diff options
author | Stephen Rothwell <sfr@canb.auug.org.au> | 2005-09-27 04:44:42 -0400 |
---|---|---|
committer | Stephen Rothwell <sfr@canb.auug.org.au> | 2005-09-27 04:44:42 -0400 |
commit | c8b84976f86adcd10c221d398e1d0be2b778f3c8 (patch) | |
tree | 54924b199234c014ad6d70269e24c59041a69432 /arch/ppc64 | |
parent | 2960eb661a82131b9492cdd1b6500a5f74ccc394 (diff) |
powerpc: move iSeries_setup.[ch] and mf.c into platforms/iseries
iSeries_setup.c becomes setup.c
iSeries_setup.h becomes setup.h
mf.c retains its name
Also moved iSeries_[gs]et_rtc_time and iSeries_get_boot_time into
mf.c since they are just small wrappers around mf_ functions.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Diffstat (limited to 'arch/ppc64')
-rw-r--r-- | arch/ppc64/kernel/Makefile | 4 | ||||
-rw-r--r-- | arch/ppc64/kernel/iSeries_setup.c | 1007 | ||||
-rw-r--r-- | arch/ppc64/kernel/iSeries_setup.h | 26 | ||||
-rw-r--r-- | arch/ppc64/kernel/mf.c | 1281 | ||||
-rw-r--r-- | arch/ppc64/kernel/rtc.c | 37 |
5 files changed, 2 insertions, 2353 deletions
diff --git a/arch/ppc64/kernel/Makefile b/arch/ppc64/kernel/Makefile index 4d95f0d0137a..b558cc0f4d9e 100644 --- a/arch/ppc64/kernel/Makefile +++ b/arch/ppc64/kernel/Makefile | |||
@@ -22,8 +22,8 @@ pci-obj-$(CONFIG_PPC_MULTIPLATFORM) += pci_dn.o pci_direct_iommu.o | |||
22 | 22 | ||
23 | obj-$(CONFIG_PCI) += pci.o pci_iommu.o iomap.o $(pci-obj-y) | 23 | obj-$(CONFIG_PCI) += pci.o pci_iommu.o iomap.o $(pci-obj-y) |
24 | 24 | ||
25 | obj-$(CONFIG_PPC_ISERIES) += iSeries_setup.o ItLpQueue.o hvCall.o \ | 25 | obj-$(CONFIG_PPC_ISERIES) += ItLpQueue.o hvCall.o \ |
26 | mf.o HvLpEvent.o iSeries_proc.o iSeries_htab.o \ | 26 | HvLpEvent.o iSeries_proc.o iSeries_htab.o \ |
27 | iSeries_iommu.o | 27 | iSeries_iommu.o |
28 | 28 | ||
29 | obj-$(CONFIG_PPC_MULTIPLATFORM) += nvram.o i8259.o prom_init.o | 29 | obj-$(CONFIG_PPC_MULTIPLATFORM) += nvram.o i8259.o prom_init.o |
diff --git a/arch/ppc64/kernel/iSeries_setup.c b/arch/ppc64/kernel/iSeries_setup.c deleted file mode 100644 index 9daf734adbd5..000000000000 --- a/arch/ppc64/kernel/iSeries_setup.c +++ /dev/null | |||
@@ -1,1007 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> | ||
3 | * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu> | ||
4 | * | ||
5 | * Module name: iSeries_setup.c | ||
6 | * | ||
7 | * Description: | ||
8 | * Architecture- / platform-specific boot-time initialization code for | ||
9 | * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and | ||
10 | * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek | ||
11 | * <dan@net4x.com>. | ||
12 | * | ||
13 | * This program is free software; you can redistribute it and/or | ||
14 | * modify it under the terms of the GNU General Public License | ||
15 | * as published by the Free Software Foundation; either version | ||
16 | * 2 of the License, or (at your option) any later version. | ||
17 | */ | ||
18 | |||
19 | #undef DEBUG | ||
20 | |||
21 | #include <linux/config.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/threads.h> | ||
24 | #include <linux/smp.h> | ||
25 | #include <linux/param.h> | ||
26 | #include <linux/string.h> | ||
27 | #include <linux/initrd.h> | ||
28 | #include <linux/seq_file.h> | ||
29 | #include <linux/kdev_t.h> | ||
30 | #include <linux/major.h> | ||
31 | #include <linux/root_dev.h> | ||
32 | |||
33 | #include <asm/processor.h> | ||
34 | #include <asm/machdep.h> | ||
35 | #include <asm/page.h> | ||
36 | #include <asm/mmu.h> | ||
37 | #include <asm/pgtable.h> | ||
38 | #include <asm/mmu_context.h> | ||
39 | #include <asm/cputable.h> | ||
40 | #include <asm/sections.h> | ||
41 | #include <asm/iommu.h> | ||
42 | #include <asm/firmware.h> | ||
43 | |||
44 | #include <asm/time.h> | ||
45 | #include "iSeries_setup.h" | ||
46 | #include <asm/naca.h> | ||
47 | #include <asm/paca.h> | ||
48 | #include <asm/cache.h> | ||
49 | #include <asm/sections.h> | ||
50 | #include <asm/abs_addr.h> | ||
51 | #include <asm/iSeries/HvCallHpt.h> | ||
52 | #include <asm/iSeries/HvLpConfig.h> | ||
53 | #include <asm/iSeries/HvCallEvent.h> | ||
54 | #include <asm/iSeries/HvCallSm.h> | ||
55 | #include <asm/iSeries/HvCallXm.h> | ||
56 | #include <asm/iSeries/ItLpQueue.h> | ||
57 | #include <asm/iSeries/IoHriMainStore.h> | ||
58 | #include <asm/iSeries/mf.h> | ||
59 | #include <asm/iSeries/HvLpEvent.h> | ||
60 | #include <asm/iSeries/iSeries_irq.h> | ||
61 | #include <asm/iSeries/IoHriProcessorVpd.h> | ||
62 | #include <asm/iSeries/ItVpdAreas.h> | ||
63 | #include <asm/iSeries/LparMap.h> | ||
64 | |||
65 | extern void hvlog(char *fmt, ...); | ||
66 | |||
67 | #ifdef DEBUG | ||
68 | #define DBG(fmt...) hvlog(fmt) | ||
69 | #else | ||
70 | #define DBG(fmt...) | ||
71 | #endif | ||
72 | |||
73 | /* Function Prototypes */ | ||
74 | extern void ppcdbg_initialize(void); | ||
75 | |||
76 | static void build_iSeries_Memory_Map(void); | ||
77 | static int iseries_shared_idle(void); | ||
78 | static int iseries_dedicated_idle(void); | ||
79 | #ifdef CONFIG_PCI | ||
80 | extern void iSeries_pci_final_fixup(void); | ||
81 | #else | ||
82 | static void iSeries_pci_final_fixup(void) { } | ||
83 | #endif | ||
84 | |||
85 | /* Global Variables */ | ||
86 | int piranha_simulator; | ||
87 | |||
88 | extern int rd_size; /* Defined in drivers/block/rd.c */ | ||
89 | extern unsigned long klimit; | ||
90 | extern unsigned long embedded_sysmap_start; | ||
91 | extern unsigned long embedded_sysmap_end; | ||
92 | |||
93 | extern unsigned long iSeries_recal_tb; | ||
94 | extern unsigned long iSeries_recal_titan; | ||
95 | |||
96 | static int mf_initialized; | ||
97 | |||
98 | struct MemoryBlock { | ||
99 | unsigned long absStart; | ||
100 | unsigned long absEnd; | ||
101 | unsigned long logicalStart; | ||
102 | unsigned long logicalEnd; | ||
103 | }; | ||
104 | |||
105 | /* | ||
106 | * Process the main store vpd to determine where the holes in memory are | ||
107 | * and return the number of physical blocks and fill in the array of | ||
108 | * block data. | ||
109 | */ | ||
110 | static unsigned long iSeries_process_Condor_mainstore_vpd( | ||
111 | struct MemoryBlock *mb_array, unsigned long max_entries) | ||
112 | { | ||
113 | unsigned long holeFirstChunk, holeSizeChunks; | ||
114 | unsigned long numMemoryBlocks = 1; | ||
115 | struct IoHriMainStoreSegment4 *msVpd = | ||
116 | (struct IoHriMainStoreSegment4 *)xMsVpd; | ||
117 | unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr; | ||
118 | unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr; | ||
119 | unsigned long holeSize = holeEnd - holeStart; | ||
120 | |||
121 | printk("Mainstore_VPD: Condor\n"); | ||
122 | /* | ||
123 | * Determine if absolute memory has any | ||
124 | * holes so that we can interpret the | ||
125 | * access map we get back from the hypervisor | ||
126 | * correctly. | ||
127 | */ | ||
128 | mb_array[0].logicalStart = 0; | ||
129 | mb_array[0].logicalEnd = 0x100000000; | ||
130 | mb_array[0].absStart = 0; | ||
131 | mb_array[0].absEnd = 0x100000000; | ||
132 | |||
133 | if (holeSize) { | ||
134 | numMemoryBlocks = 2; | ||
135 | holeStart = holeStart & 0x000fffffffffffff; | ||
136 | holeStart = addr_to_chunk(holeStart); | ||
137 | holeFirstChunk = holeStart; | ||
138 | holeSize = addr_to_chunk(holeSize); | ||
139 | holeSizeChunks = holeSize; | ||
140 | printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n", | ||
141 | holeFirstChunk, holeSizeChunks ); | ||
142 | mb_array[0].logicalEnd = holeFirstChunk; | ||
143 | mb_array[0].absEnd = holeFirstChunk; | ||
144 | mb_array[1].logicalStart = holeFirstChunk; | ||
145 | mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks; | ||
146 | mb_array[1].absStart = holeFirstChunk + holeSizeChunks; | ||
147 | mb_array[1].absEnd = 0x100000000; | ||
148 | } | ||
149 | return numMemoryBlocks; | ||
150 | } | ||
151 | |||
152 | #define MaxSegmentAreas 32 | ||
153 | #define MaxSegmentAdrRangeBlocks 128 | ||
154 | #define MaxAreaRangeBlocks 4 | ||
155 | |||
156 | static unsigned long iSeries_process_Regatta_mainstore_vpd( | ||
157 | struct MemoryBlock *mb_array, unsigned long max_entries) | ||
158 | { | ||
159 | struct IoHriMainStoreSegment5 *msVpdP = | ||
160 | (struct IoHriMainStoreSegment5 *)xMsVpd; | ||
161 | unsigned long numSegmentBlocks = 0; | ||
162 | u32 existsBits = msVpdP->msAreaExists; | ||
163 | unsigned long area_num; | ||
164 | |||
165 | printk("Mainstore_VPD: Regatta\n"); | ||
166 | |||
167 | for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) { | ||
168 | unsigned long numAreaBlocks; | ||
169 | struct IoHriMainStoreArea4 *currentArea; | ||
170 | |||
171 | if (existsBits & 0x80000000) { | ||
172 | unsigned long block_num; | ||
173 | |||
174 | currentArea = &msVpdP->msAreaArray[area_num]; | ||
175 | numAreaBlocks = currentArea->numAdrRangeBlocks; | ||
176 | printk("ms_vpd: processing area %2ld blocks=%ld", | ||
177 | area_num, numAreaBlocks); | ||
178 | for (block_num = 0; block_num < numAreaBlocks; | ||
179 | ++block_num ) { | ||
180 | /* Process an address range block */ | ||
181 | struct MemoryBlock tempBlock; | ||
182 | unsigned long i; | ||
183 | |||
184 | tempBlock.absStart = | ||
185 | (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart; | ||
186 | tempBlock.absEnd = | ||
187 | (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd; | ||
188 | tempBlock.logicalStart = 0; | ||
189 | tempBlock.logicalEnd = 0; | ||
190 | printk("\n block %ld absStart=%016lx absEnd=%016lx", | ||
191 | block_num, tempBlock.absStart, | ||
192 | tempBlock.absEnd); | ||
193 | |||
194 | for (i = 0; i < numSegmentBlocks; ++i) { | ||
195 | if (mb_array[i].absStart == | ||
196 | tempBlock.absStart) | ||
197 | break; | ||
198 | } | ||
199 | if (i == numSegmentBlocks) { | ||
200 | if (numSegmentBlocks == max_entries) | ||
201 | panic("iSeries_process_mainstore_vpd: too many memory blocks"); | ||
202 | mb_array[numSegmentBlocks] = tempBlock; | ||
203 | ++numSegmentBlocks; | ||
204 | } else | ||
205 | printk(" (duplicate)"); | ||
206 | } | ||
207 | printk("\n"); | ||
208 | } | ||
209 | existsBits <<= 1; | ||
210 | } | ||
211 | /* Now sort the blocks found into ascending sequence */ | ||
212 | if (numSegmentBlocks > 1) { | ||
213 | unsigned long m, n; | ||
214 | |||
215 | for (m = 0; m < numSegmentBlocks - 1; ++m) { | ||
216 | for (n = numSegmentBlocks - 1; m < n; --n) { | ||
217 | if (mb_array[n].absStart < | ||
218 | mb_array[n-1].absStart) { | ||
219 | struct MemoryBlock tempBlock; | ||
220 | |||
221 | tempBlock = mb_array[n]; | ||
222 | mb_array[n] = mb_array[n-1]; | ||
