diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc64/kernel/time.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc64/kernel/time.c')
-rw-r--r-- | arch/ppc64/kernel/time.c | 827 |
1 files changed, 827 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/time.c b/arch/ppc64/kernel/time.c new file mode 100644 index 000000000000..77ded5a363b6 --- /dev/null +++ b/arch/ppc64/kernel/time.c | |||
@@ -0,0 +1,827 @@ | |||
1 | /* | ||
2 | * | ||
3 | * Common time routines among all ppc machines. | ||
4 | * | ||
5 | * Written by Cort Dougan (cort@cs.nmt.edu) to merge | ||
6 | * Paul Mackerras' version and mine for PReP and Pmac. | ||
7 | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | ||
8 | * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) | ||
9 | * | ||
10 | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | ||
11 | * to make clock more stable (2.4.0-test5). The only thing | ||
12 | * that this code assumes is that the timebases have been synchronized | ||
13 | * by firmware on SMP and are never stopped (never do sleep | ||
14 | * on SMP then, nap and doze are OK). | ||
15 | * | ||
16 | * Speeded up do_gettimeofday by getting rid of references to | ||
17 | * xtime (which required locks for consistency). (mikejc@us.ibm.com) | ||
18 | * | ||
19 | * TODO (not necessarily in this file): | ||
20 | * - improve precision and reproducibility of timebase frequency | ||
21 | * measurement at boot time. (for iSeries, we calibrate the timebase | ||
22 | * against the Titan chip's clock.) | ||
23 | * - for astronomical applications: add a new function to get | ||
24 | * non ambiguous timestamps even around leap seconds. This needs | ||
25 | * a new timestamp format and a good name. | ||
26 | * | ||
27 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
28 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
29 | * | ||
30 | * This program is free software; you can redistribute it and/or | ||
31 | * modify it under the terms of the GNU General Public License | ||
32 | * as published by the Free Software Foundation; either version | ||
33 | * 2 of the License, or (at your option) any later version. | ||
34 | */ | ||
35 | |||
36 | #include <linux/config.h> | ||
37 | #include <linux/errno.h> | ||
38 | #include <linux/module.h> | ||
39 | #include <linux/sched.h> | ||
40 | #include <linux/kernel.h> | ||
41 | #include <linux/param.h> | ||
42 | #include <linux/string.h> | ||
43 | #include <linux/mm.h> | ||
44 | #include <linux/interrupt.h> | ||
45 | #include <linux/timex.h> | ||
46 | #include <linux/kernel_stat.h> | ||
47 | #include <linux/mc146818rtc.h> | ||
48 | #include <linux/time.h> | ||
49 | #include <linux/init.h> | ||
50 | #include <linux/profile.h> | ||
51 | #include <linux/cpu.h> | ||
52 | #include <linux/security.h> | ||
53 | |||
54 | #include <asm/segment.h> | ||
55 | #include <asm/io.h> | ||
56 | #include <asm/processor.h> | ||
57 | #include <asm/nvram.h> | ||
58 | #include <asm/cache.h> | ||
59 | #include <asm/machdep.h> | ||
60 | #ifdef CONFIG_PPC_ISERIES | ||
61 | #include <asm/iSeries/ItLpQueue.h> | ||
62 | #include <asm/iSeries/HvCallXm.h> | ||
63 | #endif | ||
64 | #include <asm/uaccess.h> | ||
65 | #include <asm/time.h> | ||
66 | #include <asm/ppcdebug.h> | ||
67 | #include <asm/prom.h> | ||
68 | #include <asm/sections.h> | ||
69 | #include <asm/systemcfg.h> | ||
70 | |||
71 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | ||
72 | |||
73 | EXPORT_SYMBOL(jiffies_64); | ||
74 | |||
75 | /* keep track of when we need to update the rtc */ | ||
76 | time_t last_rtc_update; | ||
77 | extern int piranha_simulator; | ||
78 | #ifdef CONFIG_PPC_ISERIES | ||
79 | unsigned long iSeries_recal_titan = 0; | ||
80 | unsigned long iSeries_recal_tb = 0; | ||
81 | static unsigned long first_settimeofday = 1; | ||
82 | #endif | ||
83 | |||
84 | #define XSEC_PER_SEC (1024*1024) | ||
85 | |||
86 | unsigned long tb_ticks_per_jiffy; | ||
87 | unsigned long tb_ticks_per_usec = 100; /* sane default */ | ||
88 | EXPORT_SYMBOL(tb_ticks_per_usec); | ||
89 | unsigned long tb_ticks_per_sec; | ||
90 | unsigned long tb_to_xs; | ||
91 | unsigned tb_to_us; | ||
