diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc/8xx_io/fec.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc/8xx_io/fec.c')
-rw-r--r-- | arch/ppc/8xx_io/fec.c | 1973 |
1 files changed, 1973 insertions, 0 deletions
diff --git a/arch/ppc/8xx_io/fec.c b/arch/ppc/8xx_io/fec.c new file mode 100644 index 000000000000..0730392dcc20 --- /dev/null +++ b/arch/ppc/8xx_io/fec.c | |||
@@ -0,0 +1,1973 @@ | |||
1 | /* | ||
2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | ||
3 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | ||
4 | * | ||
5 | * This version of the driver is specific to the FADS implementation, | ||
6 | * since the board contains control registers external to the processor | ||
7 | * for the control of the LevelOne LXT970 transceiver. The MPC860T manual | ||
8 | * describes connections using the internal parallel port I/O, which | ||
9 | * is basically all of Port D. | ||
10 | * | ||
11 | * Includes support for the following PHYs: QS6612, LXT970, LXT971/2. | ||
12 | * | ||
13 | * Right now, I am very wasteful with the buffers. I allocate memory | ||
14 | * pages and then divide them into 2K frame buffers. This way I know I | ||
15 | * have buffers large enough to hold one frame within one buffer descriptor. | ||
16 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which | ||
17 | * will be much more memory efficient and will easily handle lots of | ||
18 | * small packets. | ||
19 | * | ||
20 | * Much better multiple PHY support by Magnus Damm. | ||
21 | * Copyright (c) 2000 Ericsson Radio Systems AB. | ||
22 | * | ||
23 | * Make use of MII for PHY control configurable. | ||
24 | * Some fixes. | ||
25 | * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering. | ||
26 | * | ||
27 | * Support for AMD AM79C874 added. | ||
28 | * Thomas Lange, thomas@corelatus.com | ||
29 | */ | ||
30 | |||
31 | #include <linux/config.h> | ||
32 | #include <linux/kernel.h> | ||
33 | #include <linux/sched.h> | ||
34 | #include <linux/string.h> | ||
35 | #include <linux/ptrace.h> | ||
36 | #include <linux/errno.h> | ||
37 | #include <linux/ioport.h> | ||
38 | #include <linux/slab.h> | ||
39 | #include <linux/interrupt.h> | ||
40 | #include <linux/pci.h> | ||
41 | #include <linux/init.h> | ||
42 | #include <linux/delay.h> | ||
43 | #include <linux/netdevice.h> | ||
44 | #include <linux/etherdevice.h> | ||
45 | #include <linux/skbuff.h> | ||
46 | #include <linux/spinlock.h> | ||
47 | #include <linux/bitops.h> | ||
48 | #ifdef CONFIG_FEC_PACKETHOOK | ||
49 | #include <linux/pkthook.h> | ||
50 | #endif | ||
51 | |||
52 | #include <asm/8xx_immap.h> | ||
53 | #include <asm/pgtable.h> | ||
54 | #include <asm/mpc8xx.h> | ||
55 | #include <asm/irq.h> | ||
56 | #include <asm/uaccess.h> | ||
57 | #include <asm/commproc.h> | ||
58 | |||
59 | #ifdef CONFIG_USE_MDIO | ||
60 | /* Forward declarations of some structures to support different PHYs | ||
61 | */ | ||
62 | |||
63 | typedef struct { | ||
64 | uint mii_data; | ||
65 | void (*funct)(uint mii_reg, struct net_device *dev); | ||
66 | } phy_cmd_t; | ||
67 | |||
68 | typedef struct { | ||
69 | uint id; | ||
70 | char *name; | ||
71 | |||
72 | const phy_cmd_t *config; | ||
73 | const phy_cmd_t *startup; | ||
74 | const phy_cmd_t *ack_int; | ||
75 | const phy_cmd_t *shutdown; | ||
76 | } phy_info_t; | ||
77 | #endif /* CONFIG_USE_MDIO */ | ||
78 | |||
79 | /* The number of Tx and Rx buffers. These are allocated from the page | ||
80 | * pool. The code may assume these are power of two, so it is best | ||
81 | * to keep them that size. | ||
82 | * We don't need to allocate pages for the transmitter. We just use | ||
83 | * the skbuffer directly. | ||
84 | */ | ||
85 | #ifdef CONFIG_ENET_BIG_BUFFERS | ||
86 | #define FEC_ENET_RX_PAGES 16 | ||
87 | #define FEC_ENET_RX_FRSIZE 2048 | ||
88 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) | ||
89 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | ||
90 | #define TX_RING_SIZE 16 /* Must be power of two */ | ||
91 | #define TX_RING_MOD_MASK 15 /* for this to work */ | ||
92 | #else | ||
93 | #define FEC_ENET_RX_PAGES 4 | ||
94 | #define FEC_ENET_RX_FRSIZE 2048 | ||
95 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) | ||
96 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | ||
97 | #define TX_RING_SIZE 8 /* Must be power of two */ | ||
98 | #define TX_RING_MOD_MASK 7 /* for this to work */ | ||
99 | #endif | ||
100 | |||
101 | /* Interrupt events/masks. | ||
102 | */ | ||
103 | #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ | ||
104 | #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ | ||
105 | #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ | ||
106 | #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ | ||
107 | #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ | ||
108 | #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ | ||
109 | #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ | ||
110 | #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ | ||
111 | #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ | ||
112 | #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ | ||
113 | |||
114 | /* | ||
115 | */ | ||
116 | #define FEC_ECNTRL_PINMUX 0x00000004 | ||
117 | #define FEC_ECNTRL_ETHER_EN 0x00000002 | ||
118 | #define FEC_ECNTRL_RESET 0x00000001 | ||
119 | |||
120 | #define FEC_RCNTRL_BC_REJ 0x00000010 | ||
121 | #define FEC_RCNTRL_PROM 0x00000008 | ||
122 | #define FEC_RCNTRL_MII_MODE 0x00000004 | ||
123 | #define FEC_RCNTRL_DRT 0x00000002 | ||
124 | #define FEC_RCNTRL_LOOP 0x00000001 | ||
125 | |||
126 | #define FEC_TCNTRL_FDEN 0x00000004 | ||
127 | #define FEC_TCNTRL_HBC 0x00000002 | ||
128 | #define FEC_TCNTRL_GTS 0x00000001 | ||
129 | |||
130 | /* Delay to wait for FEC reset command to complete (in us) | ||
131 | */ | ||
132 | #define FEC_RESET_DELAY 50 | ||
133 | |||
134 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | ||
135 | */ | ||
136 | #define PKT_MAXBUF_SIZE 1518 | ||
137 | #define PKT_MINBUF_SIZE 64 | ||
138 | #define PKT_MAXBLR_SIZE 1520 | ||
139 | |||
140 | /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and | ||
141 | * tx_bd_base always point to the base of the buffer descriptors. The | ||
142 | * cur_rx and cur_tx point to the currently available buffer. | ||
143 | * The dirty_tx tracks the current buffer that is being sent by the | ||
144 | * controller. The cur_tx and dirty_tx are equal under both completely | ||
145 | * empty and completely full conditions. The empty/ready indicator in | ||
146 | * the buffer descriptor determines the actual condition. | ||
147 | */ | ||
148 | struct fec_enet_private { | ||
149 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ | ||
150 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; | ||
151 | ushort skb_cur; | ||
152 | ushort skb_dirty; | ||
153 | |||
154 | /* CPM dual port RAM relative addresses. | ||
155 | */ | ||
156 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ | ||
157 | cbd_t *tx_bd_base; | ||
158 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ | ||
159 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ | ||
160 | |||
161 | /* Virtual addresses for the receive buffers because we can't | ||
162 | * do a __va() on them anymore. | ||
163 | */ | ||
164 | unsigned char *rx_vaddr[RX_RING_SIZE]; | ||
165 | |||
166 | struct net_device_stats stats; | ||
167 | uint tx_full; | ||
168 | spinlock_t lock; | ||
169 | |||
170 | #ifdef CONFIG_USE_MDIO | ||
171 | uint phy_id; | ||
172 | uint phy_id_done; | ||
173 | uint phy_status; | ||
174 | uint phy_speed; | ||
175 | phy_info_t *phy; | ||
176 | struct tq_struct phy_task; | ||
177 | |||
178 | uint sequence_done; | ||
179 | |||
180 | uint phy_addr; | ||
181 | #endif /* CONFIG_USE_MDIO */ | ||
182 | |||
183 | int link; | ||
184 | int old_link; | ||
185 | int full_duplex; | ||
186 | |||
187 | #ifdef CONFIG_FEC_PACKETHOOK | ||
188 | unsigned long ph_lock; | ||
189 | fec_ph_func *ph_rxhandler; | ||
190 | fec_ph_func *ph_txhandler; | ||
191 | __u16 ph_proto; | ||
192 | volatile __u32 *ph_regaddr; | ||
193 | void *ph_priv; | ||
194 | #endif | ||
195 | }; | ||
196 | |||
197 | static int fec_enet_open(struct net_device *dev); | ||
198 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); | ||
199 | #ifdef CONFIG_USE_MDIO | ||
200 | static void fec_enet_mii(struct net_device *dev); | ||
201 | #endif /* CONFIG_USE_MDIO */ | ||
202 | static void fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); | ||
203 | #ifdef CONFIG_FEC_PACKETHOOK | ||
204 | static void fec_enet_tx(struct net_device *dev, __u32 regval); | ||
205 | static void fec_enet_rx(struct net_device *dev, __u32 regval); | ||
206 | #else | ||
207 | static void fec_enet_tx(struct net_device *dev); | ||
