||
153 | (kprobe_opcode_t *) regs->regs[reg_nr]; | ||
154 | } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { | ||
155 | unsigned long disp = (p->opcode & 0x0FFF); | ||
156 | saved_next_opcode.addr = | ||
157 | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | ||
158 | |||
159 | } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { | ||
160 | unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); | ||
161 | saved_next_opcode.addr = | ||
162 | (kprobe_opcode_t *) (regs->pc + 4 + | ||
163 | regs->regs[reg_nr]); | ||
164 | |||
165 | } else if (OPCODE_RTS(p->opcode)) { | ||
166 | saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr; | ||
167 | |||
168 | } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { | ||
169 | unsigned long disp = (p->opcode & 0x00FF); | ||
170 | /* case 1 */ | ||
171 | saved_next_opcode.addr = p->addr + 1; | ||
172 | /* case 2 */ | ||
173 | saved_next_opcode2.addr = | ||
174 | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | ||
175 | saved_next_opcode2.opcode = *(saved_next_opcode2.addr); | ||
176 | arch_arm_kprobe(&saved_next_opcode2); | ||
177 | |||
178 | } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { | ||
179 | unsigned long disp = (p->opcode & 0x00FF); | ||
180 | /* case 1 */ | ||
181 | saved_next_opcode.addr = p->addr + 2; | ||
182 | /* case 2 */ | ||
183 | saved_next_opcode2.addr = | ||
184 | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | ||
185 | saved_next_opcode2.opcode = *(saved_next_opcode2.addr); | ||
186 | arch_arm_kprobe(&saved_next_opcode2); | ||
187 | |||
188 | } else { | ||
189 | saved_next_opcode.addr = p->addr + 1; | ||
190 | } | ||
191 | |||
192 | saved_next_opcode.opcode = *(saved_next_opcode.addr); | ||
193 | arch_arm_kprobe(&saved_next_opcode); | ||
194 | } | ||
195 | } | ||
196 | |||
197 | /* Called with kretprobe_lock held */ | ||
198 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | ||
199 | struct pt_regs *regs) | ||
200 | { | ||
201 | ri->ret_addr = (kprobe_opcode_t *) regs->pr; | ||
202 | |||
203 | /* Replace the return addr with trampoline addr */ | ||
204 | regs->pr = (unsigned long)kretprobe_trampoline; | ||
205 | } | ||
206 | |||
207 | static int __kprobes kprobe_handler(struct pt_regs *regs) | ||
208 | { | ||
209 | struct kprobe *p; | ||
210 | int ret = 0; | ||
211 | kprobe_opcode_t *addr = NULL; | ||
212 | struct kprobe_ctlblk *kcb; | ||
213 | |||
214 | /* | ||
215 | * We don't want to be preempted for the entire | ||
216 | * duration of kprobe processing | ||
217 | */ | ||
218 | preempt_disable(); | ||
219 | kcb = get_kprobe_ctlblk(); | ||
220 | |||
221 | addr = (kprobe_opcode_t *) (regs->pc); | ||
222 | |||
223 | /* Check we're not actually recursing */ | ||
224 | if (kprobe_running()) { | ||
225 | p = get_kprobe(addr); | ||
226 | if (p) { | ||
227 | if (kcb->kprobe_status == KPROBE_HIT_SS && | ||
228 | *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { | ||
229 | goto no_kprobe; | ||
230 | } | ||
231 | /* We have reentered the kprobe_handler(), since | ||
232 | * another probe was hit while within the handler. | ||
233 | * We here save the original kprobes variables and | ||
234 | * just single step on the instruction of the new probe | ||
235 | * without calling any user handlers. | ||
236 | */ | ||
237 | save_previous_kprobe(kcb); | ||
238 | set_current_kprobe(p, regs, kcb); | ||
239 | kprobes_inc_nmissed_count(p); | ||
240 | prepare_singlestep(p, regs); | ||
241 | kcb->kprobe_status = KPROBE_REENTER; | ||
242 | return 1; | ||
243 | } else { | ||
244 | p = __get_cpu_var(current_kprobe); | ||
245 | if (p->break_handler && p->break_handler(p, regs)) { | ||
246 | goto ss_probe; | ||