92 | unsigned long processor_freq; | ||
93 | DEFINE_SPINLOCK(rtc_lock); | ||
94 | |||
95 | unsigned long tb_to_ns_scale; | ||
96 | unsigned long tb_to_ns_shift; | ||
97 | |||
98 | struct gettimeofday_struct do_gtod; | ||
99 | |||
100 | extern unsigned long wall_jiffies; | ||
101 | extern unsigned long lpevent_count; | ||
102 | extern int smp_tb_synchronized; | ||
103 | |||
104 | extern struct timezone sys_tz; | ||
105 | |||
106 | void ppc_adjtimex(void); | ||
107 | |||
108 | static unsigned adjusting_time = 0; | ||
109 | |||
110 | static __inline__ void timer_check_rtc(void) | ||
111 | { | ||
112 | /* | ||
113 | * update the rtc when needed, this should be performed on the | ||
114 | * right fraction of a second. Half or full second ? | ||
115 | * Full second works on mk48t59 clocks, others need testing. | ||
116 | * Note that this update is basically only used through | ||
117 | * the adjtimex system calls. Setting the HW clock in | ||
118 | * any other way is a /dev/rtc and userland business. | ||
119 | * This is still wrong by -0.5/+1.5 jiffies because of the | ||
120 | * timer interrupt resolution and possible delay, but here we | ||
121 | * hit a quantization limit which can only be solved by higher | ||
122 | * resolution timers and decoupling time management from timer | ||
123 | * interrupts. This is also wrong on the clocks | ||
124 | * which require being written at the half second boundary. | ||
125 | * We should have an rtc call that only sets the minutes and | ||
126 | * seconds like on Intel to avoid problems with non UTC clocks. | ||
127 | */ | ||
128 | if ( (time_status & STA_UNSYNC) == 0 && | ||
129 | xtime.tv_sec - last_rtc_update >= 659 && | ||
130 | abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && | ||
131 | jiffies - wall_jiffies == 1) { | ||
132 | struct rtc_time tm; | ||
133 | to_tm(xtime.tv_sec+1, &tm); | ||
134 | tm.tm_year -= 1900; | ||
135 | tm.tm_mon -= 1; | ||
136 | if (ppc_md.set_rtc_time(&tm) == 0) | ||
137 | last_rtc_update = xtime.tv_sec+1; | ||
138 | else | ||
139 | /* Try again one minute later */ | ||
140 | last_rtc_update += 60; | ||
141 | } | ||
142 | } | ||
143 | |||
144 | /* | ||
145 | * This version of gettimeofday has microsecond resolution. | ||
146 | */ | ||
147 | static inline void __do_gettimeofday(struct timeval *tv, unsigned long tb_val) | ||
148 | { | ||
149 | unsigned long sec, usec, tb_ticks; | ||
150 | unsigned long xsec, tb_xsec; | ||
151 | struct gettimeofday_vars * temp_varp; | ||
152 | unsigned long temp_tb_to_xs, temp_stamp_xsec; | ||
153 | |||
154 | /* | ||
155 | * These calculations are faster (gets rid of divides) | ||
156 | * if done in units of 1/2^20 rather than microseconds. | ||
157 | * The conversion to microseconds at the end is done | ||
158 | * without a divide (and in fact, without a multiply) | ||
159 | */ | ||
160 | temp_varp = do_gtod.varp; | ||
161 | tb_ticks = tb_val - temp_varp->tb_orig_stamp; | ||
162 | temp_tb_to_xs = temp_varp->tb_to_xs; | ||
163 | temp_stamp_xsec = temp_varp->stamp_xsec; | ||
164 | tb_xsec = mulhdu( tb_ticks, temp_tb_to_xs ); | ||
165 | xsec = temp_stamp_xsec + tb_xsec; | ||
166 | sec = xsec / XSEC_PER_SEC; | ||
167 | xsec -= sec * XSEC_PER_SEC; | ||
168 | usec = (xsec * USEC_PER_SEC)/XSEC_PER_SEC; | ||
169 | |||
170 | tv->tv_sec = sec; | ||
171 | tv->tv_usec = usec; | ||
172 | } | ||
173 | |||
174 | void do_gettimeofday(struct timeval *tv) | ||
175 | { | ||
176 | __do_gettimeofday(tv, get_tb()); | ||
177 | } | ||
178 | |||
179 | EXPORT_SYMBOL(do_gettimeofday); | ||
180 | |||
181 | /* Synchronize xtime with do_gettimeofday */ | ||
182 | |||
183 | static inline void timer_sync_xtime(unsigned long cur_tb) | ||
184 | { | ||
185 | struct timeval my_tv; | ||
186 | |||
187 | __do_gettimeofday(&my_tv, cur_tb); | ||
188 | |||
189 | if (xtime.tv_sec <= my_tv.tv_sec) { | ||
190 | xtime.tv_sec = my_tv.tv_sec; | ||
191 | xtime.tv_nsec = my_tv.tv_usec * 1000; | ||
192 | } | ||
193 | } | ||
194 | |||
195 | /* | ||
196 | * When the timebase - tb_orig_stamp gets too big, we do a manipulation | ||
197 | * between tb_orig_stamp and stamp_xsec. The goal here is to keep the | ||
