diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc64/kernel/rtas.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc64/kernel/rtas.c')
-rw-r--r-- | arch/ppc64/kernel/rtas.c | 657 |
1 files changed, 657 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/rtas.c b/arch/ppc64/kernel/rtas.c new file mode 100644 index 000000000000..5575603def27 --- /dev/null +++ b/arch/ppc64/kernel/rtas.c | |||
@@ -0,0 +1,657 @@ | |||
1 | /* | ||
2 | * | ||
3 | * Procedures for interfacing to the RTAS on CHRP machines. | ||
4 | * | ||
5 | * Peter Bergner, IBM March 2001. | ||
6 | * Copyright (C) 2001 IBM. | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or | ||
9 | * modify it under the terms of the GNU General Public License | ||
10 | * as published by the Free Software Foundation; either version | ||
11 | * 2 of the License, or (at your option) any later version. | ||
12 | */ | ||
13 | |||
14 | #include <stdarg.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/types.h> | ||
17 | #include <linux/spinlock.h> | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/init.h> | ||
20 | |||
21 | #include <asm/prom.h> | ||
22 | #include <asm/rtas.h> | ||
23 | #include <asm/semaphore.h> | ||
24 | #include <asm/machdep.h> | ||
25 | #include <asm/page.h> | ||
26 | #include <asm/param.h> | ||
27 | #include <asm/system.h> | ||
28 | #include <asm/abs_addr.h> | ||
29 | #include <asm/udbg.h> | ||
30 | #include <asm/delay.h> | ||
31 | #include <asm/uaccess.h> | ||
32 | #include <asm/systemcfg.h> | ||
33 | |||
34 | struct flash_block_list_header rtas_firmware_flash_list = {0, NULL}; | ||
35 | |||
36 | struct rtas_t rtas = { | ||
37 | .lock = SPIN_LOCK_UNLOCKED | ||
38 | }; | ||
39 | |||
40 | EXPORT_SYMBOL(rtas); | ||
41 | |||
42 | char rtas_err_buf[RTAS_ERROR_LOG_MAX]; | ||
43 | |||
44 | DEFINE_SPINLOCK(rtas_data_buf_lock); | ||
45 | char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; | ||
46 | unsigned long rtas_rmo_buf; | ||
47 | |||
48 | void | ||
49 | call_rtas_display_status(unsigned char c) | ||
50 | { | ||
51 | struct rtas_args *args = &rtas.args; | ||
52 | unsigned long s; | ||
53 | |||
54 | if (!rtas.base) | ||
55 | return; | ||
56 | spin_lock_irqsave(&rtas.lock, s); | ||
57 | |||
58 | args->token = 10; | ||
59 | args->nargs = 1; | ||
60 | args->nret = 1; | ||
61 | args->rets = (rtas_arg_t *)&(args->args[1]); | ||
62 | args->args[0] = (int)c; | ||
63 | |||
64 | enter_rtas(__pa(args)); | ||
65 | |||
66 | spin_unlock_irqrestore(&rtas.lock, s); | ||
67 | } | ||
68 | |||
69 | void | ||
70 | call_rtas_display_status_delay(unsigned char c) | ||
71 | { | ||
72 | static int pending_newline = 0; /* did last write end with unprinted newline? */ | ||
73 | static int width = 16; | ||
74 | |||
75 | if (c == '\n') { | ||
76 | while (width-- > 0) | ||
77 | call_rtas_display_status(' '); | ||
78 | width = 16; | ||
79 | udelay(500000); | ||
80 | pending_newline = 1; | ||
81 | } else { | ||
82 | if (pending_newline) { | ||
83 | call_rtas_display_status('\r'); | ||
84 | call_rtas_display_status('\n'); | ||
85 | } | ||
86 | pending_newline = 0; | ||
87 | if (width--) { | ||
88 | call_rtas_display_status(c); | ||
89 | udelay(10000); | ||
90 | } | ||
91 | } | ||
92 | } | ||
93 | |||
94 | int | ||
95 | rtas_token(const char *service) | ||
96 | { | ||
97 | int *tokp; | ||
98 | if (rtas.dev == NULL) { | ||
99 | PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); | ||
100 | return RTAS_UNKNOWN_SERVICE; | ||
101 | } | ||
102 | tokp = (int *) get_property(rtas.dev, service, NULL); | ||
103 | return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; | ||
104 | } | ||
105 | |||
106 | /* | ||
107 | * Return the firmware-specified size of the error log buffer | ||
108 | * for all rtas calls that require an error buffer argument. | ||
