aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc
diff options
context:
space:
mode:
authorMark Nutter <mnutter@us.ibm.com>2005-11-15 15:53:50 -0500
committerPaul Mackerras <paulus@samba.org>2006-01-08 22:49:21 -0500
commit7c038749d1e6a2d5fb37ed14aed0fffa34c4e504 (patch)
treea6cba799385e67773afb91a17aa888b74adb4c6d /arch/powerpc
parent5473af049d8b3556874174e61ce1986c9b5e8fa6 (diff)
[PATCH] kernel-side context switch code for spufs
This adds the code needed to perform a context switch from spufs, following the recommended 76-step sequence. Signed-off-by: Arnd Bergmann <arndb@de.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc')
-rw-r--r--arch/powerpc/platforms/cell/spufs/switch.c2042
1 files changed, 2036 insertions, 6 deletions
diff --git a/arch/powerpc/platforms/cell/spufs/switch.c b/arch/powerpc/platforms/cell/spufs/switch.c
index 6804342e99c3..70345b0524fc 100644
--- a/arch/powerpc/platforms/cell/spufs/switch.c
+++ b/arch/powerpc/platforms/cell/spufs/switch.c
@@ -52,6 +52,2019 @@
52#include "spu_save_dump.h" 52#include "spu_save_dump.h"
53#include "spu_restore_dump.h" 53#include "spu_restore_dump.h"
54 54
55#if 0
56#define POLL_WHILE_TRUE(_c) { \
57 do { \
58 } while (_c); \
59 }
60#else
61#define RELAX_SPIN_COUNT 1000
62#define POLL_WHILE_TRUE(_c) { \
63 do { \
64 int _i; \
65 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
66 cpu_relax(); \
67 } \
68 if (unlikely(_c)) yield(); \
69 else break; \
70 } while (_c); \
71 }
72#endif /* debug */
73
74#define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
75
76static inline void acquire_spu_lock(struct spu *spu)
77{
78 /* Save, Step 1:
79 * Restore, Step 1:
80 * Acquire SPU-specific mutual exclusion lock.
81 * TBD.
82 */
83}
84
85static inline void release_spu_lock(struct spu *spu)
86{
87 /* Restore, Step 76:
88 * Release SPU-specific mutual exclusion lock.
89 * TBD.
90 */
91}
92
93static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
94{
95 struct spu_problem __iomem *prob = spu->problem;
96 u32 isolate_state;
97
98 /* Save, Step 2:
99 * Save, Step 6:
100 * If SPU_Status[E,L,IS] any field is '1', this
101 * SPU is in isolate state and cannot be context
102 * saved at this time.
103 */
104 isolate_state = SPU_STATUS_ISOLATED_STATE |
105 SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
106 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
107}
108
109static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
110{
111 struct spu_priv1 __iomem *priv1 = spu->priv1;
112
113 /* Save, Step 3:
114 * Restore, Step 2:
115 * Save INT_Mask_class0 in CSA.
116 * Write INT_MASK_class0 with value of 0.
117 * Save INT_Mask_class1 in CSA.
118 * Write INT_MASK_class1 with value of 0.
119 * Save INT_Mask_class2 in CSA.
120 * Write INT_MASK_class2 with value of 0.
121 */
122 spin_lock_irq(&spu->register_lock);
123 if (csa) {
124 csa->priv1.int_mask_class0_RW =
125 in_be64(&priv1->int_mask_class0_RW);
126 csa->priv1.int_mask_class1_RW =
127 in_be64(&priv1->int_mask_class1_RW);
128 csa->priv1.int_mask_class2_RW =
129 in_be64(&priv1->int_mask_class2_RW);
130 }
131 out_be64(&priv1->int_mask_class0_RW, 0UL);
132 out_be64(&priv1->int_mask_class1_RW, 0UL);
133 out_be64(&priv1->int_mask_class2_RW, 0UL);
134 eieio();
135 spin_unlock_irq(&spu->register_lock);
136}
137
138static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
139{
140 /* Save, Step 4:
141 * Restore, Step 25.