198 | * difference tb - tb_orig_stamp small enough to always fit inside a | ||
199 | * 32 bits number. This is a requirement of our fast 32 bits userland | ||
200 | * implementation in the vdso. If we "miss" a call to this function | ||
201 | * (interrupt latency, CPU locked in a spinlock, ...) and we end up | ||
202 | * with a too big difference, then the vdso will fallback to calling | ||
203 | * the syscall | ||
204 | */ | ||
205 | static __inline__ void timer_recalc_offset(unsigned long cur_tb) | ||
206 | { | ||
207 | struct gettimeofday_vars * temp_varp; | ||
208 | unsigned temp_idx; | ||
209 | unsigned long offset, new_stamp_xsec, new_tb_orig_stamp; | ||
210 | |||
211 | if (((cur_tb - do_gtod.varp->tb_orig_stamp) & 0x80000000u) == 0) | ||
212 | return; | ||
213 | |||
214 | temp_idx = (do_gtod.var_idx == 0); | ||
215 | temp_varp = &do_gtod.vars[temp_idx]; | ||
216 | |||
217 | new_tb_orig_stamp = cur_tb; | ||
218 | offset = new_tb_orig_stamp - do_gtod.varp->tb_orig_stamp; | ||
219 | new_stamp_xsec = do_gtod.varp->stamp_xsec + mulhdu(offset, do_gtod.varp->tb_to_xs); | ||
220 | |||
221 | temp_varp->tb_to_xs = do_gtod.varp->tb_to_xs; | ||
222 | temp_varp->tb_orig_stamp = new_tb_orig_stamp; | ||
223 | temp_varp->stamp_xsec = new_stamp_xsec; | ||
224 | mb(); | ||
225 | do_gtod.varp = temp_varp; | ||
226 | do_gtod.var_idx = temp_idx; | ||
227 | |||
228 | ++(systemcfg->tb_update_count); | ||
229 | wmb(); | ||
230 | systemcfg->tb_orig_stamp = new_tb_orig_stamp; | ||
231 | systemcfg->stamp_xsec = new_stamp_xsec; | ||
232 | wmb(); | ||
233 | ++(systemcfg->tb_update_count); | ||
234 | } | ||
235 | |||
236 | #ifdef CONFIG_SMP | ||
237 | unsigned long profile_pc(struct pt_regs *regs) | ||
238 | { | ||
239 | unsigned long pc = instruction_pointer(regs); | ||
240 | |||
241 | if (in_lock_functions(pc)) | ||
242 | return regs->link; | ||
243 | |||
244 | return pc; | ||
245 | } | ||
246 | EXPORT_SYMBOL(profile_pc); | ||
247 | #endif | ||
248 | |||
249 | #ifdef CONFIG_PPC_ISERIES | ||
250 | |||
251 | /* | ||
252 | * This function recalibrates the timebase based on the 49-bit time-of-day | ||
253 | * value in the Titan chip. The Titan is much more accurate than the value | ||
254 | * returned by the service processor for the timebase frequency. | ||
255 | */ | ||
256 | |||
257 | static void iSeries_tb_recal(void) | ||
258 | { | ||
259 | struct div_result divres; | ||
260 | unsigned long titan, tb; | ||
261 | tb = get_tb(); | ||
262 | titan = HvCallXm_loadTod(); | ||
263 | if ( iSeries_recal_titan ) { | ||
264 | unsigned long tb_ticks = tb - iSeries_recal_tb; | ||
265 | unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; | ||
266 | unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; | ||
267 | unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; | ||
268 | long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; | ||
269 | char sign = '+'; | ||
270 | /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ | ||
271 | new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; | ||
272 | |||
273 | if ( tick_diff < 0 ) { | ||
274 | tick_diff = -tick_diff; | ||
275 | sign = '-'; | ||
276 | } | ||
277 | if ( tick_diff ) { | ||
278 | if ( tick_diff < tb_ticks_per_jiffy/25 ) { | ||
279 | printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", | ||
280 | new_tb_ticks_per_jiffy, sign, tick_diff ); | ||
281 | tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; | ||
282 | tb_ticks_per_sec = new_tb_ticks_per_sec; | ||
283 | div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); | ||
284 | do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | ||
285 | tb_to_xs = divres.result_low; | ||
286 | do_gtod.varp->tb_to_xs = tb_to_xs; | ||
287 | systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; | ||
288 | systemcfg->tb_to_xs = tb_to_xs; | ||
289 | } | ||
290 | else { | ||
291 | printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" | ||
292 | " new tb_ticks_per_jiffy = %lu\n" | ||
293 | " old tb_ticks_per_jiffy = %lu\n", | ||
294 | new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); | ||
295 | } | ||
296 | } | ||
297 | } | ||
298 | iSeries_recal_titan = titan; | ||