247 | } | ||
248 | } | ||
249 | goto no_kprobe; | ||
250 | } | ||
251 | |||
252 | p = get_kprobe(addr); | ||
253 | if (!p) { | ||
254 | /* Not one of ours: let kernel handle it */ | ||
255 | goto no_kprobe; | ||
256 | } | ||
257 | |||
258 | set_current_kprobe(p, regs, kcb); | ||
259 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | ||
260 | |||
261 | if (p->pre_handler && p->pre_handler(p, regs)) | ||
262 | /* handler has already set things up, so skip ss setup */ | ||
263 | return 1; | ||
264 | |||
265 | ss_probe: | ||
266 | prepare_singlestep(p, regs); | ||
267 | kcb->kprobe_status = KPROBE_HIT_SS; | ||
268 | return 1; | ||
269 | |||
270 | no_kprobe: | ||
271 | preempt_enable_no_resched(); | ||
272 | return ret; | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * For function-return probes, init_kprobes() establishes a probepoint | ||
277 | * here. When a retprobed function returns, this probe is hit and | ||
278 | * trampoline_probe_handler() runs, calling the kretprobe's handler. | ||
279 | */ | ||
280 | void kretprobe_trampoline_holder(void) | ||
281 | { | ||
282 | asm volatile ("kretprobe_trampoline: \n" "nop\n"); | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * Called when we hit the probe point at kretprobe_trampoline | ||
287 | */ | ||
288 | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | ||
289 | { | ||
290 | struct kretprobe_instance *ri = NULL; | ||
291 | struct hlist_head *head, empty_rp; | ||
292 | struct hlist_node *node, *tmp; | ||
293 | unsigned long flags, orig_ret_address = 0; | ||
294 | unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; | ||
295 | |||
296 | INIT_HLIST_HEAD(&empty_rp); | ||
297 | kretprobe_hash_lock(current, &head, &flags); | ||
298 | |||
299 | /* | ||
300 | * It is possible to have multiple instances associated with a given | ||
301 | * task either because an multiple functions in the call path | ||
302 | * have a return probe installed on them, and/or more then one return | ||
303 | * return probe was registered for a target function. | ||
304 | * | ||
305 | * We can handle this because: | ||
306 | * - instances are always inserted at the head of the list | ||
307 | * - when multiple return probes are registered for the same | ||
308 | * function, the first instance's ret_addr will point to the | ||
309 | * real return address, and all the rest will point to | ||
310 | * kretprobe_trampoline | ||
311 | */ | ||
312 | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | ||
313 | if (ri->task != current) | ||
314 | /* another task is sharing our hash bucket */ | ||
315 | continue; | ||
316 | |||
317 | if (ri->rp && ri->rp->handler) { | ||
318 | __get_cpu_var(current_kprobe) = &ri->rp->kp; | ||
319 | ri->rp->handler(ri, regs); | ||
320 | __get_cpu_var(current_kprobe) = NULL; | ||
321 | } | ||
322 | |||
323 | orig_ret_address = (unsigned long)ri->ret_addr; | ||
324 | recycle_rp_inst(ri, &empty_rp); | ||
325 | |||
326 | if (orig_ret_address != trampoline_address) | ||
327 | /* | ||
328 | * This is the real return address. Any other | ||
329 | * instances associated with this task are for | ||
330 | * other calls deeper on the call stack | ||
331 | */ | ||
332 | break; | ||
333 | } | ||
334 | |||
335 | kretprobe_assert(ri, orig_ret_address, trampoline_address); | ||
336 | |||
337 | regs->pc = orig_ret_address; | ||
338 | kretprobe_hash_unlock(current, &flags); | ||
339 | |||
340 | preempt_enable_no_resched(); | ||
341 | |||
342 | hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | ||
343 | hlist_del(&ri->hlist); | ||
344 | kfree(ri); | ||
345 | } | ||
346 | |||
347 | return orig_ret_address; | ||
348 | } | ||
349 | |||