142 * Set a software watchdog timer, which specifies the
143 * maximum allowable time for a context save sequence.
144 *
145 * For present, this implementation will not set a global
146 * watchdog timer, as virtualization & variable system load
147 * may cause unpredictable execution times.
148 */
149}
150
151static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
152{
153 /* Save, Step 5:
154 * Restore, Step 3:
155 * Inhibit user-space access (if provided) to this
156 * SPU by unmapping the virtual pages assigned to
157 * the SPU memory-mapped I/O (MMIO) for problem
158 * state. TBD.
159 */
160}
161
162static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
163{
164 /* Save, Step 7:
165 * Restore, Step 5:
166 * Set a software context switch pending flag.
167 */
168 set_bit(SPU_CONTEXT_SWITCH_PENDING_nr, &spu->flags);
169 mb();
170}
171
172static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
173{
174 struct spu_priv2 __iomem *priv2 = spu->priv2;
175
176 /* Save, Step 8:
177 * Read and save MFC_CNTL[Ss].
178 */
179 if (csa) {
180 csa->priv2.mfc_control_RW = in_be64(&priv2->mfc_control_RW) &
181 MFC_CNTL_SUSPEND_DMA_STATUS_MASK;
182 }
183}
184
185static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
186{
187 struct spu_problem __iomem *prob = spu->problem;
188
189 /* Save, Step 9:
190 * Save SPU_Runcntl in the CSA. This value contains
191 * the "Application Desired State".
192 */
193 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
194}
195
196static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
197{
198 struct spu_priv1 __iomem *priv1 = spu->priv1;
199
200 /* Save, Step 10:
201 * Save MFC_SR1 in the CSA.
202 */
203 csa->priv1.mfc_sr1_RW = in_be64(&priv1->mfc_sr1_RW);
204}
205
206static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
207{
208 struct spu_problem __iomem *prob = spu->problem;
209
210 /* Save, Step 11:
211 * Read SPU_Status[R], and save to CSA.
212 */
213 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
214 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
215 } else {
216 u32 stopped;
217
218 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
219 eieio();
220 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
221 SPU_STATUS_RUNNING);
222 stopped =
223 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
224 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
225 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
226 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
227 else
228 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
229 }
230}
231
232static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
233{
234 struct spu_priv2 __iomem *priv2 = spu->priv2;
235
236 /* Save, Step 12:
237 * Read MFC_CNTL[Ds]. Update saved copy of
238 * CSA.MFC_CNTL[Ds].
239 */
240 if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
241 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
242 csa->suspend_time = get_cycles();
243 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
244 eieio();
245 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
246 eieio();
247 }
248}
249
250static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
251{
252 struct spu_priv2 __iomem *priv2 = spu->priv2;
253
254 /* Save, Step 13:
255 * Write MFC_CNTL[Dh] set to a '1' to halt
256 * the decrementer.
257 */
258 out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
259 eieio();
260}
261
262static inline void save_timebase(struct spu_state *csa, struct spu *spu)
263{
264 /* Save, Step 14:
265 * Read PPE Timebase High and Timebase low registers
266 * and save in CSA. TBD.
267 */
268 csa->suspend_time = get_cycles();
269}
270
271static inline void remove_other_spu_access(struct spu_state *csa,
272 struct spu *spu)
273{
274 /* Save, Step 15:
275 * Remove other SPU access to this SPU by unmapping
276 * this SPU's pages from their address space. TBD.
277 */
278}
279
280static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
281{
282 struct spu_problem __iomem *prob = spu->problem;
283
284 /* Save, Step 16:
285 * Restore, Step 11.
286 * Write SPU_MSSync register. Poll SPU_MSSync[P]
287 * for a value of 0.
288 */
289 out_be64(&prob->spc_mssync_RW, 1UL);
290 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
291}
292
293static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
294{
295 struct spu_priv1 __iomem *priv1 = spu->priv1;
296
297 /* Save, Step 17:
298 * Restore, Step 12.
299 * Restore, Step 48.
300 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
301 * Then issue a PPE sync instruction.
