aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ppc64/kernel
diff options
context:
space:
mode:
authorStephen Rothwell <sfr@canb.auug.org.au>2005-09-27 04:44:42 -0400
committerStephen Rothwell <sfr@canb.auug.org.au>2005-09-27 04:44:42 -0400
commitc8b84976f86adcd10c221d398e1d0be2b778f3c8 (patch)
tree54924b199234c014ad6d70269e24c59041a69432 /arch/ppc64/kernel
parent2960eb661a82131b9492cdd1b6500a5f74ccc394 (diff)
powerpc: move iSeries_setup.[ch] and mf.c into platforms/iseries
iSeries_setup.c becomes setup.c iSeries_setup.h becomes setup.h mf.c retains its name Also moved iSeries_[gs]et_rtc_time and iSeries_get_boot_time into mf.c since they are just small wrappers around mf_ functions. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Diffstat (limited to 'arch/ppc64/kernel')
-rw-r--r--arch/ppc64/kernel/Makefile4
-rw-r--r--arch/ppc64/kernel/iSeries_setup.c1007
-rw-r--r--arch/ppc64/kernel/iSeries_setup.h26
-rw-r--r--arch/ppc64/kernel/mf.c1281
-rw-r--r--arch/ppc64/kernel/rtc.c37
5 files changed, 2 insertions, 2353 deletions
diff --git a/arch/ppc64/kernel/Makefile b/arch/ppc64/kernel/Makefile
index 4d95f0d0137a..b558cc0f4d9e 100644
--- a/arch/ppc64/kernel/Makefile
+++ b/arch/ppc64/kernel/Makefile
@@ -22,8 +22,8 @@ pci-obj-$(CONFIG_PPC_MULTIPLATFORM) += pci_dn.o pci_direct_iommu.o
22 22
23obj-$(CONFIG_PCI) += pci.o pci_iommu.o iomap.o $(pci-obj-y) 23obj-$(CONFIG_PCI) += pci.o pci_iommu.o iomap.o $(pci-obj-y)
24 24
25obj-$(CONFIG_PPC_ISERIES) += iSeries_setup.o ItLpQueue.o hvCall.o \ 25obj-$(CONFIG_PPC_ISERIES) += ItLpQueue.o hvCall.o \
26 mf.o HvLpEvent.o iSeries_proc.o iSeries_htab.o \ 26 HvLpEvent.o iSeries_proc.o iSeries_htab.o \
27 iSeries_iommu.o 27 iSeries_iommu.o
28 28
29obj-$(CONFIG_PPC_MULTIPLATFORM) += nvram.o i8259.o prom_init.o 29obj-$(CONFIG_PPC_MULTIPLATFORM) += nvram.o i8259.o prom_init.o
diff --git a/arch/ppc64/kernel/iSeries_setup.c b/arch/ppc64/kernel/iSeries_setup.c
deleted file mode 100644
index 9daf734adbd5..000000000000
--- a/arch/ppc64/kernel/iSeries_setup.c
+++ /dev/null
@@ -1,1007 +0,0 @@
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
5 * Module name: iSeries_setup.c
6 *
7 * Description:
8 * Architecture- / platform-specific boot-time initialization code for
9 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
10 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * <dan@net4x.com>.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19#undef DEBUG
20
21#include <linux/config.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/smp.h>
25#include <linux/param.h>
26#include <linux/string.h>
27#include <linux/initrd.h>
28#include <linux/seq_file.h>
29#include <linux/kdev_t.h>
30#include <linux/major.h>
31#include <linux/root_dev.h>
32
33#include <asm/processor.h>
34#include <asm/machdep.h>
35#include <asm/page.h>
36#include <asm/mmu.h>
37#include <asm/pgtable.h>
38#include <asm/mmu_context.h>
39#include <asm/cputable.h>
40#include <asm/sections.h>
41#include <asm/iommu.h>
42#include <asm/firmware.h>
43
44#include <asm/time.h>
45#include "iSeries_setup.h"
46#include <asm/naca.h>
47#include <asm/paca.h>
48#include <asm/cache.h>
49#include <asm/sections.h>
50#include <asm/abs_addr.h>
51#include <asm/iSeries/HvCallHpt.h>
52#include <asm/iSeries/HvLpConfig.h>
53#include <asm/iSeries/HvCallEvent.h>
54#include <asm/iSeries/HvCallSm.h>
55#include <asm/iSeries/HvCallXm.h>
56#include <asm/iSeries/ItLpQueue.h>
57#include <asm/iSeries/IoHriMainStore.h>
58#include <asm/iSeries/mf.h>
59#include <asm/iSeries/HvLpEvent.h>
60#include <asm/iSeries/iSeries_irq.h>
61#include <asm/iSeries/IoHriProcessorVpd.h>
62#include <asm/iSeries/ItVpdAreas.h>
63#include <asm/iSeries/LparMap.h>
64
65extern void hvlog(char *fmt, ...);
66
67#ifdef DEBUG
68#define DBG(fmt...) hvlog(fmt)
69#else
70#define DBG(fmt...)
71#endif
72
73/* Function Prototypes */
74extern void ppcdbg_initialize(void);
75
76static void build_iSeries_Memory_Map(void);
77static int iseries_shared_idle(void);
78static int iseries_dedicated_idle(void);
79#ifdef CONFIG_PCI
80extern void iSeries_pci_final_fixup(void);
81#else
82static void iSeries_pci_final_fixup(void) { }
83#endif
84
85/* Global Variables */
86int piranha_simulator;
87
88extern int rd_size; /* Defined in drivers/block/rd.c */
89extern unsigned long klimit;
90extern unsigned long embedded_sysmap_start;
91extern unsigned long embedded_sysmap_end;
92
93extern unsigned long iSeries_recal_tb;
94extern unsigned long iSeries_recal_titan;
95
96static int mf_initialized;
97
98struct MemoryBlock {
99 unsigned long absStart;
100 unsigned long absEnd;
101 unsigned long logicalStart;
102 unsigned long logicalEnd;
103};
104
105/*
106 * Process the main store vpd to determine where the holes in memory are
107 * and return the number of physical blocks and fill in the array of
108 * block data.
109 */
110static unsigned long iSeries_process_Condor_mainstore_vpd(
111 struct MemoryBlock *mb_array, unsigned long max_entries)
112{
113 unsigned long holeFirstChunk, holeSizeChunks;
114 unsigned long numMemoryBlocks = 1;
115 struct IoHriMainStoreSegment4 *msVpd =
116 (struct IoHriMainStoreSegment4 *)xMsVpd;
117 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
118 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
119 unsigned long holeSize = holeEnd - holeStart;
120
121 printk("Mainstore_VPD: Condor\n");
122 /*
123 * Determine if absolute memory has any
124 * holes so that we can interpret the
125 * access map we get back from the hypervisor
126 * correctly.
127 */
128 mb_array[0].logicalStart = 0;
129 mb_array[0].logicalEnd = 0x100000000;
130 mb_array[0].absStart = 0;
131 mb_array[0].absEnd = 0x100000000;
132
133 if (holeSize) {
134 numMemoryBlocks = 2;
135 holeStart = holeStart & 0x000fffffffffffff;
136 holeStart = addr_to_chunk(holeStart);
137 holeFirstChunk = holeStart;
138 holeSize = addr_to_chunk(holeSize);
139 holeSizeChunks = holeSize;
140 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
141 holeFirstChunk, holeSizeChunks );
142 mb_array[0].logicalEnd = holeFirstChunk;
143 mb_array[0].absEnd = holeFirstChunk;
144 mb_array[1].logicalStart = holeFirstChunk;
145 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
146 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
147 mb_array[1].absEnd = 0x100000000;
148 }
149 return numMemoryBlocks;
150}
151
152#define MaxSegmentAreas 32
153#define MaxSegmentAdrRangeBlocks 128
154#define MaxAreaRangeBlocks 4
155
156static unsigned long iSeries_process_Regatta_mainstore_vpd(
157 struct MemoryBlock *mb_array, unsigned long max_entries)
158{
159 struct IoHriMainStoreSegment5 *msVpdP =
160 (struct IoHriMainStoreSegment5 *)xMsVpd;
161 unsigned long numSegmentBlocks = 0;
162 u32 existsBits = msVpdP->msAreaExists;
163 unsigned long area_num;
164
165 printk("Mainstore_VPD: Regatta\n");
166
167 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
168 unsigned long numAreaBlocks;
169 struct IoHriMainStoreArea4 *currentArea;
170
171 if (existsBits & 0x80000000) {
172 unsigned long block_num;
173
174 currentArea = &msVpdP->msAreaArray[area_num];
175 numAreaBlocks = currentArea->numAdrRangeBlocks;
176 printk("ms_vpd: processing area %2ld blocks=%ld",
177 area_num, numAreaBlocks);
178 for (block_num = 0; block_num < numAreaBlocks;
179 ++block_num ) {
180 /* Process an address range block */
181 struct MemoryBlock tempBlock;
182 unsigned long i;
183
184 tempBlock.absStart =
185 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
186 tempBlock.absEnd =
187 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
188 tempBlock.logicalStart = 0;
189 tempBlock.logicalEnd = 0;
190 printk("\n block %ld absStart=%016lx absEnd=%016lx",
191 block_num, tempBlock.absStart,
192 tempBlock.absEnd);
193
194 for (i = 0; i < numSegmentBlocks; ++i) {
195 if (mb_array[i].absStart ==
196 tempBlock.absStart)
197 break;
198 }
199 if (i == numSegmentBlocks) {
200 if (numSegmentBlocks == max_entries)
201 panic("iSeries_process_mainstore_vpd: too many memory blocks");
202 mb_array[numSegmentBlocks] = tempBlock;
203 ++numSegmentBlocks;
204 } else
205 printk(" (duplicate)");
206 }
207 printk("\n");
208 }
209 existsBits <<= 1;
210 }
211 /* Now sort the blocks found into ascending sequence */
212 if (numSegmentBlocks > 1) {
213 unsigned long m, n;
214
215 for (m = 0; m < numSegmentBlocks - 1; ++m) {
216 for (n = numSegmentBlocks - 1; m < n; --n) {
217 if (mb_array[n].absStart <
218 mb_array[n-1].absStart) {
219 struct MemoryBlock tempBlock;
220
221 tempBlock = mb_array[n];
222 mb_array[n] = mb_array[n-1];
223 mb_array[n-1] = tempBlock;
224 }
225 }
226 }
227 }
228 /*
229 * Assign "logical" addresses to each block. These
230 * addresses correspond to the hypervisor "bitmap" space.
