diff options
author | Paul Mundt <lethal@linux-sh.org> | 2008-12-11 04:46:46 -0500 |
---|---|---|
committer | Paul Mundt <lethal@linux-sh.org> | 2008-12-22 04:44:04 -0500 |
commit | ab6e570ba33dbee18c2520d386e0f367a9b573c3 (patch) | |
tree | 7594192d10726e72bf7744bb83bdc0c9a30891d1 /arch/sh/kernel/kgdb.c | |
parent | d7b01f78a3ae6a3cc21a16a1a3d377adc2227537 (diff) |
sh: Generic kgdb stub support.
This migrates from the old bitrotted kgdb stub implementation and moves
to the generic stub. In the process support for SH-2/SH-2A is also added,
which the old stub never provided.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Diffstat (limited to 'arch/sh/kernel/kgdb.c')
-rw-r--r-- | arch/sh/kernel/kgdb.c | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/arch/sh/kernel/kgdb.c b/arch/sh/kernel/kgdb.c new file mode 100644 index 000000000000..7c747e7d71b8 --- /dev/null +++ b/arch/sh/kernel/kgdb.c | |||
@@ -0,0 +1,285 @@ | |||
1 | /* | ||
2 | * SuperH KGDB support | ||
3 | * | ||
4 | * Copyright (C) 2008 Paul Mundt | ||
5 | * | ||
6 | * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel. | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General Public | ||
9 | * License. See the file "COPYING" in the main directory of this archive | ||
10 | * for more details. | ||
11 | */ | ||
12 | #include <linux/kgdb.h> | ||
13 | #include <linux/kdebug.h> | ||
14 | #include <linux/irq.h> | ||
15 | #include <linux/io.h> | ||
16 | #include <asm/cacheflush.h> | ||
17 | |||
18 | char in_nmi = 0; /* Set during NMI to prevent re-entry */ | ||
19 | |||
20 | /* Macros for single step instruction identification */ | ||
21 | #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900) | ||
22 | #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00) | ||
23 | #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \ | ||
24 | (((op) & 0x7f ) << 1)) | ||
25 | #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00) | ||
26 | #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00) | ||
27 | #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000) | ||
28 | #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ | ||
29 | (((op) & 0x7ff) << 1)) | ||
30 | #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023) | ||
31 | #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8) | ||
32 | #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000) | ||
33 | #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ | ||
34 | (((op) & 0x7ff) << 1)) | ||
35 | #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003) | ||
36 | #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf) | ||
37 | #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b) | ||
38 | #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf) | ||
39 | #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b) | ||
40 | #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf) | ||
41 | #define OPCODE_RTS(op) ((op) == 0xb) | ||
42 | #define OPCODE_RTE(op) ((op) == 0x2b) | ||
43 | |||
44 | #define SR_T_BIT_MASK 0x1 | ||
45 | #define STEP_OPCODE 0xc33d | ||
46 | |||
47 | /* Calculate the new address for after a step */ | ||
48 | static short *get_step_address(struct pt_regs *linux_regs) | ||
49 | { | ||
50 | opcode_t op = __raw_readw(linux_regs->pc); | ||
51 | long addr; | ||
52 | |||
53 | /* BT */ | ||
54 | if (OPCODE_BT(op)) { | ||
55 | if (linux_regs->sr & SR_T_BIT_MASK) | ||
56 | addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); | ||
57 | else | ||
58 | addr = linux_regs->pc + 2; | ||
59 | } | ||
60 | |||
61 | /* BTS */ | ||
62 | else if (OPCODE_BTS(op)) { | ||
63 | if (linux_regs->sr & SR_T_BIT_MASK) | ||
