diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc64/kernel/rtasd.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc64/kernel/rtasd.c')
-rw-r--r-- | arch/ppc64/kernel/rtasd.c | 527 |
1 files changed, 527 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/rtasd.c b/arch/ppc64/kernel/rtasd.c new file mode 100644 index 000000000000..ff65dc33320e --- /dev/null +++ b/arch/ppc64/kernel/rtasd.c | |||
@@ -0,0 +1,527 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation; either version | ||
7 | * 2 of the License, or (at your option) any later version. | ||
8 | * | ||
9 | * Communication to userspace based on kernel/printk.c | ||
10 | */ | ||
11 | |||
12 | #include <linux/types.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/sched.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/poll.h> | ||
17 | #include <linux/proc_fs.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/vmalloc.h> | ||
20 | #include <linux/spinlock.h> | ||
21 | #include <linux/cpu.h> | ||
22 | |||
23 | #include <asm/uaccess.h> | ||
24 | #include <asm/io.h> | ||
25 | #include <asm/rtas.h> | ||
26 | #include <asm/prom.h> | ||
27 | #include <asm/nvram.h> | ||
28 | #include <asm/atomic.h> | ||
29 | #include <asm/systemcfg.h> | ||
30 | |||
31 | #if 0 | ||
32 | #define DEBUG(A...) printk(KERN_ERR A) | ||
33 | #else | ||
34 | #define DEBUG(A...) | ||
35 | #endif | ||
36 | |||
37 | static DEFINE_SPINLOCK(rtasd_log_lock); | ||
38 | |||
39 | DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); | ||
40 | |||
41 | static char *rtas_log_buf; | ||
42 | static unsigned long rtas_log_start; | ||
43 | static unsigned long rtas_log_size; | ||
44 | |||
45 | static int surveillance_timeout = -1; | ||
46 | static unsigned int rtas_event_scan_rate; | ||
47 | static unsigned int rtas_error_log_max; | ||
48 | static unsigned int rtas_error_log_buffer_max; | ||
49 | |||
50 | static int full_rtas_msgs = 0; | ||
51 | |||
52 | extern int no_logging; | ||
53 | |||
54 | volatile int error_log_cnt = 0; | ||
55 | |||
56 | /* | ||
57 | * Since we use 32 bit RTAS, the physical address of this must be below | ||
58 | * 4G or else bad things happen. Allocate this in the kernel data and | ||
59 | * make it big enough. | ||
60 | */ | ||
61 | static unsigned char logdata[RTAS_ERROR_LOG_MAX]; | ||
62 | |||
63 | static int get_eventscan_parms(void); | ||
64 | |||
65 | static char *rtas_type[] = { | ||
66 | "Unknown", "Retry", "TCE Error", "Internal Device Failure", | ||
67 | "Timeout", "Data Parity", "Address Parity", "Cache Parity", | ||
68 | "Address Invalid", "ECC Uncorrected", "ECC Corrupted", | ||
69 | }; | ||
70 | |||
71 | static char *rtas_event_type(int type) | ||
72 | { | ||
73 | if ((type > 0) && (type < 11)) | ||
74 | return rtas_type[type]; | ||
75 | |||
76 | switch (type) { | ||
77 | case RTAS_TYPE_EPOW: | ||
78 | return "EPOW"; | ||
79 | case RTAS_TYPE_PLATFORM: | ||
80 | return "Platform Error"; | ||
81 | case RTAS_TYPE_IO: | ||
82 | return "I/O Event"; | ||
83 | case RTAS_TYPE_INFO: | ||
84 | return "Platform Information Event"; | ||
85 | case RTAS_TYPE_DEALLOC: | ||
86 | return "Resource Deallocation Event"; | ||
87 | case RTAS_TYPE_DUMP: | ||
88 | return "Dump Notification Event"; | ||
89 | } | ||
90 | |||
91 | return rtas_type[0]; | ||
92 | } | ||
93 | |||
94 | /* To see this info, grep RTAS /var/log/messages and each entry | ||
95 | * will be collected together with obvious begin/end. | ||
96 | * There will be a unique identifier on the begin and end lines. | ||
97 | * This will persist across reboots. | ||