231 * Convert all addresses into units of 256K chunks.
232 */
233 {
234 unsigned long i, nextBitmapAddress;
235
236 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
237 nextBitmapAddress = 0;
238 for (i = 0; i < numSegmentBlocks; ++i) {
239 unsigned long length = mb_array[i].absEnd -
240 mb_array[i].absStart;
241
242 mb_array[i].logicalStart = nextBitmapAddress;
243 mb_array[i].logicalEnd = nextBitmapAddress + length;
244 nextBitmapAddress += length;
245 printk(" Bitmap range: %016lx - %016lx\n"
246 " Absolute range: %016lx - %016lx\n",
247 mb_array[i].logicalStart,
248 mb_array[i].logicalEnd,
249 mb_array[i].absStart, mb_array[i].absEnd);
250 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
251 0x000fffffffffffff);
252 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
253 0x000fffffffffffff);
254 mb_array[i].logicalStart =
255 addr_to_chunk(mb_array[i].logicalStart);
256 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
257 }
258 }
259
260 return numSegmentBlocks;
261}
262
263static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
264 unsigned long max_entries)
265{
266 unsigned long i;
267 unsigned long mem_blocks = 0;
268
269 if (cpu_has_feature(CPU_FTR_SLB))
270 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
271 max_entries);
272 else
273 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
274 max_entries);
275
276 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
277 for (i = 0; i < mem_blocks; ++i) {
278 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
279 " abs chunks %016lx - %016lx\n",
280 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
281 mb_array[i].absStart, mb_array[i].absEnd);
282 }
283 return mem_blocks;
284}
285
286static void __init iSeries_get_cmdline(void)
287{
288 char *p, *q;
289
290 /* copy the command line parameter from the primary VSP */
291 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
292 HvLpDma_Direction_RemoteToLocal);
293
294 p = cmd_line;
295 q = cmd_line + 255;
296 while(p < q) {
297 if (!*p || *p == '\n')
298 break;
299 ++p;
300 }
301 *p = 0;
302}
303
304static void __init iSeries_init_early(void)
305{
306 extern unsigned long memory_limit;
307
308 DBG(" -> iSeries_init_early()\n");
309
310 ppc64_firmware_features = FW_FEATURE_ISERIES;
311
312 ppcdbg_initialize();
313
314 ppc64_interrupt_controller = IC_ISERIES;
315
316#if defined(CONFIG_BLK_DEV_INITRD)
317 /*
318 * If the init RAM disk has been configured and there is
319 * a non-zero starting address for it, set it up
320 */
321 if (naca.xRamDisk) {
322 initrd_start = (unsigned long)__va(naca.xRamDisk);
323 initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE;
324 initrd_below_start_ok = 1; // ramdisk in kernel space
325 ROOT_DEV = Root_RAM0;
326 if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize)
327 rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024;
328 } else
329#endif /* CONFIG_BLK_DEV_INITRD */
330 {
331 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
332 }
333
334 iSeries_recal_tb = get_tb();
335 iSeries_recal_titan = HvCallXm_loadTod();
336
337 /*
338 * Initialize the hash table management pointers
339 */
340 hpte_init_iSeries();
341
342 /*
343 * Initialize the DMA/TCE management
344 */
345 iommu_init_early_iSeries();
346
347 iSeries_get_cmdline();
348
349 /* Save unparsed command line copy for /proc/cmdline */
350 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
351
352 /* Parse early parameters, in particular mem=x */
353 parse_early_param();
354
355 if (memory_limit) {
356 if (memory_limit < systemcfg->physicalMemorySize)
357 systemcfg->physicalMemorySize = memory_limit;
358 else {
359 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit);
360 memory_limit = 0;
361 }
362 }
363
364 /* Initialize machine-dependency vectors */
365#ifdef CONFIG_SMP
366 smp_init_iSeries();
367#endif
368 if (itLpNaca.xPirEnvironMode == 0)
369 piranha_simulator = 1;
370
371 /* Associate Lp Event Queue 0 with processor 0 */
372 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
373
374 mf_init();
375 mf_initialized = 1;
376 mb();
377
378 /* If we were passed an initrd, set the ROOT_DEV properly if the values
379 * look sensible. If not, clear initrd reference.
380 */
381#ifdef CONFIG_BLK_DEV_INITRD
382 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
383 initrd_end > initrd_start)
384 ROOT_DEV = Root_RAM0;
385 else
386 initrd_start = initrd_end = 0;
387#endif /* CONFIG_BLK_DEV_INITRD */
388
389 DBG(" <- iSeries_init_early()\n");
390}
391
392struct mschunks_map mschunks_map = {
393 /* XXX We don't use these, but Piranha might need them. */
394 .chunk_size = MSCHUNKS_CHUNK_SIZE,
395 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
396 .chunk_mask = MSCHUNKS_OFFSET_MASK,
397};
398EXPORT_SYMBOL(mschunks_map);
399
400void mschunks_alloc(unsigned long num_chunks)
401{
402 klimit = _ALIGN(klimit, sizeof(u32));
403 mschunks_map.mapping = (u32 *)klimit;
404 klimit += num_chunks * sizeof(u32);
405 mschunks_map.num_chunks = num_chunks;
406}
407
408/*
409 * The iSeries may have very large memories ( > 128 GB ) and a partition
410 * may get memory in "chunks" that may be anywhere in the 2**52 real
411 * address space. The chunks are 256K in size. To map this to the
412 * memory model Linux expects, the AS/400 specific code builds a
413 * translation table to translate what Linux thinks are "physical"
414 * addresses to the actual real addresses. This allows us to make
415 * it appear to Linux that we have contiguous memory starting at
416 * physical address zero while in fact this could be far from the truth.
417 * To avoid confusion, I'll let the words physical and/or real address
418 * apply to the Linux addresses while I'll use "absolute address" to
419 * refer to the actual hardware real address.
420 *
421 * build_iSeries_Memory_Map gets information from the Hypervisor and
422 * looks at the Main Store VPD to determine the absolute addresses
423 * of the memory that has been assigned to our partition and builds
424 * a table used to translate Linux's physical addresses to these
425 * absolute addresses. Absolute addresses are needed when
426 * communicating with the hypervisor (e.g. to build HPT entries)
427 */
428
429static void __init build_iSeries_Memory_Map(void)
430{
431 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
432 u32 nextPhysChunk;
433 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
434 u32 num_ptegs;
435 u32 totalChunks,moreChunks;
436 u32 currChunk, thisChunk, absChunk;
437 u32 currDword;
438 u32 chunkBit;
439 u64 map;
440 struct MemoryBlock mb[32];
441 unsigned long numMemoryBlocks, curBlock;
442
443 /* Chunk size on iSeries is 256K bytes */
444 totalChunks = (u32)HvLpConfig_getMsChunks();
445 mschunks_alloc(totalChunks);
446
447 /*
448 * Get absolute address of our load area
449 * and map it to physical address 0
450 * This guarantees that the loadarea ends up at physical 0
451 * otherwise, it might not be returned by PLIC as the first
452 * chunks
453 */
454
455 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
456 loadAreaSize = itLpNaca.xLoadAreaChunks;
457
458 /*
459 * Only add the pages already mapped here.
460 * Otherwise we might add the hpt pages
461 * The rest of the pages of the load area
462 * aren't in the HPT yet and can still
463 * be assigned an arbitrary physical address
464 */
465 if ((loadAreaSize * 64) > HvPagesToMap)
466 loadAreaSize = HvPagesToMap / 64;
467
468 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
469
470 /*
471 * TODO Do we need to do something if the HPT is in the 64MB load area?