208 | static void fec_enet_rx(struct net_device *dev); | ||
209 | #endif | ||
210 | static int fec_enet_close(struct net_device *dev); | ||
211 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); | ||
212 | static void set_multicast_list(struct net_device *dev); | ||
213 | static void fec_restart(struct net_device *dev, int duplex); | ||
214 | static void fec_stop(struct net_device *dev); | ||
215 | static ushort my_enet_addr[3]; | ||
216 | |||
217 | #ifdef CONFIG_USE_MDIO | ||
218 | /* MII processing. We keep this as simple as possible. Requests are | ||
219 | * placed on the list (if there is room). When the request is finished | ||
220 | * by the MII, an optional function may be called. | ||
221 | */ | ||
222 | typedef struct mii_list { | ||
223 | uint mii_regval; | ||
224 | void (*mii_func)(uint val, struct net_device *dev); | ||
225 | struct mii_list *mii_next; | ||
226 | } mii_list_t; | ||
227 | |||
228 | #define NMII 20 | ||
229 | mii_list_t mii_cmds[NMII]; | ||
230 | mii_list_t *mii_free; | ||
231 | mii_list_t *mii_head; | ||
232 | mii_list_t *mii_tail; | ||
233 | |||
234 | static int mii_queue(struct net_device *dev, int request, | ||
235 | void (*func)(uint, struct net_device *)); | ||
236 | |||
237 | /* Make MII read/write commands for the FEC. | ||
238 | */ | ||
239 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) | ||
240 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ | ||
241 | (VAL & 0xffff)) | ||
242 | #define mk_mii_end 0 | ||
243 | #endif /* CONFIG_USE_MDIO */ | ||
244 | |||
245 | /* Transmitter timeout. | ||
246 | */ | ||
247 | #define TX_TIMEOUT (2*HZ) | ||
248 | |||
249 | #ifdef CONFIG_USE_MDIO | ||
250 | /* Register definitions for the PHY. | ||
251 | */ | ||
252 | |||
253 | #define MII_REG_CR 0 /* Control Register */ | ||
254 | #define MII_REG_SR 1 /* Status Register */ | ||
255 | #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ | ||
256 | #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ | ||
257 | #define MII_REG_ANAR 4 /* A-N Advertisement Register */ | ||
258 | #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ | ||
259 | #define MII_REG_ANER 6 /* A-N Expansion Register */ | ||
260 | #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ | ||
261 | #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ | ||
262 | |||
263 | /* values for phy_status */ | ||
264 | |||
265 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ | ||
266 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ | ||
267 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ | ||
268 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ | ||
269 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ | ||
270 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ | ||
271 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ | ||
272 | |||
273 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ | ||
274 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ | ||
275 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ | ||
276 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ | ||
277 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ | ||
278 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ | ||
279 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ | ||
280 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ | ||
281 | #endif /* CONFIG_USE_MDIO */ | ||
282 | |||
283 | #ifdef CONFIG_FEC_PACKETHOOK | ||
284 | int | ||
285 | fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun, | ||
286 | __u16 proto, volatile __u32 *regaddr, void *priv) | ||
287 | { | ||
288 | struct fec_enet_private *fep; | ||
289 | int retval = 0; | ||
290 | |||
291 | fep = dev->priv; | ||
292 | |||
293 | if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) { | ||
294 | /* Someone is messing with the packet hook */ | ||
295 | return -EAGAIN; | ||
296 | } | ||
297 | if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) { | ||
298 | retval = -EBUSY; | ||
299 | goto out; | ||
300 | } | ||
301 | fep->ph_rxhandler = rxfun; | ||
302 | fep->ph_txhandler = txfun; | ||
303 | fep->ph_proto = proto; | ||
304 | fep->ph_regaddr = regaddr; | ||
305 | fep->ph_priv = priv; | ||
306 | |||
307 | out: | ||
308 | fep->ph_lock = 0; | ||
309 | |||
310 | return retval; | ||
311 | } | ||
312 | |||
313 | |||
314 | int | ||
315 | fec_unregister_ph(struct net_device *dev) | ||
316 | { | ||
317 | struct fec_enet_private *fep; | ||
318 | int retval = 0; | ||
319 | |||
320 | fep = dev->priv; | ||
321 | |||
322 | if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) { | ||
323 | /* Someone is messing with the packet hook */ | ||
324 | return -EAGAIN; | ||
325 | } | ||
326 | |||
327 | fep->ph_rxhandler = fep->ph_txhandler = NULL; | ||
328 | fep->ph_proto = 0; | ||
329 | fep->ph_regaddr = NULL; | ||
330 | fep->ph_priv = NULL; | ||
331 | |||
332 | fep->ph_lock = 0; | ||
333 | |||
334 | return retval; | ||
335 | } | ||
336 | |||
337 | EXPORT_SYMBOL(fec_register_ph); | ||
338 | EXPORT_SYMBOL(fec_unregister_ph); | ||
339 | |||
340 | #endif /* CONFIG_FEC_PACKETHOOK */ | ||
341 | |||
342 | static int | ||
343 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
344 | { | ||
345 | struct fec_enet_private *fep; | ||
346 | volatile fec_t *fecp; | ||
347 | volatile cbd_t *bdp; | ||
348 | |||
349 | fep = dev->priv; | ||
350 | fecp = (volatile fec_t*)dev->base_addr; | ||
351 | |||
352 | if (!fep->link) { | ||
353 | /* Link is down or autonegotiation is in progress. */ | ||
354 | return 1; | ||
355 | } | ||
356 | |||
357 | /* Fill in a Tx ring entry */ | ||
358 | bdp = fep->cur_tx; | ||
359 | |||
360 | #ifndef final_version | ||
361 | if (bdp->cbd_sc & BD_ENET_TX_READY) { | ||
362 | /* Ooops. All transmit buffers are full. Bail out. | ||
363 | * This should not happen, since dev->tbusy should be set. | ||
364 | */ | ||
365 | printk("%s: tx queue full!.\n", dev->name); | ||
366 | return 1; | ||
367 | } | ||
368 | #endif | ||
369 | |||
370 | /* Clear all of the status flags. | ||
371 | */ | ||
372 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; | ||
373 | |||
374 | /* Set buffer length and buffer pointer. | ||
375 | */ | ||
376 | bdp->cbd_bufaddr = __pa(skb->data); | ||
377 | bdp->cbd_datlen = skb->len; | ||
378 | |||
379 | /* Save skb pointer. | ||
380 | */ | ||
381 | fep->tx_skbuff[fep->skb_cur] = skb; | ||
382 | |||
383 | fep->stats.tx_bytes += skb->len; | ||
384 | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | ||
385 | |||
386 | /* Push the data cache so the CPM does not get stale memory | ||
387 | * data. | ||
388 | */ | ||
389 | flush_dcache_range((unsigned long)skb->data, | ||
390 | (unsigned long)skb->data + skb->len); | ||
391 | |||
392 | /* disable interrupts while triggering transmit */ | ||
393 | spin_lock_irq(&fep->lock); | ||
394 | |||
395 | /* Send it on its way. Tell FEC its ready, interrupt when done, | ||
396 | * its the last BD of the frame, and to put the CRC on the end. | ||
397 | */ | ||
398 | |||
399 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | ||
400 | | BD_ENET_TX_LAST | BD_ENET_TX_TC); | ||
401 | |||
402 | dev->trans_start = jiffies; | ||
403 | |||
404 | /* Trigger transmission start */ | ||
405 | fecp->fec_x_des_active = 0x01000000; | ||
406 | |||
407 | /* If this was the last BD in the ring, start at the beginning again. | ||
408 | */ | ||
409 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) { | ||
410 | bdp = fep->tx_bd_base; | ||
411 | } else { | ||
412 | bdp++; | ||
413 | } | ||
414 | |||
415 | if (bdp->cbd_sc & BD_ENET_TX_READY) { | ||
416 | netif_stop_queue(dev); | ||
417 | fep->tx_full = 1; | ||
418 | } | ||
419 | |||
420 | fep->cur_tx = (cbd_t *)bdp; | ||
421 | |||
422 | spin_unlock_irq(&fep->lock); | ||
423 | |||
424 | return 0; | ||
425 | } | ||
426 | |||
427 | static void | ||
428 | fec_timeout(struct net_device *dev) | ||
429 | { | ||
430 | struct fec_enet_private *fep = dev->priv; | ||
431 | |||
432 | printk("%s: transmit timed out.\n", dev->name); | ||
433 | fep->stats.tx_errors++; | ||
434 | #ifndef final_version | ||
435 | { | ||
436 | int i; | ||
437 | cbd_t *bdp; | ||
438 | |||
439 | printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", | ||
440 | (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", | ||
441 | (unsigned long)fep->dirty_tx, | ||
442 | (unsigned long)fep->cur_rx); | ||
443 | |||
444 | bdp = fep->tx_bd_base; | ||
445 | printk(" tx: %u buffers\n", TX_RING_SIZE); | ||
446 | for (i = 0 ; i < TX_RING_SIZE; i++) { | ||
447 | printk(" %08x: %04x %04x %08x\n", | ||
448 | (uint) bdp, | ||
449 | bdp->cbd_sc, | ||
450 | bdp->cbd_datlen, | ||
451 | bdp->cbd_bufaddr); | ||
452 | bdp++; | ||
453 | } | ||
454 | |||
455 | bdp = fep->rx_bd_base; | ||