299 | iSeries_recal_tb = tb; | ||
300 | } | ||
301 | #endif | ||
302 | |||
303 | /* | ||
304 | * For iSeries shared processors, we have to let the hypervisor | ||
305 | * set the hardware decrementer. We set a virtual decrementer | ||
306 | * in the lppaca and call the hypervisor if the virtual | ||
307 | * decrementer is less than the current value in the hardware | ||
308 | * decrementer. (almost always the new decrementer value will | ||
309 | * be greater than the current hardware decementer so the hypervisor | ||
310 | * call will not be needed) | ||
311 | */ | ||
312 | |||
313 | unsigned long tb_last_stamp __cacheline_aligned_in_smp; | ||
314 | |||
315 | /* | ||
316 | * timer_interrupt - gets called when the decrementer overflows, | ||
317 | * with interrupts disabled. | ||
318 | */ | ||
319 | int timer_interrupt(struct pt_regs * regs) | ||
320 | { | ||
321 | int next_dec; | ||
322 | unsigned long cur_tb; | ||
323 | struct paca_struct *lpaca = get_paca(); | ||
324 | unsigned long cpu = smp_processor_id(); | ||
325 | |||
326 | irq_enter(); | ||
327 | |||
328 | #ifndef CONFIG_PPC_ISERIES | ||
329 | profile_tick(CPU_PROFILING, regs); | ||
330 | #endif | ||
331 | |||
332 | lpaca->lppaca.int_dword.fields.decr_int = 0; | ||
333 | |||
334 | while (lpaca->next_jiffy_update_tb <= (cur_tb = get_tb())) { | ||
335 | /* | ||
336 | * We cannot disable the decrementer, so in the period | ||
337 | * between this cpu's being marked offline in cpu_online_map | ||
338 | * and calling stop-self, it is taking timer interrupts. | ||
339 | * Avoid calling into the scheduler rebalancing code if this | ||
340 | * is the case. | ||
341 | */ | ||
342 | if (!cpu_is_offline(cpu)) | ||
343 | update_process_times(user_mode(regs)); | ||
344 | /* | ||
345 | * No need to check whether cpu is offline here; boot_cpuid | ||
346 | * should have been fixed up by now. | ||
347 | */ | ||
348 | if (cpu == boot_cpuid) { | ||
349 | write_seqlock(&xtime_lock); | ||
350 | tb_last_stamp = lpaca->next_jiffy_update_tb; | ||
351 | timer_recalc_offset(lpaca->next_jiffy_update_tb); | ||
352 | do_timer(regs); | ||
353 | timer_sync_xtime(lpaca->next_jiffy_update_tb); | ||
354 | timer_check_rtc(); | ||
355 | write_sequnlock(&xtime_lock); | ||
356 | if ( adjusting_time && (time_adjust == 0) ) | ||
357 | ppc_adjtimex(); | ||
358 | } | ||
359 | lpaca->next_jiffy_update_tb += tb_ticks_per_jiffy; | ||
360 | } | ||
361 | |||
362 | next_dec = lpaca->next_jiffy_update_tb - cur_tb; | ||
363 | if (next_dec > lpaca->default_decr) | ||
364 | next_dec = lpaca->default_decr; | ||
365 | set_dec(next_dec); | ||
366 | |||
367 | #ifdef CONFIG_PPC_ISERIES | ||
368 | { | ||
369 | struct ItLpQueue *lpq = lpaca->lpqueue_ptr; | ||
370 | if (lpq && ItLpQueue_isLpIntPending(lpq)) | ||
371 | lpevent_count += ItLpQueue_process(lpq, regs); | ||
372 | } | ||
373 | #endif | ||
374 | |||
375 | /* collect purr register values often, for accurate calculations */ | ||
376 | #if defined(CONFIG_PPC_PSERIES) | ||
377 | if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) { | ||
378 | struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); | ||
379 | cu->current_tb = mfspr(SPRN_PURR); | ||
380 | } | ||
381 | #endif | ||
382 | |||
383 | irq_exit(); | ||
384 | |||
385 | return 1; | ||
386 | } | ||
387 | |||
388 | /* | ||
389 | * Scheduler clock - returns current time in nanosec units. | ||
390 | * | ||
391 | * Note: mulhdu(a, b) (multiply high double unsigned) returns | ||
392 | * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b | ||
393 | * are 64-bit unsigned numbers. | ||
394 | */ | ||
395 | unsigned long long sched_clock(void) | ||
396 | { | ||
397 | return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; | ||
398 | } | ||
399 | |||
400 | int do_settimeofday(struct timespec *tv) | ||
401 | { | ||
402 | time_t wtm_sec, new_sec = tv->tv_sec; | ||
403 | long wtm_nsec, new_nsec = tv->tv_nsec; | ||
404 | unsigned long flags; | ||
405 | unsigned long delta_xsec; | ||
406 | long int tb_delta; | ||
407 | unsigned long new_xsec; | ||
408 | |||
409 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
410 | return -EINVAL; | ||