223 | mb_array[n-1] = tempBlock; | ||
224 | } | ||
225 | } | ||
226 | } | ||
227 | } | ||
228 | /* | ||
229 | * Assign "logical" addresses to each block. These | ||
230 | * addresses correspond to the hypervisor "bitmap" space. | ||
231 | * Convert all addresses into units of 256K chunks. | ||
232 | */ | ||
233 | { | ||
234 | unsigned long i, nextBitmapAddress; | ||
235 | |||
236 | printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks); | ||
237 | nextBitmapAddress = 0; | ||
238 | for (i = 0; i < numSegmentBlocks; ++i) { | ||
239 | unsigned long length = mb_array[i].absEnd - | ||
240 | mb_array[i].absStart; | ||
241 | |||
242 | mb_array[i].logicalStart = nextBitmapAddress; | ||
243 | mb_array[i].logicalEnd = nextBitmapAddress + length; | ||
244 | nextBitmapAddress += length; | ||
245 | printk(" Bitmap range: %016lx - %016lx\n" | ||
246 | " Absolute range: %016lx - %016lx\n", | ||
247 | mb_array[i].logicalStart, | ||
248 | mb_array[i].logicalEnd, | ||
249 | mb_array[i].absStart, mb_array[i].absEnd); | ||
250 | mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart & | ||
251 | 0x000fffffffffffff); | ||
252 | mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd & | ||
253 | 0x000fffffffffffff); | ||
254 | mb_array[i].logicalStart = | ||
255 | addr_to_chunk(mb_array[i].logicalStart); | ||
256 | mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd); | ||
257 | } | ||
258 | } | ||
259 | |||
260 | return numSegmentBlocks; | ||
261 | } | ||
262 | |||
263 | static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array, | ||
264 | unsigned long max_entries) | ||
265 | { | ||
266 | unsigned long i; | ||
267 | unsigned long mem_blocks = 0; | ||
268 | |||
269 | if (cpu_has_feature(CPU_FTR_SLB)) | ||
270 | mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array, | ||
271 | max_entries); | ||
272 | else | ||
273 | mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array, | ||
274 | max_entries); | ||
275 | |||
276 | printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks); | ||
277 | for (i = 0; i < mem_blocks; ++i) { | ||
278 | printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n" | ||
279 | " abs chunks %016lx - %016lx\n", | ||
280 | i, mb_array[i].logicalStart, mb_array[i].logicalEnd, | ||
281 | mb_array[i].absStart, mb_array[i].absEnd); | ||
282 | } | ||
283 | return mem_blocks; | ||
284 | } | ||
285 | |||
286 | static void __init iSeries_get_cmdline(void) | ||
287 | { | ||
288 | char *p, *q; | ||
289 | |||
290 | /* copy the command line parameter from the primary VSP */ | ||
291 | HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256, | ||
292 | HvLpDma_Direction_RemoteToLocal); | ||
293 | |||
294 | p = cmd_line; | ||
295 | q = cmd_line + 255; | ||
296 | while(p < q) { | ||
297 | if (!*p || *p == '\n') | ||
298 | break; | ||
299 | ++p; | ||
300 | } | ||
301 | *p = 0; | ||
302 | } | ||
303 | |||
304 | static void __init iSeries_init_early(void) | ||
305 | { | ||
306 | extern unsigned long memory_limit; | ||
307 | |||
308 | DBG(" -> iSeries_init_early()\n"); | ||
309 | |||
310 | ppc64_firmware_features = FW_FEATURE_ISERIES; | ||
311 | |||
312 | ppcdbg_initialize(); | ||
313 | |||
314 | ppc64_interrupt_controller = IC_ISERIES; | ||
315 | |||
316 | #if defined(CONFIG_BLK_DEV_INITRD) | ||
317 | /* | ||
318 | * If the init RAM disk has been configured and there is | ||
319 | * a non-zero starting address for it, set it up | ||
320 | */ | ||
321 | if (naca.xRamDisk) { | ||
322 | initrd_start = (unsigned long)__va(naca.xRamDisk); | ||
323 | initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE; | ||
324 | initrd_below_start_ok = 1; // ramdisk in kernel space | ||
325 | ROOT_DEV = Root_RAM0; | ||
326 | if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize) | ||
327 | rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024; | ||
328 | } else | ||
329 | #endif /* CONFIG_BLK_DEV_INITRD */ | ||
330 | { | ||
331 | /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */ | ||
332 | } | ||
333 | |||
334 | iSeries_recal_tb = get_tb(); | ||
335 | iSeries_recal_titan = HvCallXm_loadTod(); | ||
336 | |||
337 | /* | ||
338 | * Initialize the hash table management pointers | ||
339 | */ | ||
340 | hpte_init_iSeries(); | ||
341 | |||
342 | /* | ||
343 | * Initialize the DMA/TCE management | ||
344 | */ | ||
345 | iommu_init_early_iSeries(); | ||
346 | |||
347 | iSeries_get_cmdline(); | ||
348 | |||
349 | /* Save unparsed command line copy for /proc/cmdline */ | ||
350 | strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE); | ||
351 | |||
352 | /* Parse early parameters, in particular mem=x */ | ||
353 | parse_early_param(); | ||
354 | |||
355 | if (memory_limit) { | ||
356 | if (memory_limit < systemcfg->physicalMemorySize) | ||
357 | systemcfg->physicalMemorySize = memory_limit; | ||
358 | else { | ||
359 | printk("Ignoring mem=%lu >= ram_top.\n", memory_limit); | ||
360 | memory_limit = 0; | ||
361 | } | ||
362 | } | ||
363 | |||
364 | /* Initialize machine-dependency vectors */ | ||
365 | #ifdef CONFIG_SMP | ||
366 | smp_init_iSeries(); | ||
367 | #endif | ||
368 | if (itLpNaca.xPirEnvironMode == 0) | ||
369 | piranha_simulator = 1; | ||
370 | |||
371 | /* Associate Lp Event Queue 0 with processor 0 */ | ||
372 | HvCallEvent_setLpEventQueueInterruptProc(0, 0); | ||
373 | |||
374 | mf_init(); | ||
375 | mf_initialized = 1; | ||
376 | mb(); | ||
377 | |||
378 | /* If we were passed an initrd, set the ROOT_DEV properly if the values | ||
379 | * look sensible. If not, clear initrd reference. | ||
380 | */ | ||
381 | #ifdef CONFIG_BLK_DEV_INITRD | ||
382 | if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE && | ||
383 | initrd_end > initrd_start) | ||
384 | ROOT_DEV = Root_RAM0; | ||
385 | else | ||
386 | initrd_start = initrd_end = 0; | ||
387 | #endif /* CONFIG_BLK_DEV_INITRD */ | ||
388 | |||
389 | DBG(" <- iSeries_init_early()\n"); | ||
390 | } | ||
391 | |||
392 | struct mschunks_map mschunks_map = { | ||
393 | /* XXX We don't use these, but Piranha might need them. */ | ||
394 | .chunk_size = MSCHUNKS_CHUNK_SIZE, | ||
395 | .chunk_shift = MSCHUNKS_CHUNK_SHIFT, | ||
396 | .chunk_mask = MSCHUNKS_OFFSET_MASK, | ||
397 | }; | ||
398 | EXPORT_SYMBOL(mschunks_map); | ||
399 | |||
400 | void mschunks_alloc(unsigned long num_chunks) | ||
401 | { | ||
402 | klimit = _ALIGN(klimit, sizeof(u32)); | ||
403 | mschunks_map.mapping = (u32 *)klimit; | ||
404 | klimit += num_chunks * sizeof(u32); | ||
405 | mschunks_map.num_chunks = num_chunks; | ||
406 | } | ||
407 | |||
408 | /* | ||
409 | * The iSeries may have very large memories ( > 128 GB ) and a partition | ||
410 | * may get memory in "chunks" that may be anywhere in the 2**52 real | ||
411 | * address space. The chunks are 256K in size. To map this to the | ||
412 | * memory model Linux expects, the AS/400 specific code builds a | ||
413 | * translation table to translate what Linux thinks are "physical" | ||
414 | * addresses to the actual real addresses. This allows us to make | ||
415 | * it appear to Linux that we have contiguous memory starting at | ||
416 | * physical address zero while in fact this could be far from the truth. | ||
417 | * To avoid confusion, I'll let the words physical and/or real address | ||
418 | * apply to the Linux addresses while I'll use "absolute address" to | ||
419 | * refer to the actual hardware real address. | ||
420 | * | ||
421 | * build_iSeries_Memory_Map gets information from the Hypervisor and | ||
422 | * looks at the Main Store VPD to determine the absolute addresses | ||
423 | * of the memory that has been assigned to our partition and builds | ||
424 | * a table used to translate Linux's physical addresses to these | ||
425 | * absolute addresses. Absolute addresses are needed when | ||
426 | * communicating with the hypervisor (e.g. to build HPT entries) | ||
427 | */ | ||
428 | |||
429 | static void __init build_iSeries_Memory_Map(void) | ||
430 | { | ||
431 | u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize; | ||
432 | u32 nextPhysChunk; | ||
433 | u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages; | ||
434 | u32 num_ptegs; | ||
435 | u32 totalChunks,moreChunks; | ||
436 | u32 currChunk, thisChunk, absChunk; | ||
437 | u32 currDword; | ||
438 | u32 chunkBit; | ||
439 | u64 map; | ||
440 | struct MemoryBlock mb[32]; | ||
441 | unsigned long numMemoryBlocks, curBlock; | ||
442 | |||
443 | /* Chunk size on iSeries is 256K bytes */ | ||
444 | totalChunks = (u32)HvLpConfig_getMsChunks(); | ||
445 | mschunks_alloc(totalChunks); | ||
446 | |||
447 | /* | ||
448 | * Get absolute address of our load area | ||
449 | * and map it to physical address 0 | ||
450 | * This guarantees that the loadarea ends up at physical 0 | ||
451 | * otherwise, it might not be returned by PLIC as the first | ||
452 | * chunks | ||
453 | */ | ||
454 | |||
455 | loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr); | ||
456 | loadAreaSize = itLpNaca.xLoadAreaChunks; | ||
457 | |||
458 | /* | ||
459 | * Only add the pages already mapped here. | ||
460 | * Otherwise we might add the hpt pages | ||
461 | * The rest of the pages of the load area | ||
462 | * aren't in the HPT yet and can still | ||
463 | * be assigned an arbitrary physical address | ||
464 | */ | ||
465 | if ((loadAreaSize * 64) > HvPagesToMap) | ||
466 | loadAreaSize = HvPagesToMap / 64; | ||
467 | |||
468 | loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1; | ||
469 | |||
470 | /* | ||
471 | * TODO Do we need to do something if the HPT is in the 64MB load area? | ||
472 | * This would be required if the itLpNaca.xLoadAreaChunks includes | ||
473 | * the HPT size | ||
474 | */ | ||
475 | |||
476 | printk("Mapping load area - physical addr = 0000000000000000\n" | ||
477 | " absolute addr = %016lx\n", | ||
478 | chunk_to_addr(loadAreaFirstChunk)); | ||
479 | printk("Load area size %dK\n", loadAreaSize * 256); | ||
480 | |||
481 | for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk) | ||
482 | mschunks_map.mapping[nextPhysChunk] = | ||
483 | loadAreaFirstChunk + nextPhysChunk; | ||
484 | |||
485 | /* | ||
486 | * Get absolute address of our HPT and remember it so | ||
487 | * we won't map it to any physical address | ||
488 | */ | ||
489 | hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress()); | ||
490 | hptSizePages = (u32)HvCallHpt_getHptPages(); | ||
491 | hptSizeChunks = hptSizePages >> (MSCHUNKS_CHUNK_SHIFT - PAGE_SHIFT); | ||
492 | hptLastChunk = hptFirstChunk + hptSizeChunks - 1; | ||
493 | |||
494 | printk("HPT absolute addr = %016lx, size = %dK\n", | ||