109 | * This includes 'check-exception' and 'rtas-last-error'. | ||
110 | */ | ||
111 | int rtas_get_error_log_max(void) | ||
112 | { | ||
113 | static int rtas_error_log_max; | ||
114 | if (rtas_error_log_max) | ||
115 | return rtas_error_log_max; | ||
116 | |||
117 | rtas_error_log_max = rtas_token ("rtas-error-log-max"); | ||
118 | if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || | ||
119 | (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { | ||
120 | printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max); | ||
121 | rtas_error_log_max = RTAS_ERROR_LOG_MAX; | ||
122 | } | ||
123 | return rtas_error_log_max; | ||
124 | } | ||
125 | |||
126 | |||
127 | /** Return a copy of the detailed error text associated with the | ||
128 | * most recent failed call to rtas. Because the error text | ||
129 | * might go stale if there are any other intervening rtas calls, | ||
130 | * this routine must be called atomically with whatever produced | ||
131 | * the error (i.e. with rtas.lock still held from the previous call). | ||
132 | */ | ||
133 | static int | ||
134 | __fetch_rtas_last_error(void) | ||
135 | { | ||
136 | struct rtas_args err_args, save_args; | ||
137 | u32 bufsz; | ||
138 | |||
139 | bufsz = rtas_get_error_log_max(); | ||
140 | |||
141 | err_args.token = rtas_token("rtas-last-error"); | ||
142 | err_args.nargs = 2; | ||
143 | err_args.nret = 1; | ||
144 | |||
145 | err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); | ||
146 | err_args.args[1] = bufsz; | ||
147 | err_args.args[2] = 0; | ||
148 | |||
149 | save_args = rtas.args; | ||
150 | rtas.args = err_args; | ||
151 | |||
152 | enter_rtas(__pa(&rtas.args)); | ||
153 | |||
154 | err_args = rtas.args; | ||
155 | rtas.args = save_args; | ||
156 | |||
157 | return err_args.args[2]; | ||
158 | } | ||
159 | |||
160 | int rtas_call(int token, int nargs, int nret, int *outputs, ...) | ||
161 | { | ||
162 | va_list list; | ||
163 | int i, logit = 0; | ||
164 | unsigned long s; | ||
165 | struct rtas_args *rtas_args; | ||
166 | char * buff_copy = NULL; | ||
167 | int ret; | ||
168 | |||
169 | PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); | ||
170 | PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token); | ||
171 | PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs); | ||
172 | PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret); | ||
173 | PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); | ||
174 | if (token == RTAS_UNKNOWN_SERVICE) | ||
175 | return -1; | ||
176 | |||
177 | /* Gotta do something different here, use global lock for now... */ | ||
178 | spin_lock_irqsave(&rtas.lock, s); | ||
179 | rtas_args = &rtas.args; | ||
180 | |||
181 | rtas_args->token = token; | ||
182 | rtas_args->nargs = nargs; | ||
183 | rtas_args->nret = nret; | ||
184 | rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]); | ||
185 | va_start(list, outputs); | ||
186 | for (i = 0; i < nargs; ++i) { | ||
187 | rtas_args->args[i] = va_arg(list, rtas_arg_t); | ||
188 | PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]); | ||
189 | } | ||
190 | va_end(list); | ||
191 | |||
192 | for (i = 0; i < nret; ++i) | ||
193 | rtas_args->rets[i] = 0; | ||
194 | |||
195 | PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", | ||
196 | __pa(rtas_args)); | ||
197 | enter_rtas(__pa(rtas_args)); | ||
198 | PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); | ||
199 | |||
200 | /* A -1 return code indicates that the last command couldn't | ||
201 | be completed due to a hardware error. */ | ||
202 | if (rtas_args->rets[0] == -1) | ||
203 | logit = (__fetch_rtas_last_error() == 0); | ||
204 | |||
205 | ifppcdebug(PPCDBG_RTAS) { | ||
206 | for(i=0; i < nret ;i++) | ||
207 | udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); | ||