302 */
303 out_be64(&priv1->tlb_invalidate_entry_W, 0UL);
304 mb();
305}
306
307static inline void handle_pending_interrupts(struct spu_state *csa,
308 struct spu *spu)
309{
310 /* Save, Step 18:
311 * Handle any pending interrupts from this SPU
312 * here. This is OS or hypervisor specific. One
313 * option is to re-enable interrupts to handle any
314 * pending interrupts, with the interrupt handlers
315 * recognizing the software Context Switch Pending
316 * flag, to ensure the SPU execution or MFC command
317 * queue is not restarted. TBD.
318 */
319}
320
321static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
322{
323 struct spu_priv2 __iomem *priv2 = spu->priv2;
324 int i;
325
326 /* Save, Step 19:
327 * If MFC_Cntl[Se]=0 then save
328 * MFC command queues.
329 */
330 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
331 for (i = 0; i < 8; i++) {
332 csa->priv2.puq[i].mfc_cq_data0_RW =
333 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
334 csa->priv2.puq[i].mfc_cq_data1_RW =
335 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
336 csa->priv2.puq[i].mfc_cq_data2_RW =
337 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
338 csa->priv2.puq[i].mfc_cq_data3_RW =
339 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
340 }
341 for (i = 0; i < 16; i++) {
342 csa->priv2.spuq[i].mfc_cq_data0_RW =
343 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
344 csa->priv2.spuq[i].mfc_cq_data1_RW =
345 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
346 csa->priv2.spuq[i].mfc_cq_data2_RW =
347 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
348 csa->priv2.spuq[i].mfc_cq_data3_RW =
349 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
350 }
351 }
352}
353
354static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
355{
356 struct spu_problem __iomem *prob = spu->problem;
357
358 /* Save, Step 20:
359 * Save the PPU_QueryMask register
360 * in the CSA.
361 */
362 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
363}
364
365static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
366{
367 struct spu_problem __iomem *prob = spu->problem;
368
369 /* Save, Step 21:
370 * Save the PPU_QueryType register
371 * in the CSA.
372 */
373 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
374}
375
376static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
377{
378 struct spu_priv2 __iomem *priv2 = spu->priv2;
379
380 /* Save, Step 22:
381 * Save the MFC_CSR_TSQ register
382 * in the LSCSA.
383 */
384 csa->priv2.spu_tag_status_query_RW =
385 in_be64(&priv2->spu_tag_status_query_RW);
386}
387
388static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
389{
390 struct spu_priv2 __iomem *priv2 = spu->priv2;
391
392 /* Save, Step 23:
393 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
394 * registers in the CSA.
395 */
396 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
397 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
398}
399
400static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
401{
402 struct spu_priv2 __iomem *priv2 = spu->priv2;
403
404 /* Save, Step 24:
405 * Save the MFC_CSR_ATO register in
406 * the CSA.
407 */
408 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
409}
410
411static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
412{
413 struct spu_priv1 __iomem *priv1 = spu->priv1;
414
415 /* Save, Step 25:
416 * Save the MFC_TCLASS_ID register in
417 * the CSA.
418 */
419 csa->priv1.mfc_tclass_id_RW = in_be64(&priv1->mfc_tclass_id_RW);
420}
421
422static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
423{
424 struct spu_priv1 __iomem *priv1 = spu->priv1;
425
426 /* Save, Step 26:
427 * Restore, Step 23.
428 * Write the MFC_TCLASS_ID register with
429 * the value 0x10000000.
430 */
431 out_be64(&priv1->mfc_tclass_id_RW, 0x10000000);
432 eieio();
433}
434
435static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
436{
437 struct spu_priv2 __iomem *priv2 = spu->priv2;
438
439 /* Save, Step 27:
440 * Restore, Step 14.
441 * Write MFC_CNTL[Pc]=1 (purge queue).
442 */
443 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
444 eieio();
445}
446
447static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
448{
449 struct spu_priv2 __iomem *priv2 = spu->priv2;
450
451 /* Save, Step 28:
452 * Poll MFC_CNTL[Ps] until value '11' is read
453 * (purge complete).