472 * This would be required if the itLpNaca.xLoadAreaChunks includes
473 * the HPT size
474 */
475
476 printk("Mapping load area - physical addr = 0000000000000000\n"
477 " absolute addr = %016lx\n",
478 chunk_to_addr(loadAreaFirstChunk));
479 printk("Load area size %dK\n", loadAreaSize * 256);
480
481 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
482 mschunks_map.mapping[nextPhysChunk] =
483 loadAreaFirstChunk + nextPhysChunk;
484
485 /*
486 * Get absolute address of our HPT and remember it so
487 * we won't map it to any physical address
488 */
489 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
490 hptSizePages = (u32)HvCallHpt_getHptPages();
491 hptSizeChunks = hptSizePages >> (MSCHUNKS_CHUNK_SHIFT - PAGE_SHIFT);
492 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
493
494 printk("HPT absolute addr = %016lx, size = %dK\n",
495 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
496
497 /* Fill in the hashed page table hash mask */
498 num_ptegs = hptSizePages *
499 (PAGE_SIZE / (sizeof(hpte_t) * HPTES_PER_GROUP));
500 htab_hash_mask = num_ptegs - 1;
501
502 /*
503 * The actual hashed page table is in the hypervisor,
504 * we have no direct access
505 */
506 htab_address = NULL;
507
508 /*
509 * Determine if absolute memory has any
510 * holes so that we can interpret the
511 * access map we get back from the hypervisor
512 * correctly.
513 */
514 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
515
516 /*
517 * Process the main store access map from the hypervisor
518 * to build up our physical -> absolute translation table
519 */
520 curBlock = 0;
521 currChunk = 0;
522 currDword = 0;
523 moreChunks = totalChunks;
524
525 while (moreChunks) {
526 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
527 currDword);
528 thisChunk = currChunk;
529 while (map) {
530 chunkBit = map >> 63;
531 map <<= 1;
532 if (chunkBit) {
533 --moreChunks;
534 while (thisChunk >= mb[curBlock].logicalEnd) {
535 ++curBlock;
536 if (curBlock >= numMemoryBlocks)
537 panic("out of memory blocks");
538 }
539 if (thisChunk < mb[curBlock].logicalStart)
540 panic("memory block error");
541
542 absChunk = mb[curBlock].absStart +
543 (thisChunk - mb[curBlock].logicalStart);
544 if (((absChunk < hptFirstChunk) ||
545 (absChunk > hptLastChunk)) &&
546 ((absChunk < loadAreaFirstChunk) ||
547 (absChunk > loadAreaLastChunk))) {
548 mschunks_map.mapping[nextPhysChunk] =
549 absChunk;
550 ++nextPhysChunk;
551 }
552 }
553 ++thisChunk;
554 }
555 ++currDword;
556 currChunk += 64;
557 }
558
559 /*
560 * main store size (in chunks) is
561 * totalChunks - hptSizeChunks
562 * which should be equal to
563 * nextPhysChunk
564 */
565 systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
566}
567
568/*
569 * Document me.
570 */
571static void __init iSeries_setup_arch(void)
572{
573 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
574
575 if (get_paca()->lppaca.shared_proc) {
576 ppc_md.idle_loop = iseries_shared_idle;
577 printk(KERN_INFO "Using shared processor idle loop\n");
578 } else {
579 ppc_md.idle_loop = iseries_dedicated_idle;
580 printk(KERN_INFO "Using dedicated idle loop\n");
581 }
582
583 /* Setup the Lp Event Queue */
584 setup_hvlpevent_queue();
585
586 printk("Max logical processors = %d\n",
587 itVpdAreas.xSlicMaxLogicalProcs);
588 printk("Max physical processors = %d\n",
589 itVpdAreas.xSlicMaxPhysicalProcs);
590
591 systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
592 printk("Processor version = %x\n", systemcfg->processor);
593}
594
595static void iSeries_get_cpuinfo(struct seq_file *m)
596{
597 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
598}
599
600/*
601 * Document me.
602 * and Implement me.
603 */
604static int iSeries_get_irq(struct pt_regs *regs)
605{
606 /* -2 means ignore this interrupt */
607 return -2;
608}
609
610/*
611 * Document me.
612 */
613static void iSeries_restart(char *cmd)
614{
615 mf_reboot();
616}
617
618/*
619 * Document me.
620 */
621static void iSeries_power_off(void)
622{
623 mf_power_off();
624}
625
626/*
627 * Document me.
628 */
629static void iSeries_halt(void)
630{
631 mf_power_off();
632}
633
634static void __init iSeries_progress(char * st, unsigned short code)
635{
636 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
637 if (!piranha_simulator && mf_initialized) {
638 if (code != 0xffff)
639 mf_display_progress(code);
640 else
641 mf_clear_src();
642 }
643}
644
645static void __init iSeries_fixup_klimit(void)
646{
647 /*
648 * Change klimit to take into account any ram disk
649 * that may be included
650 */
651 if (naca.xRamDisk)
652 klimit = KERNELBASE + (u64)naca.xRamDisk +
653 (naca.xRamDiskSize * PAGE_SIZE);
654 else {
655 /*
656 * No ram disk was included - check and see if there
657 * was an embedded system map. Change klimit to take
658 * into account any embedded system map
659 */
660 if (embedded_sysmap_end)
661 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
662 0xfffffffffffff000);
663 }
664}
665
666static int __init iSeries_src_init(void)
667{
668 /* clear the progress line */
669 ppc_md.progress(" ", 0xffff);
670 return 0;
671}
672
673late_initcall(iSeries_src_init);
674
675static inline void process_iSeries_events(void)
676{
677 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
678}
679
680static void yield_shared_processor(void)
681{
682 unsigned long tb;
683
684 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
685 HvCall_MaskLpEvent |
686 HvCall_MaskLpProd |
687 HvCall_MaskTimeout);
688
689 tb = get_tb();
690 /* Compute future tb value when yield should expire */
691 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
692
693 /*
694 * The decrementer stops during the yield. Force a fake decrementer
695 * here and let the timer_interrupt code sort out the actual time.
696 */
697 get_paca()->lppaca.int_dword.fields.decr_int = 1;
698 process_iSeries_events();
699}
700
701static int iseries_shared_idle(void)
702{
703 while (1) {
704 while (!need_resched() && !hvlpevent_is_pending()) {
705 local_irq_disable();
706 ppc64_runlatch_off();
707
708 /* Recheck with irqs off */
709 if (!need_resched() && !hvlpevent_is_pending())
710 yield_shared_processor();
711
712 HMT_medium();
713 local_irq_enable();
714 }
715
716 ppc64_runlatch_on();
717
718 if (hvlpevent_is_pending())
719 process_iSeries_events();
720
721 schedule();
722 }
723
724 return 0;
725}
726
727static int iseries_dedicated_idle(void)
728{
729 long oldval;
730
731 while (1) {
732 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
733
734 if (!oldval) {
735 set_thread_flag(TIF_POLLING_NRFLAG);
736
737 while (!need_resched()) {
738 ppc64_runlatch_off();
739 HMT_low();
740
741 if (hvlpevent_is_pending()) {
742 HMT_medium();
743 ppc64_runlatch_on();
744 process_iSeries_events();
745 }
746 }
747
748 HMT_medium();
749 clear_thread_flag(TIF_POLLING_NRFLAG);
750 } else {
751 set_need_resched();
752 }
753
754 ppc64_runlatch_on();
755 schedule();
756 }
757
758 return 0;
759}
760
761#ifndef CONFIG_PCI
762void __init iSeries_init_IRQ(void) { }
763#endif
764
765static int __init iseries_probe(int platform)
766{
767 return PLATFORM_ISERIES_LPAR == platform;
768}
769
770struct machdep_calls __initdata iseries_md = {
771 .setup_arch = iSeries_setup_arch,
772 .get_cpuinfo = iSeries_get_cpuinfo,
773 .init_IRQ = iSeries_init_IRQ,
774 .get_irq = iSeries_get_irq,
775 .init_early = iSeries_init_early,
776 .pcibios_fixup = iSeries_pci_final_fixup,
777 .restart = iSeries_restart,
778 .power_off = iSeries_power_off,
779 .halt = iSeries_halt,
780 .get_boot_time = iSeries_get_boot_time,
781 .set_rtc_time = iSeries_set_rtc_time,
782 .get_rtc_time = iSeries_get_rtc_time,
783 .calibrate_decr = generic_calibrate_decr,
784 .progress = iSeries_progress,
785 .probe = iseries_probe,
786 /* XXX Implement enable_pmcs for iSeries */
787};
788
789struct blob {
790 unsigned char data[PAGE_SIZE];
791 unsigned long next;
792};
793
794struct iseries_flat_dt {
795 struct boot_param_header header;
796 u64 reserve_map[2];
797 struct blob dt;
798 struct blob strings;
799};
800
801struct iseries_flat_dt iseries_dt;
802
803void dt_init(struct iseries_flat_dt *dt)
804{
805 dt->header.off_mem_rsvmap =
806 offsetof(struct iseries_flat_dt, reserve_map);
807 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
808 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
809 dt->header.totalsize = sizeof(struct iseries_flat_dt);
810 dt->header.dt_strings_size = sizeof(struct blob);
811
812 /* There is no notion of hardware cpu id on iSeries */
813 dt->header.boot_cpuid_phys = smp_processor_id();
814
815 dt->dt.next = (unsigned long)&dt->dt.data;
816 dt->strings.next = (unsigned long)&dt->strings.data;
817
818 dt->header.magic = OF_DT_HEADER;