456 | printk(" rx: %lu buffers\n", RX_RING_SIZE); | ||
457 | for (i = 0 ; i < RX_RING_SIZE; i++) { | ||
458 | printk(" %08x: %04x %04x %08x\n", | ||
459 | (uint) bdp, | ||
460 | bdp->cbd_sc, | ||
461 | bdp->cbd_datlen, | ||
462 | bdp->cbd_bufaddr); | ||
463 | bdp++; | ||
464 | } | ||
465 | } | ||
466 | #endif | ||
467 | if (!fep->tx_full) | ||
468 | netif_wake_queue(dev); | ||
469 | } | ||
470 | |||
471 | /* The interrupt handler. | ||
472 | * This is called from the MPC core interrupt. | ||
473 | */ | ||
474 | static void | ||
475 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) | ||
476 | { | ||
477 | struct net_device *dev = dev_id; | ||
478 | volatile fec_t *fecp; | ||
479 | uint int_events; | ||
480 | #ifdef CONFIG_FEC_PACKETHOOK | ||
481 | struct fec_enet_private *fep = dev->priv; | ||
482 | __u32 regval; | ||
483 | |||
484 | if (fep->ph_regaddr) regval = *fep->ph_regaddr; | ||
485 | #endif | ||
486 | fecp = (volatile fec_t*)dev->base_addr; | ||
487 | |||
488 | /* Get the interrupt events that caused us to be here. | ||
489 | */ | ||
490 | while ((int_events = fecp->fec_ievent) != 0) { | ||
491 | fecp->fec_ievent = int_events; | ||
492 | if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR | | ||
493 | FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) { | ||
494 | printk("FEC ERROR %x\n", int_events); | ||
495 | } | ||
496 | |||
497 | /* Handle receive event in its own function. | ||
498 | */ | ||
499 | if (int_events & FEC_ENET_RXF) { | ||
500 | #ifdef CONFIG_FEC_PACKETHOOK | ||
501 | fec_enet_rx(dev, regval); | ||
502 | #else | ||
503 | fec_enet_rx(dev); | ||
504 | #endif | ||
505 | } | ||
506 | |||
507 | /* Transmit OK, or non-fatal error. Update the buffer | ||
508 | descriptors. FEC handles all errors, we just discover | ||
509 | them as part of the transmit process. | ||
510 | */ | ||
511 | if (int_events & FEC_ENET_TXF) { | ||
512 | #ifdef CONFIG_FEC_PACKETHOOK | ||
513 | fec_enet_tx(dev, regval); | ||
514 | #else | ||
515 | fec_enet_tx(dev); | ||
516 | #endif | ||
517 | } | ||
518 | |||
519 | if (int_events & FEC_ENET_MII) { | ||
520 | #ifdef CONFIG_USE_MDIO | ||
521 | fec_enet_mii(dev); | ||
522 | #else | ||
523 | printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__,__LINE__,__FUNCTION__); | ||
524 | #endif /* CONFIG_USE_MDIO */ | ||
525 | } | ||
526 | |||
527 | } | ||
528 | } | ||
529 | |||
530 | |||
531 | static void | ||
532 | #ifdef CONFIG_FEC_PACKETHOOK | ||
533 | fec_enet_tx(struct net_device *dev, __u32 regval) | ||
534 | #else | ||
535 | fec_enet_tx(struct net_device *dev) | ||
536 | #endif | ||
537 | { | ||
538 | struct fec_enet_private *fep; | ||
539 | volatile cbd_t *bdp; | ||
540 | struct sk_buff *skb; | ||
541 | |||
542 | fep = dev->priv; | ||
543 | /* lock while transmitting */ | ||
544 | spin_lock(&fep->lock); | ||
545 | bdp = fep->dirty_tx; | ||
546 | |||
547 | while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { | ||
548 | if (bdp == fep->cur_tx && fep->tx_full == 0) break; | ||
549 | |||
550 | skb = fep->tx_skbuff[fep->skb_dirty]; | ||
551 | /* Check for errors. */ | ||
552 | if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | | ||
553 | BD_ENET_TX_RL | BD_ENET_TX_UN | | ||
554 | BD_ENET_TX_CSL)) { | ||
555 | fep->stats.tx_errors++; | ||
556 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ | ||
557 | fep->stats.tx_heartbeat_errors++; | ||
558 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ | ||
559 | fep->stats.tx_window_errors++; | ||
560 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ | ||
561 | fep->stats.tx_aborted_errors++; | ||
562 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ | ||
563 | fep->stats.tx_fifo_errors++; | ||
564 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ | ||
565 | fep->stats.tx_carrier_errors++; | ||
566 | } else { | ||
567 | #ifdef CONFIG_FEC_PACKETHOOK | ||
568 | /* Packet hook ... */ | ||
569 | if (fep->ph_txhandler && | ||
570 | ((struct ethhdr *)skb->data)->h_proto | ||
571 | == fep->ph_proto) { | ||
572 | fep->ph_txhandler((__u8*)skb->data, skb->len, | ||
573 | regval, fep->ph_priv); | ||
574 | } | ||
575 | #endif | ||
576 | fep->stats.tx_packets++; | ||
577 | } | ||
578 | |||
579 | #ifndef final_version | ||
580 | if (bdp->cbd_sc & BD_ENET_TX_READY) | ||
581 | printk("HEY! Enet xmit interrupt and TX_READY.\n"); | ||
582 | #endif | ||
583 | /* Deferred means some collisions occurred during transmit, | ||
584 | * but we eventually sent the packet OK. | ||
585 | */ | ||
586 | if (bdp->cbd_sc & BD_ENET_TX_DEF) | ||
587 | fep->stats.collisions++; | ||
588 | |||
589 | /* Free the sk buffer associated with this last transmit. | ||
590 | */ | ||
591 | #if 0 | ||
592 | printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty); | ||
593 | #endif | ||
594 | dev_kfree_skb_irq (skb/*, FREE_WRITE*/); | ||
595 | fep->tx_skbuff[fep->skb_dirty] = NULL; | ||
596 | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | ||
597 | |||
598 | /* Update pointer to next buffer descriptor to be transmitted. | ||
599 | */ | ||
600 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) | ||
601 | bdp = fep->tx_bd_base; | ||
602 | else | ||
603 | bdp++; | ||
604 | |||
605 | /* Since we have freed up a buffer, the ring is no longer | ||
606 | * full. | ||
607 | */ | ||
608 | if (fep->tx_full) { | ||
609 | fep->tx_full = 0; | ||
610 | if (netif_queue_stopped(dev)) | ||
611 | netif_wake_queue(dev); | ||
612 | } | ||
613 | #ifdef CONFIG_FEC_PACKETHOOK | ||
614 | /* Re-read register. Not exactly guaranteed to be correct, | ||
615 | but... */ | ||
616 | if (fep->ph_regaddr) regval = *fep->ph_regaddr; | ||
617 | #endif | ||
618 | } | ||
619 | fep->dirty_tx = (cbd_t *)bdp; | ||
620 | spin_unlock(&fep->lock); | ||
621 | } | ||
622 | |||
623 | |||
624 | /* During a receive, the cur_rx points to the current incoming buffer. | ||
625 | * When we update through the ring, if the next incoming buffer has | ||
626 | * not been given to the system, we just set the empty indicator, | ||
627 | * effectively tossing the packet. | ||
628 | */ | ||
629 | static void | ||
630 | #ifdef CONFIG_FEC_PACKETHOOK | ||
631 | fec_enet_rx(struct net_device *dev, __u32 regval) | ||
632 | #else | ||
633 | fec_enet_rx(struct net_device *dev) | ||
634 | #endif | ||
635 | { | ||
636 | struct fec_enet_private *fep; | ||
637 | volatile fec_t *fecp; | ||
638 | volatile cbd_t *bdp; | ||
639 | struct sk_buff *skb; | ||
640 | ushort pkt_len; | ||
641 | __u8 *data; | ||
642 | |||
643 | fep = dev->priv; | ||
644 | fecp = (volatile fec_t*)dev->base_addr; | ||
645 | |||
646 | /* First, grab all of the stats for the incoming packet. | ||
647 | * These get messed up if we get called due to a busy condition. | ||
648 | */ | ||
649 | bdp = fep->cur_rx; | ||
650 | |||
651 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { | ||
652 | |||
653 | #ifndef final_version | ||
654 | /* Since we have allocated space to hold a complete frame, | ||
655 | * the last indicator should be set. | ||
656 | */ | ||
657 | if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) | ||
658 | printk("FEC ENET: rcv is not +last\n"); | ||
659 | #endif | ||
660 | |||
661 | /* Check for errors. */ | ||
662 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | ||
663 | BD_ENET_RX_CR | BD_ENET_RX_OV)) { | ||
664 | fep->stats.rx_errors++; | ||
665 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | ||
666 | /* Frame too long or too short. */ | ||
667 | fep->stats.rx_length_errors++; | ||
668 | } | ||
669 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ | ||
670 | fep->stats.rx_frame_errors++; | ||
671 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ | ||
672 | fep->stats.rx_crc_errors++; | ||
673 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ | ||
674 | fep->stats.rx_crc_errors++; | ||
675 | } | ||
676 | |||
677 | /* Report late collisions as a frame error. | ||
678 | * On this error, the BD is closed, but we don't know what we | ||
679 | * have in the buffer. So, just drop this frame on the floor. | ||
680 | */ | ||
681 | if (bdp->cbd_sc & BD_ENET_RX_CL) { | ||
682 | fep->stats.rx_errors++; | ||
683 | fep->stats.rx_frame_errors++; | ||
684 | goto rx_processing_done; | ||
685 | } | ||
686 | |||
687 | /* Process the incoming frame. | ||
688 | */ | ||
689 | fep->stats.rx_packets++; | ||
690 | pkt_len = bdp->cbd_datlen; | ||
691 | fep->stats.rx_bytes += pkt_len; | ||
692 | data = fep->rx_vaddr[bdp - fep->rx_bd_base]; | ||
693 | |||
694 | #ifdef CONFIG_FEC_PACKETHOOK | ||
695 | /* Packet hook ... */ | ||
696 | if (fep->ph_rxhandler) { | ||
697 | if (((struct ethhdr *)data)->h_proto == fep->ph_proto) { | ||
698 | switch (fep->ph_rxhandler(data, pkt_len, regval, | ||
699 | fep->ph_priv)) { | ||
700 | case 1: | ||