64 | addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); | ||
65 | else | ||
66 | addr = linux_regs->pc + 4; /* Not in delay slot */ | ||
67 | } | ||
68 | |||
69 | /* BF */ | ||
70 | else if (OPCODE_BF(op)) { | ||
71 | if (!(linux_regs->sr & SR_T_BIT_MASK)) | ||
72 | addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); | ||
73 | else | ||
74 | addr = linux_regs->pc + 2; | ||
75 | } | ||
76 | |||
77 | /* BFS */ | ||
78 | else if (OPCODE_BFS(op)) { | ||
79 | if (!(linux_regs->sr & SR_T_BIT_MASK)) | ||
80 | addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); | ||
81 | else | ||
82 | addr = linux_regs->pc + 4; /* Not in delay slot */ | ||
83 | } | ||
84 | |||
85 | /* BRA */ | ||
86 | else if (OPCODE_BRA(op)) | ||
87 | addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op); | ||
88 | |||
89 | /* BRAF */ | ||
90 | else if (OPCODE_BRAF(op)) | ||
91 | addr = linux_regs->pc + 4 | ||
92 | + linux_regs->regs[OPCODE_BRAF_REG(op)]; | ||
93 | |||
94 | /* BSR */ | ||
95 | else if (OPCODE_BSR(op)) | ||
96 | addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op); | ||
97 | |||
98 | /* BSRF */ | ||
99 | else if (OPCODE_BSRF(op)) | ||
100 | addr = linux_regs->pc + 4 | ||
101 | + linux_regs->regs[OPCODE_BSRF_REG(op)]; | ||
102 | |||
103 | /* JMP */ | ||
104 | else if (OPCODE_JMP(op)) | ||
105 | addr = linux_regs->regs[OPCODE_JMP_REG(op)]; | ||
106 | |||
107 | /* JSR */ | ||
108 | else if (OPCODE_JSR(op)) | ||
109 | addr = linux_regs->regs[OPCODE_JSR_REG(op)]; | ||
110 | |||
111 | /* RTS */ | ||
112 | else if (OPCODE_RTS(op)) | ||
113 | addr = linux_regs->pr; | ||
114 | |||
115 | /* RTE */ | ||
116 | else if (OPCODE_RTE(op)) | ||
117 | addr = linux_regs->regs[15]; | ||
118 | |||
119 | /* Other */ | ||
120 | else | ||
121 | addr = linux_regs->pc + instruction_size(op); | ||
122 | |||
123 | flush_icache_range(addr, addr + instruction_size(op)); | ||
124 | return (short *)addr; | ||
125 | } | ||
126 | |||
127 | /* | ||
128 | * Replace the instruction immediately after the current instruction | ||
129 | * (i.e. next in the expected flow of control) with a trap instruction, | ||
130 | * so that returning will cause only a single instruction to be executed. | ||
131 | * Note that this model is slightly broken for instructions with delay | ||
132 | * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the | ||
133 | * instruction in the delay slot will be executed. | ||
134 | */ | ||
135 | |||
136 | static unsigned long stepped_address; | ||
137 | static opcode_t stepped_opcode; | ||
138 | |||
139 | static void do_single_step(struct pt_regs *linux_regs) | ||
140 | { | ||
141 | /* Determine where the target instruction will send us to */ | ||
142 | unsigned short *addr = get_step_address(linux_regs); | ||
143 | |||
144 | stepped_address = (int)addr; | ||
145 | |||
146 | /* Replace it */ | ||
147 | stepped_opcode = __raw_readw((long)addr); | ||
148 | *addr = STEP_OPCODE; | ||
149 | |||
150 | /* Flush and return */ | ||
151 | flush_icache_range((long)addr, (long)addr + | ||
152 | instruction_size(stepped_opcode)); | ||
153 | } | ||
154 | |||
155 | /* Undo a single step */ | ||
156 | static void undo_single_step(struct pt_regs *linux_regs) | ||
157 | { | ||
158 | /* If we have stepped, put back the old instruction */ | ||
159 | /* Use stepped_address in case we stopped elsewhere */ | ||
160 | if (stepped_opcode != 0) { | ||
161 | __raw_writew(stepped_opcode, stepped_address); | ||
162 | flush_icache_range(stepped_address, stepped_address + 2); | ||
163 | } | ||
164 | |||
165 | stepped_opcode = 0; | ||
166 | } | ||
167 | |||