819 dt->header.version = 0x10;
820 dt->header.last_comp_version = 0x10;
821
822 dt->reserve_map[0] = 0;
823 dt->reserve_map[1] = 0;
824}
825
826void dt_check_blob(struct blob *b)
827{
828 if (b->next >= (unsigned long)&b->next) {
829 DBG("Ran out of space in flat device tree blob!\n");
830 BUG();
831 }
832}
833
834void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
835{
836 *((u32*)dt->dt.next) = value;
837 dt->dt.next += sizeof(u32);
838
839 dt_check_blob(&dt->dt);
840}
841
842void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
843{
844 *((u64*)dt->dt.next) = value;
845 dt->dt.next += sizeof(u64);
846
847 dt_check_blob(&dt->dt);
848}
849
850unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
851{
852 unsigned long start = blob->next - (unsigned long)blob->data;
853
854 memcpy((char *)blob->next, data, len);
855 blob->next = _ALIGN(blob->next + len, 4);
856
857 dt_check_blob(blob);
858
859 return start;
860}
861
862void dt_start_node(struct iseries_flat_dt *dt, char *name)
863{
864 dt_push_u32(dt, OF_DT_BEGIN_NODE);
865 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
866}
867
868#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
869
870void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
871{
872 unsigned long offset;
873
874 dt_push_u32(dt, OF_DT_PROP);
875
876 /* Length of the data */
877 dt_push_u32(dt, len);
878
879 /* Put the property name in the string blob. */
880 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
881
882 /* The offset of the properties name in the string blob. */
883 dt_push_u32(dt, (u32)offset);
884
885 /* The actual data. */
886 dt_push_bytes(&dt->dt, data, len);
887}
888
889void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
890{
891 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
892}
893
894void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
895{
896 dt_prop(dt, name, (char *)&data, sizeof(u32));
897}
898
899void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
900{
901 dt_prop(dt, name, (char *)&data, sizeof(u64));
902}
903
904void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
905{
906 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
907}
908
909void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
910{
911 dt_prop(dt, name, NULL, 0);
912}
913
914void dt_cpus(struct iseries_flat_dt *dt)
915{
916 unsigned char buf[32];
917 unsigned char *p;
918 unsigned int i, index;
919 struct IoHriProcessorVpd *d;
920
921 /* yuck */
922 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
923 p = strchr(buf, ' ');
924 if (!p) p = buf + strlen(buf);
925
926 dt_start_node(dt, "cpus");
927 dt_prop_u32(dt, "#address-cells", 1);
928 dt_prop_u32(dt, "#size-cells", 0);
929
930 for (i = 0; i < NR_CPUS; i++) {
931 if (paca[i].lppaca.dyn_proc_status >= 2)
932 continue;
933
934 snprintf(p, 32 - (p - buf), "@%d", i);
935 dt_start_node(dt, buf);
936
937 dt_prop_str(dt, "device_type", "cpu");
938
939 index = paca[i].lppaca.dyn_hv_phys_proc_index;
940 d = &xIoHriProcessorVpd[index];
941
942 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
943 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
944
945 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
946 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
947
948 /* magic conversions to Hz copied from old code */
949 dt_prop_u32(dt, "clock-frequency",
950 ((1UL << 34) * 1000000) / d->xProcFreq);
951 dt_prop_u32(dt, "timebase-frequency",
952 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
953
954 dt_prop_u32(dt, "reg", i);
955
956 dt_end_node(dt);
957 }
958
959 dt_end_node(dt);
960}
961
962void build_flat_dt(struct iseries_flat_dt *dt)
963{
964 u64 tmp[2];
965
966 dt_init(dt);
967
968 dt_start_node(dt, "");
969
970 dt_prop_u32(dt, "#address-cells", 2);
971 dt_prop_u32(dt, "#size-cells", 2);
972
973 /* /memory */
974 dt_start_node(dt, "memory@0");
975 dt_prop_str(dt, "name", "memory");
976 dt_prop_str(dt, "device_type", "memory");
977 tmp[0] = 0;
978 tmp[1] = systemcfg->physicalMemorySize;
979 dt_prop_u64_list(dt, "reg", tmp, 2);
980 dt_end_node(dt);
981
982 /* /chosen */
983 dt_start_node(dt, "chosen");
984 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
985 dt_end_node(dt);
986
987 dt_cpus(dt);
988
989 dt_end_node(dt);
990
991 dt_push_u32(dt, OF_DT_END);
992}
993
994void * __init iSeries_early_setup(void)
995{
996 iSeries_fixup_klimit();
997
998 /*
999 * Initialize the table which translate Linux physical addresses to
1000 * AS/400 absolute addresses
1001 */
1002 build_iSeries_Memory_Map();
1003
1004 build_flat_dt(&iseries_dt);
1005
1006 return (void *) __pa(&iseries_dt);
1007}
diff --git a/arch/ppc64/kernel/iSeries_setup.h b/arch/ppc64/kernel/iSeries_setup.h
deleted file mode 100644
index c6eb29a245ac..000000000000
--- a/arch/ppc64/kernel/iSeries_setup.h
+++ /dev/null
@@ -1,26 +0,0 @@
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
5 * Module name: as400_setup.h
6 *
7 * Description:
8 * Architecture- / platform-specific boot-time initialization code for
9 * the IBM AS/400 LPAR. Adapted from original code by Grant Erickson and
10 * code by Gary Thomas, Cort Dougan <cort@cs.nmt.edu>, and Dan Malek
11 * <dan@netx4.com>.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19#ifndef __ISERIES_SETUP_H__
20#define __ISERIES_SETUP_H__
21
22extern void iSeries_get_boot_time(struct rtc_time *tm);
23extern int iSeries_set_rtc_time(struct rtc_time *tm);
24extern void iSeries_get_rtc_time(struct rtc_time *tm);
25
26#endif /* __ISERIES_SETUP_H__ */
diff --git a/arch/ppc64/kernel/mf.c b/arch/ppc64/kernel/mf.c
deleted file mode 100644
index ef4a338ebd01..000000000000
--- a/arch/ppc64/kernel/mf.c
+++ /dev/null
@@ -1,1281 +0,0 @@
1/*
2 * mf.c
3 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
4 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 *
6 * This modules exists as an interface between a Linux secondary partition
7 * running on an iSeries and the primary partition's Virtual Service
8 * Processor (VSP) object. The VSP has final authority over powering on/off
9 * all partitions in the iSeries. It also provides miscellaneous low-level
10 * machine facility type operations.
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 */
27
28#include <linux/types.h>
29#include <linux/errno.h>
30#include <linux/kernel.h>
31#include <linux/init.h>
32#include <linux/completion.h>
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/bcd.h>
36
37#include <asm/time.h>
38#include <asm/uaccess.h>
39#include <asm/paca.h>
40#include <asm/iSeries/vio.h>
41#include <asm/iSeries/mf.h>
42#include <asm/iSeries/HvLpConfig.h>
43#include <asm/iSeries/ItLpQueue.h>
44
45/*
46 * This is the structure layout for the Machine Facilites LPAR event
47 * flows.
48 */
49struct vsp_cmd_data {
50 u64 token;
51 u16 cmd;
52 HvLpIndex lp_index;
53 u8 result_code;
54 u32 reserved;
55 union {
56 u64 state; /* GetStateOut */
57 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
58 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
59 u64 page[4]; /* GetSrcHistoryIn */
60 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
61 SetAutoIplWhenPrimaryIplsIn,
62 WhiteButtonPowerOffIn,
63 Function08FastPowerOffIn,
64 IsSpcnRackPowerIncompleteOut */
65 struct {
66 u64 token;
67 u64 address_type;
68 u64 side;
69 u32 length;
70 u32 offset;
71 } kern; /* SetKernelImageIn, GetKernelImageIn,
72 SetKernelCmdLineIn, GetKernelCmdLineIn */
73 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
74 u8 reserved[80];
75 } sub_data;
76};
77
78struct vsp_rsp_data {
79 struct completion com;
80 struct vsp_cmd_data *response;
81};
82
83struct alloc_data {
84 u16 size;
85 u16 type;
86 u32 count;
87 u16 reserved1;
88 u8 reserved2;
89 HvLpIndex target_lp;
90};
91
92struct ce_msg_data;
93
94typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
95
96struct ce_msg_comp_data {
97 ce_msg_comp_hdlr handler;
98 void *token;
99};
100
101struct ce_msg_data {
102 u8 ce_msg[12];
103 char reserved[4];
104 struct ce_msg_comp_data *completion;
105};
106
107struct io_mf_lp_event {
108 struct HvLpEvent hp_lp_event;
109 u16 subtype_result_code;
110 u16 reserved1;
111 u32 reserved2;
112 union {
113 struct alloc_data alloc;
114 struct ce_msg_data ce_msg;
115 struct vsp_cmd_data vsp_cmd;
116 } data;
117};
118
119#define subtype_data(a, b, c, d) \
120 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
121
122/*
123 * All outgoing event traffic is kept on a FIFO queue. The first
124 * pointer points to the one that is outstanding, and all new
125 * requests get stuck on the end. Also, we keep a certain number of
126 * preallocated pending events so that we can operate very early in
127 * the boot up sequence (before kmalloc is ready).
