diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc/math-emu/op-1.h |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc/math-emu/op-1.h')
-rw-r--r-- | arch/ppc/math-emu/op-1.h | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/arch/ppc/math-emu/op-1.h b/arch/ppc/math-emu/op-1.h new file mode 100644 index 000000000000..c92fa95f562e --- /dev/null +++ b/arch/ppc/math-emu/op-1.h | |||
@@ -0,0 +1,245 @@ | |||
1 | /* | ||
2 | * Basic one-word fraction declaration and manipulation. | ||
3 | */ | ||
4 | |||
5 | #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f | ||
6 | #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f) | ||
7 | #define _FP_FRAC_SET_1(X,I) (X##_f = I) | ||
8 | #define _FP_FRAC_HIGH_1(X) (X##_f) | ||
9 | #define _FP_FRAC_LOW_1(X) (X##_f) | ||
10 | #define _FP_FRAC_WORD_1(X,w) (X##_f) | ||
11 | |||
12 | #define _FP_FRAC_ADDI_1(X,I) (X##_f += I) | ||
13 | #define _FP_FRAC_SLL_1(X,N) \ | ||
14 | do { \ | ||
15 | if (__builtin_constant_p(N) && (N) == 1) \ | ||
16 | X##_f += X##_f; \ | ||
17 | else \ | ||
18 | X##_f <<= (N); \ | ||
19 | } while (0) | ||
20 | #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N) | ||
21 | |||
22 | /* Right shift with sticky-lsb. */ | ||
23 | #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz) | ||
24 | |||
25 | #define __FP_FRAC_SRS_1(X,N,sz) \ | ||
26 | (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \ | ||
27 | ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | ||
28 | |||
29 | #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f) | ||
30 | #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f) | ||
31 | #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f) | ||
32 | |||
33 | /* Predicates */ | ||
34 | #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0) | ||
35 | #define _FP_FRAC_ZEROP_1(X) (X##_f == 0) | ||
36 | #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs) | ||
37 | #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) | ||
38 | #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) | ||
39 | #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) | ||
40 | |||
41 | #define _FP_ZEROFRAC_1 0 | ||
42 | #define _FP_MINFRAC_1 1 | ||
43 | |||
44 | /* | ||
45 | * Unpack the raw bits of a native fp value. Do not classify or | ||
46 | * normalize the data. | ||
47 | */ | ||
48 | |||
49 | #define _FP_UNPACK_RAW_1(fs, X, val) \ | ||
50 | do { \ | ||
51 | union _FP_UNION_##fs _flo; _flo.flt = (val); \ | ||
52 | \ | ||
53 | X##_f = _flo.bits.frac; \ | ||
54 | X##_e = _flo.bits.exp; \ | ||
55 | X##_s = _flo.bits.sign; \ | ||
56 | } while (0) | ||
57 | |||
58 | |||
59 | /* | ||
60 | * Repack the raw bits of a native fp value. | ||
61 | */ | ||
62 | |||
63 | #define _FP_PACK_RAW_1(fs, val, X) \ | ||
64 | do { \ | ||
65 | union _FP_UNION_##fs _flo; \ | ||
66 | \ | ||
67 | _flo.bits.frac = X##_f; \ | ||
68 | _flo.bits.exp = X##_e; \ | ||
69 | _flo.bits.sign = X##_s; \ | ||
70 | \ | ||
71 | (val) = _flo.flt; \ | ||
72 | } while (0) | ||
73 | |||
74 | |||
75 | /* | ||
76 | * Multiplication algorithms: | ||
77 | */ | ||
78 | |||
79 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the | ||
80 | multiplication immediately. */ | ||
81 | |||
82 | #define _FP_MUL_MEAT_1_imm(fs, R, X, Y) \ | ||
83 | do { \ | ||
84 | R##_f = X##_f * Y##_f; \ | ||
85 | /* Normalize since we know where the msb of the multiplicands \ | ||
86 | were (bit B), we know that the msb of the of the product is \ | ||
87 | at either 2B or 2B-1. */ \ | ||
88 | _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ | ||
89 | } while (0) | ||
90 | |||
91 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ | ||
92 | |||
93 | #define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit) \ | ||
94 | do { \ | ||
95 | _FP_W_TYPE _Z_f0, _Z_f1; \ | ||
96 | doit(_Z_f1, _Z_f0, X##_f, Y##_f); \ | ||
97 | /* Normalize since we know where the msb of the multiplicands \ | ||
98 | were (bit B), we know that the msb of the of the product is \ | ||
99 | at either 2B or 2B-1. */ \ | ||
100 | _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ | ||
101 | R##_f = _Z_f0; \ | ||
102 | } while (0) | ||
103 | |||
104 | /* Finally, a simple widening multiply algorithm. What fun! */ | ||
105 | |||
106 | #define _FP_MUL_MEAT_1_hard(fs, R, X, Y) \ | ||
107 | do { \ | ||
108 | _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \ | ||
109 | \ | ||
110 | /* split the words in half */ \ | ||
111 | _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ | ||
112 | _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ | ||
113 | _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ | ||