411 | |||
412 | write_seqlock_irqsave(&xtime_lock, flags); | ||
413 | /* Updating the RTC is not the job of this code. If the time is | ||
414 | * stepped under NTP, the RTC will be update after STA_UNSYNC | ||
415 | * is cleared. Tool like clock/hwclock either copy the RTC | ||
416 | * to the system time, in which case there is no point in writing | ||
417 | * to the RTC again, or write to the RTC but then they don't call | ||
418 | * settimeofday to perform this operation. | ||
419 | */ | ||
420 | #ifdef CONFIG_PPC_ISERIES | ||
421 | if ( first_settimeofday ) { | ||
422 | iSeries_tb_recal(); | ||
423 | first_settimeofday = 0; | ||
424 | } | ||
425 | #endif | ||
426 | tb_delta = tb_ticks_since(tb_last_stamp); | ||
427 | tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; | ||
428 | |||
429 | new_nsec -= tb_delta / tb_ticks_per_usec / 1000; | ||
430 | |||
431 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); | ||
432 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); | ||
433 | |||
434 | set_normalized_timespec(&xtime, new_sec, new_nsec); | ||
435 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
436 | |||
437 | /* In case of a large backwards jump in time with NTP, we want the | ||
438 | * clock to be updated as soon as the PLL is again in lock. | ||
439 | */ | ||
440 | last_rtc_update = new_sec - 658; | ||
441 | |||
442 | time_adjust = 0; /* stop active adjtime() */ | ||
443 | time_status |= STA_UNSYNC; | ||
444 | time_maxerror = NTP_PHASE_LIMIT; | ||
445 | time_esterror = NTP_PHASE_LIMIT; | ||
446 | |||
447 | delta_xsec = mulhdu( (tb_last_stamp-do_gtod.varp->tb_orig_stamp), | ||
448 | do_gtod.varp->tb_to_xs ); | ||
449 | |||
450 | new_xsec = (new_nsec * XSEC_PER_SEC) / NSEC_PER_SEC; | ||
451 | new_xsec += new_sec * XSEC_PER_SEC; | ||
452 | if ( new_xsec > delta_xsec ) { | ||
453 | do_gtod.varp->stamp_xsec = new_xsec - delta_xsec; | ||
454 | systemcfg->stamp_xsec = new_xsec - delta_xsec; | ||
455 | } | ||
456 | else { | ||
457 | /* This is only for the case where the user is setting the time | ||
458 | * way back to a time such that the boot time would have been | ||
459 | * before 1970 ... eg. we booted ten days ago, and we are setting | ||
460 | * the time to Jan 5, 1970 */ | ||
461 | do_gtod.varp->stamp_xsec = new_xsec; | ||
462 | do_gtod.varp->tb_orig_stamp = tb_last_stamp; | ||
463 | systemcfg->stamp_xsec = new_xsec; | ||
464 | systemcfg->tb_orig_stamp = tb_last_stamp; | ||
465 | } | ||
466 | |||
467 | systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; | ||
468 | systemcfg->tz_dsttime = sys_tz.tz_dsttime; | ||
469 | |||
470 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
471 | clock_was_set(); | ||
472 | return 0; | ||
473 | } | ||
474 | |||
475 | EXPORT_SYMBOL(do_settimeofday); | ||
476 | |||
477 | void __init time_init(void) | ||
478 | { | ||
479 | /* This function is only called on the boot processor */ | ||
480 | unsigned long flags; | ||
481 | struct rtc_time tm; | ||
482 | struct div_result res; | ||
483 | unsigned long scale, shift; | ||
484 | |||
485 | ppc_md.calibrate_decr(); | ||
486 | |||
487 | /* | ||
488 | * Compute scale factor for sched_clock. | ||
489 | * The calibrate_decr() function has set tb_ticks_per_sec, | ||
490 | * which is the timebase frequency. | ||
491 | * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret | ||
492 | * the 128-bit result as a 64.64 fixed-point number. | ||
493 | * We then shift that number right until it is less than 1.0, | ||
494 | * giving us the scale factor and shift count to use in | ||
495 | * sched_clock(). | ||
496 | */ | ||
497 | div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); | ||
498 | scale = res.result_low; | ||
499 | for (shift = 0; res.result_high != 0; ++shift) { | ||
500 | scale = (scale >> 1) | (res.result_high << 63); | ||
501 | res.result_high >>= 1; | ||
502 | } | ||
503 | tb_to_ns_scale = scale; | ||
504 | tb_to_ns_shift = shift; | ||
505 | |||
506 | #ifdef CONFIG_PPC_ISERIES | ||
507 | if (!piranha_simulator) | ||
508 | #endif | ||
509 | ppc_md.get_boot_time(&tm); | ||
510 | |||
511 | write_seqlock_irqsave(&xtime_lock, flags); | ||