495 | chunk_to_addr(hptFirstChunk), hptSizeChunks * 256); | ||
496 | |||
497 | /* Fill in the hashed page table hash mask */ | ||
498 | num_ptegs = hptSizePages * | ||
499 | (PAGE_SIZE / (sizeof(hpte_t) * HPTES_PER_GROUP)); | ||
500 | htab_hash_mask = num_ptegs - 1; | ||
501 | |||
502 | /* | ||
503 | * The actual hashed page table is in the hypervisor, | ||
504 | * we have no direct access | ||
505 | */ | ||
506 | htab_address = NULL; | ||
507 | |||
508 | /* | ||
509 | * Determine if absolute memory has any | ||
510 | * holes so that we can interpret the | ||
511 | * access map we get back from the hypervisor | ||
512 | * correctly. | ||
513 | */ | ||
514 | numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32); | ||
515 | |||
516 | /* | ||
517 | * Process the main store access map from the hypervisor | ||
518 | * to build up our physical -> absolute translation table | ||
519 | */ | ||
520 | curBlock = 0; | ||
521 | currChunk = 0; | ||
522 | currDword = 0; | ||
523 | moreChunks = totalChunks; | ||
524 | |||
525 | while (moreChunks) { | ||
526 | map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex, | ||
527 | currDword); | ||
528 | thisChunk = currChunk; | ||
529 | while (map) { | ||
530 | chunkBit = map >> 63; | ||
531 | map <<= 1; | ||
532 | if (chunkBit) { | ||
533 | --moreChunks; | ||
534 | while (thisChunk >= mb[curBlock].logicalEnd) { | ||
535 | ++curBlock; | ||
536 | if (curBlock >= numMemoryBlocks) | ||
537 | panic("out of memory blocks"); | ||
538 | } | ||
539 | if (thisChunk < mb[curBlock].logicalStart) | ||
540 | panic("memory block error"); | ||
541 | |||
542 | absChunk = mb[curBlock].absStart + | ||
543 | (thisChunk - mb[curBlock].logicalStart); | ||
544 | if (((absChunk < hptFirstChunk) || | ||
545 | (absChunk > hptLastChunk)) && | ||
546 | ((absChunk < loadAreaFirstChunk) || | ||
547 | (absChunk > loadAreaLastChunk))) { | ||
548 | mschunks_map.mapping[nextPhysChunk] = | ||
549 | absChunk; | ||
550 | ++nextPhysChunk; | ||
551 | } | ||
552 | } | ||
553 | ++thisChunk; | ||
554 | } | ||
555 | ++currDword; | ||
556 | currChunk += 64; | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * main store size (in chunks) is | ||
561 | * totalChunks - hptSizeChunks | ||
562 | * which should be equal to | ||
563 | * nextPhysChunk | ||
564 | */ | ||
565 | systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk); | ||
566 | } | ||
567 | |||
568 | /* | ||
569 | * Document me. | ||
570 | */ | ||
571 | static void __init iSeries_setup_arch(void) | ||
572 | { | ||
573 | unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index; | ||
574 | |||
575 | if (get_paca()->lppaca.shared_proc) { | ||
576 | ppc_md.idle_loop = iseries_shared_idle; | ||
577 | printk(KERN_INFO "Using shared processor idle loop\n"); | ||
578 | } else { | ||
579 | ppc_md.idle_loop = iseries_dedicated_idle; | ||
580 | printk(KERN_INFO "Using dedicated idle loop\n"); | ||
581 | } | ||
582 | |||
583 | /* Setup the Lp Event Queue */ | ||
584 | setup_hvlpevent_queue(); | ||
585 | |||
586 | printk("Max logical processors = %d\n", | ||
587 | itVpdAreas.xSlicMaxLogicalProcs); | ||
588 | printk("Max physical processors = %d\n", | ||
589 | itVpdAreas.xSlicMaxPhysicalProcs); | ||
590 | |||
591 | systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR; | ||
592 | printk("Processor version = %x\n", systemcfg->processor); | ||
593 | } | ||
594 | |||
595 | static void iSeries_get_cpuinfo(struct seq_file *m) | ||
596 | { | ||
597 | seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n"); | ||
598 | } | ||
599 | |||
600 | /* | ||
601 | * Document me. | ||
602 | * and Implement me. | ||
603 | */ | ||
604 | static int iSeries_get_irq(struct pt_regs *regs) | ||
605 | { | ||
606 | /* -2 means ignore this interrupt */ | ||
607 | return -2; | ||
608 | } | ||
609 | |||
610 | /* | ||
611 | * Document me. | ||
612 | */ | ||
613 | static void iSeries_restart(char *cmd) | ||
614 | { | ||
615 | mf_reboot(); | ||
616 | } | ||
617 | |||
618 | /* | ||
619 | * Document me. | ||
620 | */ | ||
621 | static void iSeries_power_off(void) | ||
622 | { | ||
623 | mf_power_off(); | ||
624 | } | ||
625 | |||
626 | /* | ||
627 | * Document me. | ||
628 | */ | ||
629 | static void iSeries_halt(void) | ||
630 | { | ||
631 | mf_power_off(); | ||
632 | } | ||
633 | |||
634 | static void __init iSeries_progress(char * st, unsigned short code) | ||
635 | { | ||
636 | printk("Progress: [%04x] - %s\n", (unsigned)code, st); | ||
637 | if (!piranha_simulator && mf_initialized) { | ||
638 | if (code != 0xffff) | ||
639 | mf_display_progress(code); | ||
640 | else | ||
641 | mf_clear_src(); | ||
642 | } | ||
643 | } | ||
644 | |||
645 | static void __init iSeries_fixup_klimit(void) | ||
646 | { | ||
647 | /* | ||
648 | * Change klimit to take into account any ram disk | ||
649 | * that may be included | ||
650 | */ | ||
651 | if (naca.xRamDisk) | ||
652 | klimit = KERNELBASE + (u64)naca.xRamDisk + | ||
653 | (naca.xRamDiskSize * PAGE_SIZE); | ||
654 | else { | ||
655 | /* | ||
656 | * No ram disk was included - check and see if there | ||
657 | * was an embedded system map. Change klimit to take | ||
658 | * into account any embedded system map | ||
659 | */ | ||
660 | if (embedded_sysmap_end) | ||
661 | klimit = KERNELBASE + ((embedded_sysmap_end + 4095) & | ||
662 | 0xfffffffffffff000); | ||
663 | } | ||
664 | } | ||
665 | |||
666 | static int __init iSeries_src_init(void) | ||
667 | { | ||
668 | /* clear the progress line */ | ||
669 | ppc_md.progress(" ", 0xffff); | ||
670 | return 0; | ||
671 | } | ||
672 | |||
673 | late_initcall(iSeries_src_init); | ||
674 | |||
675 | static inline void process_iSeries_events(void) | ||
676 | { | ||
677 | asm volatile ("li 0,0x5555; sc" : : : "r0", "r3"); | ||
678 | } | ||
679 | |||
680 | static void yield_shared_processor(void) | ||
681 | { | ||
682 | unsigned long tb; | ||
683 | |||
684 | HvCall_setEnabledInterrupts(HvCall_MaskIPI | | ||
685 | HvCall_MaskLpEvent | | ||
686 | HvCall_MaskLpProd | | ||
687 | HvCall_MaskTimeout); | ||
688 | |||
689 | tb = get_tb(); | ||
690 | /* Compute future tb value when yield should expire */ | ||
691 | HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy); | ||
692 | |||
693 | /* | ||
694 | * The decrementer stops during the yield. Force a fake decrementer | ||
695 | * here and let the timer_interrupt code sort out the actual time. | ||
696 | */ | ||
697 | get_paca()->lppaca.int_dword.fields.decr_int = 1; | ||
698 | process_iSeries_events(); | ||
699 | } | ||
700 | |||
701 | static int iseries_shared_idle(void) | ||
702 | { | ||
703 | while (1) { | ||
704 | while (!need_resched() && !hvlpevent_is_pending()) { | ||
705 | local_irq_disable(); | ||
706 | ppc64_runlatch_off(); | ||
707 | |||
708 | /* Recheck with irqs off */ | ||
709 | if (!need_resched() && !hvlpevent_is_pending()) | ||
710 | yield_shared_processor(); | ||
711 | |||
712 | HMT_medium(); | ||
713 | local_irq_enable(); | ||
714 | } | ||
715 | |||
716 | ppc64_runlatch_on(); | ||
717 | |||
718 | if (hvlpevent_is_pending()) | ||
719 | process_iSeries_events(); | ||
720 | |||
721 | schedule(); | ||
722 | } | ||
723 | |||
724 | return 0; | ||
725 | } | ||
726 | |||
727 | static int iseries_dedicated_idle(void) | ||
728 | { | ||
729 | long oldval; | ||
730 | |||
731 | while (1) { | ||
732 | oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED); | ||
733 | |||
734 | if (!oldval) { | ||
735 | set_thread_flag(TIF_POLLING_NRFLAG); | ||
736 | |||
737 | while (!need_resched()) { | ||
738 | ppc64_runlatch_off(); | ||
739 | HMT_low(); | ||
740 | |||
741 | if (hvlpevent_is_pending()) { | ||
742 | HMT_medium(); | ||
743 | ppc64_runlatch_on(); | ||
744 | process_iSeries_events(); | ||
745 | } | ||
746 | } | ||
747 | |||
748 | HMT_medium(); | ||
749 | clear_thread_flag(TIF_POLLING_NRFLAG); | ||
750 | } else { | ||
751 | set_need_resched(); | ||
752 | } | ||
753 | |||
754 | ppc64_runlatch_on(); | ||
755 | schedule(); | ||
756 | } | ||
757 | |||
758 | return 0; | ||
759 | } | ||
760 | |||
761 | #ifndef CONFIG_PCI | ||
762 | void __init iSeries_init_IRQ(void) { } | ||
763 | #endif | ||
764 | |||
765 | static int __init iseries_probe(int platform) | ||
766 | { | ||
767 | return PLATFORM_ISERIES_LPAR == platform; | ||
768 | } | ||
769 | |||
770 | struct machdep_calls __initdata iseries_md = { | ||
771 | .setup_arch = iSeries_setup_arch, | ||
772 | .get_cpuinfo = iSeries_get_cpuinfo, | ||
773 | .init_IRQ = iSeries_init_IRQ, | ||
774 | .get_irq = iSeries_get_irq, | ||
775 | .init_early = iSeries_init_early, | ||
776 | .pcibios_fixup = iSeries_pci_final_fixup, | ||
777 | .restart = iSeries_restart, | ||
778 | .power_off = iSeries_power_off, | ||
779 | .halt = iSeries_halt, | ||
780 | .get_boot_time = iSeries_get_boot_time, | ||
781 | .set_rtc_time = iSeries_set_rtc_time, | ||
782 | .get_rtc_time = iSeries_get_rtc_time, | ||
783 | .calibrate_decr = generic_calibrate_decr, | ||
784 | .progress = iSeries_progress, | ||
785 | .probe = iseries_probe, | ||
786 | /* XXX Implement enable_pmcs for iSeries */ | ||
787 | }; | ||
788 | |||
789 | struct blob { | ||
790 | unsigned char data[PAGE_SIZE]; | ||
791 | unsigned long next; | ||
792 | }; | ||
793 | |||
794 | struct iseries_flat_dt { | ||
795 | struct boot_param_header header; | ||
796 | u64 reserve_map[2]; | ||
797 | struct blob dt; | ||
798 | struct blob strings; | ||
799 | }; | ||
800 | |||
801 | struct iseries_flat_dt iseries_dt; | ||
802 | |||
803 | void dt_init(struct iseries_flat_dt *dt) | ||
804 | { | ||
805 | dt->header.off_mem_rsvmap = | ||
806 | offsetof(struct iseries_flat_dt, reserve_map); | ||
807 | dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt); | ||
808 | dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings); | ||
809 | dt->header.totalsize = sizeof(struct iseries_flat_dt); | ||
810 | dt->header.dt_strings_size = sizeof(struct blob); | ||
811 | |||
812 | /* There is no notion of hardware cpu id on iSeries */ | ||
813 | dt->header.boot_cpuid_phys = smp_processor_id(); | ||
814 | |||
815 | dt->dt.next = (unsigned long)&dt->dt.data; | ||
816 | dt->strings.next = (unsigned long)&dt->strings.data; | ||
817 | |||
818 | dt->header.magic = OF_DT_HEADER; | ||
819 | dt->header.version = 0x10; | ||
820 | dt->header.last_comp_version = 0x10; | ||
821 | |||
822 | dt->reserve_map[0] = 0; | ||
823 | dt->reserve_map[1] = 0; | ||
824 | } | ||
825 | |||
826 | void dt_check_blob(struct blob *b) | ||
827 | { | ||
828 | if (b->next >= (unsigned long)&b->next) { | ||
829 | DBG("Ran out of space in flat device tree blob!\n"); | ||