114 | _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ | ||
115 | \ | ||
116 | /* multiply the pieces */ \ | ||
117 | _z_f0 = _xl * _yl; \ | ||
118 | _a_f0 = _xh * _yl; \ | ||
119 | _a_f1 = _xl * _yh; \ | ||
120 | _z_f1 = _xh * _yh; \ | ||
121 | \ | ||
122 | /* reassemble into two full words */ \ | ||
123 | if ((_a_f0 += _a_f1) < _a_f1) \ | ||
124 | _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \ | ||
125 | _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \ | ||
126 | _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \ | ||
127 | _FP_FRAC_ADD_2(_z, _z, _a); \ | ||
128 | \ | ||
129 | /* normalize */ \ | ||
130 | _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs); \ | ||
131 | R##_f = _z_f0; \ | ||
132 | } while (0) | ||
133 | |||
134 | |||
135 | /* | ||
136 | * Division algorithms: | ||
137 | */ | ||
138 | |||
139 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the | ||
140 | division immediately. Give this macro either _FP_DIV_HELP_imm for | ||
141 | C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you | ||
142 | choose will depend on what the compiler does with divrem4. */ | ||
143 | |||
144 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ | ||
145 | do { \ | ||
146 | _FP_W_TYPE _q, _r; \ | ||
147 | X##_f <<= (X##_f < Y##_f \ | ||
148 | ? R##_e--, _FP_WFRACBITS_##fs \ | ||
149 | : _FP_WFRACBITS_##fs - 1); \ | ||
150 | doit(_q, _r, X##_f, Y##_f); \ | ||
151 | R##_f = _q | (_r != 0); \ | ||
152 | } while (0) | ||
153 | |||
154 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | ||
155 | that may be useful in this situation. This first is for a primitive | ||
156 | that requires normalization, the second for one that does not. Look | ||
157 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ | ||
158 | |||
159 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ | ||
160 | do { \ | ||
161 | _FP_W_TYPE _nh, _nl, _q, _r; \ | ||
162 | \ | ||
163 | /* Normalize Y -- i.e. make the most significant bit set. */ \ | ||
164 | Y##_f <<= _FP_WFRACXBITS_##fs - 1; \ | ||
165 | \ | ||
166 | /* Shift X op correspondingly high, that is, up one full word. */ \ | ||
167 | if (X##_f <= Y##_f) \ | ||
168 | { \ | ||
169 | _nl = 0; \ | ||
170 | _nh = X##_f; \ | ||
171 | } \ | ||
172 | else \ | ||
173 | { \ | ||
174 | R##_e++; \ | ||
175 | _nl = X##_f << (_FP_W_TYPE_SIZE-1); \ | ||
176 | _nh = X##_f >> 1; \ | ||
177 | } \ | ||
178 | \ | ||
179 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ | ||
180 | R##_f = _q | (_r != 0); \ | ||
181 | } while (0) | ||
182 | |||
183 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ | ||
184 | do { \ | ||
185 | _FP_W_TYPE _nh, _nl, _q, _r; \ | ||
186 | if (X##_f < Y##_f) \ | ||
187 | { \ | ||
188 | R##_e--; \ | ||
189 | _nl = X##_f << _FP_WFRACBITS_##fs; \ | ||
190 | _nh = X##_f >> _FP_WFRACXBITS_##fs; \ | ||
191 | } \ | ||
192 | else \ | ||
193 | { \ | ||
194 | _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ | ||
195 | _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ | ||
196 | } \ | ||
197 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ | ||
198 | R##_f = _q | (_r != 0); \ | ||
199 | } while (0) | ||
200 | |||
201 | |||
202 | /* | ||
203 | * Square root algorithms: | ||
204 | * We have just one right now, maybe Newton approximation | ||
205 | * should be added for those machines where division is fast. | ||
206 | */ | ||
207 | |||
208 | #define _FP_SQRT_MEAT_1(R, S, T, X, q) \ | ||
209 | do { \ | ||
210 | while (q) \ | ||
211 | { \ | ||
212 | T##_f = S##_f + q; \ | ||
213 | if (T##_f <= X##_f) \ | ||
214 | { \ | ||
215 | S##_f = T##_f + q; \ | ||
216 | X##_f -= T##_f; \ | ||
217 | R##_f += q; \ | ||
218 | } \ | ||
219 | _FP_FRAC_SLL_1(X, 1); \ | ||
220 | q >>= 1; \ | ||
221 | } \ | ||
222 | } while (0) | ||
223 | |||
224 | /* | ||
225 | * Assembly/disassembly for converting to/from integral types. | ||
226 | * No shifting or overflow handled here. | ||
227 | */ | ||
228 | |||
229 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) | ||
230 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) | ||
231 | |||
232 | |||
233 | /* | ||
234 | * Convert FP values between word sizes | ||
235 | */ | ||
236 | |||
237 | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \ | ||
238 | do { \ | ||
239 | D##_f = S##_f; \ | ||
240 | if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \ | ||
241 | _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \ | ||
242 | _FP_WFRACBITS_##sfs); \ | ||
243 | else \ | ||
244 | D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \ | ||
245 | } while (0) | ||