512 | xtime.tv_sec = mktime(tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, | ||
513 | tm.tm_hour, tm.tm_min, tm.tm_sec); | ||
514 | tb_last_stamp = get_tb(); | ||
515 | do_gtod.varp = &do_gtod.vars[0]; | ||
516 | do_gtod.var_idx = 0; | ||
517 | do_gtod.varp->tb_orig_stamp = tb_last_stamp; | ||
518 | do_gtod.varp->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; | ||
519 | do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | ||
520 | do_gtod.varp->tb_to_xs = tb_to_xs; | ||
521 | do_gtod.tb_to_us = tb_to_us; | ||
522 | systemcfg->tb_orig_stamp = tb_last_stamp; | ||
523 | systemcfg->tb_update_count = 0; | ||
524 | systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; | ||
525 | systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; | ||
526 | systemcfg->tb_to_xs = tb_to_xs; | ||
527 | |||
528 | time_freq = 0; | ||
529 | |||
530 | xtime.tv_nsec = 0; | ||
531 | last_rtc_update = xtime.tv_sec; | ||
532 | set_normalized_timespec(&wall_to_monotonic, | ||
533 | -xtime.tv_sec, -xtime.tv_nsec); | ||
534 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
535 | |||
536 | /* Not exact, but the timer interrupt takes care of this */ | ||
537 | set_dec(tb_ticks_per_jiffy); | ||
538 | } | ||
539 | |||
540 | /* | ||
541 | * After adjtimex is called, adjust the conversion of tb ticks | ||
542 | * to microseconds to keep do_gettimeofday synchronized | ||
543 | * with ntpd. | ||
544 | * | ||
545 | * Use the time_adjust, time_freq and time_offset computed by adjtimex to | ||
546 | * adjust the frequency. | ||
547 | */ | ||
548 | |||
549 | /* #define DEBUG_PPC_ADJTIMEX 1 */ | ||
550 | |||
551 | void ppc_adjtimex(void) | ||
552 | { | ||
553 | unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, new_tb_to_xs, new_xsec, new_stamp_xsec; | ||
554 | unsigned long tb_ticks_per_sec_delta; | ||
555 | long delta_freq, ltemp; | ||
556 | struct div_result divres; | ||
557 | unsigned long flags; | ||
558 | struct gettimeofday_vars * temp_varp; | ||
559 | unsigned temp_idx; | ||
560 | long singleshot_ppm = 0; | ||
561 | |||
562 | /* Compute parts per million frequency adjustment to accomplish the time adjustment | ||
563 | implied by time_offset to be applied over the elapsed time indicated by time_constant. | ||
564 | Use SHIFT_USEC to get it into the same units as time_freq. */ | ||
565 | if ( time_offset < 0 ) { | ||
566 | ltemp = -time_offset; | ||
567 | ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | ||
568 | ltemp >>= SHIFT_KG + time_constant; | ||
569 | ltemp = -ltemp; | ||
570 | } | ||
571 | else { | ||
572 | ltemp = time_offset; | ||
573 | ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | ||
574 | ltemp >>= SHIFT_KG + time_constant; | ||
575 | } | ||
576 | |||
577 | /* If there is a single shot time adjustment in progress */ | ||
578 | if ( time_adjust ) { | ||
579 | #ifdef DEBUG_PPC_ADJTIMEX | ||
580 | printk("ppc_adjtimex: "); | ||
581 | if ( adjusting_time == 0 ) | ||
582 | printk("starting "); | ||
583 | printk("single shot time_adjust = %ld\n", time_adjust); | ||
584 | #endif | ||
585 | |||
586 | adjusting_time = 1; | ||
587 | |||
588 | /* Compute parts per million frequency adjustment to match time_adjust */ | ||
589 | singleshot_ppm = tickadj * HZ; | ||
590 | /* | ||
591 | * The adjustment should be tickadj*HZ to match the code in | ||
592 | * linux/kernel/timer.c, but experiments show that this is too | ||
593 | * large. 3/4 of tickadj*HZ seems about right | ||
594 | */ | ||
595 | singleshot_ppm -= singleshot_ppm / 4; | ||
596 | /* Use SHIFT_USEC to get it into the same units as time_freq */ | ||
597 | singleshot_ppm <<= SHIFT_USEC; | ||
598 | if ( time_adjust < 0 ) | ||
599 | singleshot_ppm = -singleshot_ppm; | ||
600 | } | ||
601 | else { | ||
602 | #ifdef DEBUG_PPC_ADJTIMEX | ||
603 | if ( adjusting_time ) | ||
604 | printk("ppc_adjtimex: ending single shot time_adjust\n"); | ||
605 | #endif | ||
606 | adjusting_time = 0; | ||
607 | } | ||
608 | |||
609 | /* Add up all of the frequency adjustments */ | ||
610 | delta_freq = time_freq + ltemp + singleshot_ppm; | ||
611 | |||
612 | /* Compute a new value for tb_ticks_per_sec based on the frequency adjustment */ | ||