98 | * | ||
99 | * format of error logs returned from RTAS: | ||
100 | * bytes (size) : contents | ||
101 | * -------------------------------------------------------- | ||
102 | * 0-7 (8) : rtas_error_log | ||
103 | * 8-47 (40) : extended info | ||
104 | * 48-51 (4) : vendor id | ||
105 | * 52-1023 (vendor specific) : location code and debug data | ||
106 | */ | ||
107 | static void printk_log_rtas(char *buf, int len) | ||
108 | { | ||
109 | |||
110 | int i,j,n = 0; | ||
111 | int perline = 16; | ||
112 | char buffer[64]; | ||
113 | char * str = "RTAS event"; | ||
114 | |||
115 | if (full_rtas_msgs) { | ||
116 | printk(RTAS_DEBUG "%d -------- %s begin --------\n", | ||
117 | error_log_cnt, str); | ||
118 | |||
119 | /* | ||
120 | * Print perline bytes on each line, each line will start | ||
121 | * with RTAS and a changing number, so syslogd will | ||
122 | * print lines that are otherwise the same. Separate every | ||
123 | * 4 bytes with a space. | ||
124 | */ | ||
125 | for (i = 0; i < len; i++) { | ||
126 | j = i % perline; | ||
127 | if (j == 0) { | ||
128 | memset(buffer, 0, sizeof(buffer)); | ||
129 | n = sprintf(buffer, "RTAS %d:", i/perline); | ||
130 | } | ||
131 | |||
132 | if ((i % 4) == 0) | ||
133 | n += sprintf(buffer+n, " "); | ||
134 | |||
135 | n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); | ||
136 | |||
137 | if (j == (perline-1)) | ||
138 | printk(KERN_DEBUG "%s\n", buffer); | ||
139 | } | ||
140 | if ((i % perline) != 0) | ||
141 | printk(KERN_DEBUG "%s\n", buffer); | ||
142 | |||
143 | printk(RTAS_DEBUG "%d -------- %s end ----------\n", | ||
144 | error_log_cnt, str); | ||
145 | } else { | ||
146 | struct rtas_error_log *errlog = (struct rtas_error_log *)buf; | ||
147 | |||
148 | printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", | ||
149 | error_log_cnt, rtas_event_type(errlog->type), | ||
150 | errlog->severity); | ||
151 | } | ||
152 | } | ||
153 | |||
154 | static int log_rtas_len(char * buf) | ||
155 | { | ||
156 | int len; | ||
157 | struct rtas_error_log *err; | ||
158 | |||
159 | /* rtas fixed header */ | ||
160 | len = 8; | ||
161 | err = (struct rtas_error_log *)buf; | ||
162 | if (err->extended_log_length) { | ||
163 | |||
164 | /* extended header */ | ||
165 | len += err->extended_log_length; | ||
166 | } | ||
167 | |||
168 | if (rtas_error_log_max == 0) { | ||
169 | get_eventscan_parms(); | ||
170 | } | ||
171 | if (len > rtas_error_log_max) | ||
172 | len = rtas_error_log_max; | ||
173 | |||
174 | return len; | ||
175 | } | ||
176 | |||
177 | /* | ||
178 | * First write to nvram, if fatal error, that is the only | ||
179 | * place we log the info. The error will be picked up | ||
180 | * on the next reboot by rtasd. If not fatal, run the | ||
181 | * method for the type of error. Currently, only RTAS | ||
182 | * errors have methods implemented, but in the future | ||
183 | * there might be a need to store data in nvram before a | ||
184 | * call to panic(). | ||
185 | * | ||
186 | * XXX We write to nvram periodically, to indicate error has | ||
187 | * been written and sync'd, but there is a possibility | ||
188 | * that if we don't shutdown correctly, a duplicate error | ||
189 | * record will be created on next reboot. | ||
190 | */ | ||
191 | void pSeries_log_error(char *buf, unsigned int err_type, int fatal) | ||
192 | { | ||
193 | unsigned long offset; | ||
194 | unsigned long s; | ||
195 | int len = 0; | ||
196 | |||
197 | DEBUG("logging event\n"); | ||
198 | if (buf == NULL) | ||
199 | return; | ||
200 | |||