701 | goto rx_processing_done; | ||
702 | break; | ||
703 | case 0: | ||
704 | break; | ||
705 | default: | ||
706 | fep->stats.rx_errors++; | ||
707 | goto rx_processing_done; | ||
708 | } | ||
709 | } | ||
710 | } | ||
711 | |||
712 | /* If it wasn't filtered - copy it to an sk buffer. */ | ||
713 | #endif | ||
714 | |||
715 | /* This does 16 byte alignment, exactly what we need. | ||
716 | * The packet length includes FCS, but we don't want to | ||
717 | * include that when passing upstream as it messes up | ||
718 | * bridging applications. | ||
719 | */ | ||
720 | skb = dev_alloc_skb(pkt_len-4); | ||
721 | |||
722 | if (skb == NULL) { | ||
723 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); | ||
724 | fep->stats.rx_dropped++; | ||
725 | } else { | ||
726 | skb->dev = dev; | ||
727 | skb_put(skb,pkt_len-4); /* Make room */ | ||
728 | eth_copy_and_sum(skb, data, pkt_len-4, 0); | ||
729 | skb->protocol=eth_type_trans(skb,dev); | ||
730 | netif_rx(skb); | ||
731 | } | ||
732 | rx_processing_done: | ||
733 | |||
734 | /* Clear the status flags for this buffer. | ||
735 | */ | ||
736 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; | ||
737 | |||
738 | /* Mark the buffer empty. | ||
739 | */ | ||
740 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; | ||
741 | |||
742 | /* Update BD pointer to next entry. | ||
743 | */ | ||
744 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) | ||
745 | bdp = fep->rx_bd_base; | ||
746 | else | ||
747 | bdp++; | ||
748 | |||
749 | #if 1 | ||
750 | /* Doing this here will keep the FEC running while we process | ||
751 | * incoming frames. On a heavily loaded network, we should be | ||
752 | * able to keep up at the expense of system resources. | ||
753 | */ | ||
754 | fecp->fec_r_des_active = 0x01000000; | ||
755 | #endif | ||
756 | #ifdef CONFIG_FEC_PACKETHOOK | ||
757 | /* Re-read register. Not exactly guaranteed to be correct, | ||
758 | but... */ | ||
759 | if (fep->ph_regaddr) regval = *fep->ph_regaddr; | ||
760 | #endif | ||
761 | } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ | ||
762 | fep->cur_rx = (cbd_t *)bdp; | ||
763 | |||
764 | #if 0 | ||
765 | /* Doing this here will allow us to process all frames in the | ||
766 | * ring before the FEC is allowed to put more there. On a heavily | ||
767 | * loaded network, some frames may be lost. Unfortunately, this | ||
768 | * increases the interrupt overhead since we can potentially work | ||
769 | * our way back to the interrupt return only to come right back | ||
770 | * here. | ||
771 | */ | ||
772 | fecp->fec_r_des_active = 0x01000000; | ||
773 | #endif | ||
774 | } | ||
775 | |||
776 | |||
777 | #ifdef CONFIG_USE_MDIO | ||
778 | static void | ||
779 | fec_enet_mii(struct net_device *dev) | ||
780 | { | ||
781 | struct fec_enet_private *fep; | ||
782 | volatile fec_t *ep; | ||
783 | mii_list_t *mip; | ||
784 | uint mii_reg; | ||
785 | |||
786 | fep = (struct fec_enet_private *)dev->priv; | ||
787 | ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec); | ||
788 | mii_reg = ep->fec_mii_data; | ||
789 | |||
790 | if ((mip = mii_head) == NULL) { | ||
791 | printk("MII and no head!\n"); | ||
792 | return; | ||
793 | } | ||
794 | |||
795 | if (mip->mii_func != NULL) | ||
796 | (*(mip->mii_func))(mii_reg, dev); | ||
797 | |||
798 | mii_head = mip->mii_next; | ||
799 | mip->mii_next = mii_free; | ||
800 | mii_free = mip; | ||
801 | |||
802 | if ((mip = mii_head) != NULL) { | ||
803 | ep->fec_mii_data = mip->mii_regval; | ||
804 | |||
805 | } | ||
806 | } | ||
807 | |||
808 | static int | ||
809 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) | ||
810 | { | ||
811 | struct fec_enet_private *fep; | ||
812 | unsigned long flags; | ||
813 | mii_list_t *mip; | ||
814 | int retval; | ||
815 | |||
816 | /* Add PHY address to register command. | ||
817 | */ | ||
818 | fep = dev->priv; | ||
819 | regval |= fep->phy_addr << 23; | ||
820 | |||
821 | retval = 0; | ||
822 | |||
823 | /* lock while modifying mii_list */ | ||
824 | spin_lock_irqsave(&fep->lock, flags); | ||
825 | |||
826 | if ((mip = mii_free) != NULL) { | ||
827 | mii_free = mip->mii_next; | ||
828 | mip->mii_regval = regval; | ||
829 | mip->mii_func = func; | ||
830 | mip->mii_next = NULL; | ||
831 | if (mii_head) { | ||
832 | mii_tail->mii_next = mip; | ||
833 | mii_tail = mip; | ||
834 | } else { | ||
835 | mii_head = mii_tail = mip; | ||
836 | (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval; | ||
837 | } | ||
838 | } else { | ||
839 | retval = 1; | ||
840 | } | ||
841 | |||
842 | spin_unlock_irqrestore(&fep->lock, flags); | ||
843 | |||
844 | return(retval); | ||
845 | } | ||
846 | |||
847 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) | ||
848 | { | ||
849 | int k; | ||
850 | |||
851 | if(!c) | ||
852 | return; | ||
853 | |||
854 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) | ||
855 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); | ||
856 | } | ||
857 | |||
858 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) | ||
859 | { | ||
860 | struct fec_enet_private *fep = dev->priv; | ||
861 | volatile uint *s = &(fep->phy_status); | ||
862 | |||
863 | *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); | ||
864 | |||
865 | if (mii_reg & 0x0004) | ||
866 | *s |= PHY_STAT_LINK; | ||
867 | if (mii_reg & 0x0010) | ||
868 | *s |= PHY_STAT_FAULT; | ||
869 | if (mii_reg & 0x0020) | ||
870 | *s |= PHY_STAT_ANC; | ||
871 | |||
872 | fep->link = (*s & PHY_STAT_LINK) ? 1 : 0; | ||
873 | } | ||
874 | |||
875 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) | ||
876 | { | ||
877 | struct fec_enet_private *fep = dev->priv; | ||
878 | volatile uint *s = &(fep->phy_status); | ||
879 | |||
880 | *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); | ||
881 | |||
882 | if (mii_reg & 0x1000) | ||
883 | *s |= PHY_CONF_ANE; | ||
884 | if (mii_reg & 0x4000) | ||
885 | *s |= PHY_CONF_LOOP; | ||
886 | } | ||
887 | |||
888 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) | ||
889 | { | ||
890 | struct fec_enet_private *fep = dev->priv; | ||
891 | volatile uint *s = &(fep->phy_status); | ||
892 | |||
893 | *s &= ~(PHY_CONF_SPMASK); | ||
894 | |||
895 | if (mii_reg & 0x0020) | ||
896 | *s |= PHY_CONF_10HDX; | ||
897 | if (mii_reg & 0x0040) | ||
898 | *s |= PHY_CONF_10FDX; | ||
899 | if (mii_reg & 0x0080) | ||
900 | *s |= PHY_CONF_100HDX; | ||
901 | if (mii_reg & 0x00100) | ||
902 | *s |= PHY_CONF_100FDX; | ||
903 | } | ||
904 | #if 0 | ||
905 | static void mii_disp_reg(uint mii_reg, struct net_device *dev) | ||
906 | { | ||
907 | printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff); | ||
908 | } | ||
909 | #endif | ||
910 | |||
911 | /* ------------------------------------------------------------------------- */ | ||
912 | /* The Level one LXT970 is used by many boards */ | ||
913 | |||
914 | #ifdef CONFIG_FEC_LXT970 | ||
915 | |||
916 | #define MII_LXT970_MIRROR 16 /* Mirror register */ | ||
917 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ | ||
918 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ | ||
919 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ | ||
920 | #define MII_LXT970_CSR 20 /* Chip Status Register */ | ||
921 | |||
922 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) | ||
923 | { | ||
924 | struct fec_enet_private *fep = dev->priv; | ||
925 | volatile uint *s = &(fep->phy_status); | ||
926 | |||
927 | *s &= ~(PHY_STAT_SPMASK); | ||
928 | |||
929 | if (mii_reg & 0x0800) { | ||
930 | if (mii_reg & 0x1000) | ||
931 | *s |= PHY_STAT_100FDX; | ||
932 | else | ||
933 | *s |= PHY_STAT_100HDX; | ||
934 | } | ||
935 | else { | ||
936 | if (mii_reg & 0x1000) | ||
937 | *s |= PHY_STAT_10FDX; | ||
938 | else | ||
939 | *s |= PHY_STAT_10HDX; | ||
940 | } | ||
941 | } | ||
942 | |||
943 | static phy_info_t phy_info_lxt970 = { | ||
944 | 0x07810000, | ||
945 | "LXT970", | ||
946 | |||
947 | (const phy_cmd_t []) { /* config */ | ||
948 | #if 0 | ||
949 | // { mk_mii_write(MII_REG_ANAR, 0x0021), NULL }, | ||
950 | |||
951 | /* Set default operation of 100-TX....for some reason | ||
952 | * some of these bits are set on power up, which is wrong. | ||
953 | */ | ||
954 | { mk_mii_write(MII_LXT970_CONFIG, 0), NULL }, | ||
955 | #endif | ||
956 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
957 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
958 | { mk_mii_end, } | ||
959 | }, | ||
960 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
961 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, | ||
962 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
963 | { mk_mii_end, } | ||
964 | }, | ||
965 | (const phy_cmd_t []) { /* ack_int */ | ||
966 | /* read SR and ISR to acknowledge */ | ||