128 */
129struct pending_event {
130 struct pending_event *next;
131 struct io_mf_lp_event event;
132 MFCompleteHandler hdlr;
133 char dma_data[72];
134 unsigned dma_data_length;
135 unsigned remote_address;
136};
137static spinlock_t pending_event_spinlock;
138static struct pending_event *pending_event_head;
139static struct pending_event *pending_event_tail;
140static struct pending_event *pending_event_avail;
141static struct pending_event pending_event_prealloc[16];
142
143/*
144 * Put a pending event onto the available queue, so it can get reused.
145 * Attention! You must have the pending_event_spinlock before calling!
146 */
147static void free_pending_event(struct pending_event *ev)
148{
149 if (ev != NULL) {
150 ev->next = pending_event_avail;
151 pending_event_avail = ev;
152 }
153}
154
155/*
156 * Enqueue the outbound event onto the stack. If the queue was
157 * empty to begin with, we must also issue it via the Hypervisor
158 * interface. There is a section of code below that will touch
159 * the first stack pointer without the protection of the pending_event_spinlock.
160 * This is OK, because we know that nobody else will be modifying
161 * the first pointer when we do this.
162 */
163static int signal_event(struct pending_event *ev)
164{
165 int rc = 0;
166 unsigned long flags;
167 int go = 1;
168 struct pending_event *ev1;
169 HvLpEvent_Rc hv_rc;
170
171 /* enqueue the event */
172 if (ev != NULL) {
173 ev->next = NULL;
174 spin_lock_irqsave(&pending_event_spinlock, flags);
175 if (pending_event_head == NULL)
176 pending_event_head = ev;
177 else {
178 go = 0;
179 pending_event_tail->next = ev;
180 }
181 pending_event_tail = ev;
182 spin_unlock_irqrestore(&pending_event_spinlock, flags);
183 }
184
185 /* send the event */
186 while (go) {
187 go = 0;
188
189 /* any DMA data to send beforehand? */
190 if (pending_event_head->dma_data_length > 0)
191 HvCallEvent_dmaToSp(pending_event_head->dma_data,
192 pending_event_head->remote_address,
193 pending_event_head->dma_data_length,
194 HvLpDma_Direction_LocalToRemote);
195
196 hv_rc = HvCallEvent_signalLpEvent(
197 &pending_event_head->event.hp_lp_event);
198 if (hv_rc != HvLpEvent_Rc_Good) {
199 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
200 "failed with %d\n", (int)hv_rc);
201
202 spin_lock_irqsave(&pending_event_spinlock, flags);
203 ev1 = pending_event_head;
204 pending_event_head = pending_event_head->next;
205 if (pending_event_head != NULL)
206 go = 1;
207 spin_unlock_irqrestore(&pending_event_spinlock, flags);
208
209 if (ev1 == ev)
210 rc = -EIO;
211 else if (ev1->hdlr != NULL)
212 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
213
214 spin_lock_irqsave(&pending_event_spinlock, flags);
215 free_pending_event(ev1);
216 spin_unlock_irqrestore(&pending_event_spinlock, flags);
217 }
218 }
219
220 return rc;
221}
222
223/*
224 * Allocate a new pending_event structure, and initialize it.
225 */
226static struct pending_event *new_pending_event(void)
227{
228 struct pending_event *ev = NULL;
229 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
230 unsigned long flags;
231 struct HvLpEvent *hev;
232
233 spin_lock_irqsave(&pending_event_spinlock, flags);
234 if (pending_event_avail != NULL) {
235 ev = pending_event_avail;
236 pending_event_avail = pending_event_avail->next;
237 }
238 spin_unlock_irqrestore(&pending_event_spinlock, flags);
239 if (ev == NULL) {
240 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
241 if (ev == NULL) {
242 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
243 sizeof(struct pending_event));
244 return NULL;
245 }
246 }
247 memset(ev, 0, sizeof(struct pending_event));
248 hev = &ev->event.hp_lp_event;
249 hev->xFlags.xValid = 1;
250 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
251 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
252 hev->xFlags.xFunction = HvLpEvent_Function_Int;
253 hev->xType = HvLpEvent_Type_MachineFac;
254 hev->xSourceLp = HvLpConfig_getLpIndex();
255 hev->xTargetLp = primary_lp;
256 hev->xSizeMinus1 = sizeof(ev->event) - 1;
257 hev->xRc = HvLpEvent_Rc_Good;
258 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
259 HvLpEvent_Type_MachineFac);
260 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
261 HvLpEvent_Type_MachineFac);
262
263 return ev;
264}
265
266static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
267{
268 struct pending_event *ev = new_pending_event();
269 int rc;
270 struct vsp_rsp_data response;
271
272 if (ev == NULL)
273 return -ENOMEM;
274
275 init_completion(&response.com);
276 response.response = vsp_cmd;
277 ev->event.hp_lp_event.xSubtype = 6;
278 ev->event.hp_lp_event.x.xSubtypeData =
279 subtype_data('M', 'F', 'V', 'I');
280 ev->event.data.vsp_cmd.token = (u64)&response;
281 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
282 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
283 ev->event.data.vsp_cmd.result_code = 0xFF;
284 ev->event.data.vsp_cmd.reserved = 0;
285 memcpy(&(ev->event.data.vsp_cmd.sub_data),
286 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
287 mb();
288
289 rc = signal_event(ev);
290 if (rc == 0)
291 wait_for_completion(&response.com);
292 return rc;
293}
294
295
296/*
297 * Send a 12-byte CE message to the primary partition VSP object
298 */
299static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
300{
301 struct pending_event *ev = new_pending_event();
302
303 if (ev == NULL)
304 return -ENOMEM;
305
306 ev->event.hp_lp_event.xSubtype = 0;
307 ev->event.hp_lp_event.x.xSubtypeData =
308 subtype_data('M', 'F', 'C', 'E');
309 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
310 ev->event.data.ce_msg.completion = completion;
311 return signal_event(ev);
312}
313
314/*
315 * Send a 12-byte CE message (with no data) to the primary partition VSP object
316 */
317static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
318{
319 u8 ce_msg[12];
320
321 memset(ce_msg, 0, sizeof(ce_msg));
322 ce_msg[3] = ce_op;
323 return signal_ce_msg(ce_msg, completion);
324}
325
326/*
327 * Send a 12-byte CE message and DMA data to the primary partition VSP object
328 */
329static int dma_and_signal_ce_msg(char *ce_msg,
330 struct ce_msg_comp_data *completion, void *dma_data,
331 unsigned dma_data_length, unsigned remote_address)
332{
333 struct pending_event *ev = new_pending_event();
334
335 if (ev == NULL)
336 return -ENOMEM;
337
338 ev->event.hp_lp_event.xSubtype = 0;
339 ev->event.hp_lp_event.x.xSubtypeData =
340 subtype_data('M', 'F', 'C', 'E');
341 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
342 ev->event.data.ce_msg.completion = completion;
343 memcpy(ev->dma_data, dma_data, dma_data_length);
344 ev->dma_data_length = dma_data_length;
345 ev->remote_address = remote_address;
346 return signal_event(ev);
347}
348
349/*
350 * Initiate a nice (hopefully) shutdown of Linux. We simply are
351 * going to try and send the init process a SIGINT signal. If
352 * this fails (why?), we'll simply force it off in a not-so-nice
353 * manner.
354 */
355static int shutdown(void)
356{
357 int rc = kill_proc(1, SIGINT, 1);
358
359 if (rc) {
360 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
361 "hard shutdown commencing\n", rc);
362 mf_power_off();
363 } else
364 printk(KERN_INFO "mf.c: init has been successfully notified "
365 "to proceed with shutdown\n");
366 return rc;
367}
368
369/*
370 * The primary partition VSP object is sending us a new
371 * event flow. Handle it...
372 */
373static void handle_int(struct io_mf_lp_event *event)
374{
375 struct ce_msg_data *ce_msg_data;
376 struct ce_msg_data *pce_msg_data;
377 unsigned long flags;
378 struct pending_event *pev;
379
380 /* ack the interrupt */
381 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
382 HvCallEvent_ackLpEvent(&event->hp_lp_event);
383
384 /* process interrupt */
385 switch (event->hp_lp_event.xSubtype) {
386 case 0: /* CE message */
387 ce_msg_data = &event->data.ce_msg;
388 switch (ce_msg_data->ce_msg[3]) {
389 case 0x5B: /* power control notification */
390 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
391 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
392 if (shutdown() == 0)
393 signal_ce_msg_simple(0xDB, NULL);
394 }
395 break;
396 case 0xC0: /* get time */
397 spin_lock_irqsave(&pending_event_spinlock, flags);
398 pev = pending_event_head;
399 if (pev != NULL)
400 pending_event_head = pending_event_head->next;
401 spin_unlock_irqrestore(&pending_event_spinlock, flags);
402 if (pev == NULL)
403 break;
404 pce_msg_data = &pev->event.data.ce_msg;
405 if (pce_msg_data->ce_msg[3] != 0x40)
406 break;
407 if (pce_msg_data->completion != NULL) {
408 ce_msg_comp_hdlr handler =
409 pce_msg_data->completion->handler;
410 void *token = pce_msg_data->completion->token;
411
412 if (handler != NULL)
413 (*handler)(token, ce_msg_data);
414 }
415 spin_lock_irqsave(&pending_event_spinlock, flags);
416 free_pending_event(pev);
417 spin_unlock_irqrestore(&pending_event_spinlock, flags);
418 /* send next waiting event */
419 if (pending_event_head != NULL)
420 signal_event(NULL);
421 break;
422 }
423 break;
424 case 1: /* IT sys shutdown */
425 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
426 shutdown();
427 break;
428 }
429}
430
431/*
432 * The primary partition VSP object is acknowledging the receipt
433 * of a flow we sent to them. If there are other flows queued
434 * up, we must send another one now...