168 | void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) | ||
169 | { | ||
170 | int i; | ||
171 | |||
172 | for (i = 0; i < 16; i++) | ||
173 | gdb_regs[GDB_R0 + i] = regs->regs[i]; | ||
174 | |||
175 | gdb_regs[GDB_PC] = regs->pc; | ||
176 | gdb_regs[GDB_PR] = regs->pr; | ||
177 | gdb_regs[GDB_SR] = regs->sr; | ||
178 | gdb_regs[GDB_GBR] = regs->gbr; | ||
179 | gdb_regs[GDB_MACH] = regs->mach; | ||
180 | gdb_regs[GDB_MACL] = regs->macl; | ||
181 | |||
182 | __asm__ __volatile__ ("stc vbr, %0" : "=r" (gdb_regs[GDB_VBR])); | ||
183 | } | ||
184 | |||
185 | void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) | ||
186 | { | ||
187 | int i; | ||
188 | |||
189 | for (i = 0; i < 16; i++) | ||
190 | regs->regs[GDB_R0 + i] = gdb_regs[GDB_R0 + i]; | ||
191 | |||
192 | regs->pc = gdb_regs[GDB_PC]; | ||
193 | regs->pr = gdb_regs[GDB_PR]; | ||
194 | regs->sr = gdb_regs[GDB_SR]; | ||
195 | regs->gbr = gdb_regs[GDB_GBR]; | ||
196 | regs->mach = gdb_regs[GDB_MACH]; | ||
197 | regs->macl = gdb_regs[GDB_MACL]; | ||
198 | |||
199 | __asm__ __volatile__ ("ldc %0, vbr" : : "r" (gdb_regs[GDB_VBR])); | ||
200 | } | ||
201 | |||
202 | void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) | ||
203 | { | ||
204 | gdb_regs[GDB_R15] = p->thread.sp; | ||
205 | gdb_regs[GDB_PC] = p->thread.pc; | ||
206 | } | ||
207 | |||
208 | int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, | ||
209 | char *remcomInBuffer, char *remcomOutBuffer, | ||
210 | struct pt_regs *linux_regs) | ||
211 | { | ||
212 | unsigned long addr; | ||
213 | char *ptr; | ||
214 | |||
215 | /* Undo any stepping we may have done */ | ||
216 | undo_single_step(linux_regs); | ||
217 | |||
218 | switch (remcomInBuffer[0]) { | ||
219 | case 'c': | ||
220 | case 's': | ||
221 | /* try to read optional parameter, pc unchanged if no parm */ | ||
222 | ptr = &remcomInBuffer[1]; | ||
223 | if (kgdb_hex2long(&ptr, &addr)) | ||
224 | linux_regs->pc = addr; | ||
225 | case 'D': | ||
226 | case 'k': | ||
227 | atomic_set(&kgdb_cpu_doing_single_step, -1); | ||
228 | |||
229 | if (remcomInBuffer[0] == 's') { | ||
230 | do_single_step(linux_regs); | ||
231 | kgdb_single_step = 1; | ||
232 | |||
233 | atomic_set(&kgdb_cpu_doing_single_step, | ||
234 | raw_smp_processor_id()); | ||
235 | } | ||
236 | |||
237 | return 0; | ||
238 | } | ||
239 | |||
240 | /* this means that we do not want to exit from the handler: */ | ||
241 | return -1; | ||
242 | } | ||
243 | |||
244 | /* | ||
245 | * The primary entry points for the kgdb debug trap table entries. | ||
246 | */ | ||
247 | BUILD_TRAP_HANDLER(singlestep) | ||
248 | { | ||
249 | unsigned long flags; | ||
250 | TRAP_HANDLER_DECL; | ||
251 | |||
252 | local_irq_save(flags); | ||
253 | regs->pc -= instruction_size(__raw_readw(regs->pc - 4)); | ||
254 | kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs); | ||
255 | local_irq_restore(flags); | ||
256 | } | ||
257 | |||
258 | |||
259 | BUILD_TRAP_HANDLER(breakpoint) | ||
260 | { | ||
261 | unsigned long flags; | ||
262 | TRAP_HANDLER_DECL; | ||
263 | |||
264 | local_irq_save(flags); | ||
265 | kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs); | ||
266 | local_irq_restore(flags); | ||
267 | } | ||
268 | |||
269 | int kgdb_arch_init(void) | ||
270 | { | ||
271 | return 0; | ||
272 | } | ||
273 | |||
274 | void kgdb_arch_exit(void) | ||
275 | { | ||
276 | } | ||
277 | |||
278 | struct kgdb_arch arch_kgdb_ops = { | ||
279 | /* Breakpoint instruction: trapa #0x3c */ | ||
280 | #ifdef CONFIG_CPU_LITTLE_ENDIAN | ||
281 | .gdb_bpt_instr = { 0x3c, 0xc3 }, | ||
282 | #else | ||
283 | .gdb_bpt_instr = { 0xc3, 0x3c }, | ||
284 | #endif | ||
285 | }; | ||