967 | |||
968 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
969 | { mk_mii_read(MII_LXT970_ISR), NULL }, | ||
970 | |||
971 | /* find out the current status */ | ||
972 | |||
973 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, | ||
974 | { mk_mii_end, } | ||
975 | }, | ||
976 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
977 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, | ||
978 | { mk_mii_end, } | ||
979 | }, | ||
980 | }; | ||
981 | |||
982 | #endif /* CONFIG_FEC_LXT970 */ | ||
983 | |||
984 | /* ------------------------------------------------------------------------- */ | ||
985 | /* The Level one LXT971 is used on some of my custom boards */ | ||
986 | |||
987 | #ifdef CONFIG_FEC_LXT971 | ||
988 | |||
989 | /* register definitions for the 971 */ | ||
990 | |||
991 | #define MII_LXT971_PCR 16 /* Port Control Register */ | ||
992 | #define MII_LXT971_SR2 17 /* Status Register 2 */ | ||
993 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ | ||
994 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ | ||
995 | #define MII_LXT971_LCR 20 /* LED Control Register */ | ||
996 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ | ||
997 | |||
998 | /* | ||
999 | * I had some nice ideas of running the MDIO faster... | ||
1000 | * The 971 should support 8MHz and I tried it, but things acted really | ||
1001 | * weird, so 2.5 MHz ought to be enough for anyone... | ||
1002 | */ | ||
1003 | |||
1004 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) | ||
1005 | { | ||
1006 | struct fec_enet_private *fep = dev->priv; | ||
1007 | volatile uint *s = &(fep->phy_status); | ||
1008 | |||
1009 | *s &= ~(PHY_STAT_SPMASK); | ||
1010 | |||
1011 | if (mii_reg & 0x4000) { | ||
1012 | if (mii_reg & 0x0200) | ||
1013 | *s |= PHY_STAT_100FDX; | ||
1014 | else | ||
1015 | *s |= PHY_STAT_100HDX; | ||
1016 | } | ||
1017 | else { | ||
1018 | if (mii_reg & 0x0200) | ||
1019 | *s |= PHY_STAT_10FDX; | ||
1020 | else | ||
1021 | *s |= PHY_STAT_10HDX; | ||
1022 | } | ||
1023 | if (mii_reg & 0x0008) | ||
1024 | *s |= PHY_STAT_FAULT; | ||
1025 | } | ||
1026 | |||
1027 | static phy_info_t phy_info_lxt971 = { | ||
1028 | 0x0001378e, | ||
1029 | "LXT971", | ||
1030 | |||
1031 | (const phy_cmd_t []) { /* config */ | ||
1032 | // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ | ||
1033 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
1034 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
1035 | { mk_mii_end, } | ||
1036 | }, | ||
1037 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
1038 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, | ||
1039 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
1040 | |||
1041 | /* Somehow does the 971 tell me that the link is down | ||
1042 | * the first read after power-up. | ||
1043 | * read here to get a valid value in ack_int */ | ||
1044 | |||
1045 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1046 | { mk_mii_end, } | ||
1047 | }, | ||
1048 | (const phy_cmd_t []) { /* ack_int */ | ||
1049 | /* find out the current status */ | ||
1050 | |||
1051 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1052 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | ||
1053 | |||
1054 | /* we only need to read ISR to acknowledge */ | ||
1055 | |||
1056 | { mk_mii_read(MII_LXT971_ISR), NULL }, | ||
1057 | { mk_mii_end, } | ||
1058 | }, | ||
1059 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
1060 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, | ||
1061 | { mk_mii_end, } | ||
1062 | }, | ||
1063 | }; | ||
1064 | |||
1065 | #endif /* CONFIG_FEC_LXT970 */ | ||
1066 | |||
1067 | |||
1068 | /* ------------------------------------------------------------------------- */ | ||
1069 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ | ||
1070 | |||
1071 | #ifdef CONFIG_FEC_QS6612 | ||
1072 | |||
1073 | /* register definitions */ | ||
1074 | |||
1075 | #define MII_QS6612_MCR 17 /* Mode Control Register */ | ||
1076 | #define MII_QS6612_FTR 27 /* Factory Test Register */ | ||
1077 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ | ||
1078 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ | ||
1079 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ | ||
1080 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ | ||
1081 | |||
1082 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) | ||
1083 | { | ||
1084 | struct fec_enet_private *fep = dev->priv; | ||
1085 | volatile uint *s = &(fep->phy_status); | ||
1086 | |||
1087 | *s &= ~(PHY_STAT_SPMASK); | ||
1088 | |||
1089 | switch((mii_reg >> 2) & 7) { | ||
1090 | case 1: *s |= PHY_STAT_10HDX; break; | ||
1091 | case 2: *s |= PHY_STAT_100HDX; break; | ||
1092 | case 5: *s |= PHY_STAT_10FDX; break; | ||
1093 | case 6: *s |= PHY_STAT_100FDX; break; | ||
1094 | } | ||
1095 | } | ||
1096 | |||
1097 | static phy_info_t phy_info_qs6612 = { | ||
1098 | 0x00181440, | ||
1099 | "QS6612", | ||
1100 | |||
1101 | (const phy_cmd_t []) { /* config */ | ||
1102 | // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */ | ||
1103 | |||
1104 | /* The PHY powers up isolated on the RPX, | ||
1105 | * so send a command to allow operation. | ||
1106 | */ | ||
1107 | |||
1108 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, | ||
1109 | |||
1110 | /* parse cr and anar to get some info */ | ||
1111 | |||
1112 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
1113 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
1114 | { mk_mii_end, } | ||
1115 | }, | ||
1116 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
1117 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, | ||
1118 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
1119 | { mk_mii_end, } | ||
1120 | }, | ||
1121 | (const phy_cmd_t []) { /* ack_int */ | ||
1122 | |||
1123 | /* we need to read ISR, SR and ANER to acknowledge */ | ||
1124 | |||
1125 | { mk_mii_read(MII_QS6612_ISR), NULL }, | ||
1126 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1127 | { mk_mii_read(MII_REG_ANER), NULL }, | ||
1128 | |||
1129 | /* read pcr to get info */ | ||
1130 | |||
1131 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, | ||
1132 | { mk_mii_end, } | ||
1133 | }, | ||
1134 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
1135 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, | ||
1136 | { mk_mii_end, } | ||
1137 | }, | ||
1138 | }; | ||
1139 | |||
1140 | #endif /* CONFIG_FEC_QS6612 */ | ||
1141 | |||
1142 | /* ------------------------------------------------------------------------- */ | ||
1143 | /* The Advanced Micro Devices AM79C874 is used on the ICU862 */ | ||
1144 | |||
1145 | #ifdef CONFIG_FEC_AM79C874 | ||
1146 | |||
1147 | /* register definitions for the 79C874 */ | ||
1148 | |||
1149 | #define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */ | ||
1150 | #define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */ | ||
1151 | #define MII_AM79C874_DR 18 /* Diagnostic Register */ | ||
1152 | #define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */ | ||
1153 | #define MII_AM79C874_MCR 21 /* Mode Control Register */ | ||
1154 | #define MII_AM79C874_DC 23 /* Disconnect Counter */ | ||
1155 | #define MII_AM79C874_REC 24 /* Receiver Error Counter */ | ||
1156 | |||
1157 | static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data) | ||
1158 | { | ||
1159 | volatile struct fec_enet_private *fep = dev->priv; | ||
1160 | uint s = fep->phy_status; | ||
1161 | |||
1162 | s &= ~(PHY_STAT_SPMASK); | ||
1163 | |||
1164 | /* Register 18: Bit 10 is data rate, 11 is Duplex */ | ||
1165 | switch ((mii_reg >> 10) & 3) { | ||
1166 | case 0: s |= PHY_STAT_10HDX; break; | ||
1167 | case 1: s |= PHY_STAT_100HDX; break; | ||
1168 | case 2: s |= PHY_STAT_10FDX; break; | ||
1169 | case 3: s |= PHY_STAT_100FDX; break; | ||
1170 | } | ||
1171 | |||
1172 | fep->phy_status = s; | ||
1173 | } | ||
1174 | |||
1175 | static phy_info_t phy_info_amd79c874 = { | ||
1176 | 0x00022561, | ||
1177 | "AM79C874", | ||
1178 | |||
1179 | (const phy_cmd_t []) { /* config */ | ||
1180 | // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ | ||
1181 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
1182 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
1183 | { mk_mii_end, } | ||
1184 | }, | ||
1185 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
1186 | { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, | ||
1187 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
1188 | { mk_mii_end, } | ||
1189 | }, | ||
1190 | (const phy_cmd_t []) { /* ack_int */ | ||
1191 | /* find out the current status */ | ||
1192 | |||
1193 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1194 | { mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr }, | ||