435 */
436static void handle_ack(struct io_mf_lp_event *event)
437{
438 unsigned long flags;
439 struct pending_event *two = NULL;
440 unsigned long free_it = 0;
441 struct ce_msg_data *ce_msg_data;
442 struct ce_msg_data *pce_msg_data;
443 struct vsp_rsp_data *rsp;
444
445 /* handle current event */
446 if (pending_event_head == NULL) {
447 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
448 return;
449 }
450
451 switch (event->hp_lp_event.xSubtype) {
452 case 0: /* CE msg */
453 ce_msg_data = &event->data.ce_msg;
454 if (ce_msg_data->ce_msg[3] != 0x40) {
455 free_it = 1;
456 break;
457 }
458 if (ce_msg_data->ce_msg[2] == 0)
459 break;
460 free_it = 1;
461 pce_msg_data = &pending_event_head->event.data.ce_msg;
462 if (pce_msg_data->completion != NULL) {
463 ce_msg_comp_hdlr handler =
464 pce_msg_data->completion->handler;
465 void *token = pce_msg_data->completion->token;
466
467 if (handler != NULL)
468 (*handler)(token, ce_msg_data);
469 }
470 break;
471 case 4: /* allocate */
472 case 5: /* deallocate */
473 if (pending_event_head->hdlr != NULL)
474 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
475 free_it = 1;
476 break;
477 case 6:
478 free_it = 1;
479 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
480 if (rsp == NULL) {
481 printk(KERN_ERR "mf.c: no rsp\n");
482 break;
483 }
484 if (rsp->response != NULL)
485 memcpy(rsp->response, &event->data.vsp_cmd,
486 sizeof(event->data.vsp_cmd));
487 complete(&rsp->com);
488 break;
489 }
490
491 /* remove from queue */
492 spin_lock_irqsave(&pending_event_spinlock, flags);
493 if ((pending_event_head != NULL) && (free_it == 1)) {
494 struct pending_event *oldHead = pending_event_head;
495
496 pending_event_head = pending_event_head->next;
497 two = pending_event_head;
498 free_pending_event(oldHead);
499 }
500 spin_unlock_irqrestore(&pending_event_spinlock, flags);
501
502 /* send next waiting event */
503 if (two != NULL)
504 signal_event(NULL);
505}
506
507/*
508 * This is the generic event handler we are registering with
509 * the Hypervisor. Ensure the flows are for us, and then
510 * parse it enough to know if it is an interrupt or an
511 * acknowledge.
512 */
513static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
514{
515 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
516 switch(event->xFlags.xFunction) {
517 case HvLpEvent_Function_Ack:
518 handle_ack((struct io_mf_lp_event *)event);
519 break;
520 case HvLpEvent_Function_Int:
521 handle_int((struct io_mf_lp_event *)event);
522 break;
523 default:
524 printk(KERN_ERR "mf.c: non ack/int event received\n");
525 break;
526 }
527 } else
528 printk(KERN_ERR "mf.c: alien event received\n");
529}
530
531/*
532 * Global kernel interface to allocate and seed events into the
533 * Hypervisor.
534 */
535void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
536 unsigned size, unsigned count, MFCompleteHandler hdlr,
537 void *user_token)
538{
539 struct pending_event *ev = new_pending_event();
540 int rc;
541
542 if (ev == NULL) {
543 rc = -ENOMEM;
544 } else {
545 ev->event.hp_lp_event.xSubtype = 4;
546 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
547 ev->event.hp_lp_event.x.xSubtypeData =
548 subtype_data('M', 'F', 'M', 'A');
549 ev->event.data.alloc.target_lp = target_lp;
550 ev->event.data.alloc.type = type;
551 ev->event.data.alloc.size = size;
552 ev->event.data.alloc.count = count;
553 ev->hdlr = hdlr;
554 rc = signal_event(ev);
555 }
556 if ((rc != 0) && (hdlr != NULL))
557 (*hdlr)(user_token, rc);
558}
559EXPORT_SYMBOL(mf_allocate_lp_events);
560
561/*
562 * Global kernel interface to unseed and deallocate events already in
563 * Hypervisor.
564 */
565void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
566 unsigned count, MFCompleteHandler hdlr, void *user_token)
567{
568 struct pending_event *ev = new_pending_event();
569 int rc;
570
571 if (ev == NULL)
572 rc = -ENOMEM;
573 else {
574 ev->event.hp_lp_event.xSubtype = 5;
575 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
576 ev->event.hp_lp_event.x.xSubtypeData =
577 subtype_data('M', 'F', 'M', 'D');
578 ev->event.data.alloc.target_lp = target_lp;
579 ev->event.data.alloc.type = type;
580 ev->event.data.alloc.count = count;
581 ev->hdlr = hdlr;
582 rc = signal_event(ev);
583 }
584 if ((rc != 0) && (hdlr != NULL))
585 (*hdlr)(user_token, rc);
586}
587EXPORT_SYMBOL(mf_deallocate_lp_events);
588
589/*
590 * Global kernel interface to tell the VSP object in the primary
591 * partition to power this partition off.
592 */
593void mf_power_off(void)
594{
595 printk(KERN_INFO "mf.c: Down it goes...\n");
596 signal_ce_msg_simple(0x4d, NULL);
597 for (;;)
598 ;
599}
600
601/*
602 * Global kernel interface to tell the VSP object in the primary
603 * partition to reboot this partition.
604 */
605void mf_reboot(void)
606{
607 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
608 signal_ce_msg_simple(0x4e, NULL);
609 for (;;)
610 ;
611}
612
613/*
614 * Display a single word SRC onto the VSP control panel.
615 */
616void mf_display_src(u32 word)
617{
618 u8 ce[12];
619
620 memset(ce, 0, sizeof(ce));
621 ce[3] = 0x4a;
622 ce[7] = 0x01;
623 ce[8] = word >> 24;
624 ce[9] = word >> 16;
625 ce[10] = word >> 8;
626 ce[11] = word;
627 signal_ce_msg(ce, NULL);
628}
629
630/*
631 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
632 */
633void mf_display_progress(u16 value)
634{
635 u8 ce[12];
636 u8 src[72];
637
638 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
639 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
640 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
641 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
642 "\x00\x00\x00\x00PROGxxxx ",
643 72);
644 src[6] = value >> 8;
645 src[7] = value & 255;
646 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
647 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
648 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
649 src[47] = "0123456789ABCDEF"[value & 15];
650 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
651}
652
653/*
654 * Clear the VSP control panel. Used to "erase" an SRC that was
655 * previously displayed.
656 */
657void mf_clear_src(void)
658{
659 signal_ce_msg_simple(0x4b, NULL);
660}
661
662/*
663 * Initialization code here.