350 | static inline int post_kprobe_handler(struct pt_regs *regs) | ||
351 | { | ||
352 | struct kprobe *cur = kprobe_running(); | ||
353 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
354 | kprobe_opcode_t *addr = NULL; | ||
355 | struct kprobe *p = NULL; | ||
356 | |||
357 | if (!cur) | ||
358 | return 0; | ||
359 | |||
360 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | ||
361 | kcb->kprobe_status = KPROBE_HIT_SSDONE; | ||
362 | cur->post_handler(cur, regs, 0); | ||
363 | } | ||
364 | |||
365 | if (saved_next_opcode.addr != 0x0) { | ||
366 | arch_disarm_kprobe(&saved_next_opcode); | ||
367 | saved_next_opcode.addr = 0x0; | ||
368 | saved_next_opcode.opcode = 0x0; | ||
369 | |||
370 | addr = saved_current_opcode.addr; | ||
371 | saved_current_opcode.addr = 0x0; | ||
372 | |||
373 | p = get_kprobe(addr); | ||
374 | arch_arm_kprobe(p); | ||
375 | |||
376 | if (saved_next_opcode2.addr != 0x0) { | ||
377 | arch_disarm_kprobe(&saved_next_opcode2); | ||
378 | saved_next_opcode2.addr = 0x0; | ||
379 | saved_next_opcode2.opcode = 0x0; | ||
380 | } | ||
381 | } | ||
382 | |||
383 | /*Restore back the original saved kprobes variables and continue. */ | ||
384 | if (kcb->kprobe_status == KPROBE_REENTER) { | ||
385 | restore_previous_kprobe(kcb); | ||
386 | goto out; | ||
387 | } | ||
388 | reset_current_kprobe(); | ||
389 | |||
390 | out: | ||
391 | preempt_enable_no_resched(); | ||
392 | |||
393 | return 1; | ||
394 | } | ||
395 | |||
396 | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) | ||
397 | { | ||
398 | struct kprobe *cur = kprobe_running(); | ||
399 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
400 | const struct exception_table_entry *entry; | ||
401 | |||
402 | switch (kcb->kprobe_status) { | ||
403 | case KPROBE_HIT_SS: | ||
404 | case KPROBE_REENTER: | ||
405 | /* | ||
406 | * We are here because the instruction being single | ||
407 | * stepped caused a page fault. We reset the current | ||
408 | * kprobe, point the pc back to the probe address | ||
409 | * and allow the page fault handler to continue as a | ||
410 | * normal page fault. | ||
411 | */ | ||
412 | regs->pc = (unsigned long)cur->addr; | ||
413 | if (kcb->kprobe_status == KPROBE_REENTER) | ||
414 | restore_previous_kprobe(kcb); | ||
415 | else | ||
416 | reset_current_kprobe(); | ||
417 | preempt_enable_no_resched(); | ||
418 | break; | ||
419 | case KPROBE_HIT_ACTIVE: | ||
420 | case KPROBE_HIT_SSDONE: | ||
421 | /* | ||
422 | * We increment the nmissed count for accounting, | ||
423 | * we can also use npre/npostfault count for accounting | ||
424 | * these specific fault cases. | ||
425 | */ | ||
426 | kprobes_inc_nmissed_count(cur); | ||
427 | |||
428 | /* | ||
429 | * We come here because instructions in the pre/post | ||
430 | * handler caused the page_fault, this could happen | ||
431 | * if handler tries to access user space by | ||
432 | * copy_from_user(), get_user() etc. Let the | ||
433 | * user-specified handler try to fix it first. | ||
434 | */ | ||
435 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | ||
436 | return 1; | ||
437 | |||
438 | /* | ||
439 | * In case the user-specified fault handler returned | ||
440 | * zero, try to fix up. | ||
441 | */ | ||
442 | if ((entry = search_exception_tables(regs->pc)) != NULL) { | ||
443 | regs->pc = entry->fixup; | ||
444 | return 1; | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * fixup_exception() could not handle it, | ||
449 | * Let do_page_fault() fix it. | ||
450 | */ | ||
451 | break; | ||
452 | default: | ||
453 | break; | ||
454 | } | ||
455 | return 0; | ||
456 | } | ||
457 | |||
458 | /* | ||