1195 | |||
1196 | /* we only need to read ICSR to acknowledge */ | ||
1197 | |||
1198 | { mk_mii_read(MII_AM79C874_ICSR), NULL }, | ||
1199 | { mk_mii_end, } | ||
1200 | }, | ||
1201 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
1202 | { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, | ||
1203 | { mk_mii_end, } | ||
1204 | }, | ||
1205 | }; | ||
1206 | |||
1207 | #endif /* CONFIG_FEC_AM79C874 */ | ||
1208 | |||
1209 | static phy_info_t *phy_info[] = { | ||
1210 | |||
1211 | #ifdef CONFIG_FEC_LXT970 | ||
1212 | &phy_info_lxt970, | ||
1213 | #endif /* CONFIG_FEC_LXT970 */ | ||
1214 | |||
1215 | #ifdef CONFIG_FEC_LXT971 | ||
1216 | &phy_info_lxt971, | ||
1217 | #endif /* CONFIG_FEC_LXT971 */ | ||
1218 | |||
1219 | #ifdef CONFIG_FEC_QS6612 | ||
1220 | &phy_info_qs6612, | ||
1221 | #endif /* CONFIG_FEC_QS6612 */ | ||
1222 | |||
1223 | #ifdef CONFIG_FEC_AM79C874 | ||
1224 | &phy_info_amd79c874, | ||
1225 | #endif /* CONFIG_FEC_AM79C874 */ | ||
1226 | |||
1227 | NULL | ||
1228 | }; | ||
1229 | |||
1230 | static void mii_display_status(struct net_device *dev) | ||
1231 | { | ||
1232 | struct fec_enet_private *fep = dev->priv; | ||
1233 | volatile uint *s = &(fep->phy_status); | ||
1234 | |||
1235 | if (!fep->link && !fep->old_link) { | ||
1236 | /* Link is still down - don't print anything */ | ||
1237 | return; | ||
1238 | } | ||
1239 | |||
1240 | printk("%s: status: ", dev->name); | ||
1241 | |||
1242 | if (!fep->link) { | ||
1243 | printk("link down"); | ||
1244 | } else { | ||
1245 | printk("link up"); | ||
1246 | |||
1247 | switch(*s & PHY_STAT_SPMASK) { | ||
1248 | case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; | ||
1249 | case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; | ||
1250 | case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; | ||
1251 | case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; | ||
1252 | default: | ||
1253 | printk(", Unknown speed/duplex"); | ||
1254 | } | ||
1255 | |||
1256 | if (*s & PHY_STAT_ANC) | ||
1257 | printk(", auto-negotiation complete"); | ||
1258 | } | ||
1259 | |||
1260 | if (*s & PHY_STAT_FAULT) | ||
1261 | printk(", remote fault"); | ||
1262 | |||
1263 | printk(".\n"); | ||
1264 | } | ||
1265 | |||
1266 | static void mii_display_config(struct net_device *dev) | ||
1267 | { | ||
1268 | struct fec_enet_private *fep = dev->priv; | ||
1269 | volatile uint *s = &(fep->phy_status); | ||
1270 | |||
1271 | printk("%s: config: auto-negotiation ", dev->name); | ||
1272 | |||
1273 | if (*s & PHY_CONF_ANE) | ||
1274 | printk("on"); | ||
1275 | else | ||
1276 | printk("off"); | ||
1277 | |||
1278 | if (*s & PHY_CONF_100FDX) | ||
1279 | printk(", 100FDX"); | ||
1280 | if (*s & PHY_CONF_100HDX) | ||
1281 | printk(", 100HDX"); | ||
1282 | if (*s & PHY_CONF_10FDX) | ||
1283 | printk(", 10FDX"); | ||
1284 | if (*s & PHY_CONF_10HDX) | ||
1285 | printk(", 10HDX"); | ||
1286 | if (!(*s & PHY_CONF_SPMASK)) | ||
1287 | printk(", No speed/duplex selected?"); | ||
1288 | |||
1289 | if (*s & PHY_CONF_LOOP) | ||
1290 | printk(", loopback enabled"); | ||
1291 | |||
1292 | printk(".\n"); | ||
1293 | |||
1294 | fep->sequence_done = 1; | ||
1295 | } | ||
1296 | |||
1297 | static void mii_relink(struct net_device *dev) | ||
1298 | { | ||
1299 | struct fec_enet_private *fep = dev->priv; | ||
1300 | int duplex; | ||
1301 | |||
1302 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; | ||
1303 | mii_display_status(dev); | ||
1304 | fep->old_link = fep->link; | ||
1305 | |||
1306 | if (fep->link) { | ||
1307 | duplex = 0; | ||
1308 | if (fep->phy_status | ||
1309 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) | ||
1310 | duplex = 1; | ||
1311 | fec_restart(dev, duplex); | ||
1312 | } | ||
1313 | else | ||
1314 | fec_stop(dev); | ||
1315 | |||
1316 | #if 0 | ||
1317 | enable_irq(fep->mii_irq); | ||
1318 | #endif | ||
1319 | |||
1320 | } | ||
1321 | |||
1322 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) | ||
1323 | { | ||
1324 | struct fec_enet_private *fep = dev->priv; | ||
1325 | |||
1326 | fep->phy_task.routine = (void *)mii_relink; | ||
1327 | fep->phy_task.data = dev; | ||
1328 | schedule_task(&fep->phy_task); | ||
1329 | } | ||
1330 | |||
1331 | static void mii_queue_config(uint mii_reg, struct net_device *dev) | ||
1332 | { | ||
1333 | struct fec_enet_private *fep = dev->priv; | ||
1334 | |||
1335 | fep->phy_task.routine = (void *)mii_display_config; | ||
1336 | fep->phy_task.data = dev; | ||
1337 | schedule_task(&fep->phy_task); | ||
1338 | } | ||
1339 | |||
1340 | |||
1341 | |||
1342 | phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink }, | ||
1343 | { mk_mii_end, } }; | ||
1344 | phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config }, | ||
1345 | { mk_mii_end, } }; | ||
1346 | |||
1347 | |||
1348 | |||
1349 | /* Read remainder of PHY ID. | ||
1350 | */ | ||
1351 | static void | ||
1352 | mii_discover_phy3(uint mii_reg, struct net_device *dev) | ||
1353 | { | ||
1354 | struct fec_enet_private *fep; | ||
1355 | int i; | ||
1356 | |||
1357 | fep = dev->priv; | ||
1358 | fep->phy_id |= (mii_reg & 0xffff); | ||
1359 | |||
1360 | for(i = 0; phy_info[i]; i++) | ||
1361 | if(phy_info[i]->id == (fep->phy_id >> 4)) | ||
1362 | break; | ||
1363 | |||
1364 | if(!phy_info[i]) | ||
1365 | panic("%s: PHY id 0x%08x is not supported!\n", | ||
1366 | dev->name, fep->phy_id); | ||
1367 | |||
1368 | fep->phy = phy_info[i]; | ||
1369 | fep->phy_id_done = 1; | ||
1370 | |||
1371 | printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", | ||
1372 | dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); | ||
1373 | } | ||
1374 | |||
1375 | /* Scan all of the MII PHY addresses looking for someone to respond | ||
1376 | * with a valid ID. This usually happens quickly. | ||
1377 | */ | ||
1378 | static void | ||
1379 | mii_discover_phy(uint mii_reg, struct net_device *dev) | ||
1380 | { | ||
1381 | struct fec_enet_private *fep; | ||
1382 | uint phytype; | ||
1383 | |||
1384 | fep = dev->priv; | ||
1385 | |||
1386 | if ((phytype = (mii_reg & 0xffff)) != 0xffff) { | ||
1387 | |||
1388 | /* Got first part of ID, now get remainder. | ||
1389 | */ | ||
1390 | fep->phy_id = phytype << 16; | ||
1391 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3); | ||
1392 | } else { | ||
1393 | fep->phy_addr++; | ||
1394 | if (fep->phy_addr < 32) { | ||
1395 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), | ||
1396 | mii_discover_phy); | ||
1397 | } else { | ||
1398 | printk("fec: No PHY device found.\n"); | ||
1399 | } | ||
1400 | } | ||
1401 | } | ||
1402 | #endif /* CONFIG_USE_MDIO */ | ||
1403 | |||
1404 | /* This interrupt occurs when the PHY detects a link change. | ||
1405 | */ | ||
1406 | static void | ||
1407 | #ifdef CONFIG_RPXCLASSIC | ||
1408 | mii_link_interrupt(void *dev_id) | ||
1409 | #else | ||
1410 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) | ||
1411 | #endif | ||
1412 | { | ||
1413 | #ifdef CONFIG_USE_MDIO | ||
1414 | struct net_device *dev = dev_id; | ||
1415 | struct fec_enet_private *fep = dev->priv; | ||
1416 | volatile immap_t *immap = (immap_t *)IMAP_ADDR; | ||
1417 | volatile fec_t *fecp = &(immap->im_cpm.cp_fec); | ||
1418 | unsigned int ecntrl = fecp->fec_ecntrl; | ||
1419 | |||
1420 | /* We need the FEC enabled to access the MII | ||
1421 | */ | ||
1422 | if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) { | ||
1423 | fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN; | ||
1424 | } | ||
1425 | #endif /* CONFIG_USE_MDIO */ | ||
1426 | |||
1427 | #if 0 | ||
1428 | disable_irq(fep->mii_irq); /* disable now, enable later */ | ||
1429 | #endif | ||
1430 | |||
1431 | |||
1432 | #ifdef CONFIG_USE_MDIO | ||
1433 | mii_do_cmd(dev, fep->phy->ack_int); | ||
1434 | mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ | ||
1435 | |||
1436 | if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) { | ||
1437 | fecp->fec_ecntrl = ecntrl; /* restore old settings */ | ||
1438 | } | ||
1439 | #else | ||
1440 | printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__,__LINE__,__FUNCTION__); | ||
1441 | #endif /* CONFIG_USE_MDIO */ | ||
1442 | |||
1443 | } | ||
1444 | |||
1445 | static int | ||
1446 | fec_enet_open(struct net_device *dev) | ||
1447 | { | ||
1448 | struct fec_enet_private *fep = dev->priv; | ||
1449 | |||
1450 | /* I should reset the ring buffers here, but I don't yet know | ||
1451 | * a simple way to do that. | ||
1452 | */ | ||
1453 | |||
1454 | #ifdef CONFIG_USE_MDIO | ||
1455 | fep->sequence_done = 0; | ||
1456 | fep->link = 0; | ||
1457 | |||
1458 | if (fep->phy) { | ||
1459 | mii_do_cmd(dev, fep->phy->ack_int); | ||
1460 | mii_do_cmd(dev, fep->phy->config); | ||
1461 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ | ||