208 | } | ||
209 | |||
210 | if (nret > 1 && outputs != NULL) | ||
211 | for (i = 0; i < nret-1; ++i) | ||
212 | outputs[i] = rtas_args->rets[i+1]; | ||
213 | ret = (nret > 0)? rtas_args->rets[0]: 0; | ||
214 | |||
215 | /* Log the error in the unlikely case that there was one. */ | ||
216 | if (unlikely(logit)) { | ||
217 | buff_copy = rtas_err_buf; | ||
218 | if (mem_init_done) { | ||
219 | buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); | ||
220 | if (buff_copy) | ||
221 | memcpy(buff_copy, rtas_err_buf, | ||
222 | RTAS_ERROR_LOG_MAX); | ||
223 | } | ||
224 | } | ||
225 | |||
226 | /* Gotta do something different here, use global lock for now... */ | ||
227 | spin_unlock_irqrestore(&rtas.lock, s); | ||
228 | |||
229 | if (buff_copy) { | ||
230 | log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); | ||
231 | if (mem_init_done) | ||
232 | kfree(buff_copy); | ||
233 | } | ||
234 | return ret; | ||
235 | } | ||
236 | |||
237 | /* Given an RTAS status code of 990n compute the hinted delay of 10^n | ||
238 | * (last digit) milliseconds. For now we bound at n=5 (100 sec). | ||
239 | */ | ||
240 | unsigned int | ||
241 | rtas_extended_busy_delay_time(int status) | ||
242 | { | ||
243 | int order = status - 9900; | ||
244 | unsigned long ms; | ||
245 | |||
246 | if (order < 0) | ||
247 | order = 0; /* RTC depends on this for -2 clock busy */ | ||
248 | else if (order > 5) | ||
249 | order = 5; /* bound */ | ||
250 | |||
251 | /* Use microseconds for reasonable accuracy */ | ||
252 | for (ms=1; order > 0; order--) | ||
253 | ms *= 10; | ||
254 | |||
255 | return ms; | ||
256 | } | ||
257 | |||
258 | int rtas_error_rc(int rtas_rc) | ||
259 | { | ||
260 | int rc; | ||
261 | |||
262 | switch (rtas_rc) { | ||
263 | case -1: /* Hardware Error */ | ||
264 | rc = -EIO; | ||
265 | break; | ||
266 | case -3: /* Bad indicator/domain/etc */ | ||
267 | rc = -EINVAL; | ||
268 | break; | ||
269 | case -9000: /* Isolation error */ | ||
270 | rc = -EFAULT; | ||
271 | break; | ||
272 | case -9001: /* Outstanding TCE/PTE */ | ||
273 | rc = -EEXIST; | ||
274 | break; | ||
275 | case -9002: /* No usable slot */ | ||
276 | rc = -ENODEV; | ||
277 | break; | ||
278 | default: | ||
279 | printk(KERN_ERR "%s: unexpected RTAS error %d\n", | ||
280 | __FUNCTION__, rtas_rc); | ||
281 | rc = -ERANGE; | ||
282 | break; | ||
283 | } | ||
284 | return rc; | ||
285 | } | ||
286 | |||
287 | int rtas_get_power_level(int powerdomain, int *level) | ||
288 | { | ||
289 | int token = rtas_token("get-power-level"); | ||
290 | int rc; | ||
291 | |||
292 | if (token == RTAS_UNKNOWN_SERVICE) | ||
293 | return -ENOENT; | ||
294 | |||
295 | while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) | ||
296 | udelay(1); | ||
297 | |||
298 | if (rc < 0) | ||
299 | return rtas_error_rc(rc); | ||
300 | return rc; | ||
301 | } | ||
302 | |||
303 | int rtas_set_power_level(int powerdomain, int level, int *setlevel) | ||
304 | { | ||
305 | int token = rtas_token("set-power-level"); | ||
306 | unsigned int wait_time; | ||
307 | int rc; | ||
308 | |||
309 | if (token == RTAS_UNKNOWN_SERVICE) | ||
310 | return -ENOENT; | ||
311 | |||
312 | while (1) { | ||
313 | rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); | ||
314 | if (rc == RTAS_BUSY) | ||
315 | udelay(1); | ||
316 | else if (rtas_is_extended_busy(rc)) { | ||
317 | wait_time = rtas_extended_busy_delay_time(rc); | ||
318 | udelay(wait_time * 1000); | ||
319 | } else | ||
320 | break; | ||
321 | } | ||
322 | |||
323 | if (rc < 0) | ||
324 | return rtas_error_rc(rc); | ||
325 | return rc; | ||
326 | } | ||
327 | |||
328 | int rtas_get_sensor(int sensor, int index, int *state) | ||
329 | { | ||
330 | int token = rtas_token("get-sensor-state"); | ||