454 */
455 POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
456 MFC_CNTL_PURGE_DMA_COMPLETE);
457}
458
459static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
460{
461 struct spu_priv1 __iomem *priv1 = spu->priv1;
462 struct spu_priv2 __iomem *priv2 = spu->priv2;
463 int i;
464
465 /* Save, Step 29:
466 * If MFC_SR1[R]='1', save SLBs in CSA.
467 */
468 if (in_be64(&priv1->mfc_sr1_RW) & MFC_STATE1_RELOCATE_MASK) {
469 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
470 for (i = 0; i < 8; i++) {
471 out_be64(&priv2->slb_index_W, i);
472 eieio();
473 csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
474 csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
475 eieio();
476 }
477 }
478}
479
480static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
481{
482 struct spu_priv1 __iomem *priv1 = spu->priv1;
483
484 /* Save, Step 30:
485 * Restore, Step 18:
486 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
487 * MFC_SR1[TL,R,Pr,T] set correctly for the
488 * OS specific environment.
489 *
490 * Implementation note: The SPU-side code
491 * for save/restore is privileged, so the
492 * MFC_SR1[Pr] bit is not set.
493 *
494 */
495 out_be64(&priv1->mfc_sr1_RW, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
496 MFC_STATE1_RELOCATE_MASK |
497 MFC_STATE1_BUS_TLBIE_MASK));
498}
499
500static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
501{
502 struct spu_problem __iomem *prob = spu->problem;
503
504 /* Save, Step 31:
505 * Save SPU_NPC in the CSA.
506 */
507 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
508}
509
510static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
511{
512 struct spu_priv2 __iomem *priv2 = spu->priv2;
513
514 /* Save, Step 32:
515 * Save SPU_PrivCntl in the CSA.
516 */
517 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
518}
519
520static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
521{
522 struct spu_priv2 __iomem *priv2 = spu->priv2;
523
524 /* Save, Step 33:
525 * Restore, Step 16:
526 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
527 */
528 out_be64(&priv2->spu_privcntl_RW, 0UL);
529 eieio();
530}
531
532static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
533{
534 struct spu_priv2 __iomem *priv2 = spu->priv2;
535
536 /* Save, Step 34:
537 * Save SPU_LSLR in the CSA.
538 */
539 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
540}
541
542static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
543{
544 struct spu_priv2 __iomem *priv2 = spu->priv2;
545
546 /* Save, Step 35:
547 * Restore, Step 17.
548 * Reset SPU_LSLR.
549 */
550 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
551 eieio();
552}
553
554static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
555{
556 struct spu_priv2 __iomem *priv2 = spu->priv2;
557
558 /* Save, Step 36:
559 * Save SPU_Cfg in the CSA.
560 */
561 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
562}
563
564static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
565{
566 /* Save, Step 37:
567 * Save PM_Trace_Tag_Wait_Mask in the CSA.
568 * Not performed by this implementation.
569 */
570}
571
572static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
573{
574 struct spu_priv1 __iomem *priv1 = spu->priv1;
575
576 /* Save, Step 38:
577 * Save RA_GROUP_ID register and the
578 * RA_ENABLE reigster in the CSA.
579 */
580 csa->priv1.resource_allocation_groupID_RW =
581 in_be64(&priv1->resource_allocation_groupID_RW);
582 csa->priv1.resource_allocation_enable_RW =
583 in_be64(&priv1->resource_allocation_enable_RW);
584}
585
586static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
587{
588 struct spu_problem __iomem *prob = spu->problem;
589
590 /* Save, Step 39:
591 * Save MB_Stat register in the CSA.
592 */
593 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
594}
595
596static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
597{
598 struct spu_problem __iomem *prob = spu->problem;
599
600 /* Save, Step 40:
601 * Save the PPU_MB register in the CSA.
602 */
603 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
604}
605
606static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
607{
608 struct spu_priv2 __iomem *priv2 = spu->priv2;
609
610 /* Save, Step 41:
611 * Save the PPUINT_MB register in the CSA.