830 | BUG(); | ||
831 | } | ||
832 | } | ||
833 | |||
834 | void dt_push_u32(struct iseries_flat_dt *dt, u32 value) | ||
835 | { | ||
836 | *((u32*)dt->dt.next) = value; | ||
837 | dt->dt.next += sizeof(u32); | ||
838 | |||
839 | dt_check_blob(&dt->dt); | ||
840 | } | ||
841 | |||
842 | void dt_push_u64(struct iseries_flat_dt *dt, u64 value) | ||
843 | { | ||
844 | *((u64*)dt->dt.next) = value; | ||
845 | dt->dt.next += sizeof(u64); | ||
846 | |||
847 | dt_check_blob(&dt->dt); | ||
848 | } | ||
849 | |||
850 | unsigned long dt_push_bytes(struct blob *blob, char *data, int len) | ||
851 | { | ||
852 | unsigned long start = blob->next - (unsigned long)blob->data; | ||
853 | |||
854 | memcpy((char *)blob->next, data, len); | ||
855 | blob->next = _ALIGN(blob->next + len, 4); | ||
856 | |||
857 | dt_check_blob(blob); | ||
858 | |||
859 | return start; | ||
860 | } | ||
861 | |||
862 | void dt_start_node(struct iseries_flat_dt *dt, char *name) | ||
863 | { | ||
864 | dt_push_u32(dt, OF_DT_BEGIN_NODE); | ||
865 | dt_push_bytes(&dt->dt, name, strlen(name) + 1); | ||
866 | } | ||
867 | |||
868 | #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE) | ||
869 | |||
870 | void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len) | ||
871 | { | ||
872 | unsigned long offset; | ||
873 | |||
874 | dt_push_u32(dt, OF_DT_PROP); | ||
875 | |||
876 | /* Length of the data */ | ||
877 | dt_push_u32(dt, len); | ||
878 | |||
879 | /* Put the property name in the string blob. */ | ||
880 | offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1); | ||
881 | |||
882 | /* The offset of the properties name in the string blob. */ | ||
883 | dt_push_u32(dt, (u32)offset); | ||
884 | |||
885 | /* The actual data. */ | ||
886 | dt_push_bytes(&dt->dt, data, len); | ||
887 | } | ||
888 | |||
889 | void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data) | ||
890 | { | ||
891 | dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */ | ||
892 | } | ||
893 | |||
894 | void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data) | ||
895 | { | ||
896 | dt_prop(dt, name, (char *)&data, sizeof(u32)); | ||
897 | } | ||
898 | |||
899 | void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data) | ||
900 | { | ||
901 | dt_prop(dt, name, (char *)&data, sizeof(u64)); | ||
902 | } | ||
903 | |||
904 | void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n) | ||
905 | { | ||
906 | dt_prop(dt, name, (char *)data, sizeof(u64) * n); | ||
907 | } | ||
908 | |||
909 | void dt_prop_empty(struct iseries_flat_dt *dt, char *name) | ||
910 | { | ||
911 | dt_prop(dt, name, NULL, 0); | ||
912 | } | ||
913 | |||
914 | void dt_cpus(struct iseries_flat_dt *dt) | ||
915 | { | ||
916 | unsigned char buf[32]; | ||
917 | unsigned char *p; | ||
918 | unsigned int i, index; | ||
919 | struct IoHriProcessorVpd *d; | ||
920 | |||
921 | /* yuck */ | ||
922 | snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name); | ||
923 | p = strchr(buf, ' '); | ||
924 | if (!p) p = buf + strlen(buf); | ||
925 | |||
926 | dt_start_node(dt, "cpus"); | ||
927 | dt_prop_u32(dt, "#address-cells", 1); | ||
928 | dt_prop_u32(dt, "#size-cells", 0); | ||
929 | |||
930 | for (i = 0; i < NR_CPUS; i++) { | ||
931 | if (paca[i].lppaca.dyn_proc_status >= 2) | ||
932 | continue; | ||
933 | |||
934 | snprintf(p, 32 - (p - buf), "@%d", i); | ||
935 | dt_start_node(dt, buf); | ||
936 | |||
937 | dt_prop_str(dt, "device_type", "cpu"); | ||
938 | |||
939 | index = paca[i].lppaca.dyn_hv_phys_proc_index; | ||
940 | d = &xIoHriProcessorVpd[index]; | ||
941 | |||
942 | dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024); | ||
943 | dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize); | ||
944 | |||
945 | dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024); | ||
946 | dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize); | ||
947 | |||
948 | /* magic conversions to Hz copied from old code */ | ||
949 | dt_prop_u32(dt, "clock-frequency", | ||
950 | ((1UL << 34) * 1000000) / d->xProcFreq); | ||
951 | dt_prop_u32(dt, "timebase-frequency", | ||
952 | ((1UL << 32) * 1000000) / d->xTimeBaseFreq); | ||
953 | |||
954 | dt_prop_u32(dt, "reg", i); | ||
955 | |||
956 | dt_end_node(dt); | ||
957 | } | ||
958 | |||
959 | dt_end_node(dt); | ||
960 | } | ||
961 | |||
962 | void build_flat_dt(struct iseries_flat_dt *dt) | ||
963 | { | ||
964 | u64 tmp[2]; | ||
965 | |||
966 | dt_init(dt); | ||
967 | |||
968 | dt_start_node(dt, ""); | ||
969 | |||
970 | dt_prop_u32(dt, "#address-cells", 2); | ||
971 | dt_prop_u32(dt, "#size-cells", 2); | ||
972 | |||
973 | /* /memory */ | ||
974 | dt_start_node(dt, "memory@0"); | ||
975 | dt_prop_str(dt, "name", "memory"); | ||
976 | dt_prop_str(dt, "device_type", "memory"); | ||
977 | tmp[0] = 0; | ||
978 | tmp[1] = systemcfg->physicalMemorySize; | ||
979 | dt_prop_u64_list(dt, "reg", tmp, 2); | ||
980 | dt_end_node(dt); | ||
981 | |||
982 | /* /chosen */ | ||
983 | dt_start_node(dt, "chosen"); | ||
984 | dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR); | ||
985 | dt_end_node(dt); | ||
986 | |||
987 | dt_cpus(dt); | ||
988 | |||
989 | dt_end_node(dt); | ||
990 | |||
991 | dt_push_u32(dt, OF_DT_END); | ||
992 | } | ||
993 | |||
994 | void * __init iSeries_early_setup(void) | ||
995 | { | ||
996 | iSeries_fixup_klimit(); | ||
997 | |||
998 | /* | ||
999 | * Initialize the table which translate Linux physical addresses to | ||
1000 | * AS/400 absolute addresses | ||
1001 | */ | ||
1002 | build_iSeries_Memory_Map(); | ||
1003 | |||
1004 | build_flat_dt(&iseries_dt); | ||
1005 | |||
1006 | return (void *) __pa(&iseries_dt); | ||
1007 | } | ||
diff --git a/arch/ppc64/kernel/iSeries_setup.h b/arch/ppc64/kernel/iSeries_setup.h deleted file mode 100644 index c6eb29a245ac..000000000000 --- a/arch/ppc64/kernel/iSeries_setup.h +++ /dev/null | |||
@@ -1,26 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> | ||
3 | * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu> | ||
4 | * | ||
5 | * Module name: as400_setup.h | ||
6 | * | ||
7 | * Description: | ||
8 | * Architecture- / platform-specific boot-time initialization code for | ||
9 | * the IBM AS/400 LPAR. Adapted from original code by Grant Erickson and | ||
10 | * code by Gary Thomas, Cort Dougan <cort@cs.nmt.edu>, and Dan Malek | ||
11 | * <dan@netx4.com>. | ||
12 | * | ||
13 | * This program is free software; you can redistribute it and/or | ||
14 | * modify it under the terms of the GNU General Public License | ||
15 | * as published by the Free Software Foundation; either version | ||
16 | * 2 of the License, or (at your option) any later version. | ||
17 | */ | ||
18 | |||
19 | #ifndef __ISERIES_SETUP_H__ | ||
20 | #define __ISERIES_SETUP_H__ | ||
21 | |||
22 | extern void iSeries_get_boot_time(struct rtc_time *tm); | ||
23 | extern int iSeries_set_rtc_time(struct rtc_time *tm); | ||
24 | extern void iSeries_get_rtc_time(struct rtc_time *tm); | ||
25 | |||
26 | #endif /* __ISERIES_SETUP_H__ */ | ||
diff --git a/arch/ppc64/kernel/mf.c b/arch/ppc64/kernel/mf.c deleted file mode 100644 index ef4a338ebd01..000000000000 --- a/arch/ppc64/kernel/mf.c +++ /dev/null | |||
@@ -1,1281 +0,0 @@ | |||
1 | /* | ||
2 | * mf.c | ||
3 | * Copyright (C) 2001 Troy D. Armstrong IBM Corporation | ||
4 | * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation | ||
5 | * | ||
6 | * This modules exists as an interface between a Linux secondary partition | ||
7 | * running on an iSeries and the primary partition's Virtual Service | ||
8 | * Processor (VSP) object. The VSP has final authority over powering on/off | ||
9 | * all partitions in the iSeries. It also provides miscellaneous low-level | ||
10 | * machine facility type operations. | ||
11 | * | ||
12 | * | ||
13 | * This program is free software; you can redistribute it and/or modify | ||
14 | * it under the terms of the GNU General Public License as published by | ||
15 | * the Free Software Foundation; either version 2 of the License, or | ||
16 | * (at your option) any later version. | ||
17 | * | ||
18 | * This program is distributed in the hope that it will be useful, | ||
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
21 | * GNU General Public License for more details. | ||
22 | * | ||
23 | * You should have received a copy of the GNU General Public License | ||
24 | * along with this program; if not, write to the Free Software | ||
25 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
26 | */ | ||
27 | |||
28 | #include <linux/types.h> | ||
29 | #include <linux/errno.h> | ||
30 | #include <linux/kernel.h> | ||
31 | #include <linux/init.h> | ||
32 | #include <linux/completion.h> | ||
33 | #include <linux/delay.h> | ||
34 | #include <linux/dma-mapping.h> | ||
35 | #include <linux/bcd.h> | ||
36 | |||
37 | #include <asm/time.h> | ||
38 | #include <asm/uaccess.h> | ||
39 | #include <asm/paca.h> | ||
40 | #include <asm/iSeries/vio.h> | ||
41 | #include <asm/iSeries/mf.h> | ||
42 | #include <asm/iSeries/HvLpConfig.h> | ||
43 | #include <asm/iSeries/ItLpQueue.h> | ||
44 | |||
45 | /* | ||
46 | * This is the structure layout for the Machine Facilites LPAR event | ||
47 | * flows. | ||
48 | */ | ||
49 | struct vsp_cmd_data { | ||
50 | u64 token; | ||
51 | u16 cmd; | ||
52 | HvLpIndex lp_index; | ||
53 | u8 result_code; | ||
54 | u32 reserved; | ||
55 | union { | ||
56 | u64 state; /* GetStateOut */ | ||
57 | u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */ | ||
58 | u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */ | ||
59 | u64 page[4]; /* GetSrcHistoryIn */ | ||
60 | u64 flag; /* GetAutoIplWhenPrimaryIplsOut, | ||
61 | SetAutoIplWhenPrimaryIplsIn, | ||
62 | WhiteButtonPowerOffIn, | ||
63 | Function08FastPowerOffIn, | ||
64 | IsSpcnRackPowerIncompleteOut */ | ||
65 | struct { | ||
66 | u64 token; | ||
67 | u64 address_type; | ||
68 | u64 side; | ||
69 | u32 length; | ||
70 | u32 offset; | ||
71 | } kern; /* SetKernelImageIn, GetKernelImageIn, | ||
72 | SetKernelCmdLineIn, GetKernelCmdLineIn */ | ||
73 | u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */ | ||
74 | u8 reserved[80]; | ||
75 | } sub_data; | ||
76 | }; | ||
77 | |||
78 | struct vsp_rsp_data { | ||
79 | struct completion com; | ||
80 | struct vsp_cmd_data *response; | ||
81 | }; | ||
82 | |||
83 | struct alloc_data { | ||
84 | u16 size; | ||
85 | u16 type; | ||
86 | u32 count; | ||
87 | u16 reserved1; | ||
88 | u8 reserved2; | ||
89 | HvLpIndex target_lp; | ||
90 | }; | ||
91 | |||
92 | struct ce_msg_data; | ||
93 | |||