613 | den = 1000000 * (1 << (SHIFT_USEC - 8)); | ||
614 | if ( delta_freq < 0 ) { | ||
615 | tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; | ||
616 | new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; | ||
617 | } | ||
618 | else { | ||
619 | tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; | ||
620 | new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; | ||
621 | } | ||
622 | |||
623 | #ifdef DEBUG_PPC_ADJTIMEX | ||
624 | printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); | ||
625 | printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); | ||
626 | #endif | ||
627 | |||
628 | /* Compute a new value of tb_to_xs (used to convert tb to microseconds and a new value of | ||
629 | stamp_xsec which is the time (in 1/2^20 second units) corresponding to tb_orig_stamp. This | ||
630 | new value of stamp_xsec compensates for the change in frequency (implied by the new tb_to_xs) | ||
631 | which guarantees that the current time remains the same */ | ||
632 | write_seqlock_irqsave( &xtime_lock, flags ); | ||
633 | tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; | ||
634 | div128_by_32( 1024*1024, 0, new_tb_ticks_per_sec, &divres ); | ||
635 | new_tb_to_xs = divres.result_low; | ||
636 | new_xsec = mulhdu( tb_ticks, new_tb_to_xs ); | ||
637 | |||
638 | old_xsec = mulhdu( tb_ticks, do_gtod.varp->tb_to_xs ); | ||
639 | new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; | ||
640 | |||
641 | /* There are two copies of tb_to_xs and stamp_xsec so that no lock is needed to access and use these | ||
642 | values in do_gettimeofday. We alternate the copies and as long as a reasonable time elapses between | ||
643 | changes, there will never be inconsistent values. ntpd has a minimum of one minute between updates */ | ||
644 | |||
645 | temp_idx = (do_gtod.var_idx == 0); | ||
646 | temp_varp = &do_gtod.vars[temp_idx]; | ||
647 | |||
648 | temp_varp->tb_to_xs = new_tb_to_xs; | ||
649 | temp_varp->stamp_xsec = new_stamp_xsec; | ||
650 | temp_varp->tb_orig_stamp = do_gtod.varp->tb_orig_stamp; | ||
651 | mb(); | ||
652 | do_gtod.varp = temp_varp; | ||
653 | do_gtod.var_idx = temp_idx; | ||
654 | |||
655 | /* | ||
656 | * tb_update_count is used to allow the problem state gettimeofday code | ||
657 | * to assure itself that it sees a consistent view of the tb_to_xs and | ||
658 | * stamp_xsec variables. It reads the tb_update_count, then reads | ||
659 | * tb_to_xs and stamp_xsec and then reads tb_update_count again. If | ||
660 | * the two values of tb_update_count match and are even then the | ||
661 | * tb_to_xs and stamp_xsec values are consistent. If not, then it | ||
662 | * loops back and reads them again until this criteria is met. | ||
663 | */ | ||
664 | ++(systemcfg->tb_update_count); | ||
665 | wmb(); | ||
666 | systemcfg->tb_to_xs = new_tb_to_xs; | ||
667 | systemcfg->stamp_xsec = new_stamp_xsec; | ||
668 | wmb(); | ||
669 | ++(systemcfg->tb_update_count); | ||
670 | |||
671 | write_sequnlock_irqrestore( &xtime_lock, flags ); | ||
672 | |||
673 | } | ||
674 | |||
675 | |||
676 | #define TICK_SIZE tick | ||
677 | #define FEBRUARY 2 | ||
678 | #define STARTOFTIME 1970 | ||
679 | #define SECDAY 86400L | ||
680 | #define SECYR (SECDAY * 365) | ||
681 | #define leapyear(year) ((year) % 4 == 0) | ||
682 | #define days_in_year(a) (leapyear(a) ? 366 : 365) | ||
683 | #define days_in_month(a) (month_days[(a) - 1]) | ||
684 | |||
685 | static int month_days[12] = { | ||
686 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | ||
687 | }; | ||
688 | |||
689 | /* | ||
690 | * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) | ||
691 | */ | ||
692 | void GregorianDay(struct rtc_time * tm) | ||
693 | { | ||
694 | int leapsToDate; | ||
695 | int lastYear; | ||
696 | int day; | ||
697 | int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; | ||
698 | |||
699 | lastYear=tm->tm_year-1; | ||
700 | |||
701 | /* | ||
702 | * Number of leap corrections to apply up to end of last year | ||
703 | */ | ||
704 | leapsToDate = lastYear/4 - lastYear/100 + lastYear/400; | ||
705 | |||
706 | /* | ||