331 | unsigned int wait_time; | ||
332 | int rc; | ||
333 | |||
334 | if (token == RTAS_UNKNOWN_SERVICE) | ||
335 | return -ENOENT; | ||
336 | |||
337 | while (1) { | ||
338 | rc = rtas_call(token, 2, 2, state, sensor, index); | ||
339 | if (rc == RTAS_BUSY) | ||
340 | udelay(1); | ||
341 | else if (rtas_is_extended_busy(rc)) { | ||
342 | wait_time = rtas_extended_busy_delay_time(rc); | ||
343 | udelay(wait_time * 1000); | ||
344 | } else | ||
345 | break; | ||
346 | } | ||
347 | |||
348 | if (rc < 0) | ||
349 | return rtas_error_rc(rc); | ||
350 | return rc; | ||
351 | } | ||
352 | |||
353 | int rtas_set_indicator(int indicator, int index, int new_value) | ||
354 | { | ||
355 | int token = rtas_token("set-indicator"); | ||
356 | unsigned int wait_time; | ||
357 | int rc; | ||
358 | |||
359 | if (token == RTAS_UNKNOWN_SERVICE) | ||
360 | return -ENOENT; | ||
361 | |||
362 | while (1) { | ||
363 | rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); | ||
364 | if (rc == RTAS_BUSY) | ||
365 | udelay(1); | ||
366 | else if (rtas_is_extended_busy(rc)) { | ||
367 | wait_time = rtas_extended_busy_delay_time(rc); | ||
368 | udelay(wait_time * 1000); | ||
369 | } | ||
370 | else | ||
371 | break; | ||
372 | } | ||
373 | |||
374 | if (rc < 0) | ||
375 | return rtas_error_rc(rc); | ||
376 | return rc; | ||
377 | } | ||
378 | |||
379 | #define FLASH_BLOCK_LIST_VERSION (1UL) | ||
380 | static void | ||
381 | rtas_flash_firmware(void) | ||
382 | { | ||
383 | unsigned long image_size; | ||
384 | struct flash_block_list *f, *next, *flist; | ||
385 | unsigned long rtas_block_list; | ||
386 | int i, status, update_token; | ||
387 | |||
388 | update_token = rtas_token("ibm,update-flash-64-and-reboot"); | ||
389 | if (update_token == RTAS_UNKNOWN_SERVICE) { | ||
390 | printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); | ||
391 | printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); | ||
392 | return; | ||
393 | } | ||
394 | |||
395 | /* NOTE: the "first" block list is a global var with no data | ||
396 | * blocks in the kernel data segment. We do this because | ||
397 | * we want to ensure this block_list addr is under 4GB. | ||
398 | */ | ||
399 | rtas_firmware_flash_list.num_blocks = 0; | ||
400 | flist = (struct flash_block_list *)&rtas_firmware_flash_list; | ||
401 | rtas_block_list = virt_to_abs(flist); | ||
402 | if (rtas_block_list >= 4UL*1024*1024*1024) { | ||
403 | printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); | ||
404 | return; | ||
405 | } | ||
406 | |||
407 | printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); | ||
408 | /* Update the block_list in place. */ | ||
409 | image_size = 0; | ||
410 | for (f = flist; f; f = next) { | ||
411 | /* Translate data addrs to absolute */ | ||
412 | for (i = 0; i < f->num_blocks; i++) { | ||
413 | f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data); | ||
414 | image_size += f->blocks[i].length; | ||
415 | } | ||
416 | next = f->next; | ||
417 | /* Don't translate NULL pointer for last entry */ | ||
418 | if (f->next) | ||
419 | f->next = (struct flash_block_list *)virt_to_abs(f->next); | ||
420 | else | ||
421 | f->next = NULL; | ||
422 | /* make num_blocks into the version/length field */ | ||
423 | f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); | ||
424 | } | ||
425 | |||
426 | printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); | ||
427 | printk(KERN_ALERT "FLASH: performing flash and reboot\n"); | ||
428 | ppc_md.progress("Flashing \n", 0x0); | ||
429 | ppc_md.progress("Please Wait... ", 0x0); | ||
430 | printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n"); | ||
431 | status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); | ||
432 | switch (status) { /* should only get "bad" status */ | ||