201 | spin_lock_irqsave(&rtasd_log_lock, s); | ||
202 | |||
203 | /* get length and increase count */ | ||
204 | switch (err_type & ERR_TYPE_MASK) { | ||
205 | case ERR_TYPE_RTAS_LOG: | ||
206 | len = log_rtas_len(buf); | ||
207 | if (!(err_type & ERR_FLAG_BOOT)) | ||
208 | error_log_cnt++; | ||
209 | break; | ||
210 | case ERR_TYPE_KERNEL_PANIC: | ||
211 | default: | ||
212 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
213 | return; | ||
214 | } | ||
215 | |||
216 | /* Write error to NVRAM */ | ||
217 | if (!no_logging && !(err_type & ERR_FLAG_BOOT)) | ||
218 | nvram_write_error_log(buf, len, err_type); | ||
219 | |||
220 | /* | ||
221 | * rtas errors can occur during boot, and we do want to capture | ||
222 | * those somewhere, even if nvram isn't ready (why not?), and even | ||
223 | * if rtasd isn't ready. Put them into the boot log, at least. | ||
224 | */ | ||
225 | if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) | ||
226 | printk_log_rtas(buf, len); | ||
227 | |||
228 | /* Check to see if we need to or have stopped logging */ | ||
229 | if (fatal || no_logging) { | ||
230 | no_logging = 1; | ||
231 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
232 | return; | ||
233 | } | ||
234 | |||
235 | /* call type specific method for error */ | ||
236 | switch (err_type & ERR_TYPE_MASK) { | ||
237 | case ERR_TYPE_RTAS_LOG: | ||
238 | offset = rtas_error_log_buffer_max * | ||
239 | ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); | ||
240 | |||
241 | /* First copy over sequence number */ | ||
242 | memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); | ||
243 | |||
244 | /* Second copy over error log data */ | ||
245 | offset += sizeof(int); | ||
246 | memcpy(&rtas_log_buf[offset], buf, len); | ||
247 | |||
248 | if (rtas_log_size < LOG_NUMBER) | ||
249 | rtas_log_size += 1; | ||
250 | else | ||
251 | rtas_log_start += 1; | ||
252 | |||
253 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
254 | wake_up_interruptible(&rtas_log_wait); | ||
255 | break; | ||
256 | case ERR_TYPE_KERNEL_PANIC: | ||
257 | default: | ||
258 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
259 | return; | ||
260 | } | ||
261 | |||
262 | } | ||
263 | |||
264 | |||
265 | static int rtas_log_open(struct inode * inode, struct file * file) | ||
266 | { | ||
267 | return 0; | ||
268 | } | ||
269 | |||
270 | static int rtas_log_release(struct inode * inode, struct file * file) | ||
271 | { | ||
272 | return 0; | ||
273 | } | ||
274 | |||
275 | /* This will check if all events are logged, if they are then, we | ||
276 | * know that we can safely clear the events in NVRAM. | ||
277 | * Next we'll sit and wait for something else to log. | ||
278 | */ | ||
279 | static ssize_t rtas_log_read(struct file * file, char __user * buf, | ||
280 | size_t count, loff_t *ppos) | ||
281 | { | ||
282 | int error; | ||
283 | char *tmp; | ||
284 | unsigned long s; | ||
285 | unsigned long offset; | ||
286 | |||
287 | if (!buf || count < rtas_error_log_buffer_max) | ||
288 | return -EINVAL; | ||
289 | |||
290 | count = rtas_error_log_buffer_max; | ||
291 | |||
292 | if (!access_ok(VERIFY_WRITE, buf, count)) | ||
293 | return -EFAULT; | ||
294 | |||
295 | tmp = kmalloc(count, GFP_KERNEL); | ||
296 | if (!tmp) | ||
297 | return -ENOMEM; | ||
298 | |||
299 | |||
300 | spin_lock_irqsave(&rtasd_log_lock, s); | ||
301 | /* if it's 0, then we know we got the last one (the one in NVRAM) */ | ||
302 | if (rtas_log_size == 0 && !no_logging) | ||
303 | nvram_clear_error_log(); | ||