612 */
613 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
614}
615
616static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
617{
618 struct spu_priv2 __iomem *priv2 = spu->priv2;
619 u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
620 int i;
621
622 /* Save, Step 42:
623 * Save the following CH: [0,1,3,4,24,25,27]
624 */
625 for (i = 0; i < 7; i++) {
626 idx = ch_indices[i];
627 out_be64(&priv2->spu_chnlcntptr_RW, idx);
628 eieio();
629 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
630 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
631 out_be64(&priv2->spu_chnldata_RW, 0UL);
632 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
633 eieio();
634 }
635}
636
637static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
638{
639 struct spu_priv2 __iomem *priv2 = spu->priv2;
640 int i;
641
642 /* Save, Step 43:
643 * Save SPU Read Mailbox Channel.
644 */
645 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
646 eieio();
647 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
648 for (i = 0; i < 4; i++) {
649 csa->pu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
650 }
651 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
652 eieio();
653}
654
655static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
656{
657 struct spu_priv2 __iomem *priv2 = spu->priv2;
658
659 /* Save, Step 44:
660 * Save MFC_CMD Channel.
661 */
662 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
663 eieio();
664 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
665 eieio();
666}
667
668static inline void reset_ch(struct spu_state *csa, struct spu *spu)
669{
670 struct spu_priv2 __iomem *priv2 = spu->priv2;
671 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
672 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
673 u64 idx;
674 int i;
675
676 /* Save, Step 45:
677 * Reset the following CH: [21, 23, 28, 30]
678 */
679 for (i = 0; i < 4; i++) {
680 idx = ch_indices[i];
681 out_be64(&priv2->spu_chnlcntptr_RW, idx);
682 eieio();
683 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
684 eieio();
685 }
686}
687
688static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
689{
690 struct spu_priv2 __iomem *priv2 = spu->priv2;
691
692 /* Save, Step 46:
693 * Restore, Step 25.
694 * Write MFC_CNTL[Sc]=0 (resume queue processing).
695 */
696 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
697}
698
699static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
700{
701 struct spu_priv1 __iomem *priv1 = spu->priv1;
702 struct spu_priv2 __iomem *priv2 = spu->priv2;
703
704 /* Save, Step 45:
705 * Restore, Step 19:
706 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
707 */
708 if (in_be64(&priv1->mfc_sr1_RW) & MFC_STATE1_RELOCATE_MASK) {
709 out_be64(&priv2->slb_invalidate_all_W, 0UL);
710 eieio();
711 }
712}
713
714static inline void get_kernel_slb(u64 ea, u64 slb[2])
715{
716 slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL;
717 slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
718
719 /* Large pages are used for kernel text/data, but not vmalloc. */
720 if (cpu_has_feature(CPU_FTR_16M_PAGE)
721 && REGION_ID(ea) == KERNEL_REGION_ID)
722 slb[0] |= SLB_VSID_L;
723}
724
725static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
726{
727 struct spu_priv2 __iomem *priv2 = spu->priv2;
728
729 out_be64(&priv2->slb_index_W, slbe);
730 eieio();
731 out_be64(&priv2->slb_vsid_RW, slb[0]);
732 out_be64(&priv2->slb_esid_RW, slb[1]);
733 eieio();
734}
735
736static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
737{
738 u64 code_slb[2];
739 u64 lscsa_slb[2];
740
741 /* Save, Step 47:
742 * Restore, Step 30.
743 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
744 * register, then initialize SLB_VSID and SLB_ESID
745 * to provide access to SPU context save code and
746 * LSCSA.
747 *
748 * This implementation places both the context
749 * switch code and LSCSA in kernel address space.
750 *
751 * Further this implementation assumes that the
752 * MFC_SR1[R]=1 (in other words, assume that
753 * translation is desired by OS environment).
754 */
755 invalidate_slbs(csa, spu);
756 get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
757 get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
758 load_mfc_slb(spu, code_slb, 0);
759 if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
760 load_mfc_slb(spu, lscsa_slb, 1);
761}
762
763static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
764{
765 /* Save, Step 48:
766 * Restore, Step 23.