1462 | while(!fep->sequence_done) | ||
1463 | schedule(); | ||
1464 | |||
1465 | mii_do_cmd(dev, fep->phy->startup); | ||
1466 | netif_start_queue(dev); | ||
1467 | return 0; /* Success */ | ||
1468 | } | ||
1469 | return -ENODEV; /* No PHY we understand */ | ||
1470 | #else | ||
1471 | fep->link = 1; | ||
1472 | netif_start_queue(dev); | ||
1473 | return 0; /* Success */ | ||
1474 | #endif /* CONFIG_USE_MDIO */ | ||
1475 | |||
1476 | } | ||
1477 | |||
1478 | static int | ||
1479 | fec_enet_close(struct net_device *dev) | ||
1480 | { | ||
1481 | /* Don't know what to do yet. | ||
1482 | */ | ||
1483 | netif_stop_queue(dev); | ||
1484 | fec_stop(dev); | ||
1485 | |||
1486 | return 0; | ||
1487 | } | ||
1488 | |||
1489 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) | ||
1490 | { | ||
1491 | struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv; | ||
1492 | |||
1493 | return &fep->stats; | ||
1494 | } | ||
1495 | |||
1496 | /* Set or clear the multicast filter for this adaptor. | ||
1497 | * Skeleton taken from sunlance driver. | ||
1498 | * The CPM Ethernet implementation allows Multicast as well as individual | ||
1499 | * MAC address filtering. Some of the drivers check to make sure it is | ||
1500 | * a group multicast address, and discard those that are not. I guess I | ||
1501 | * will do the same for now, but just remove the test if you want | ||
1502 | * individual filtering as well (do the upper net layers want or support | ||
1503 | * this kind of feature?). | ||
1504 | */ | ||
1505 | |||
1506 | static void set_multicast_list(struct net_device *dev) | ||
1507 | { | ||
1508 | struct fec_enet_private *fep; | ||
1509 | volatile fec_t *ep; | ||
1510 | |||
1511 | fep = (struct fec_enet_private *)dev->priv; | ||
1512 | ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec); | ||
1513 | |||
1514 | if (dev->flags&IFF_PROMISC) { | ||
1515 | |||
1516 | /* Log any net taps. */ | ||
1517 | printk("%s: Promiscuous mode enabled.\n", dev->name); | ||
1518 | ep->fec_r_cntrl |= FEC_RCNTRL_PROM; | ||
1519 | } else { | ||
1520 | |||
1521 | ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM; | ||
1522 | |||
1523 | if (dev->flags & IFF_ALLMULTI) { | ||
1524 | /* Catch all multicast addresses, so set the | ||
1525 | * filter to all 1's. | ||
1526 | */ | ||
1527 | ep->fec_hash_table_high = 0xffffffff; | ||
1528 | ep->fec_hash_table_low = 0xffffffff; | ||
1529 | } | ||
1530 | #if 0 | ||
1531 | else { | ||
1532 | /* Clear filter and add the addresses in the list. | ||
1533 | */ | ||
1534 | ep->sen_gaddr1 = 0; | ||
1535 | ep->sen_gaddr2 = 0; | ||
1536 | ep->sen_gaddr3 = 0; | ||
1537 | ep->sen_gaddr4 = 0; | ||
1538 | |||
1539 | dmi = dev->mc_list; | ||
1540 | |||
1541 | for (i=0; i<dev->mc_count; i++) { | ||
1542 | |||
1543 | /* Only support group multicast for now. | ||
1544 | */ | ||
1545 | if (!(dmi->dmi_addr[0] & 1)) | ||
1546 | continue; | ||
1547 | |||
1548 | /* The address in dmi_addr is LSB first, | ||
1549 | * and taddr is MSB first. We have to | ||
1550 | * copy bytes MSB first from dmi_addr. | ||
1551 | */ | ||
1552 | mcptr = (u_char *)dmi->dmi_addr + 5; | ||
1553 | tdptr = (u_char *)&ep->sen_taddrh; | ||
1554 | for (j=0; j<6; j++) | ||
1555 | *tdptr++ = *mcptr--; | ||
1556 | |||
1557 | /* Ask CPM to run CRC and set bit in | ||
1558 | * filter mask. | ||
1559 | */ | ||
1560 | cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG; | ||
1561 | /* this delay is necessary here -- Cort */ | ||
1562 | udelay(10); | ||
1563 | while (cpmp->cp_cpcr & CPM_CR_FLG); | ||
1564 | } | ||
1565 | } | ||
1566 | #endif | ||
1567 | } | ||
1568 | } | ||
1569 | |||
1570 | /* Initialize the FEC Ethernet on 860T. | ||
1571 | */ | ||
1572 | static int __init fec_enet_init(void) | ||
1573 | { | ||
1574 | struct net_device *dev; | ||
1575 | struct fec_enet_private *fep; | ||
1576 | int i, j, k, err; | ||
1577 | unsigned char *eap, *iap, *ba; | ||
1578 | unsigned long mem_addr; | ||
1579 | volatile cbd_t *bdp; | ||
1580 | cbd_t *cbd_base; | ||
1581 | volatile immap_t *immap; | ||
1582 | volatile fec_t *fecp; | ||
1583 | bd_t *bd; | ||
1584 | #ifdef CONFIG_SCC_ENET | ||
1585 | unsigned char tmpaddr[6]; | ||
1586 | #endif | ||
1587 | |||
1588 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | ||
1589 | |||
1590 | bd = (bd_t *)__res; | ||
1591 | |||
1592 | dev = alloc_etherdev(sizeof(*fep)); | ||
1593 | if (!dev) | ||
1594 | return -ENOMEM; | ||
1595 | |||
1596 | fep = dev->priv; | ||
1597 | |||
1598 | fecp = &(immap->im_cpm.cp_fec); | ||
1599 | |||
1600 | /* Whack a reset. We should wait for this. | ||
1601 | */ | ||
1602 | fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; | ||
1603 | for (i = 0; | ||
1604 | (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); | ||
1605 | ++i) { | ||
1606 | udelay(1); | ||
1607 | } | ||
1608 | if (i == FEC_RESET_DELAY) { | ||
1609 | printk ("FEC Reset timeout!\n"); | ||
1610 | } | ||
1611 | |||
1612 | /* Set the Ethernet address. If using multiple Enets on the 8xx, | ||
1613 | * this needs some work to get unique addresses. | ||
1614 | */ | ||
1615 | eap = (unsigned char *)my_enet_addr; | ||
1616 | iap = bd->bi_enetaddr; | ||
1617 | |||
1618 | #ifdef CONFIG_SCC_ENET | ||
1619 | /* | ||
1620 | * If a board has Ethernet configured both on a SCC and the | ||
1621 | * FEC, it needs (at least) 2 MAC addresses (we know that Sun | ||
1622 | * disagrees, but anyway). For the FEC port, we create | ||
1623 | * another address by setting one of the address bits above | ||
1624 | * something that would have (up to now) been allocated. | ||
1625 | */ | ||
1626 | for (i=0; i<6; i++) | ||
1627 | tmpaddr[i] = *iap++; | ||
1628 | tmpaddr[3] |= 0x80; | ||
1629 | iap = tmpaddr; | ||
1630 | #endif | ||
1631 | |||
1632 | for (i=0; i<6; i++) { | ||
1633 | dev->dev_addr[i] = *eap++ = *iap++; | ||
1634 | } | ||
1635 | |||
1636 | /* Allocate memory for buffer descriptors. | ||
1637 | */ | ||
1638 | if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) { | ||
1639 | printk("FEC init error. Need more space.\n"); | ||
1640 | printk("FEC initialization failed.\n"); | ||
1641 | return 1; | ||
1642 | } | ||
1643 | cbd_base = (cbd_t *)consistent_alloc(GFP_KERNEL, PAGE_SIZE, &mem_addr); | ||
1644 | |||
1645 | /* Set receive and transmit descriptor base. | ||
1646 | */ | ||
1647 | fep->rx_bd_base = cbd_base; | ||
1648 | fep->tx_bd_base = cbd_base + RX_RING_SIZE; | ||
1649 | |||
1650 | fep->skb_cur = fep->skb_dirty = 0; | ||
1651 | |||
1652 | /* Initialize the receive buffer descriptors. | ||
1653 | */ | ||
1654 | bdp = fep->rx_bd_base; | ||
1655 | k = 0; | ||
1656 | for (i=0; i<FEC_ENET_RX_PAGES; i++) { | ||
1657 | |||
1658 | /* Allocate a page. | ||
1659 | */ | ||
1660 | ba = (unsigned char *)consistent_alloc(GFP_KERNEL, PAGE_SIZE, &mem_addr); | ||
1661 | /* BUG: no check for failure */ | ||
1662 | |||
1663 | /* Initialize the BD for every fragment in the page. | ||
1664 | */ | ||
1665 | for (j=0; j<FEC_ENET_RX_FRPPG; j++) { | ||
1666 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | ||
1667 | bdp->cbd_bufaddr = mem_addr; | ||
1668 | fep->rx_vaddr[k++] = ba; | ||
1669 | mem_addr += FEC_ENET_RX_FRSIZE; | ||
1670 | ba += FEC_ENET_RX_FRSIZE; | ||
1671 | bdp++; | ||
1672 | } | ||
1673 | } | ||
1674 | |||
1675 | /* Set the last buffer to wrap. | ||
1676 | */ | ||
1677 | bdp--; | ||
1678 | bdp->cbd_sc |= BD_SC_WRAP; | ||
1679 | |||
1680 | #ifdef CONFIG_FEC_PACKETHOOK | ||
1681 | fep->ph_lock = 0; | ||
1682 | fep->ph_rxhandler = fep->ph_txhandler = NULL; | ||
1683 | fep->ph_proto = 0; | ||
1684 | fep->ph_regaddr = NULL; | ||
1685 | fep->ph_priv = NULL; | ||
1686 | #endif | ||
1687 | |||
1688 | /* Install our interrupt handler. | ||
1689 | */ | ||
1690 | if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) | ||
1691 | panic("Could not allocate FEC IRQ!"); | ||
1692 | |||
1693 | #ifdef CONFIG_RPXCLASSIC | ||
1694 | /* Make Port C, bit 15 an input that causes interrupts. | ||
1695 | */ | ||
1696 | immap->im_ioport.iop_pcpar &= ~0x0001; | ||
1697 | immap->im_ioport.iop_pcdir &= ~0x0001; | ||
1698 | immap->im_ioport.iop_pcso &= ~0x0001; | ||
1699 | immap->im_ioport.iop_pcint |= 0x0001; | ||
1700 | cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); | ||
1701 | |||
1702 | /* Make LEDS reflect Link status. | ||
1703 | */ | ||
1704 | *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; | ||
1705 | #endif | ||
1706 | |||
1707 | #ifdef PHY_INTERRUPT | ||
1708 | ((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |= | ||
1709 | (0x80000000 >> PHY_INTERRUPT); | ||
1710 | |||
1711 | if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0) | ||
1712 | panic("Could not allocate MII IRQ!"); | ||
1713 | #endif | ||