94 | typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp); | ||
95 | |||
96 | struct ce_msg_comp_data { | ||
97 | ce_msg_comp_hdlr handler; | ||
98 | void *token; | ||
99 | }; | ||
100 | |||
101 | struct ce_msg_data { | ||
102 | u8 ce_msg[12]; | ||
103 | char reserved[4]; | ||
104 | struct ce_msg_comp_data *completion; | ||
105 | }; | ||
106 | |||
107 | struct io_mf_lp_event { | ||
108 | struct HvLpEvent hp_lp_event; | ||
109 | u16 subtype_result_code; | ||
110 | u16 reserved1; | ||
111 | u32 reserved2; | ||
112 | union { | ||
113 | struct alloc_data alloc; | ||
114 | struct ce_msg_data ce_msg; | ||
115 | struct vsp_cmd_data vsp_cmd; | ||
116 | } data; | ||
117 | }; | ||
118 | |||
119 | #define subtype_data(a, b, c, d) \ | ||
120 | (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) | ||
121 | |||
122 | /* | ||
123 | * All outgoing event traffic is kept on a FIFO queue. The first | ||
124 | * pointer points to the one that is outstanding, and all new | ||
125 | * requests get stuck on the end. Also, we keep a certain number of | ||
126 | * preallocated pending events so that we can operate very early in | ||
127 | * the boot up sequence (before kmalloc is ready). | ||
128 | */ | ||
129 | struct pending_event { | ||
130 | struct pending_event *next; | ||
131 | struct io_mf_lp_event event; | ||
132 | MFCompleteHandler hdlr; | ||
133 | char dma_data[72]; | ||
134 | unsigned dma_data_length; | ||
135 | unsigned remote_address; | ||
136 | }; | ||
137 | static spinlock_t pending_event_spinlock; | ||
138 | static struct pending_event *pending_event_head; | ||
139 | static struct pending_event *pending_event_tail; | ||
140 | static struct pending_event *pending_event_avail; | ||
141 | static struct pending_event pending_event_prealloc[16]; | ||
142 | |||
143 | /* | ||
144 | * Put a pending event onto the available queue, so it can get reused. | ||
145 | * Attention! You must have the pending_event_spinlock before calling! | ||
146 | */ | ||
147 | static void free_pending_event(struct pending_event *ev) | ||
148 | { | ||
149 | if (ev != NULL) { | ||
150 | ev->next = pending_event_avail; | ||
151 | pending_event_avail = ev; | ||
152 | } | ||
153 | } | ||
154 | |||
155 | /* | ||
156 | * Enqueue the outbound event onto the stack. If the queue was | ||
157 | * empty to begin with, we must also issue it via the Hypervisor | ||
158 | * interface. There is a section of code below that will touch | ||
159 | * the first stack pointer without the protection of the pending_event_spinlock. | ||
160 | * This is OK, because we know that nobody else will be modifying | ||
161 | * the first pointer when we do this. | ||
162 | */ | ||
163 | static int signal_event(struct pending_event *ev) | ||
164 | { | ||
165 | int rc = 0; | ||
166 | unsigned long flags; | ||
167 | int go = 1; | ||
168 | struct pending_event *ev1; | ||
169 | HvLpEvent_Rc hv_rc; | ||
170 | |||
171 | /* enqueue the event */ | ||
172 | if (ev != NULL) { | ||
173 | ev->next = NULL; | ||
174 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
175 | if (pending_event_head == NULL) | ||
176 | pending_event_head = ev; | ||
177 | else { | ||
178 | go = 0; | ||
179 | pending_event_tail->next = ev; | ||
180 | } | ||
181 | pending_event_tail = ev; | ||
182 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
183 | } | ||
184 | |||
185 | /* send the event */ | ||
186 | while (go) { | ||
187 | go = 0; | ||
188 | |||
189 | /* any DMA data to send beforehand? */ | ||
190 | if (pending_event_head->dma_data_length > 0) | ||
191 | HvCallEvent_dmaToSp(pending_event_head->dma_data, | ||
192 | pending_event_head->remote_address, | ||
193 | pending_event_head->dma_data_length, | ||
194 | HvLpDma_Direction_LocalToRemote); | ||
195 | |||
196 | hv_rc = HvCallEvent_signalLpEvent( | ||
197 | &pending_event_head->event.hp_lp_event); | ||
198 | if (hv_rc != HvLpEvent_Rc_Good) { | ||
199 | printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() " | ||
200 | "failed with %d\n", (int)hv_rc); | ||
201 | |||
202 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
203 | ev1 = pending_event_head; | ||
204 | pending_event_head = pending_event_head->next; | ||
205 | if (pending_event_head != NULL) | ||
206 | go = 1; | ||
207 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
208 | |||
209 | if (ev1 == ev) | ||
210 | rc = -EIO; | ||
211 | else if (ev1->hdlr != NULL) | ||
212 | (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO); | ||
213 | |||
214 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
215 | free_pending_event(ev1); | ||
216 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
217 | } | ||
218 | } | ||
219 | |||
220 | return rc; | ||
221 | } | ||
222 | |||
223 | /* | ||
224 | * Allocate a new pending_event structure, and initialize it. | ||
225 | */ | ||
226 | static struct pending_event *new_pending_event(void) | ||
227 | { | ||
228 | struct pending_event *ev = NULL; | ||
229 | HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex(); | ||
230 | unsigned long flags; | ||
231 | struct HvLpEvent *hev; | ||
232 | |||
233 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
234 | if (pending_event_avail != NULL) { | ||
235 | ev = pending_event_avail; | ||
236 | pending_event_avail = pending_event_avail->next; | ||
237 | } | ||
238 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
239 | if (ev == NULL) { | ||
240 | ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC); | ||
241 | if (ev == NULL) { | ||
242 | printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n", | ||
243 | sizeof(struct pending_event)); | ||
244 | return NULL; | ||
245 | } | ||
246 | } | ||
247 | memset(ev, 0, sizeof(struct pending_event)); | ||
248 | hev = &ev->event.hp_lp_event; | ||
249 | hev->xFlags.xValid = 1; | ||
250 | hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck; | ||
251 | hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck; | ||
252 | hev->xFlags.xFunction = HvLpEvent_Function_Int; | ||
253 | hev->xType = HvLpEvent_Type_MachineFac; | ||
254 | hev->xSourceLp = HvLpConfig_getLpIndex(); | ||
255 | hev->xTargetLp = primary_lp; | ||
256 | hev->xSizeMinus1 = sizeof(ev->event) - 1; | ||
257 | hev->xRc = HvLpEvent_Rc_Good; | ||
258 | hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp, | ||
259 | HvLpEvent_Type_MachineFac); | ||
260 | hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp, | ||
261 | HvLpEvent_Type_MachineFac); | ||
262 | |||
263 | return ev; | ||
264 | } | ||
265 | |||
266 | static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd) | ||
267 | { | ||
268 | struct pending_event *ev = new_pending_event(); | ||
269 | int rc; | ||
270 | struct vsp_rsp_data response; | ||
271 | |||
272 | if (ev == NULL) | ||
273 | return -ENOMEM; | ||
274 | |||
275 | init_completion(&response.com); | ||
276 | response.response = vsp_cmd; | ||
277 | ev->event.hp_lp_event.xSubtype = 6; | ||
278 | ev->event.hp_lp_event.x.xSubtypeData = | ||
279 | subtype_data('M', 'F', 'V', 'I'); | ||
280 | ev->event.data.vsp_cmd.token = (u64)&response; | ||
281 | ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd; | ||
282 | ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex(); | ||
283 | ev->event.data.vsp_cmd.result_code = 0xFF; | ||
284 | ev->event.data.vsp_cmd.reserved = 0; | ||
285 | memcpy(&(ev->event.data.vsp_cmd.sub_data), | ||
286 | &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data)); | ||
287 | mb(); | ||
288 | |||
289 | rc = signal_event(ev); | ||
290 | if (rc == 0) | ||
291 | wait_for_completion(&response.com); | ||
292 | return rc; | ||
293 | } | ||
294 | |||
295 | |||
296 | /* | ||
297 | * Send a 12-byte CE message to the primary partition VSP object | ||
298 | */ | ||
299 | static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion) | ||
300 | { | ||
301 | struct pending_event *ev = new_pending_event(); | ||
302 | |||
303 | if (ev == NULL) | ||
304 | return -ENOMEM; | ||
305 | |||
306 | ev->event.hp_lp_event.xSubtype = 0; | ||
307 | ev->event.hp_lp_event.x.xSubtypeData = | ||
308 | subtype_data('M', 'F', 'C', 'E'); | ||
309 | memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12); | ||
310 | ev->event.data.ce_msg.completion = completion; | ||
311 | return signal_event(ev); | ||
312 | } | ||
313 | |||
314 | /* | ||
315 | * Send a 12-byte CE message (with no data) to the primary partition VSP object | ||
316 | */ | ||
317 | static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion) | ||
318 | { | ||
319 | u8 ce_msg[12]; | ||
320 | |||
321 | memset(ce_msg, 0, sizeof(ce_msg)); | ||
322 | ce_msg[3] = ce_op; | ||
323 | return signal_ce_msg(ce_msg, completion); | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | * Send a 12-byte CE message and DMA data to the primary partition VSP object | ||
328 | */ | ||
329 | static int dma_and_signal_ce_msg(char *ce_msg, | ||
330 | struct ce_msg_comp_data *completion, void *dma_data, | ||
331 | unsigned dma_data_length, unsigned remote_address) | ||
332 | { | ||
333 | struct pending_event *ev = new_pending_event(); | ||
334 | |||
335 | if (ev == NULL) | ||
336 | return -ENOMEM; | ||
337 | |||
338 | ev->event.hp_lp_event.xSubtype = 0; | ||
339 | ev->event.hp_lp_event.x.xSubtypeData = | ||
340 | subtype_data('M', 'F', 'C', 'E'); | ||
341 | memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12); | ||
342 | ev->event.data.ce_msg.completion = completion; | ||
343 | memcpy(ev->dma_data, dma_data, dma_data_length); | ||
344 | ev->dma_data_length = dma_data_length; | ||
345 | ev->remote_address = remote_address; | ||
346 | return signal_event(ev); | ||
347 | } | ||
348 | |||
349 | /* | ||
350 | * Initiate a nice (hopefully) shutdown of Linux. We simply are | ||
351 | * going to try and send the init process a SIGINT signal. If | ||
352 | * this fails (why?), we'll simply force it off in a not-so-nice | ||
353 | * manner. | ||
354 | */ | ||
355 | static int shutdown(void) | ||
356 | { | ||
357 | int rc = kill_proc(1, SIGINT, 1); | ||
358 | |||
359 | if (rc) { | ||
360 | printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), " | ||
361 | "hard shutdown commencing\n", rc); | ||
362 | mf_power_off(); | ||
363 | } else | ||
364 | printk(KERN_INFO "mf.c: init has been successfully notified " | ||
365 | "to proceed with shutdown\n"); | ||
366 | return rc; | ||
367 | } | ||
368 | |||
369 | /* | ||
370 | * The primary partition VSP object is sending us a new | ||
371 | * event flow. Handle it... | ||
372 | */ | ||
373 | static void handle_int(struct io_mf_lp_event *event) | ||
374 | { | ||
375 | struct ce_msg_data *ce_msg_data; | ||
376 | struct ce_msg_data *pce_msg_data; | ||