767 * Change the software context switch pending flag
768 * to context switch active.
769 */
770 set_bit(SPU_CONTEXT_SWITCH_ACTIVE_nr, &spu->flags);
771 clear_bit(SPU_CONTEXT_SWITCH_PENDING_nr, &spu->flags);
772 mb();
773}
774
775static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
776{
777 struct spu_priv1 __iomem *priv1 = spu->priv1;
778 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
779 CLASS1_ENABLE_STORAGE_FAULT_INTR;
780
781 /* Save, Step 49:
782 * Restore, Step 22:
783 * Reset and then enable interrupts, as
784 * needed by OS.
785 *
786 * This implementation enables only class1
787 * (translation) interrupts.
788 */
789 spin_lock_irq(&spu->register_lock);
790 out_be64(&priv1->int_stat_class0_RW, ~(0UL));
791 out_be64(&priv1->int_stat_class1_RW, ~(0UL));
792 out_be64(&priv1->int_stat_class2_RW, ~(0UL));
793 out_be64(&priv1->int_mask_class0_RW, 0UL);
794 out_be64(&priv1->int_mask_class1_RW, class1_mask);
795 out_be64(&priv1->int_mask_class2_RW, 0UL);
796 spin_unlock_irq(&spu->register_lock);
797}
798
799static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
800 unsigned int ls_offset, unsigned int size,
801 unsigned int tag, unsigned int rclass,
802 unsigned int cmd)
803{
804 struct spu_problem __iomem *prob = spu->problem;
805 union mfc_tag_size_class_cmd command;
806 unsigned int transfer_size;
807 volatile unsigned int status = 0x0;
808
809 while (size > 0) {
810 transfer_size =
811 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
812 command.u.mfc_size = transfer_size;
813 command.u.mfc_tag = tag;
814 command.u.mfc_rclassid = rclass;
815 command.u.mfc_cmd = cmd;
816 do {
817 out_be32(&prob->mfc_lsa_W, ls_offset);
818 out_be64(&prob->mfc_ea_W, ea);
819 out_be64(&prob->mfc_union_W.all64, command.all64);
820 status =
821 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
822 if (unlikely(status & 0x2)) {
823 cpu_relax();
824 }
825 } while (status & 0x3);
826 size -= transfer_size;
827 ea += transfer_size;
828 ls_offset += transfer_size;
829 }
830 return 0;
831}
832
833static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
834{
835 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
836 unsigned int ls_offset = 0x0;
837 unsigned int size = 16384;
838 unsigned int tag = 0;
839 unsigned int rclass = 0;
840 unsigned int cmd = MFC_PUT_CMD;
841
842 /* Save, Step 50:
843 * Issue a DMA command to copy the first 16K bytes
844 * of local storage to the CSA.
845 */
846 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
847}
848
849static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
850{
851 struct spu_problem __iomem *prob = spu->problem;
852
853 /* Save, Step 51:
854 * Restore, Step 31.
855 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
856 * point address of context save code in local
857 * storage.
858 *
859 * This implementation uses SPU-side save/restore
860 * programs with entry points at LSA of 0.
861 */
862 out_be32(&prob->spu_npc_RW, 0);
863 eieio();
864}
865
866static inline void set_signot1(struct spu_state *csa, struct spu *spu)
867{
868 struct spu_problem __iomem *prob = spu->problem;
869 union {
870 u64 ull;
871 u32 ui[2];
872 } addr64;
873
874 /* Save, Step 52:
875 * Restore, Step 32:
876 * Write SPU_Sig_Notify_1 register with upper 32-bits
877 * of the CSA.LSCSA effective address.
878 */
879 addr64.ull = (u64) csa->lscsa;
880 out_be32(&prob->signal_notify1, addr64.ui[0]);
881 eieio();
882}
883
884static inline void set_signot2(struct spu_state *csa, struct spu *spu)
885{
886 struct spu_problem __iomem *prob = spu->problem;
887 union {
888 u64 ull;
889 u32 ui[2];
890 } addr64;
891
892 /* Save, Step 53:
893 * Restore, Step 33:
894 * Write SPU_Sig_Notify_2 register with lower 32-bits
895 * of the CSA.LSCSA effective address.