664 */
665void mf_init(void)
666{
667 int i;
668
669 /* initialize */
670 spin_lock_init(&pending_event_spinlock);
671 for (i = 0;
672 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
673 ++i)
674 free_pending_event(&pending_event_prealloc[i]);
675 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
676
677 /* virtual continue ack */
678 signal_ce_msg_simple(0x57, NULL);
679
680 /* initialization complete */
681 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
682 "initialized\n");
683}
684
685struct rtc_time_data {
686 struct completion com;
687 struct ce_msg_data ce_msg;
688 int rc;
689};
690
691static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
692{
693 struct rtc_time_data *rtc = token;
694
695 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
696 rtc->rc = 0;
697 complete(&rtc->com);
698}
699
700static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
701{
702 tm->tm_wday = 0;
703 tm->tm_yday = 0;
704 tm->tm_isdst = 0;
705 if (rc) {
706 tm->tm_sec = 0;
707 tm->tm_min = 0;
708 tm->tm_hour = 0;
709 tm->tm_mday = 15;
710 tm->tm_mon = 5;
711 tm->tm_year = 52;
712 return rc;
713 }
714
715 if ((ce_msg[2] == 0xa9) ||
716 (ce_msg[2] == 0xaf)) {
717 /* TOD clock is not set */
718 tm->tm_sec = 1;
719 tm->tm_min = 1;
720 tm->tm_hour = 1;
721 tm->tm_mday = 10;
722 tm->tm_mon = 8;
723 tm->tm_year = 71;
724 mf_set_rtc(tm);
725 }
726 {
727 u8 year = ce_msg[5];
728 u8 sec = ce_msg[6];
729 u8 min = ce_msg[7];
730 u8 hour = ce_msg[8];
731 u8 day = ce_msg[10];
732 u8 mon = ce_msg[11];
733
734 BCD_TO_BIN(sec);
735 BCD_TO_BIN(min);
736 BCD_TO_BIN(hour);
737 BCD_TO_BIN(day);
738 BCD_TO_BIN(mon);
739 BCD_TO_BIN(year);
740
741 if (year <= 69)
742 year += 100;
743
744 tm->tm_sec = sec;
745 tm->tm_min = min;
746 tm->tm_hour = hour;
747 tm->tm_mday = day;
748 tm->tm_mon = mon;
749 tm->tm_year = year;
750 }
751
752 return 0;
753}
754
755int mf_get_rtc(struct rtc_time *tm)
756{
757 struct ce_msg_comp_data ce_complete;
758 struct rtc_time_data rtc_data;
759 int rc;
760
761 memset(&ce_complete, 0, sizeof(ce_complete));
762 memset(&rtc_data, 0, sizeof(rtc_data));
763 init_completion(&rtc_data.com);
764 ce_complete.handler = &get_rtc_time_complete;
765 ce_complete.token = &rtc_data;
766 rc = signal_ce_msg_simple(0x40, &ce_complete);
767 if (rc)
768 return rc;
769 wait_for_completion(&rtc_data.com);
770 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
771}
772
773struct boot_rtc_time_data {
774 int busy;
775 struct ce_msg_data ce_msg;
776 int rc;
777};
778
779static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
780{
781 struct boot_rtc_time_data *rtc = token;
782
783 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
784 rtc->rc = 0;
785 rtc->busy = 0;
786}
787
788int mf_get_boot_rtc(struct rtc_time *tm)
789{
790 struct ce_msg_comp_data ce_complete;
791 struct boot_rtc_time_data rtc_data;
792 int rc;
793
794 memset(&ce_complete, 0, sizeof(ce_complete));
795 memset(&rtc_data, 0, sizeof(rtc_data));
796 rtc_data.busy = 1;
797 ce_complete.handler = &get_boot_rtc_time_complete;
798 ce_complete.token = &rtc_data;
799 rc = signal_ce_msg_simple(0x40, &ce_complete);
800 if (rc)
801 return rc;
802 /* We need to poll here as we are not yet taking interrupts */
803 while (rtc_data.busy) {
804 if (hvlpevent_is_pending())
805 process_hvlpevents(NULL);
806 }
807 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
808}
809
810int mf_set_rtc(struct rtc_time *tm)
811{
812 char ce_time[12];
813 u8 day, mon, hour, min, sec, y1, y2;
814 unsigned year;
815
816 year = 1900 + tm->tm_year;
817 y1 = year / 100;
818 y2 = year % 100;
819
820 sec = tm->tm_sec;
821 min = tm->tm_min;
822 hour = tm->tm_hour;
823 day = tm->tm_mday;
824 mon = tm->tm_mon + 1;
825
826 BIN_TO_BCD(sec);
827 BIN_TO_BCD(min);
828 BIN_TO_BCD(hour);
829 BIN_TO_BCD(mon);
830 BIN_TO_BCD(day);
831 BIN_TO_BCD(y1);
832 BIN_TO_BCD(y2);
833
834 memset(ce_time, 0, sizeof(ce_time));
835 ce_time[3] = 0x41;
836 ce_time[4] = y1;
837 ce_time[5] = y2;
838 ce_time[6] = sec;
839 ce_time[7] = min;
840 ce_time[8] = hour;
841 ce_time[10] = day;
842 ce_time[11] = mon;
843
844 return signal_ce_msg(ce_time, NULL);
845}
846
847#ifdef CONFIG_PROC_FS
848
849static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
850 int count, int *eof, void *data)
851{
852 int len;
853 char *p;
854 struct vsp_cmd_data vsp_cmd;
855 int rc;
856 dma_addr_t dma_addr;
857
858 /* The HV appears to return no more than 256 bytes of command line */
859 if (off >= 256)
860 return 0;
861 if ((off + count) > 256)
862 count = 256 - off;
863
864 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
865 DMA_FROM_DEVICE);
866 if (dma_mapping_error(dma_addr))
867 return -ENOMEM;
868 memset(page, 0, off + count);
869 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
870 vsp_cmd.cmd = 33;
871 vsp_cmd.sub_data.kern.token = dma_addr;
872 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
873 vsp_cmd.sub_data.kern.side = (u64)data;
874 vsp_cmd.sub_data.kern.length = off + count;
875 mb();
876 rc = signal_vsp_instruction(&vsp_cmd);
877 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
878 DMA_FROM_DEVICE);
879 if (rc)
880 return rc;
881 if (vsp_cmd.result_code != 0)
882 return -ENOMEM;
883 p = page;
884 len = 0;
885 while (len < (off + count)) {
886 if ((*p == '\0') || (*p == '\n')) {
887 if (*p == '\0')
888 *p = '\n';
889 p++;
890 len++;
891 *eof = 1;
892 break;
893 }
894 p++;
895 len++;
896 }
897
898 if (len < off) {
899 *eof = 1;
900 len = 0;
901 }
902 return len;
903}
904
905#if 0
906static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
907{
908 struct vsp_cmd_data vsp_cmd;
909 int rc;
910 int len = *size;
911 dma_addr_t dma_addr;
912
913 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
914 DMA_FROM_DEVICE);
915 memset(buffer, 0, len);
916 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
917 vsp_cmd.cmd = 32;
918 vsp_cmd.sub_data.kern.token = dma_addr;
919 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
920 vsp_cmd.sub_data.kern.side = side;
921 vsp_cmd.sub_data.kern.offset = offset;
922 vsp_cmd.sub_data.kern.length = len;
923 mb();
924 rc = signal_vsp_instruction(&vsp_cmd);
925 if (rc == 0) {
926 if (vsp_cmd.result_code == 0)
927 *size = vsp_cmd.sub_data.length_out;
928 else
929 rc = -ENOMEM;
930 }
931
932 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
933
934 return rc;
935}
936
937static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
938 int count, int *eof, void *data)
939{
940 int sizeToGet = count;
941
942 if (!capable(CAP_SYS_ADMIN))
943 return -EACCES;
944
945 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
946 if (sizeToGet != 0) {
947 *start = page + off;
948 return sizeToGet;
949 }
950 *eof = 1;
951 return 0;
952 }
953 *eof = 1;
954 return 0;
955}
956#endif
957
958static int proc_mf_dump_side(char *page, char **start, off_t off,
959 int count, int *eof, void *data)
960{
961 int len;
962 char mf_current_side = ' ';
963 struct vsp_cmd_data vsp_cmd;
964
965 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
966 vsp_cmd.cmd = 2;
967 vsp_cmd.sub_data.ipl_type = 0;
968 mb();
969
970 if (signal_vsp_instruction(&vsp_cmd) == 0) {
971 if (vsp_cmd.result_code == 0) {
972 switch (vsp_cmd.sub_data.ipl_type) {
973 case 0: mf_current_side = 'A';
974 break;
975 case 1: mf_current_side = 'B';
976 break;
977 case 2: mf_current_side = 'C';
978 break;
979 default: mf_current_side = 'D';
980 break;
981 }
982 }
983 }
984
985 len = sprintf(page, "%c\n", mf_current_side);
986
987 if (len <= (off + count))
988 *eof = 1;
989 *start = page + off;
990 len -= off;
991 if (len > count)
992 len = count;
993 if (len < 0)
994 len = 0;
995 return len;
996}
997
998static int proc_mf_change_side(struct file *file, const char __user *buffer,
999 unsigned long count, void *data)
1000{
1001 char side;
1002 u64 newSide;
1003 struct vsp_cmd_data vsp_cmd;
1004
1005 if (!capable(CAP_SYS_ADMIN))
1006 return -EACCES;
1007
1008 if (count == 0)
1009 return 0;
1010
1011 if (get_user(side, buffer))
1012 return -EFAULT;
1013
1014 switch (side) {
1015 case 'A': newSide = 0;
1016 break;
1017 case 'B': newSide = 1;
1018 break;
1019 case 'C': newSide = 2;
1020 break;
1021 case 'D': newSide = 3;
1022 break;
1023 default:
1024 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1025 return -EINVAL;
1026 }
1027