377 | unsigned long flags; | ||
378 | struct pending_event *pev; | ||
379 | |||
380 | /* ack the interrupt */ | ||
381 | event->hp_lp_event.xRc = HvLpEvent_Rc_Good; | ||
382 | HvCallEvent_ackLpEvent(&event->hp_lp_event); | ||
383 | |||
384 | /* process interrupt */ | ||
385 | switch (event->hp_lp_event.xSubtype) { | ||
386 | case 0: /* CE message */ | ||
387 | ce_msg_data = &event->data.ce_msg; | ||
388 | switch (ce_msg_data->ce_msg[3]) { | ||
389 | case 0x5B: /* power control notification */ | ||
390 | if ((ce_msg_data->ce_msg[5] & 0x20) != 0) { | ||
391 | printk(KERN_INFO "mf.c: Commencing partition shutdown\n"); | ||
392 | if (shutdown() == 0) | ||
393 | signal_ce_msg_simple(0xDB, NULL); | ||
394 | } | ||
395 | break; | ||
396 | case 0xC0: /* get time */ | ||
397 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
398 | pev = pending_event_head; | ||
399 | if (pev != NULL) | ||
400 | pending_event_head = pending_event_head->next; | ||
401 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
402 | if (pev == NULL) | ||
403 | break; | ||
404 | pce_msg_data = &pev->event.data.ce_msg; | ||
405 | if (pce_msg_data->ce_msg[3] != 0x40) | ||
406 | break; | ||
407 | if (pce_msg_data->completion != NULL) { | ||
408 | ce_msg_comp_hdlr handler = | ||
409 | pce_msg_data->completion->handler; | ||
410 | void *token = pce_msg_data->completion->token; | ||
411 | |||
412 | if (handler != NULL) | ||
413 | (*handler)(token, ce_msg_data); | ||
414 | } | ||
415 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
416 | free_pending_event(pev); | ||
417 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
418 | /* send next waiting event */ | ||
419 | if (pending_event_head != NULL) | ||
420 | signal_event(NULL); | ||
421 | break; | ||
422 | } | ||
423 | break; | ||
424 | case 1: /* IT sys shutdown */ | ||
425 | printk(KERN_INFO "mf.c: Commencing system shutdown\n"); | ||
426 | shutdown(); | ||
427 | break; | ||
428 | } | ||
429 | } | ||
430 | |||
431 | /* | ||
432 | * The primary partition VSP object is acknowledging the receipt | ||
433 | * of a flow we sent to them. If there are other flows queued | ||
434 | * up, we must send another one now... | ||
435 | */ | ||
436 | static void handle_ack(struct io_mf_lp_event *event) | ||
437 | { | ||
438 | unsigned long flags; | ||
439 | struct pending_event *two = NULL; | ||
440 | unsigned long free_it = 0; | ||
441 | struct ce_msg_data *ce_msg_data; | ||
442 | struct ce_msg_data *pce_msg_data; | ||
443 | struct vsp_rsp_data *rsp; | ||
444 | |||
445 | /* handle current event */ | ||
446 | if (pending_event_head == NULL) { | ||
447 | printk(KERN_ERR "mf.c: stack empty for receiving ack\n"); | ||
448 | return; | ||
449 | } | ||
450 | |||
451 | switch (event->hp_lp_event.xSubtype) { | ||
452 | case 0: /* CE msg */ | ||
453 | ce_msg_data = &event->data.ce_msg; | ||
454 | if (ce_msg_data->ce_msg[3] != 0x40) { | ||
455 | free_it = 1; | ||
456 | break; | ||
457 | } | ||
458 | if (ce_msg_data->ce_msg[2] == 0) | ||
459 | break; | ||
460 | free_it = 1; | ||
461 | pce_msg_data = &pending_event_head->event.data.ce_msg; | ||
462 | if (pce_msg_data->completion != NULL) { | ||
463 | ce_msg_comp_hdlr handler = | ||
464 | pce_msg_data->completion->handler; | ||
465 | void *token = pce_msg_data->completion->token; | ||
466 | |||
467 | if (handler != NULL) | ||
468 | (*handler)(token, ce_msg_data); | ||
469 | } | ||
470 | break; | ||
471 | case 4: /* allocate */ | ||
472 | case 5: /* deallocate */ | ||
473 | if (pending_event_head->hdlr != NULL) | ||
474 | (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count); | ||
475 | free_it = 1; | ||
476 | break; | ||
477 | case 6: | ||
478 | free_it = 1; | ||
479 | rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token; | ||
480 | if (rsp == NULL) { | ||
481 | printk(KERN_ERR "mf.c: no rsp\n"); | ||
482 | break; | ||
483 | } | ||
484 | if (rsp->response != NULL) | ||
485 | memcpy(rsp->response, &event->data.vsp_cmd, | ||
486 | sizeof(event->data.vsp_cmd)); | ||
487 | complete(&rsp->com); | ||
488 | break; | ||
489 | } | ||
490 | |||
491 | /* remove from queue */ | ||
492 | spin_lock_irqsave(&pending_event_spinlock, flags); | ||
493 | if ((pending_event_head != NULL) && (free_it == 1)) { | ||
494 | struct pending_event *oldHead = pending_event_head; | ||
495 | |||
496 | pending_event_head = pending_event_head->next; | ||
497 | two = pending_event_head; | ||
498 | free_pending_event(oldHead); | ||
499 | } | ||
500 | spin_unlock_irqrestore(&pending_event_spinlock, flags); | ||
501 | |||
502 | /* send next waiting event */ | ||
503 | if (two != NULL) | ||
504 | signal_event(NULL); | ||
505 | } | ||
506 | |||
507 | /* | ||
508 | * This is the generic event handler we are registering with | ||
509 | * the Hypervisor. Ensure the flows are for us, and then | ||
510 | * parse it enough to know if it is an interrupt or an | ||
511 | * acknowledge. | ||
512 | */ | ||
513 | static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs) | ||
514 | { | ||
515 | if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) { | ||
516 | switch(event->xFlags.xFunction) { | ||
517 | case HvLpEvent_Function_Ack: | ||
518 | handle_ack((struct io_mf_lp_event *)event); | ||
519 | break; | ||
520 | case HvLpEvent_Function_Int: | ||
521 | handle_int((struct io_mf_lp_event *)event); | ||
522 | break; | ||
523 | default: | ||
524 | printk(KERN_ERR "mf.c: non ack/int event received\n"); | ||
525 | break; | ||
526 | } | ||
527 | } else | ||
528 | printk(KERN_ERR "mf.c: alien event received\n"); | ||
529 | } | ||
530 | |||
531 | /* | ||
532 | * Global kernel interface to allocate and seed events into the | ||
533 | * Hypervisor. | ||
534 | */ | ||
535 | void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type, | ||
536 | unsigned size, unsigned count, MFCompleteHandler hdlr, | ||
537 | void *user_token) | ||
538 | { | ||
539 | struct pending_event *ev = new_pending_event(); | ||
540 | int rc; | ||
541 | |||
542 | if (ev == NULL) { | ||
543 | rc = -ENOMEM; | ||
544 | } else { | ||
545 | ev->event.hp_lp_event.xSubtype = 4; | ||
546 | ev->event.hp_lp_event.xCorrelationToken = (u64)user_token; | ||
547 | ev->event.hp_lp_event.x.xSubtypeData = | ||
548 | subtype_data('M', 'F', 'M', 'A'); | ||
549 | ev->event.data.alloc.target_lp = target_lp; | ||
550 | ev->event.data.alloc.type = type; | ||
551 | ev->event.data.alloc.size = size; | ||
552 | ev->event.data.alloc.count = count; | ||
553 | ev->hdlr = hdlr; | ||
554 | rc = signal_event(ev); | ||
555 | } | ||
556 | if ((rc != 0) && (hdlr != NULL)) | ||
557 | (*hdlr)(user_token, rc); | ||
558 | } | ||
559 | EXPORT_SYMBOL(mf_allocate_lp_events); | ||
560 | |||
561 | /* | ||
562 | * Global kernel interface to unseed and deallocate events already in | ||
563 | * Hypervisor. | ||
564 | */ | ||
565 | void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type, | ||
566 | unsigned count, MFCompleteHandler hdlr, void *user_token) | ||
567 | { | ||
568 | struct pending_event *ev = new_pending_event(); | ||
569 | int rc; | ||
570 | |||
571 | if (ev == NULL) | ||
572 | rc = -ENOMEM; | ||
573 | else { | ||
574 | ev->event.hp_lp_event.xSubtype = 5; | ||
575 | ev->event.hp_lp_event.xCorrelationToken = (u64)user_token; | ||
576 | ev->event.hp_lp_event.x.xSubtypeData = | ||
577 | subtype_data('M', 'F', 'M', 'D'); | ||
578 | ev->event.data.alloc.target_lp = target_lp; | ||
579 | ev->event.data.alloc.type = type; | ||
580 | ev->event.data.alloc.count = count; | ||
581 | ev->hdlr = hdlr; | ||
582 | rc = signal_event(ev); | ||
583 | } | ||
584 | if ((rc != 0) && (hdlr != NULL)) | ||
585 | (*hdlr)(user_token, rc); | ||
586 | } | ||
587 | EXPORT_SYMBOL(mf_deallocate_lp_events); | ||
588 | |||
589 | /* | ||
590 | * Global kernel interface to tell the VSP object in the primary | ||
591 | * partition to power this partition off. | ||
592 | */ | ||
593 | void mf_power_off(void) | ||
594 | { | ||
595 | printk(KERN_INFO "mf.c: Down it goes...\n"); | ||
596 | signal_ce_msg_simple(0x4d, NULL); | ||
597 | for (;;) | ||
598 | ; | ||
599 | } | ||
600 | |||
601 | /* | ||
602 | * Global kernel interface to tell the VSP object in the primary | ||
603 | * partition to reboot this partition. | ||
604 | */ | ||
605 | void mf_reboot(void) | ||
606 | { | ||
607 | printk(KERN_INFO "mf.c: Preparing to bounce...\n"); | ||
608 | signal_ce_msg_simple(0x4e, NULL); | ||
609 | for (;;) | ||
610 | ; | ||
611 | } | ||
612 | |||
613 | /* | ||
614 | * Display a single word SRC onto the VSP control panel. | ||
615 | */ | ||
616 | void mf_display_src(u32 word) | ||
617 | { | ||
618 | u8 ce[12]; | ||
619 | |||
620 | memset(ce, 0, sizeof(ce)); | ||
621 | ce[3] = 0x4a; | ||
622 | ce[7] = 0x01; | ||
623 | ce[8] = word >> 24; | ||
624 | ce[9] = word >> 16; | ||
625 | ce[10] = word >> 8; | ||
626 | ce[11] = word; | ||
627 | signal_ce_msg(ce, NULL); | ||
628 | } | ||
629 | |||
630 | /* | ||
631 | * Display a single word SRC of the form "PROGXXXX" on the VSP control panel. | ||
632 | */ | ||
633 | void mf_display_progress(u16 value) | ||
634 | { | ||
635 | u8 ce[12]; | ||
636 | u8 src[72]; | ||
637 | |||
638 | memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12); | ||
639 | memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" | ||
640 | "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" | ||
641 | "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" | ||
642 | "\x00\x00\x00\x00PROGxxxx ", | ||
643 | 72); | ||
644 | src[6] = value >> 8; | ||
645 | src[7] = value & 255; | ||
646 | src[44] = "0123456789ABCDEF"[(value >> 12) & 15]; | ||
647 | src[45] = "0123456789ABCDEF"[(value >> 8) & 15]; | ||
648 | src[46] = "0123456789ABCDEF"[(value >> 4) & 15]; | ||
649 | src[47] = "0123456789ABCDEF"[value & 15]; | ||
650 | dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024); | ||
651 | } | ||
652 | |||
653 | /* | ||
654 | * Clear the VSP control panel. Used to "erase" an SRC that was | ||
655 | * previously displayed. | ||
656 | */ | ||
657 | void mf_clear_src(void) | ||
658 | { | ||
659 | signal_ce_msg_simple(0x4b, NULL); | ||
660 | } | ||
661 | |||
662 | /* | ||
663 | * Initialization code here. | ||
664 | */ | ||
665 | void mf_init(void) | ||
666 | { | ||
667 | int i; | ||
668 | |||
669 | /* initialize */ | ||
670 | spin_lock_init(&pending_event_spinlock); | ||
671 | for (i = 0; | ||
672 | i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc); | ||
673 | ++i) | ||
674 | free_pending_event(&pending_event_prealloc[i]); | ||
675 | HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler); | ||
