aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2009-08-17 18:25:32 -0400
committerPaul Mackerras <paulus@samba.org>2009-08-18 00:48:47 -0400
commit20002ded4d937ca87aca6253b874920a96a763c4 (patch)
tree1253f60bc20c95598ae1d1e1578d9aac9ea7a6b0 /arch/powerpc
parent9c1e105238c474d19905af504f2e7f42d4f71f9e (diff)
perf_counter: powerpc: Add callchain support
This adds support for tracing callchains for powerpc, both 32-bit and 64-bit, and both in the kernel and userspace, from PMU interrupt context. The first three entries stored for each callchain are the NIP (next instruction pointer), LR (link register), and the contents of the LR save area in the second stack frame (the first is ignored because the ABI convention on powerpc is that functions save their return address in their caller's stack frame). Because leaf functions don't have to save their return address (LR value) and don't have to establish a stack frame, it's possible for either or both of LR and the second stack frame's LR save area to have valid return addresses in them. This is basically impossible to disambiguate without either reading the code or looking at auxiliary information such as CFI tables. Since we don't want to do either of those things at interrupt time, we store both LR and the second stack frame's LR save area. Once we get past the second stack frame, there is no ambiguity; all return addresses we get are reliable. For kernel traces, we check whether they are valid kernel instruction addresses and store zero instead if they are not (rather than omitting them, which would make it impossible for userspace to know which was which). We also store zero instead of the second stack frame's LR save area value if it is the same as LR. For kernel traces, we check for interrupt frames, and for user traces, we check for signal frames. In each case, since we're starting a new trace, we store a PERF_CONTEXT_KERNEL/USER marker so that userspace knows that the next three entries are NIP, LR and the second stack frame for the interrupted context. We read user memory with __get_user_inatomic. On 64-bit, if this PMU interrupt occurred while interrupts are soft-disabled, and there is no MMU hash table entry for the page, we will get an -EFAULT return from __get_user_inatomic even if there is a valid Linux PTE for the page, since hash_page isn't reentrant. Thus we have code here to read the Linux PTE and access the page via the kernel linear mapping. Since 64-bit doesn't use (or need) highmem there is no need to do kmap_atomic. On 32-bit, we don't do soft interrupt disabling, so this complication doesn't occur and there is no need to fall back to reading the Linux PTE, since hash_page (or the TLB miss handler) will get called automatically if necessary. Note that we cannot get PMU interrupts in the interval during context switch between switch_mm (which switches the user address space) and switch_to (which actually changes current to the new process). On 64-bit this is because interrupts are hard-disabled in switch_mm and stay hard-disabled until they are soft-enabled later, after switch_to has returned. So there is no possibility of trying to do a user stack trace when the user address space is not current's address space. Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc')
-rw-r--r--arch/powerpc/kernel/Makefile2
-rw-r--r--arch/powerpc/kernel/perf_callchain.c527
2 files changed, 528 insertions, 1 deletions
diff --git a/arch/powerpc/kernel/Makefile b/arch/powerpc/kernel/Makefile
index b73396b93905..9619285f64e8 100644
--- a/arch/powerpc/kernel/Makefile
+++ b/arch/powerpc/kernel/Makefile
@@ -97,7 +97,7 @@ obj64-$(CONFIG_AUDIT) += compat_audit.o
97 97
98obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o 98obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
99obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o 99obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
100obj-$(CONFIG_PPC_PERF_CTRS) += perf_counter.o 100obj-$(CONFIG_PPC_PERF_CTRS) += perf_counter.o perf_callchain.o
101obj64-$(CONFIG_PPC_PERF_CTRS) += power4-pmu.o ppc970-pmu.o power5-pmu.o \ 101obj64-$(CONFIG_PPC_PERF_CTRS) += power4-pmu.o ppc970-pmu.o power5-pmu.o \
102 power5+-pmu.o power6-pmu.o power7-pmu.o 102 power5+-pmu.o power6-pmu.o power7-pmu.o
103obj32-$(CONFIG_PPC_PERF_CTRS) += mpc7450-pmu.o 103obj32-$(CONFIG_PPC_PERF_CTRS) += mpc7450-pmu.o
diff --git a/arch/powerpc/kernel/perf_callchain.c b/arch/powerpc/kernel/perf_callchain.c
new file mode 100644
index 000000000000..f74b62c67511
--- /dev/null
+++ b/arch/powerpc/kernel/perf_callchain.c
@@ -0,0 +1,527 @@
1/*
2 * Performance counter callchain support - powerpc architecture code
3 *
4 * Copyright © 2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_counter.h>
14#include <linux/percpu.h>
15#include <linux/uaccess.h>
16#include <linux/mm.h>
17#include <asm/ptrace.h>
18#include <asm/pgtable.h>
19#include <asm/sigcontext.h>
20#include <asm/ucontext.h>
21#include <asm/vdso.h>
22#ifdef CONFIG_PPC64
23#include "ppc32.h"
24#endif
25
26/*
27 * Store another value in a callchain_entry.