707 | * This year is a leap year if it is divisible by 4 except when it is | ||
708 | * divisible by 100 unless it is divisible by 400 | ||
709 | * | ||
710 | * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be | ||
711 | */ | ||
712 | if((tm->tm_year%4==0) && | ||
713 | ((tm->tm_year%100!=0) || (tm->tm_year%400==0)) && | ||
714 | (tm->tm_mon>2)) | ||
715 | { | ||
716 | /* | ||
717 | * We are past Feb. 29 in a leap year | ||
718 | */ | ||
719 | day=1; | ||
720 | } | ||
721 | else | ||
722 | { | ||
723 | day=0; | ||
724 | } | ||
725 | |||
726 | day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + | ||
727 | tm->tm_mday; | ||
728 | |||
729 | tm->tm_wday=day%7; | ||
730 | } | ||
731 | |||
732 | void to_tm(int tim, struct rtc_time * tm) | ||
733 | { | ||
734 | register int i; | ||
735 | register long hms, day; | ||
736 | |||
737 | day = tim / SECDAY; | ||
738 | hms = tim % SECDAY; | ||
739 | |||
740 | /* Hours, minutes, seconds are easy */ | ||
741 | tm->tm_hour = hms / 3600; | ||
742 | tm->tm_min = (hms % 3600) / 60; | ||
743 | tm->tm_sec = (hms % 3600) % 60; | ||
744 | |||
745 | /* Number of years in days */ | ||
746 | for (i = STARTOFTIME; day >= days_in_year(i); i++) | ||
747 | day -= days_in_year(i); | ||
748 | tm->tm_year = i; | ||
749 | |||
750 | /* Number of months in days left */ | ||
751 | if (leapyear(tm->tm_year)) | ||
752 | days_in_month(FEBRUARY) = 29; | ||
753 | for (i = 1; day >= days_in_month(i); i++) | ||
754 | day -= days_in_month(i); | ||
755 | days_in_month(FEBRUARY) = 28; | ||
756 | tm->tm_mon = i; | ||
757 | |||
758 | /* Days are what is left over (+1) from all that. */ | ||
759 | tm->tm_mday = day + 1; | ||
760 | |||
761 | /* | ||
762 | * Determine the day of week | ||
763 | */ | ||
764 | GregorianDay(tm); | ||
765 | } | ||
766 | |||
767 | /* Auxiliary function to compute scaling factors */ | ||
768 | /* Actually the choice of a timebase running at 1/4 the of the bus | ||
769 | * frequency giving resolution of a few tens of nanoseconds is quite nice. | ||
770 | * It makes this computation very precise (27-28 bits typically) which | ||
771 | * is optimistic considering the stability of most processor clock | ||
772 | * oscillators and the precision with which the timebase frequency | ||
773 | * is measured but does not harm. | ||
774 | */ | ||
775 | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) { | ||
776 | unsigned mlt=0, tmp, err; | ||
777 | /* No concern for performance, it's done once: use a stupid | ||
778 | * but safe and compact method to find the multiplier. | ||
779 | */ | ||
780 | |||
781 | for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | ||
782 | if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp; | ||
783 | } | ||
784 | |||
785 | /* We might still be off by 1 for the best approximation. | ||
786 | * A side effect of this is that if outscale is too large | ||
787 | * the returned value will be zero. | ||
788 | * Many corner cases have been checked and seem to work, | ||
789 | * some might have been forgotten in the test however. | ||
790 | */ | ||
791 | |||
792 | err = inscale*(mlt+1); | ||
793 | if (err <= inscale/2) mlt++; | ||
794 | return mlt; | ||
795 | } | ||
796 | |||
797 | /* | ||
798 | * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit | ||
799 | * result. | ||
800 | */ | ||
801 | |||
802 | void div128_by_32( unsigned long dividend_high, unsigned long dividend_low, | ||
803 | unsigned divisor, struct div_result *dr ) | ||
804 | { | ||
805 | unsigned long a,b,c,d, w,x,y,z, ra,rb,rc; | ||
806 | |||
807 | a = dividend_high >> 32; | ||
808 | b = dividend_high & 0xffffffff; | ||
809 | c = dividend_low >> 32; | ||
810 | d = dividend_low & 0xffffffff; | ||
811 | |||
812 | w = a/divisor; | ||
813 | ra = (a - (w * divisor)) << 32; | ||
814 | |||
815 | x = (ra + b)/divisor; | ||
816 | rb = ((ra + b) - (x * divisor)) << 32; | ||
817 | |||
818 | y = (rb + c)/divisor; | ||
819 | rc = ((rb + b) - (y * divisor)) << 32; | ||
820 | |||
821 | z = (rc + d)/divisor; | ||
822 | |||
823 | dr->result_high = (w << 32) + x; | ||
824 | dr->result_low = (y << 32) + z; | ||
825 | |||
826 | } | ||
827 | |||