459 | * Wrapper routine to for handling exceptions. | ||
460 | */ | ||
461 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | ||
462 | unsigned long val, void *data) | ||
463 | { | ||
464 | struct kprobe *p = NULL; | ||
465 | struct die_args *args = (struct die_args *)data; | ||
466 | int ret = NOTIFY_DONE; | ||
467 | kprobe_opcode_t *addr = NULL; | ||
468 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
469 | |||
470 | addr = (kprobe_opcode_t *) (args->regs->pc); | ||
471 | if (val == DIE_TRAP) { | ||
472 | if (!kprobe_running()) { | ||
473 | if (kprobe_handler(args->regs)) { | ||
474 | ret = NOTIFY_STOP; | ||
475 | } else { | ||
476 | /* Not a kprobe trap */ | ||
477 | force_sig(SIGTRAP, current); | ||
478 | } | ||
479 | } else { | ||
480 | p = get_kprobe(addr); | ||
481 | if ((kcb->kprobe_status == KPROBE_HIT_SS) || | ||
482 | (kcb->kprobe_status == KPROBE_REENTER)) { | ||
483 | if (post_kprobe_handler(args->regs)) | ||
484 | ret = NOTIFY_STOP; | ||
485 | } else { | ||
486 | if (kprobe_handler(args->regs)) { | ||
487 | ret = NOTIFY_STOP; | ||
488 | } else { | ||
489 | p = __get_cpu_var(current_kprobe); | ||
490 | if (p->break_handler | ||
491 | && p->break_handler(p, args->regs)) | ||
492 | ret = NOTIFY_STOP; | ||
493 | } | ||
494 | } | ||
495 | } | ||
496 | } | ||
497 | |||
498 | return ret; | ||
499 | } | ||
500 | |||
501 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
502 | { | ||
503 | struct jprobe *jp = container_of(p, struct jprobe, kp); | ||
504 | unsigned long addr; | ||
505 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
506 | |||
507 | kcb->jprobe_saved_regs = *regs; | ||
508 | kcb->jprobe_saved_r15 = regs->regs[15]; | ||
509 | addr = kcb->jprobe_saved_r15; | ||
510 | |||
511 | /* | ||
512 | * TBD: As Linus pointed out, gcc assumes that the callee | ||
513 | * owns the argument space and could overwrite it, e.g. | ||
514 | * tailcall optimization. So, to be absolutely safe | ||
515 | * we also save and restore enough stack bytes to cover | ||
516 | * the argument area. | ||
517 | */ | ||
518 | memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, | ||
519 | MIN_STACK_SIZE(addr)); | ||
520 | |||
521 | regs->pc = (unsigned long)(jp->entry); | ||
522 | |||
523 | return 1; | ||
524 | } | ||
525 | |||
526 | void __kprobes jprobe_return(void) | ||
527 | { | ||
528 | __asm("trapa #-1\n\t" "jprobe_return_end:\n\t" "nop\n\t"); | ||
529 | |||
530 | } | ||
531 | |||
532 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | ||
533 | { | ||
534 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | ||
535 | u8 *addr = (u8 *) regs->pc; | ||
536 | unsigned long stack_addr = kcb->jprobe_saved_r15; | ||
537 | |||
538 | if ((addr >= (u8 *) jprobe_return) | ||
539 | && (addr <= (u8 *) jprobe_return_end)) { | ||
540 | *regs = kcb->jprobe_saved_regs; | ||
541 | |||
542 | memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, | ||
543 | MIN_STACK_SIZE(stack_addr)); | ||
544 | |||
545 | kcb->kprobe_status = KPROBE_HIT_SS; | ||
546 | return 1; | ||
547 | } | ||
548 | return 0; | ||
549 | } | ||
550 | |||
551 | static struct kprobe trampoline_p = { | ||
552 | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, | ||
553 | .pre_handler = trampoline_probe_handler | ||
554 | }; | ||
555 | |||
556 | int __init arch_init_kprobes(void) | ||
557 | { | ||
558 | saved_next_opcode.addr = 0x0; | ||
559 | saved_next_opcode.opcode = 0x0; | ||
560 | |||
561 | saved_current_opcode.addr = 0x0; | ||
562 | saved_current_opcode.opcode = 0x0; | ||
563 | |||
564 | saved_next_opcode2.addr = 0x0; | ||
565 | saved_next_opcode2.opcode = 0x0; | ||
566 | |||
567 | return register_kprobe(&trampoline_p); | ||
568 | } | ||