28 */
29static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
30{
31 unsigned int nr = entry->nr;
32
33 if (nr < PERF_MAX_STACK_DEPTH) {
34 entry->ip[nr] = ip;
35 entry->nr = nr + 1;
36 }
37}
38
39/*
40 * Is sp valid as the address of the next kernel stack frame after prev_sp?
41 * The next frame may be in a different stack area but should not go
42 * back down in the same stack area.
43 */
44static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
45{
46 if (sp & 0xf)
47 return 0; /* must be 16-byte aligned */
48 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
49 return 0;
50 if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
51 return 1;
52 /*
53 * sp could decrease when we jump off an interrupt stack
54 * back to the regular process stack.
55 */
56 if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
57 return 1;
58 return 0;
59}
60
61static void perf_callchain_kernel(struct pt_regs *regs,
62 struct perf_callchain_entry *entry)
63{
64 unsigned long sp, next_sp;
65 unsigned long next_ip;
66 unsigned long lr;
67 long level = 0;
68 unsigned long *fp;
69
70 lr = regs->link;
71 sp = regs->gpr[1];
72 callchain_store(entry, PERF_CONTEXT_KERNEL);
73 callchain_store(entry, regs->nip);
74
75 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
76 return;
77
78 for (;;) {
79 fp = (unsigned long *) sp;
80 next_sp = fp[0];
81
82 if (next_sp == sp + STACK_INT_FRAME_SIZE &&
83 fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
84 /*
85 * This looks like an interrupt frame for an
86 * interrupt that occurred in the kernel
87 */
88 regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
89 next_ip = regs->nip;
90 lr = regs->link;
91 level = 0;
92 callchain_store(entry, PERF_CONTEXT_KERNEL);
93
94 } else {
95 if (level == 0)
96 next_ip = lr;
97 else
98 next_ip = fp[STACK_FRAME_LR_SAVE];
99
100 /*
101 * We can't tell which of the first two addresses
102 * we get are valid, but we can filter out the
103 * obviously bogus ones here. We replace them
104 * with 0 rather than removing them entirely so
105 * that userspace can tell which is which.
106 */
107 if ((level == 1 && next_ip == lr) ||
108 (level <= 1 && !kernel_text_address(next_ip)))
109 next_ip = 0;
110
111 ++level;
112 }
113
114 callchain_store(entry, next_ip);
115 if (!valid_next_sp(next_sp, sp))
116 return;
117 sp = next_sp;
118 }
119}
120
121#ifdef CONFIG_PPC64
122
123#ifdef CONFIG_HUGETLB_PAGE
124#define is_huge_psize(pagesize) (HPAGE_SHIFT && mmu_huge_psizes[pagesize])
125#else
126#define is_huge_psize(pagesize) 0
127#endif
128
129/*
130 * On 64-bit we don't want to invoke hash_page on user addresses from
131 * interrupt context, so if the access faults, we read the page tables
132 * to find which page (if any) is mapped and access it directly.
133 */
134static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
135{
136 pgd_t *pgdir;
137 pte_t *ptep, pte;
138 int pagesize;
139 unsigned long addr = (unsigned long) ptr;
140 unsigned long offset;
141 unsigned long pfn;
142 void *kaddr;
143
144 pgdir = current->mm->pgd;
145 if (!pgdir)
146 return -EFAULT;
147
148 pagesize = get_slice_psize(current->mm, addr);
149
150 /* align address to page boundary */
151 offset = addr & ((1ul << mmu_psize_defs[pagesize].shift) - 1);
152 addr -= offset;
153
154 if (is_huge_psize(pagesize))
155 ptep = huge_pte_offset(current->mm, addr);
156 else
157 ptep = find_linux_pte(pgdir, addr);
158
159 if (ptep == NULL)
160 return -EFAULT;
161 pte = *ptep;
162 if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
163 return -EFAULT;
164 pfn = pte_pfn(pte);
165 if (!page_is_ram(pfn))
166 return -EFAULT;
167
168 /* no highmem to worry about here */
169 kaddr = pfn_to_kaddr(pfn);
170 memcpy(ret, kaddr + offset, nb);
171 return 0;
172}
173
174static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
175{
176 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
177 ((unsigned long)ptr & 7))
178 return -EFAULT;
179
180 if (!__get_user_inatomic(*ret, ptr))
181 return 0;
182
183 return read_user_stack_slow(ptr, ret, 8);
184}
185
186static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
187{
188 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
189 ((unsigned long)ptr & 3))
190 return -EFAULT;
191
192 if (!__get_user_inatomic(*ret, ptr))
193 return 0;
194
195 return read_user_stack_slow(ptr, ret, 4);
196}
197
198static inline int valid_user_sp(unsigned long sp, int is_64)
199{
200 if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
201 return 0;
202 return 1;
203}
204
205/*
206 * 64-bit user processes use the same stack frame for RT and non-RT signals.