304 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
305 | |||
306 | |||
307 | error = wait_event_interruptible(rtas_log_wait, rtas_log_size); | ||
308 | if (error) | ||
309 | goto out; | ||
310 | |||
311 | spin_lock_irqsave(&rtasd_log_lock, s); | ||
312 | offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); | ||
313 | memcpy(tmp, &rtas_log_buf[offset], count); | ||
314 | |||
315 | rtas_log_start += 1; | ||
316 | rtas_log_size -= 1; | ||
317 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
318 | |||
319 | error = copy_to_user(buf, tmp, count) ? -EFAULT : count; | ||
320 | out: | ||
321 | kfree(tmp); | ||
322 | return error; | ||
323 | } | ||
324 | |||
325 | static unsigned int rtas_log_poll(struct file *file, poll_table * wait) | ||
326 | { | ||
327 | poll_wait(file, &rtas_log_wait, wait); | ||
328 | if (rtas_log_size) | ||
329 | return POLLIN | POLLRDNORM; | ||
330 | return 0; | ||
331 | } | ||
332 | |||
333 | struct file_operations proc_rtas_log_operations = { | ||
334 | .read = rtas_log_read, | ||
335 | .poll = rtas_log_poll, | ||
336 | .open = rtas_log_open, | ||
337 | .release = rtas_log_release, | ||
338 | }; | ||
339 | |||
340 | static int enable_surveillance(int timeout) | ||
341 | { | ||
342 | int error; | ||
343 | |||
344 | error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); | ||
345 | |||
346 | if (error == 0) | ||
347 | return 0; | ||
348 | |||
349 | if (error == -EINVAL) { | ||
350 | printk(KERN_INFO "rtasd: surveillance not supported\n"); | ||
351 | return 0; | ||
352 | } | ||
353 | |||
354 | printk(KERN_ERR "rtasd: could not update surveillance\n"); | ||
355 | return -1; | ||
356 | } | ||
357 | |||
358 | static int get_eventscan_parms(void) | ||
359 | { | ||
360 | struct device_node *node; | ||
361 | int *ip; | ||
362 | |||
363 | node = of_find_node_by_path("/rtas"); | ||
364 | |||
365 | ip = (int *)get_property(node, "rtas-event-scan-rate", NULL); | ||
366 | if (ip == NULL) { | ||
367 | printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n"); | ||
368 | of_node_put(node); | ||
369 | return -1; | ||
370 | } | ||
371 | rtas_event_scan_rate = *ip; | ||
372 | DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate); | ||
373 | |||
374 | /* Make room for the sequence number */ | ||
375 | rtas_error_log_max = rtas_get_error_log_max(); | ||
376 | rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); | ||
377 | |||
378 | of_node_put(node); | ||
379 | |||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | static void do_event_scan(int event_scan) | ||
384 | { | ||
385 | int error; | ||
386 | do { | ||
387 | memset(logdata, 0, rtas_error_log_max); | ||
388 | error = rtas_call(event_scan, 4, 1, NULL, | ||
389 | RTAS_EVENT_SCAN_ALL_EVENTS, 0, | ||
390 | __pa(logdata), rtas_error_log_max); | ||
391 | if (error == -1) { | ||
392 | printk(KERN_ERR "event-scan failed\n"); | ||
393 | break; | ||
394 | } | ||
395 | |||
396 | if (error == 0) | ||
397 | pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); | ||
398 | |||
399 | } while(error == 0); | ||
400 | } | ||
401 | |||
402 | static void do_event_scan_all_cpus(long delay) | ||
403 | { | ||
404 | int cpu; | ||
405 | |||
406 | lock_cpu_hotplug(); | ||
407 | cpu = first_cpu(cpu_online_map); | ||
408 | for (;;) { | ||
409 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
410 | do_event_scan(rtas_token("event-scan")); | ||
411 | set_cpus_allowed(current, CPU_MASK_ALL); | ||
412 | |||
413 | /* Drop hotplug lock, and sleep for the specified delay */ | ||
414 | unlock_cpu_hotplug(); | ||