1714 | |||
1715 | dev->base_addr = (unsigned long)fecp; | ||
1716 | |||
1717 | /* The FEC Ethernet specific entries in the device structure. */ | ||
1718 | dev->open = fec_enet_open; | ||
1719 | dev->hard_start_xmit = fec_enet_start_xmit; | ||
1720 | dev->tx_timeout = fec_timeout; | ||
1721 | dev->watchdog_timeo = TX_TIMEOUT; | ||
1722 | dev->stop = fec_enet_close; | ||
1723 | dev->get_stats = fec_enet_get_stats; | ||
1724 | dev->set_multicast_list = set_multicast_list; | ||
1725 | |||
1726 | #ifdef CONFIG_USE_MDIO | ||
1727 | for (i=0; i<NMII-1; i++) | ||
1728 | mii_cmds[i].mii_next = &mii_cmds[i+1]; | ||
1729 | mii_free = mii_cmds; | ||
1730 | #endif /* CONFIG_USE_MDIO */ | ||
1731 | |||
1732 | /* Configure all of port D for MII. | ||
1733 | */ | ||
1734 | immap->im_ioport.iop_pdpar = 0x1fff; | ||
1735 | |||
1736 | /* Bits moved from Rev. D onward. | ||
1737 | */ | ||
1738 | if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501) | ||
1739 | immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ | ||
1740 | else | ||
1741 | immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ | ||
1742 | |||
1743 | #ifdef CONFIG_USE_MDIO | ||
1744 | /* Set MII speed to 2.5 MHz | ||
1745 | */ | ||
1746 | fecp->fec_mii_speed = fep->phy_speed = | ||
1747 | (( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1; | ||
1748 | #else | ||
1749 | fecp->fec_mii_speed = 0; /* turn off MDIO */ | ||
1750 | #endif /* CONFIG_USE_MDIO */ | ||
1751 | |||
1752 | err = register_netdev(dev); | ||
1753 | if (err) { | ||
1754 | free_netdev(dev); | ||
1755 | return err; | ||
1756 | } | ||
1757 | |||
1758 | printk ("%s: FEC ENET Version 0.2, FEC irq %d" | ||
1759 | #ifdef PHY_INTERRUPT | ||
1760 | ", MII irq %d" | ||
1761 | #endif | ||
1762 | ", addr ", | ||
1763 | dev->name, FEC_INTERRUPT | ||
1764 | #ifdef PHY_INTERRUPT | ||
1765 | , PHY_INTERRUPT | ||
1766 | #endif | ||
1767 | ); | ||
1768 | for (i=0; i<6; i++) | ||
1769 | printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':'); | ||
1770 | |||
1771 | #ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */ | ||
1772 | fec_restart (dev, 1); | ||
1773 | #else /* always use half duplex mode only */ | ||
1774 | fec_restart (dev, 0); | ||
1775 | #endif | ||
1776 | |||
1777 | #ifdef CONFIG_USE_MDIO | ||
1778 | /* Queue up command to detect the PHY and initialize the | ||
1779 | * remainder of the interface. | ||
1780 | */ | ||
1781 | fep->phy_id_done = 0; | ||
1782 | fep->phy_addr = 0; | ||
1783 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); | ||
1784 | #endif /* CONFIG_USE_MDIO */ | ||
1785 | |||
1786 | return 0; | ||
1787 | } | ||
1788 | module_init(fec_enet_init); | ||
1789 | |||
1790 | /* This function is called to start or restart the FEC during a link | ||
1791 | * change. This only happens when switching between half and full | ||
1792 | * duplex. | ||
1793 | */ | ||
1794 | static void | ||
1795 | fec_restart(struct net_device *dev, int duplex) | ||
1796 | { | ||
1797 | struct fec_enet_private *fep; | ||
1798 | int i; | ||
1799 | volatile cbd_t *bdp; | ||
1800 | volatile immap_t *immap; | ||
1801 | volatile fec_t *fecp; | ||
1802 | |||
1803 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | ||
1804 | |||
1805 | fecp = &(immap->im_cpm.cp_fec); | ||
1806 | |||
1807 | fep = dev->priv; | ||
1808 | |||
1809 | /* Whack a reset. We should wait for this. | ||
1810 | */ | ||
1811 | fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; | ||
1812 | for (i = 0; | ||
1813 | (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); | ||
1814 | ++i) { | ||
1815 | udelay(1); | ||
1816 | } | ||
1817 | if (i == FEC_RESET_DELAY) { | ||
1818 | printk ("FEC Reset timeout!\n"); | ||
1819 | } | ||
1820 | |||
1821 | /* Set station address. | ||
1822 | */ | ||
1823 | fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1]; | ||
1824 | fecp->fec_addr_high = my_enet_addr[2]; | ||
1825 | |||
1826 | /* Reset all multicast. | ||
1827 | */ | ||
1828 | fecp->fec_hash_table_high = 0; | ||
1829 | fecp->fec_hash_table_low = 0; | ||
1830 | |||
1831 | /* Set maximum receive buffer size. | ||
1832 | */ | ||
1833 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | ||
1834 | fecp->fec_r_hash = PKT_MAXBUF_SIZE; | ||
1835 | |||
1836 | /* Set receive and transmit descriptor base. | ||
1837 | */ | ||
1838 | fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base)); | ||
1839 | fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base)); | ||
1840 | |||
1841 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | ||
1842 | fep->cur_rx = fep->rx_bd_base; | ||
1843 | |||
1844 | /* Reset SKB transmit buffers. | ||
1845 | */ | ||
1846 | fep->skb_cur = fep->skb_dirty = 0; | ||
1847 | for (i=0; i<=TX_RING_MOD_MASK; i++) { | ||
1848 | if (fep->tx_skbuff[i] != NULL) { | ||
1849 | dev_kfree_skb(fep->tx_skbuff[i]); | ||
1850 | fep->tx_skbuff[i] = NULL; | ||
1851 | } | ||
1852 | } | ||
1853 | |||
1854 | /* Initialize the receive buffer descriptors. | ||
1855 | */ | ||
1856 | bdp = fep->rx_bd_base; | ||
1857 | for (i=0; i<RX_RING_SIZE; i++) { | ||
1858 | |||
1859 | /* Initialize the BD for every fragment in the page. | ||
1860 | */ | ||
1861 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | ||
1862 | bdp++; | ||
1863 | } | ||
1864 | |||
1865 | /* Set the last buffer to wrap. | ||
1866 | */ | ||
1867 | bdp--; | ||
1868 | bdp->cbd_sc |= BD_SC_WRAP; | ||
1869 | |||
1870 | /* ...and the same for transmmit. | ||
1871 | */ | ||
1872 | bdp = fep->tx_bd_base; | ||
1873 | for (i=0; i<TX_RING_SIZE; i++) { | ||
1874 | |||
1875 | /* Initialize the BD for every fragment in the page. | ||
1876 | */ | ||
1877 | bdp->cbd_sc = 0; | ||
1878 | bdp->cbd_bufaddr = 0; | ||
1879 | bdp++; | ||
1880 | } | ||
1881 | |||
1882 | /* Set the last buffer to wrap. | ||
1883 | */ | ||
1884 | bdp--; | ||
1885 | bdp->cbd_sc |= BD_SC_WRAP; | ||
1886 | |||
1887 | /* Enable MII mode. | ||
1888 | */ | ||
1889 | if (duplex) { | ||
1890 | fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */ | ||
1891 | fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */ | ||
1892 | } | ||
1893 | else { | ||
1894 | fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT; | ||
1895 | fecp->fec_x_cntrl = 0; | ||
1896 | } | ||
1897 | fep->full_duplex = duplex; | ||
1898 | |||
1899 | /* Enable big endian and don't care about SDMA FC. | ||
1900 | */ | ||
1901 | fecp->fec_fun_code = 0x78000000; | ||
1902 | |||
1903 | #ifdef CONFIG_USE_MDIO | ||
1904 | /* Set MII speed. | ||
1905 | */ | ||
1906 | fecp->fec_mii_speed = fep->phy_speed; | ||
1907 | #endif /* CONFIG_USE_MDIO */ | ||
1908 | |||
1909 | /* Clear any outstanding interrupt. | ||
1910 | */ | ||
1911 | fecp->fec_ievent = 0xffc0; | ||
1912 | |||
1913 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; | ||
1914 | |||
1915 | /* Enable interrupts we wish to service. | ||
1916 | */ | ||
1917 | fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB | | ||
1918 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII ); | ||
1919 | |||
1920 | /* And last, enable the transmit and receive processing. | ||
1921 | */ | ||
1922 | fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN; | ||
1923 | fecp->fec_r_des_active = 0x01000000; | ||
1924 | } | ||
1925 | |||
1926 | static void | ||
1927 | fec_stop(struct net_device *dev) | ||
1928 | { | ||
1929 | volatile immap_t *immap; | ||
1930 | volatile fec_t *fecp; | ||
1931 | struct fec_enet_private *fep; | ||
1932 | int i; | ||
1933 | |||
1934 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | ||
1935 | |||
1936 | fecp = &(immap->im_cpm.cp_fec); | ||
1937 | |||
1938 | if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0) | ||
1939 | return; /* already down */ | ||
1940 | |||
1941 | fep = dev->priv; | ||
1942 | |||
1943 | |||
1944 | fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ | ||
1945 | |||
1946 | for (i = 0; | ||
1947 | ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY); | ||
1948 | ++i) { | ||
1949 | udelay(1); | ||
1950 | } | ||
1951 | if (i == FEC_RESET_DELAY) { | ||
1952 | printk ("FEC timeout on graceful transmit stop\n"); | ||
1953 | } | ||
1954 | |||
1955 | /* Clear outstanding MII command interrupts. | ||
1956 | */ | ||
1957 | fecp->fec_ievent = FEC_ENET_MII; | ||
1958 | |||
1959 | /* Enable MII command finished interrupt | ||
1960 | */ | ||
1961 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; | ||
1962 | fecp->fec_imask = FEC_ENET_MII; | ||
1963 | |||
1964 | #ifdef CONFIG_USE_MDIO | ||
1965 | /* Set MII speed. | ||
1966 | */ | ||
1967 | fecp->fec_mii_speed = fep->phy_speed; | ||
1968 | #endif /* CONFIG_USE_MDIO */ | ||
1969 | |||
1970 | /* Disable FEC | ||
1971 | */ | ||
1972 | fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN); | ||
1973 | } | ||