207 */
208struct signal_frame_64 {
209 char dummy[__SIGNAL_FRAMESIZE];
210 struct ucontext uc;
211 unsigned long unused[2];
212 unsigned int tramp[6];
213 struct siginfo *pinfo;
214 void *puc;
215 struct siginfo info;
216 char abigap[288];
217};
218
219static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
220{
221 if (nip == fp + offsetof(struct signal_frame_64, tramp))
222 return 1;
223 if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
224 nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
225 return 1;
226 return 0;
227}
228
229/*
230 * Do some sanity checking on the signal frame pointed to by sp.
231 * We check the pinfo and puc pointers in the frame.
232 */
233static int sane_signal_64_frame(unsigned long sp)
234{
235 struct signal_frame_64 __user *sf;
236 unsigned long pinfo, puc;
237
238 sf = (struct signal_frame_64 __user *) sp;
239 if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
240 read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
241 return 0;
242 return pinfo == (unsigned long) &sf->info &&
243 puc == (unsigned long) &sf->uc;
244}
245
246static void perf_callchain_user_64(struct pt_regs *regs,
247 struct perf_callchain_entry *entry)
248{
249 unsigned long sp, next_sp;
250 unsigned long next_ip;
251 unsigned long lr;
252 long level = 0;
253 struct signal_frame_64 __user *sigframe;
254 unsigned long __user *fp, *uregs;
255
256 next_ip = regs->nip;
257 lr = regs->link;
258 sp = regs->gpr[1];
259 callchain_store(entry, PERF_CONTEXT_USER);
260 callchain_store(entry, next_ip);
261
262 for (;;) {
263 fp = (unsigned long __user *) sp;
264 if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
265 return;
266 if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
267 return;
268
269 /*
270 * Note: the next_sp - sp >= signal frame size check
271 * is true when next_sp < sp, which can happen when
272 * transitioning from an alternate signal stack to the
273 * normal stack.
274 */
275 if (next_sp - sp >= sizeof(struct signal_frame_64) &&
276 (is_sigreturn_64_address(next_ip, sp) ||
277 (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
278 sane_signal_64_frame(sp)) {
279 /*
280 * This looks like an signal frame
281 */
282 sigframe = (struct signal_frame_64 __user *) sp;
283 uregs = sigframe->uc.uc_mcontext.gp_regs;
284 if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
285 read_user_stack_64(&uregs[PT_LNK], &lr) ||
286 read_user_stack_64(&uregs[PT_R1], &sp))
287 return;
288 level = 0;
289 callchain_store(entry, PERF_CONTEXT_USER);
290 callchain_store(entry, next_ip);
291 continue;
292 }
293
294 if (level == 0)
295 next_ip = lr;
296 callchain_store(entry, next_ip);
297 ++level;
298 sp = next_sp;
299 }
300}
301
302static inline int current_is_64bit(void)
303{
304 /*
305 * We can't use test_thread_flag() here because we may be on an
306 * interrupt stack, and the thread flags don't get copied over
307 * from the thread_info on the main stack to the interrupt stack.
308 */
309 return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
310}
311
312#else /* CONFIG_PPC64 */
313/*
314 * On 32-bit we just access the address and let hash_page create a
315 * HPTE if necessary, so there is no need to fall back to reading
316 * the page tables. Since this is called at interrupt level,
317 * do_page_fault() won't treat a DSI as a page fault.