676 | |||
677 | /* virtual continue ack */ | ||
678 | signal_ce_msg_simple(0x57, NULL); | ||
679 | |||
680 | /* initialization complete */ | ||
681 | printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities " | ||
682 | "initialized\n"); | ||
683 | } | ||
684 | |||
685 | struct rtc_time_data { | ||
686 | struct completion com; | ||
687 | struct ce_msg_data ce_msg; | ||
688 | int rc; | ||
689 | }; | ||
690 | |||
691 | static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg) | ||
692 | { | ||
693 | struct rtc_time_data *rtc = token; | ||
694 | |||
695 | memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg)); | ||
696 | rtc->rc = 0; | ||
697 | complete(&rtc->com); | ||
698 | } | ||
699 | |||
700 | static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm) | ||
701 | { | ||
702 | tm->tm_wday = 0; | ||
703 | tm->tm_yday = 0; | ||
704 | tm->tm_isdst = 0; | ||
705 | if (rc) { | ||
706 | tm->tm_sec = 0; | ||
707 | tm->tm_min = 0; | ||
708 | tm->tm_hour = 0; | ||
709 | tm->tm_mday = 15; | ||
710 | tm->tm_mon = 5; | ||
711 | tm->tm_year = 52; | ||
712 | return rc; | ||
713 | } | ||
714 | |||
715 | if ((ce_msg[2] == 0xa9) || | ||
716 | (ce_msg[2] == 0xaf)) { | ||
717 | /* TOD clock is not set */ | ||
718 | tm->tm_sec = 1; | ||
719 | tm->tm_min = 1; | ||
720 | tm->tm_hour = 1; | ||
721 | tm->tm_mday = 10; | ||
722 | tm->tm_mon = 8; | ||
723 | tm->tm_year = 71; | ||
724 | mf_set_rtc(tm); | ||
725 | } | ||
726 | { | ||
727 | u8 year = ce_msg[5]; | ||
728 | u8 sec = ce_msg[6]; | ||
729 | u8 min = ce_msg[7]; | ||
730 | u8 hour = ce_msg[8]; | ||
731 | u8 day = ce_msg[10]; | ||
732 | u8 mon = ce_msg[11]; | ||
733 | |||
734 | BCD_TO_BIN(sec); | ||
735 | BCD_TO_BIN(min); | ||
736 | BCD_TO_BIN(hour); | ||
737 | BCD_TO_BIN(day); | ||
738 | BCD_TO_BIN(mon); | ||
739 | BCD_TO_BIN(year); | ||
740 | |||
741 | if (year <= 69) | ||
742 | year += 100; | ||
743 | |||
744 | tm->tm_sec = sec; | ||
745 | tm->tm_min = min; | ||
746 | tm->tm_hour = hour; | ||
747 | tm->tm_mday = day; | ||
748 | tm->tm_mon = mon; | ||
749 | tm->tm_year = year; | ||
750 | } | ||
751 | |||
752 | return 0; | ||
753 | } | ||
754 | |||
755 | int mf_get_rtc(struct rtc_time *tm) | ||
756 | { | ||
757 | struct ce_msg_comp_data ce_complete; | ||
758 | struct rtc_time_data rtc_data; | ||
759 | int rc; | ||
760 | |||
761 | memset(&ce_complete, 0, sizeof(ce_complete)); | ||
762 | memset(&rtc_data, 0, sizeof(rtc_data)); | ||
763 | init_completion(&rtc_data.com); | ||
764 | ce_complete.handler = &get_rtc_time_complete; | ||
765 | ce_complete.token = &rtc_data; | ||
766 | rc = signal_ce_msg_simple(0x40, &ce_complete); | ||
767 | if (rc) | ||
768 | return rc; | ||
769 | wait_for_completion(&rtc_data.com); | ||
770 | return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm); | ||
771 | } | ||
772 | |||
773 | struct boot_rtc_time_data { | ||
774 | int busy; | ||
775 | struct ce_msg_data ce_msg; | ||
776 | int rc; | ||
777 | }; | ||
778 | |||
779 | static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg) | ||
780 | { | ||
781 | struct boot_rtc_time_data *rtc = token; | ||
782 | |||
783 | memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg)); | ||
784 | rtc->rc = 0; | ||
785 | rtc->busy = 0; | ||
786 | } | ||
787 | |||
788 | int mf_get_boot_rtc(struct rtc_time *tm) | ||
789 | { | ||
790 | struct ce_msg_comp_data ce_complete; | ||
791 | struct boot_rtc_time_data rtc_data; | ||
792 | int rc; | ||
793 | |||
794 | memset(&ce_complete, 0, sizeof(ce_complete)); | ||
795 | memset(&rtc_data, 0, sizeof(rtc_data)); | ||
796 | rtc_data.busy = 1; | ||
797 | ce_complete.handler = &get_boot_rtc_time_complete; | ||
798 | ce_complete.token = &rtc_data; | ||
799 | rc = signal_ce_msg_simple(0x40, &ce_complete); | ||
800 | if (rc) | ||
801 | return rc; | ||
802 | /* We need to poll here as we are not yet taking interrupts */ | ||
803 | while (rtc_data.busy) { | ||
804 | if (hvlpevent_is_pending()) | ||
805 | process_hvlpevents(NULL); | ||
806 | } | ||
807 | return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm); | ||
808 | } | ||
809 | |||
810 | int mf_set_rtc(struct rtc_time *tm) | ||
811 | { | ||
812 | char ce_time[12]; | ||
813 | u8 day, mon, hour, min, sec, y1, y2; | ||
814 | unsigned year; | ||
815 | |||
816 | year = 1900 + tm->tm_year; | ||
817 | y1 = year / 100; | ||
818 | y2 = year % 100; | ||
819 | |||
820 | sec = tm->tm_sec; | ||
821 | min = tm->tm_min; | ||
822 | hour = tm->tm_hour; | ||
823 | day = tm->tm_mday; | ||
824 | mon = tm->tm_mon + 1; | ||
825 | |||
826 | BIN_TO_BCD(sec); | ||
827 | BIN_TO_BCD(min); | ||
828 | BIN_TO_BCD(hour); | ||
829 | BIN_TO_BCD(mon); | ||
830 | BIN_TO_BCD(day); | ||
831 | BIN_TO_BCD(y1); | ||
832 | BIN_TO_BCD(y2); | ||
833 | |||
834 | memset(ce_time, 0, sizeof(ce_time)); | ||
835 | ce_time[3] = 0x41; | ||
836 | ce_time[4] = y1; | ||
837 | ce_time[5] = y2; | ||
838 | ce_time[6] = sec; | ||
839 | ce_time[7] = min; | ||
840 | ce_time[8] = hour; | ||
841 | ce_time[10] = day; | ||
842 | ce_time[11] = mon; | ||
843 | |||
844 | return signal_ce_msg(ce_time, NULL); | ||
845 | } | ||
846 | |||
847 | #ifdef CONFIG_PROC_FS | ||
848 | |||
849 | static int proc_mf_dump_cmdline(char *page, char **start, off_t off, | ||
850 | int count, int *eof, void *data) | ||
851 | { | ||
852 | int len; | ||
853 | char *p; | ||
854 | struct vsp_cmd_data vsp_cmd; | ||
855 | int rc; | ||
856 | dma_addr_t dma_addr; | ||
857 | |||
858 | /* The HV appears to return no more than 256 bytes of command line */ | ||
859 | if (off >= 256) | ||
860 | return 0; | ||
861 | if ((off + count) > 256) | ||
862 | count = 256 - off; | ||
863 | |||
864 | dma_addr = dma_map_single(iSeries_vio_dev, page, off + count, | ||
865 | DMA_FROM_DEVICE); | ||
866 | if (dma_mapping_error(dma_addr)) | ||
867 | return -ENOMEM; | ||
868 | memset(page, 0, off + count); | ||
869 | memset(&vsp_cmd, 0, sizeof(vsp_cmd)); | ||
870 | vsp_cmd.cmd = 33; | ||
871 | vsp_cmd.sub_data.kern.token = dma_addr; | ||
872 | vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; | ||
873 | vsp_cmd.sub_data.kern.side = (u64)data; | ||
874 | vsp_cmd.sub_data.kern.length = off + count; | ||
875 | mb(); | ||
876 | rc = signal_vsp_instruction(&vsp_cmd); | ||
877 | dma_unmap_single(iSeries_vio_dev, dma_addr, off + count, | ||
878 | DMA_FROM_DEVICE); | ||
879 | if (rc) | ||
880 | return rc; | ||
881 | if (vsp_cmd.result_code != 0) | ||
882 | return -ENOMEM; | ||
883 | p = page; | ||
884 | len = 0; | ||
885 | while (len < (off + count)) { | ||
886 | if ((*p == '\0') || (*p == '\n')) { | ||
887 | if (*p == '\0') | ||
888 | *p = '\n'; | ||
889 | p++; | ||
890 | len++; | ||
891 | *eof = 1; | ||
892 | break; | ||
893 | } | ||
894 | p++; | ||
895 | len++; | ||
896 | } | ||
897 | |||
898 | if (len < off) { | ||
899 | *eof = 1; | ||
900 | len = 0; | ||
901 | } | ||
902 | return len; | ||
903 | } | ||
904 | |||
905 | #if 0 | ||
906 | static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side) | ||
907 | { | ||
908 | struct vsp_cmd_data vsp_cmd; | ||
909 | int rc; | ||
910 | int len = *size; | ||
911 | dma_addr_t dma_addr; | ||
912 | |||
913 | dma_addr = dma_map_single(iSeries_vio_dev, buffer, len, | ||
914 | DMA_FROM_DEVICE); | ||
915 | memset(buffer, 0, len); | ||
916 | memset(&vsp_cmd, 0, sizeof(vsp_cmd)); | ||
917 | vsp_cmd.cmd = 32; | ||
918 | vsp_cmd.sub_data.kern.token = dma_addr; | ||
919 | vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; | ||
920 | vsp_cmd.sub_data.kern.side = side; | ||
921 | vsp_cmd.sub_data.kern.offset = offset; | ||
922 | vsp_cmd.sub_data.kern.length = len; | ||
923 | mb(); | ||
924 | rc = signal_vsp_instruction(&vsp_cmd); | ||
925 | if (rc == 0) { | ||
926 | if (vsp_cmd.result_code == 0) | ||
927 | *size = vsp_cmd.sub_data.length_out; | ||
928 | else | ||
929 | rc = -ENOMEM; | ||
930 | } | ||
931 | |||
932 | dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE); | ||
933 | |||
934 | return rc; | ||
935 | } | ||
936 | |||
937 | static int proc_mf_dump_vmlinux(char *page, char **start, off_t off, | ||
938 | int count, int *eof, void *data) | ||
939 | { | ||
940 | int sizeToGet = count; | ||
941 | |||
942 | if (!capable(CAP_SYS_ADMIN)) | ||
943 | return -EACCES; | ||
944 | |||
945 | if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) { | ||
946 | if (sizeToGet != 0) { | ||
947 | *start = page + off; | ||
948 | return sizeToGet; | ||
949 | } | ||
950 | *eof = 1; | ||
951 | return 0; | ||
952 | } | ||
953 | *eof = 1; | ||
954 | return 0; | ||
955 | } | ||
956 | #endif | ||
957 | |||
958 | static int proc_mf_dump_side(char *page, char **start, off_t off, | ||
959 | int count, int *eof, void *data) | ||
960 | { | ||
961 | int len; | ||
962 | char mf_current_side = ' '; | ||
963 | struct vsp_cmd_data vsp_cmd; | ||
964 | |||
965 | memset(&vsp_cmd, 0, sizeof(vsp_cmd)); | ||
966 | vsp_cmd.cmd = 2; | ||
967 | vsp_cmd.sub_data.ipl_type = 0; | ||
968 | mb(); | ||
969 | |||
970 | if (signal_vsp_instruction(&vsp_cmd) == 0) { | ||
971 | if (vsp_cmd.result_code == 0) { | ||
972 | switch (vsp_cmd.sub_data.ipl_type) { | ||
973 | case 0: mf_current_side = 'A'; | ||
974 | break; | ||
975 | case 1: mf_current_side = 'B'; | ||
976 | break; | ||
977 | case 2: mf_current_side = 'C'; | ||
978 | break; | ||
979 | default: mf_current_side = 'D'; | ||
980 | break; | ||
981 | } | ||
982 | } | ||
983 | } | ||
984 | |||
985 | len = sprintf(page, "%c\n", mf_current_side); | ||
986 | |||
987 | if (len <= (off + count)) | ||
988 | *eof = 1; | ||
989 | *start = page + off; | ||
990 | len -= off; | ||
991 | if (len > count) | ||
992 | len = count; | ||
993 | if (len < 0) | ||
994 | len = 0; | ||
995 | return len; | ||
996 | } | ||
997 | |||
998 | static int proc_mf_change_side(struct file *file, const char __user *buffer, | ||
999 | unsigned long count, void *data) | ||
1000 | { | ||
1001 | char side; | ||
1002 | u64 newSide; | ||
1003 | struct vsp_cmd_data vsp_cmd; | ||
1004 | |||
1005 | if (!capable(CAP_SYS_ADMIN)) | ||
1006 | return -EACCES; | ||
1007 | |||
1008 | if (count == 0) | ||
1009 | return 0; | ||
1010 | |||
1011 | if (get_user(side, buffer)) | ||
1012 | return -EFAULT; | ||
1013 | |||
1014 | switch (side) { | ||
1015 | case 'A': newSide = 0; | ||
1016 | break; | ||
1017 | case 'B': newSide = 1; | ||
1018 | break; | ||
1019 | case 'C': newSide = 2; | ||
1020 | break; | ||
1021 | case 'D': newSide = 3; | ||
1022 | break; | ||
1023 | default: | ||
1024 | printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n"); | ||
1025 | return -EINVAL; | ||
1026 | } | ||
1027 | |||
1028 | memset(&vsp_cmd, 0, sizeof(vsp_cmd)); | ||