1028 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1029 vsp_cmd.sub_data.ipl_type = newSide;
1030 vsp_cmd.cmd = 10;
1031
1032 (void)signal_vsp_instruction(&vsp_cmd);
1033
1034 return count;
1035}
1036
1037#if 0
1038static void mf_getSrcHistory(char *buffer, int size)
1039{
1040 struct IplTypeReturnStuff return_stuff;
1041 struct pending_event *ev = new_pending_event();
1042 int rc = 0;
1043 char *pages[4];
1044
1045 pages[0] = kmalloc(4096, GFP_ATOMIC);
1046 pages[1] = kmalloc(4096, GFP_ATOMIC);
1047 pages[2] = kmalloc(4096, GFP_ATOMIC);
1048 pages[3] = kmalloc(4096, GFP_ATOMIC);
1049 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1050 || (pages[2] == NULL) || (pages[3] == NULL))
1051 return -ENOMEM;
1052
1053 return_stuff.xType = 0;
1054 return_stuff.xRc = 0;
1055 return_stuff.xDone = 0;
1056 ev->event.hp_lp_event.xSubtype = 6;
1057 ev->event.hp_lp_event.x.xSubtypeData =
1058 subtype_data('M', 'F', 'V', 'I');
1059 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1060 ev->event.data.vsp_cmd.cmd = 4;
1061 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1062 ev->event.data.vsp_cmd.result_code = 0xFF;
1063 ev->event.data.vsp_cmd.reserved = 0;
1064 ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]);
1065 ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]);
1066 ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]);
1067 ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]);
1068 mb();
1069 if (signal_event(ev) != 0)
1070 return;
1071
1072 while (return_stuff.xDone != 1)
1073 udelay(10);
1074 if (return_stuff.xRc == 0)
1075 memcpy(buffer, pages[0], size);
1076 kfree(pages[0]);
1077 kfree(pages[1]);
1078 kfree(pages[2]);
1079 kfree(pages[3]);
1080}
1081#endif
1082
1083static int proc_mf_dump_src(char *page, char **start, off_t off,
1084 int count, int *eof, void *data)
1085{
1086#if 0
1087 int len;
1088
1089 mf_getSrcHistory(page, count);
1090 len = count;
1091 len -= off;
1092 if (len < count) {
1093 *eof = 1;
1094 if (len <= 0)
1095 return 0;
1096 } else
1097 len = count;
1098 *start = page + off;
1099 return len;
1100#else
1101 return 0;
1102#endif
1103}
1104
1105static int proc_mf_change_src(struct file *file, const char __user *buffer,
1106 unsigned long count, void *data)
1107{
1108 char stkbuf[10];
1109
1110 if (!capable(CAP_SYS_ADMIN))
1111 return -EACCES;
1112
1113 if ((count < 4) && (count != 1)) {
1114 printk(KERN_ERR "mf_proc: invalid src\n");
1115 return -EINVAL;
1116 }
1117
1118 if (count > (sizeof(stkbuf) - 1))
1119 count = sizeof(stkbuf) - 1;
1120 if (copy_from_user(stkbuf, buffer, count))
1121 return -EFAULT;
1122
1123 if ((count == 1) && (*stkbuf == '\0'))
1124 mf_clear_src();
1125 else
1126 mf_display_src(*(u32 *)stkbuf);
1127
1128 return count;
1129}
1130
1131static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1132 unsigned long count, void *data)
1133{
1134 struct vsp_cmd_data vsp_cmd;
1135 dma_addr_t dma_addr;
1136 char *page;
1137 int ret = -EACCES;
1138
1139 if (!capable(CAP_SYS_ADMIN))
1140 goto out;
1141
1142 dma_addr = 0;
1143 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1144 GFP_ATOMIC);
1145 ret = -ENOMEM;
1146 if (page == NULL)
1147 goto out;
1148
1149 ret = -EFAULT;
1150 if (copy_from_user(page, buffer, count))
1151 goto out_free;
1152
1153 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1154 vsp_cmd.cmd = 31;
1155 vsp_cmd.sub_data.kern.token = dma_addr;
1156 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1157 vsp_cmd.sub_data.kern.side = (u64)data;
1158 vsp_cmd.sub_data.kern.length = count;
1159 mb();
1160 (void)signal_vsp_instruction(&vsp_cmd);
1161 ret = count;
1162
1163out_free:
1164 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1165out:
1166 return ret;
1167}
1168
1169static ssize_t proc_mf_change_vmlinux(struct file *file,
1170 const char __user *buf,
1171 size_t count, loff_t *ppos)
1172{
1173 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1174 ssize_t rc;
1175 dma_addr_t dma_addr;
1176 char *page;
1177 struct vsp_cmd_data vsp_cmd;
1178
1179 rc = -EACCES;
1180 if (!capable(CAP_SYS_ADMIN))
1181 goto out;
1182
1183 dma_addr = 0;
1184 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1185 GFP_ATOMIC);
1186 rc = -ENOMEM;
1187 if (page == NULL) {
1188 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1189 goto out;
1190 }
1191 rc = -EFAULT;
1192 if (copy_from_user(page, buf, count))
1193 goto out_free;
1194
1195 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1196 vsp_cmd.cmd = 30;
1197 vsp_cmd.sub_data.kern.token = dma_addr;
1198 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1199 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1200 vsp_cmd.sub_data.kern.offset = *ppos;
1201 vsp_cmd.sub_data.kern.length = count;
1202 mb();
1203 rc = signal_vsp_instruction(&vsp_cmd);
1204 if (rc)
1205 goto out_free;
1206 rc = -ENOMEM;
1207 if (vsp_cmd.result_code != 0)
1208 goto out_free;
1209
1210 *ppos += count;
1211 rc = count;
1212out_free:
1213 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1214out:
1215 return rc;
1216}
1217
1218static struct file_operations proc_vmlinux_operations = {
1219 .write = proc_mf_change_vmlinux,
1220};
1221
1222static int __init mf_proc_init(void)
1223{
1224 struct proc_dir_entry *mf_proc_root;
1225 struct proc_dir_entry *ent;
1226 struct proc_dir_entry *mf;
1227 char name[2];
1228 int i;
1229
1230 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1231 if (!mf_proc_root)
1232 return 1;
1233
1234 name[1] = '\0';
1235 for (i = 0; i < 4; i++) {
1236 name[0] = 'A' + i;
1237 mf = proc_mkdir(name, mf_proc_root);
1238 if (!mf)
1239 return 1;
1240
1241 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1242 if (!ent)
1243 return 1;
1244 ent->nlink = 1;
1245 ent->data = (void *)(long)i;
1246 ent->read_proc = proc_mf_dump_cmdline;
1247 ent->write_proc = proc_mf_change_cmdline;
1248
1249 if (i == 3) /* no vmlinux entry for 'D' */
1250 continue;
1251
1252 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1253 if (!ent)
1254 return 1;
1255 ent->nlink = 1;
1256 ent->data = (void *)(long)i;
1257 ent->proc_fops = &proc_vmlinux_operations;
1258 }
1259
1260 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1261 if (!ent)
1262 return 1;
1263 ent->nlink = 1;
1264 ent->data = (void *)0;
1265 ent->read_proc = proc_mf_dump_side;
1266 ent->write_proc = proc_mf_change_side;
1267
1268 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1269 if (!ent)
1270 return 1;
1271 ent->nlink = 1;
1272 ent->data = (void *)0;
1273 ent->read_proc = proc_mf_dump_src;
1274 ent->write_proc = proc_mf_change_src;
1275
1276 return 0;
1277}
1278
1279__initcall(mf_proc_init);
1280
1281#endif /* CONFIG_PROC_FS */
diff --git a/arch/ppc64/kernel/rtc.c b/arch/ppc64/kernel/rtc.c
index 6ff52bc61325..88ae13f81c46 100644
--- a/arch/ppc64/kernel/rtc.c
+++ b/arch/ppc64/kernel/rtc.c
@@ -43,11 +43,8 @@
43#include <asm/time.h> 43#include <asm/time.h>
44#include <asm/rtas.h> 44#include <asm/rtas.h>
45 45
46#include <asm/iSeries/mf.h>
47#include <asm/machdep.h> 46#include <asm/machdep.h>
48 47
49extern int piranha_simulator;
50
51/* 48/*
52 * We sponge a minor off of the misc major. No need slurping 49 * We sponge a minor off of the misc major. No need slurping
53 * up another valuable major dev number for this. If you add 50 * up another valuable major dev number for this. If you add
@@ -265,40 +262,6 @@ static int rtc_read_proc(char *page, char **start, off_t off,
265 return len; 262 return len;
266} 263}
267 264
268#ifdef CONFIG_PPC_ISERIES
269/*
270 * Get the RTC from the virtual service processor
271 * This requires flowing LpEvents to the primary partition
272 */
273void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
274{
275 if (piranha_simulator)
276 return;
277
278 mf_get_rtc(rtc_tm);
279 rtc_tm->tm_mon--;
280}
281
282/*
283 * Set the RTC in the virtual service processor
284 * This requires flowing LpEvents to the primary partition
285 */
286int iSeries_set_rtc_time(struct rtc_time *tm)
287{
288 mf_set_rtc(tm);
289 return 0;
290}
291
292void iSeries_get_boot_time(struct rtc_time *tm)
293{
294 if ( piranha_simulator )
295 return;
296
297 mf_get_boot_rtc(tm);
298 tm->tm_mon -= 1;
299}
300#endif
301
302#ifdef CONFIG_PPC_RTAS 265#ifdef CONFIG_PPC_RTAS
303#define MAX_RTC_WAIT 5000 /* 5 sec */ 266#define MAX_RTC_WAIT 5000 /* 5 sec */
304#define RTAS_CLOCK_BUSY (-2) 267#define RTAS_CLOCK_BUSY (-2)