433 | case 0: | ||
434 | printk(KERN_ALERT "FLASH: success\n"); | ||
435 | break; | ||
436 | case -1: | ||
437 | printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n"); | ||
438 | break; | ||
439 | case -3: | ||
440 | printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n"); | ||
441 | break; | ||
442 | case -4: | ||
443 | printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n"); | ||
444 | break; | ||
445 | default: | ||
446 | printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); | ||
447 | break; | ||
448 | } | ||
449 | } | ||
450 | |||
451 | void rtas_flash_bypass_warning(void) | ||
452 | { | ||
453 | printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); | ||
454 | printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); | ||
455 | } | ||
456 | |||
457 | |||
458 | void | ||
459 | rtas_restart(char *cmd) | ||
460 | { | ||
461 | if (rtas_firmware_flash_list.next) | ||
462 | rtas_flash_firmware(); | ||
463 | |||
464 | printk("RTAS system-reboot returned %d\n", | ||
465 | rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); | ||
466 | for (;;); | ||
467 | } | ||
468 | |||
469 | void | ||
470 | rtas_power_off(void) | ||
471 | { | ||
472 | if (rtas_firmware_flash_list.next) | ||
473 | rtas_flash_bypass_warning(); | ||
474 | /* allow power on only with power button press */ | ||
475 | printk("RTAS power-off returned %d\n", | ||
476 | rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); | ||
477 | for (;;); | ||
478 | } | ||
479 | |||
480 | void | ||
481 | rtas_halt(void) | ||
482 | { | ||
483 | if (rtas_firmware_flash_list.next) | ||
484 | rtas_flash_bypass_warning(); | ||
485 | rtas_power_off(); | ||
486 | } | ||
487 | |||
488 | /* Must be in the RMO region, so we place it here */ | ||
489 | static char rtas_os_term_buf[2048]; | ||
490 | |||
491 | void rtas_os_term(char *str) | ||
492 | { | ||
493 | int status; | ||
494 | |||
495 | if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term")) | ||
496 | return; | ||
497 | |||
498 | snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); | ||
499 | |||
500 | do { | ||
501 | status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, | ||
502 | __pa(rtas_os_term_buf)); | ||
503 | |||
504 | if (status == RTAS_BUSY) | ||
505 | udelay(1); | ||
506 | else if (status != 0) | ||
507 | printk(KERN_EMERG "ibm,os-term call failed %d\n", | ||
508 | status); | ||
509 | } while (status == RTAS_BUSY); | ||
510 | } | ||
511 | |||
512 | |||
513 | asmlinkage int ppc_rtas(struct rtas_args __user *uargs) | ||
514 | { | ||
515 | struct rtas_args args; | ||
516 | unsigned long flags; | ||
517 | char * buff_copy; | ||
518 | int nargs; | ||
519 | int err_rc = 0; | ||
520 | |||
521 | if (!capable(CAP_SYS_ADMIN)) | ||
522 | return -EPERM; | ||
523 | |||
524 | if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) | ||
525 | return -EFAULT; | ||
526 | |||
527 | nargs = args.nargs; | ||
528 | if (nargs > ARRAY_SIZE(args.args) | ||
529 | || args.nret > ARRAY_SIZE(args.args) | ||
530 | || nargs + args.nret > ARRAY_SIZE(args.args)) | ||
531 | return -EINVAL; | ||
532 | |||
533 | /* Copy in args. */ | ||
534 | if (copy_from_user(args.args, uargs->args, | ||
535 | nargs * sizeof(rtas_arg_t)) != 0) | ||
536 | return -EFAULT; | ||
537 | |||
538 | buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL); | ||
539 | |||
540 | spin_lock_irqsave(&rtas.lock, flags); | ||
541 | |||
542 | rtas.args = args; | ||
543 | enter_rtas(__pa(&rtas.args)); | ||
544 | args = rtas.args; | ||
545 | |||
546 | args.rets = &args.args[nargs]; | ||
547 | |||
548 | /* A -1 return code indicates that the last command couldn't | ||
549 | be completed due to a hardware error. */ | ||
550 | if (args.rets[0] == -1) { | ||
551 | err_rc = __fetch_rtas_last_error(); | ||