318 */
319static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
320{
321 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
322 ((unsigned long)ptr & 3))
323 return -EFAULT;
324
325 return __get_user_inatomic(*ret, ptr);
326}
327
328static inline void perf_callchain_user_64(struct pt_regs *regs,
329 struct perf_callchain_entry *entry)
330{
331}
332
333static inline int current_is_64bit(void)
334{
335 return 0;
336}
337
338static inline int valid_user_sp(unsigned long sp, int is_64)
339{
340 if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
341 return 0;
342 return 1;
343}
344
345#define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
346#define sigcontext32 sigcontext
347#define mcontext32 mcontext
348#define ucontext32 ucontext
349#define compat_siginfo_t struct siginfo
350
351#endif /* CONFIG_PPC64 */
352
353/*
354 * Layout for non-RT signal frames
355 */
356struct signal_frame_32 {
357 char dummy[__SIGNAL_FRAMESIZE32];
358 struct sigcontext32 sctx;
359 struct mcontext32 mctx;
360 int abigap[56];
361};
362
363/*
364 * Layout for RT signal frames
365 */
366struct rt_signal_frame_32 {
367 char dummy[__SIGNAL_FRAMESIZE32 + 16];
368 compat_siginfo_t info;
369 struct ucontext32 uc;
370 int abigap[56];
371};
372
373static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
374{
375 if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
376 return 1;
377 if (vdso32_sigtramp && current->mm->context.vdso_base &&
378 nip == current->mm->context.vdso_base + vdso32_sigtramp)
379 return 1;
380 return 0;
381}
382
383static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
384{
385 if (nip == fp + offsetof(struct rt_signal_frame_32,
386 uc.uc_mcontext.mc_pad))
387 return 1;
388 if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
389 nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
390 return 1;
391 return 0;
392}
393
394static int sane_signal_32_frame(unsigned int sp)
395{
396 struct signal_frame_32 __user *sf;
397 unsigned int regs;
398
399 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
400 if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
401 return 0;
402 return regs == (unsigned long) &sf->mctx;
403}
404
405static int sane_rt_signal_32_frame(unsigned int sp)
406{
407 struct rt_signal_frame_32 __user *sf;
408 unsigned int regs;
409
410 sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
411 if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
412 return 0;
413 return regs == (unsigned long) &sf->uc.uc_mcontext;
414}
415
416static unsigned int __user *signal_frame_32_regs(unsigned int sp,
417 unsigned int next_sp, unsigned int next_ip)
418{
419 struct mcontext32 __user *mctx = NULL;
420 struct signal_frame_32 __user *sf;
421 struct rt_signal_frame_32 __user *rt_sf;
422
423 /*
424 * Note: the next_sp - sp >= signal frame size check
425 * is true when next_sp < sp, for example, when
426 * transitioning from an alternate signal stack to the
427 * normal stack.
428 */
429 if (next_sp - sp >= sizeof(struct signal_frame_32) &&
430 is_sigreturn_32_address(next_ip, sp) &&
431 sane_signal_32_frame(sp)) {
432 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
433 mctx = &sf->mctx;
434 }
435
436 if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
437 is_rt_sigreturn_32_address(next_ip, sp) &&
438 sane_rt_signal_32_frame(sp)) {
439 rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
440 mctx = &rt_sf->uc.uc_mcontext;
441 }
442
443 if (!mctx)
444 return NULL;
445 return mctx->mc_gregs;
446}
447
448static void perf_callchain_user_32(struct pt_regs *regs,
449 struct perf_callchain_entry *entry)
450{
451 unsigned int sp, next_sp;
452 unsigned int next_ip;
453 unsigned int lr;
454 long level = 0;
455 unsigned int __user *fp, *uregs;
456
457 next_ip = regs->nip;
458 lr = regs->link;
459 sp = regs->gpr[1];
460 callchain_store(entry, PERF_CONTEXT_USER);
461 callchain_store(entry, next_ip);
462
463 while (entry->nr < PERF_MAX_STACK_DEPTH) {
464 fp = (unsigned int __user *) (unsigned long) sp;
465 if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
466 return;
467 if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
468 return;
469
470 uregs = signal_frame_32_regs(sp, next_sp, next_ip);
471 if (!uregs && level <= 1)
472 uregs = signal_frame_32_regs(sp, next_sp, lr);
473 if (uregs) {
474 /*
475 * This looks like an signal frame, so restart
476 * the stack trace with the values in it.
477 */
478 if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
479 read_user_stack_32(&uregs[PT_LNK], &lr) ||
480 read_user_stack_32(&uregs[PT_R1], &sp))
481 return;
482 level = 0;
483 callchain_store(entry, PERF_CONTEXT_USER);
484 callchain_store(entry, next_ip);
485 continue;
486 }
487
488 if (level == 0)
489 next_ip = lr;
490 callchain_store(entry, next_ip);
491 ++level;
492 sp = next_sp;
493 }
494}
495
496/*
497 * Since we can't get PMU interrupts inside a PMU interrupt handler,
498 * we don't need separate irq and nmi entries here.
499 */
500static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
501
502struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
503{
504 struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
505
506 entry->nr = 0;
507
508 if (current->pid == 0) /* idle task? */
509 return entry;
510
511 if (!user_mode(regs)) {
512 perf_callchain_kernel(regs, entry);
513 if (current->mm)
514 regs = task_pt_regs(current);
515 else
516 regs = NULL;
517 }
518
519 if (regs) {
520 if (current_is_64bit())
521 perf_callchain_user_64(regs, entry);
522 else
523 perf_callchain_user_32(regs, entry);
524 }
525
526 return entry;
527}