415 | set_current_state(TASK_INTERRUPTIBLE); | ||
416 | schedule_timeout(delay); | ||
417 | lock_cpu_hotplug(); | ||
418 | |||
419 | cpu = next_cpu(cpu, cpu_online_map); | ||
420 | if (cpu == NR_CPUS) | ||
421 | break; | ||
422 | } | ||
423 | unlock_cpu_hotplug(); | ||
424 | } | ||
425 | |||
426 | static int rtasd(void *unused) | ||
427 | { | ||
428 | unsigned int err_type; | ||
429 | int event_scan = rtas_token("event-scan"); | ||
430 | int rc; | ||
431 | |||
432 | daemonize("rtasd"); | ||
433 | |||
434 | if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1) | ||
435 | goto error; | ||
436 | |||
437 | rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); | ||
438 | if (!rtas_log_buf) { | ||
439 | printk(KERN_ERR "rtasd: no memory\n"); | ||
440 | goto error; | ||
441 | } | ||
442 | |||
443 | printk(KERN_ERR "RTAS daemon started\n"); | ||
444 | |||
445 | DEBUG("will sleep for %d jiffies\n", (HZ*60/rtas_event_scan_rate) / 2); | ||
446 | |||
447 | /* See if we have any error stored in NVRAM */ | ||
448 | memset(logdata, 0, rtas_error_log_max); | ||
449 | |||
450 | rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type); | ||
451 | |||
452 | /* We can use rtas_log_buf now */ | ||
453 | no_logging = 0; | ||
454 | |||
455 | if (!rc) { | ||
456 | if (err_type != ERR_FLAG_ALREADY_LOGGED) { | ||
457 | pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); | ||
458 | } | ||
459 | } | ||
460 | |||
461 | /* First pass. */ | ||
462 | do_event_scan_all_cpus(HZ); | ||
463 | |||
464 | if (surveillance_timeout != -1) { | ||
465 | DEBUG("enabling surveillance\n"); | ||
466 | enable_surveillance(surveillance_timeout); | ||
467 | DEBUG("surveillance enabled\n"); | ||
468 | } | ||
469 | |||
470 | /* Delay should be at least one second since some | ||
471 | * machines have problems if we call event-scan too | ||
472 | * quickly. */ | ||
473 | for (;;) | ||
474 | do_event_scan_all_cpus((HZ*60/rtas_event_scan_rate) / 2); | ||
475 | |||
476 | error: | ||
477 | /* Should delete proc entries */ | ||
478 | return -EINVAL; | ||
479 | } | ||
480 | |||
481 | static int __init rtas_init(void) | ||
482 | { | ||
483 | struct proc_dir_entry *entry; | ||
484 | |||
485 | /* No RTAS, only warn if we are on a pSeries box */ | ||
486 | if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) { | ||
487 | if (systemcfg->platform & PLATFORM_PSERIES) | ||
488 | printk(KERN_ERR "rtasd: no event-scan on system\n"); | ||
489 | return 1; | ||
490 | } | ||
491 | |||
492 | entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL); | ||
493 | if (entry) | ||
494 | entry->proc_fops = &proc_rtas_log_operations; | ||
495 | else | ||
496 | printk(KERN_ERR "Failed to create error_log proc entry\n"); | ||
497 | |||
498 | if (kernel_thread(rtasd, NULL, CLONE_FS) < 0) | ||
499 | printk(KERN_ERR "Failed to start RTAS daemon\n"); | ||
500 | |||
501 | return 0; | ||
502 | } | ||
503 | |||
504 | static int __init surveillance_setup(char *str) | ||
505 | { | ||
506 | int i; | ||
507 | |||
508 | if (get_option(&str,&i)) { | ||
509 | if (i >= 0 && i <= 255) | ||
510 | surveillance_timeout = i; | ||
511 | } | ||
512 | |||
513 | return 1; | ||
514 | } | ||
515 | |||
516 | static int __init rtasmsgs_setup(char *str) | ||
517 | { | ||
518 | if (strcmp(str, "on") == 0) | ||
519 | full_rtas_msgs = 1; | ||
520 | else if (strcmp(str, "off") == 0) | ||
521 | full_rtas_msgs = 0; | ||
522 | |||
523 | return 1; | ||
524 | } | ||
525 | __initcall(rtas_init); | ||
526 | __setup("surveillance=", surveillance_setup); | ||
527 | __setup("rtasmsgs=", rtasmsgs_setup); | ||