552 | if ((err_rc == 0) && buff_copy) { | ||
553 | memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX); | ||
554 | } | ||
555 | } | ||
556 | |||
557 | spin_unlock_irqrestore(&rtas.lock, flags); | ||
558 | |||
559 | if (buff_copy) { | ||
560 | if ((args.rets[0] == -1) && (err_rc == 0)) { | ||
561 | log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); | ||
562 | } | ||
563 | kfree(buff_copy); | ||
564 | } | ||
565 | |||
566 | /* Copy out args. */ | ||
567 | if (copy_to_user(uargs->args + nargs, | ||
568 | args.args + nargs, | ||
569 | args.nret * sizeof(rtas_arg_t)) != 0) | ||
570 | return -EFAULT; | ||
571 | |||
572 | return 0; | ||
573 | } | ||
574 | |||
575 | /* This version can't take the spinlock, because it never returns */ | ||
576 | |||
577 | struct rtas_args rtas_stop_self_args = { | ||
578 | /* The token is initialized for real in setup_system() */ | ||
579 | .token = RTAS_UNKNOWN_SERVICE, | ||
580 | .nargs = 0, | ||
581 | .nret = 1, | ||
582 | .rets = &rtas_stop_self_args.args[0], | ||
583 | }; | ||
584 | |||
585 | void rtas_stop_self(void) | ||
586 | { | ||
587 | struct rtas_args *rtas_args = &rtas_stop_self_args; | ||
588 | |||
589 | local_irq_disable(); | ||
590 | |||
591 | BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE); | ||
592 | |||
593 | printk("cpu %u (hwid %u) Ready to die...\n", | ||
594 | smp_processor_id(), hard_smp_processor_id()); | ||
595 | enter_rtas(__pa(rtas_args)); | ||
596 | |||
597 | panic("Alas, I survived.\n"); | ||
598 | } | ||
599 | |||
600 | /* | ||
601 | * Call early during boot, before mem init or bootmem, to retreive the RTAS | ||
602 | * informations from the device-tree and allocate the RMO buffer for userland | ||
603 | * accesses. | ||
604 | */ | ||
605 | void __init rtas_initialize(void) | ||
606 | { | ||
607 | /* Get RTAS dev node and fill up our "rtas" structure with infos | ||
608 | * about it. | ||
609 | */ | ||
610 | rtas.dev = of_find_node_by_name(NULL, "rtas"); | ||
611 | if (rtas.dev) { | ||
612 | u32 *basep, *entryp; | ||
613 | u32 *sizep; | ||
614 | |||
615 | basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL); | ||
616 | sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL); | ||
617 | if (basep != NULL && sizep != NULL) { | ||
618 | rtas.base = *basep; | ||
619 | rtas.size = *sizep; | ||
620 | entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL); | ||
621 | if (entryp == NULL) /* Ugh */ | ||
622 | rtas.entry = rtas.base; | ||
623 | else | ||
624 | rtas.entry = *entryp; | ||
625 | } else | ||
626 | rtas.dev = NULL; | ||
627 | } | ||
628 | /* If RTAS was found, allocate the RMO buffer for it and look for | ||
629 | * the stop-self token if any | ||
630 | */ | ||
631 | if (rtas.dev) { | ||
632 | unsigned long rtas_region = RTAS_INSTANTIATE_MAX; | ||
633 | if (systemcfg->platform == PLATFORM_PSERIES_LPAR) | ||
634 | rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX); | ||
635 | |||
636 | rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, | ||
637 | rtas_region); | ||
638 | |||
639 | #ifdef CONFIG_HOTPLUG_CPU | ||
640 | rtas_stop_self_args.token = rtas_token("stop-self"); | ||
641 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
642 | } | ||
643 | |||
644 | } | ||
645 | |||
646 | |||
647 | EXPORT_SYMBOL(rtas_firmware_flash_list); | ||
648 | EXPORT_SYMBOL(rtas_token); | ||
649 | EXPORT_SYMBOL(rtas_call); | ||
650 | EXPORT_SYMBOL(rtas_data_buf); | ||
651 | EXPORT_SYMBOL(rtas_data_buf_lock); | ||
652 | EXPORT_SYMBOL(rtas_extended_busy_delay_time); | ||
653 | EXPORT_SYMBOL(rtas_get_sensor); | ||
654 | EXPORT_SYMBOL(rtas_get_power_level); | ||
655 | EXPORT_SYMBOL(rtas_set_power_level); | ||
656 | EXPORT_SYMBOL(rtas_set_indicator); | ||
657 | EXPORT_SYMBOL(rtas_get_error_log_max); | ||