1029 | vsp_cmd.sub_data.ipl_type = newSide; | ||
1030 | vsp_cmd.cmd = 10; | ||
1031 | |||
1032 | (void)signal_vsp_instruction(&vsp_cmd); | ||
1033 | |||
1034 | return count; | ||
1035 | } | ||
1036 | |||
1037 | #if 0 | ||
1038 | static void mf_getSrcHistory(char *buffer, int size) | ||
1039 | { | ||
1040 | struct IplTypeReturnStuff return_stuff; | ||
1041 | struct pending_event *ev = new_pending_event(); | ||
1042 | int rc = 0; | ||
1043 | char *pages[4]; | ||
1044 | |||
1045 | pages[0] = kmalloc(4096, GFP_ATOMIC); | ||
1046 | pages[1] = kmalloc(4096, GFP_ATOMIC); | ||
1047 | pages[2] = kmalloc(4096, GFP_ATOMIC); | ||
1048 | pages[3] = kmalloc(4096, GFP_ATOMIC); | ||
1049 | if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL) | ||
1050 | || (pages[2] == NULL) || (pages[3] == NULL)) | ||
1051 | return -ENOMEM; | ||
1052 | |||
1053 | return_stuff.xType = 0; | ||
1054 | return_stuff.xRc = 0; | ||
1055 | return_stuff.xDone = 0; | ||
1056 | ev->event.hp_lp_event.xSubtype = 6; | ||
1057 | ev->event.hp_lp_event.x.xSubtypeData = | ||
1058 | subtype_data('M', 'F', 'V', 'I'); | ||
1059 | ev->event.data.vsp_cmd.xEvent = &return_stuff; | ||
1060 | ev->event.data.vsp_cmd.cmd = 4; | ||
1061 | ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex(); | ||
1062 | ev->event.data.vsp_cmd.result_code = 0xFF; | ||
1063 | ev->event.data.vsp_cmd.reserved = 0; | ||
1064 | ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]); | ||
1065 | ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]); | ||
1066 | ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]); | ||
1067 | ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]); | ||
1068 | mb(); | ||
1069 | if (signal_event(ev) != 0) | ||
1070 | return; | ||
1071 | |||
1072 | while (return_stuff.xDone != 1) | ||
1073 | udelay(10); | ||
1074 | if (return_stuff.xRc == 0) | ||
1075 | memcpy(buffer, pages[0], size); | ||
1076 | kfree(pages[0]); | ||
1077 | kfree(pages[1]); | ||
1078 | kfree(pages[2]); | ||
1079 | kfree(pages[3]); | ||
1080 | } | ||
1081 | #endif | ||
1082 | |||
1083 | static int proc_mf_dump_src(char *page, char **start, off_t off, | ||
1084 | int count, int *eof, void *data) | ||
1085 | { | ||
1086 | #if 0 | ||
1087 | int len; | ||
1088 | |||
1089 | mf_getSrcHistory(page, count); | ||
1090 | len = count; | ||
1091 | len -= off; | ||
1092 | if (len < count) { | ||
1093 | *eof = 1; | ||
1094 | if (len <= 0) | ||
1095 | return 0; | ||
1096 | } else | ||
1097 | len = count; | ||
1098 | *start = page + off; | ||
1099 | return len; | ||
1100 | #else | ||
1101 | return 0; | ||
1102 | #endif | ||
1103 | } | ||
1104 | |||
1105 | static int proc_mf_change_src(struct file *file, const char __user *buffer, | ||
1106 | unsigned long count, void *data) | ||
1107 | { | ||
1108 | char stkbuf[10]; | ||
1109 | |||
1110 | if (!capable(CAP_SYS_ADMIN)) | ||
1111 | return -EACCES; | ||
1112 | |||
1113 | if ((count < 4) && (count != 1)) { | ||
1114 | printk(KERN_ERR "mf_proc: invalid src\n"); | ||
1115 | return -EINVAL; | ||
1116 | } | ||
1117 | |||
1118 | if (count > (sizeof(stkbuf) - 1)) | ||
1119 | count = sizeof(stkbuf) - 1; | ||
1120 | if (copy_from_user(stkbuf, buffer, count)) | ||
1121 | return -EFAULT; | ||
1122 | |||
1123 | if ((count == 1) && (*stkbuf == '\0')) | ||
1124 | mf_clear_src(); | ||
1125 | else | ||
1126 | mf_display_src(*(u32 *)stkbuf); | ||
1127 | |||
1128 | return count; | ||
1129 | } | ||
1130 | |||
1131 | static int proc_mf_change_cmdline(struct file *file, const char __user *buffer, | ||
1132 | unsigned long count, void *data) | ||
1133 | { | ||
1134 | struct vsp_cmd_data vsp_cmd; | ||
1135 | dma_addr_t dma_addr; | ||
1136 | char *page; | ||
1137 | int ret = -EACCES; | ||
1138 | |||
1139 | if (!capable(CAP_SYS_ADMIN)) | ||
1140 | goto out; | ||
1141 | |||
1142 | dma_addr = 0; | ||
1143 | page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr, | ||
1144 | GFP_ATOMIC); | ||
1145 | ret = -ENOMEM; | ||
1146 | if (page == NULL) | ||
1147 | goto out; | ||
1148 | |||
1149 | ret = -EFAULT; | ||
1150 | if (copy_from_user(page, buffer, count)) | ||
1151 | goto out_free; | ||
1152 | |||
1153 | memset(&vsp_cmd, 0, sizeof(vsp_cmd)); | ||
1154 | vsp_cmd.cmd = 31; | ||
1155 | vsp_cmd.sub_data.kern.token = dma_addr; | ||
1156 | vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; | ||
1157 | vsp_cmd.sub_data.kern.side = (u64)data; | ||
1158 | vsp_cmd.sub_data.kern.length = count; | ||
1159 | mb(); | ||
1160 | (void)signal_vsp_instruction(&vsp_cmd); | ||
1161 | ret = count; | ||
1162 | |||
1163 | out_free: | ||
1164 | dma_free_coherent(iSeries_vio_dev, count, page, dma_addr); | ||
1165 | out: | ||
1166 | return ret; | ||
1167 | } | ||
1168 | |||
1169 | static ssize_t proc_mf_change_vmlinux(struct file *file, | ||
1170 | const char __user *buf, | ||
1171 | size_t count, loff_t *ppos) | ||
1172 | { | ||
1173 | struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode); | ||
1174 | ssize_t rc; | ||
1175 | dma_addr_t dma_addr; | ||
1176 | char *page; | ||
1177 | struct vsp_cmd_data vsp_cmd; | ||
1178 | |||
1179 | rc = -EACCES; | ||
1180 | if (!capable(CAP_SYS_ADMIN)) | ||
1181 | goto out; | ||
1182 | |||
1183 | dma_addr = 0; | ||
1184 | page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr, | ||
1185 | GFP_ATOMIC); | ||
1186 | rc = -ENOMEM; | ||
1187 | if (page == NULL) { | ||
1188 | printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n"); | ||
1189 | goto out; | ||
1190 | } | ||
1191 | rc = -EFAULT; | ||
1192 | if (copy_from_user(page, buf, count)) | ||
1193 | goto out_free; | ||
1194 | |||
1195 | memset(&vsp_cmd, 0, sizeof(vsp_cmd)); | ||
1196 | vsp_cmd.cmd = 30; | ||
1197 | vsp_cmd.sub_data.kern.token = dma_addr; | ||
1198 | vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; | ||
1199 | vsp_cmd.sub_data.kern.side = (u64)dp->data; | ||
1200 | vsp_cmd.sub_data.kern.offset = *ppos; | ||
1201 | vsp_cmd.sub_data.kern.length = count; | ||
1202 | mb(); | ||
1203 | rc = signal_vsp_instruction(&vsp_cmd); | ||
1204 | if (rc) | ||
1205 | goto out_free; | ||
1206 | rc = -ENOMEM; | ||
1207 | if (vsp_cmd.result_code != 0) | ||
1208 | goto out_free; | ||
1209 | |||
1210 | *ppos += count; | ||
1211 | rc = count; | ||
1212 | out_free: | ||
1213 | dma_free_coherent(iSeries_vio_dev, count, page, dma_addr); | ||
1214 | out: | ||
1215 | return rc; | ||
1216 | } | ||
1217 | |||
1218 | static struct file_operations proc_vmlinux_operations = { | ||
1219 | .write = proc_mf_change_vmlinux, | ||
1220 | }; | ||
1221 | |||
1222 | static int __init mf_proc_init(void) | ||
1223 | { | ||
1224 | struct proc_dir_entry *mf_proc_root; | ||
1225 | struct proc_dir_entry *ent; | ||
1226 | struct proc_dir_entry *mf; | ||
1227 | char name[2]; | ||
1228 | int i; | ||
1229 | |||
1230 | mf_proc_root = proc_mkdir("iSeries/mf", NULL); | ||
1231 | if (!mf_proc_root) | ||
1232 | return 1; | ||
1233 | |||
1234 | name[1] = '\0'; | ||
1235 | for (i = 0; i < 4; i++) { | ||
1236 | name[0] = 'A' + i; | ||
1237 | mf = proc_mkdir(name, mf_proc_root); | ||
1238 | if (!mf) | ||
1239 | return 1; | ||
1240 | |||
1241 | ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf); | ||
1242 | if (!ent) | ||
1243 | return 1; | ||
1244 | ent->nlink = 1; | ||
1245 | ent->data = (void *)(long)i; | ||
1246 | ent->read_proc = proc_mf_dump_cmdline; | ||
1247 | ent->write_proc = proc_mf_change_cmdline; | ||
1248 | |||
1249 | if (i == 3) /* no vmlinux entry for 'D' */ | ||
1250 | continue; | ||
1251 | |||
1252 | ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf); | ||
1253 | if (!ent) | ||
1254 | return 1; | ||
1255 | ent->nlink = 1; | ||
1256 | ent->data = (void *)(long)i; | ||
1257 | ent->proc_fops = &proc_vmlinux_operations; | ||
1258 | } | ||
1259 | |||
1260 | ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root); | ||
1261 | if (!ent) | ||
1262 | return 1; | ||
1263 | ent->nlink = 1; | ||
1264 | ent->data = (void *)0; | ||
1265 | ent->read_proc = proc_mf_dump_side; | ||
1266 | ent->write_proc = proc_mf_change_side; | ||
1267 | |||
1268 | ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root); | ||
1269 | if (!ent) | ||
1270 | return 1; | ||
1271 | ent->nlink = 1; | ||
1272 | ent->data = (void *)0; | ||
1273 | ent->read_proc = proc_mf_dump_src; | ||
1274 | ent->write_proc = proc_mf_change_src; | ||
1275 | |||
1276 | return 0; | ||
1277 | } | ||
1278 | |||
1279 | __initcall(mf_proc_init); | ||
1280 | |||
1281 | #endif /* CONFIG_PROC_FS */ | ||
diff --git a/arch/ppc64/kernel/rtc.c b/arch/ppc64/kernel/rtc.c index 6ff52bc61325..88ae13f81c46 100644 --- a/arch/ppc64/kernel/rtc.c +++ b/arch/ppc64/kernel/rtc.c | |||
@@ -43,11 +43,8 @@ | |||
43 | #include <asm/time.h> | 43 | #include <asm/time.h> |
44 | #include <asm/rtas.h> | 44 | #include <asm/rtas.h> |
45 | 45 | ||
46 | #include <asm/iSeries/mf.h> | ||
47 | #include <asm/machdep.h> | 46 | #include <asm/machdep.h> |
48 | 47 | ||
49 | extern int piranha_simulator; | ||
50 | |||
51 | /* | 48 | /* |
52 | * We sponge a minor off of the misc major. No need slurping | 49 | * We sponge a minor off of the misc major. No need slurping |
53 | * up another valuable major dev number for this. If you add | 50 | * up another valuable major dev number for this. If you add |
@@ -265,40 +262,6 @@ static int rtc_read_proc(char *page, char **start, off_t off, | |||
265 | return len; | 262 | return len; |
266 | } | 263 | } |
267 | 264 | ||
268 | #ifdef CONFIG_PPC_ISERIES | ||
269 | /* | ||
270 | * Get the RTC from the virtual service processor | ||
271 | * This requires flowing LpEvents to the primary partition | ||
272 | */ | ||
273 | void iSeries_get_rtc_time(struct rtc_time *rtc_tm) | ||
274 | { | ||
275 | if (piranha_simulator) | ||
276 | return; | ||
277 | |||
278 | mf_get_rtc(rtc_tm); | ||
279 | rtc_tm->tm_mon--; | ||
280 | } | ||
281 | |||
282 | /* | ||
283 | * Set the RTC in the virtual service processor | ||
284 | * This requires flowing LpEvents to the primary partition | ||
285 | */ | ||
286 | int iSeries_set_rtc_time(struct rtc_time *tm) | ||
287 | { | ||
288 | mf_set_rtc(tm); | ||
289 | return 0; | ||
290 | } | ||
291 | |||
292 | void iSeries_get_boot_time(struct rtc_time *tm) | ||
293 | { | ||
294 | if ( piranha_simulator ) | ||
295 | return; | ||
296 | |||
297 | mf_get_boot_rtc(tm); | ||
298 | tm->tm_mon -= 1; | ||
299 | } | ||
300 | #endif | ||
301 | |||
302 | #ifdef CONFIG_PPC_RTAS | 265 | #ifdef CONFIG_PPC_RTAS |
303 | #define MAX_RTC_WAIT 5000 /* 5 sec */ | 266 | #define MAX_RTC_WAIT 5000 /* 5 sec */ |
304 | #define RTAS_CLOCK_BUSY (-2) | 267 | #define RTAS_CLOCK_BUSY (-2) |