896 */
897 addr64.ull = (u64) csa->lscsa;
898 out_be32(&prob->signal_notify2, addr64.ui[1]);
899 eieio();
900}
901
902static inline void send_save_code(struct spu_state *csa, struct spu *spu)
903{
904 unsigned long addr = (unsigned long)&spu_save_code[0];
905 unsigned int ls_offset = 0x0;
906 unsigned int size = sizeof(spu_save_code);
907 unsigned int tag = 0;
908 unsigned int rclass = 0;
909 unsigned int cmd = MFC_GETFS_CMD;
910
911 /* Save, Step 54:
912 * Issue a DMA command to copy context save code
913 * to local storage and start SPU.
914 */
915 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
916}
917
918static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
919{
920 struct spu_problem __iomem *prob = spu->problem;
921
922 /* Save, Step 55:
923 * Restore, Step 38.
924 * Write PPU_QueryMask=1 (enable Tag Group 0)
925 * and issue eieio instruction.
926 */
927 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
928 eieio();
929}
930
931static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
932{
933 struct spu_priv1 __iomem *priv1 = spu->priv1;
934 struct spu_problem __iomem *prob = spu->problem;
935 u32 mask = MFC_TAGID_TO_TAGMASK(0);
936 unsigned long flags;
937
938 /* Save, Step 56:
939 * Restore, Step 39.
940 * Restore, Step 39.
941 * Restore, Step 46.
942 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
943 * or write PPU_QueryType[TS]=01 and wait for Tag Group
944 * Complete Interrupt. Write INT_Stat_Class0 or
945 * INT_Stat_Class2 with value of 'handled'.
946 */
947 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
948
949 local_irq_save(flags);
950 out_be64(&priv1->int_stat_class0_RW, ~(0UL));
951 out_be64(&priv1->int_stat_class2_RW, ~(0UL));
952 local_irq_restore(flags);
953}
954
955static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
956{
957 struct spu_priv1 __iomem *priv1 = spu->priv1;
958 struct spu_problem __iomem *prob = spu->problem;
959 unsigned long flags;
960
961 /* Save, Step 57:
962 * Restore, Step 40.
963 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
964 * or SPU Class 2 interrupt. Write INT_Stat_class0
965 * or INT_Stat_class2 with value of handled.
966 */
967 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
968
969 local_irq_save(flags);
970 out_be64(&priv1->int_stat_class0_RW, ~(0UL));
971 out_be64(&priv1->int_stat_class2_RW, ~(0UL));
972 local_irq_restore(flags);
973}
974
975static inline int check_save_status(struct spu_state *csa, struct spu *spu)
976{
977 struct spu_problem __iomem *prob = spu->problem;
978 u32 complete;
979
980 /* Save, Step 54:
981 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
982 * context save succeeded, otherwise context save
983 * failed.
984 */
985 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
986 SPU_STATUS_STOPPED_BY_STOP);
987 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
988}
989
990static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
991{
992 /* Restore, Step 4:
993 * If required, notify the "using application" that
994 * the SPU task has been terminated. TBD.
995 */
996}
997
998static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
999{
1000 struct spu_priv2 __iomem *priv2 = spu->priv2;
1001
1002 /* Restore, Step 7:
1003 * Restore, Step 47.
1004 * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1005 * the queue and halt the decrementer.
1006 */
1007 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1008 MFC_CNTL_DECREMENTER_HALTED);
1009 eieio();
1010}
1011
1012static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1013 struct spu *spu)
1014{
1015 struct spu_priv2 __iomem *priv2 = spu->priv2;
1016
1017 /* Restore, Step 8:
1018 * Restore, Step 47.
1019 * Poll MFC_CNTL[Ss] until 11 is returned.
1020 */
1021 POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
1022 MFC_CNTL_SUSPEND_COMPLETE);
1023}
1024
1025static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1026{
1027 struct spu_problem __iomem *prob = spu->problem;
1028
1029 /* Restore, Step 9:
1030 * If SPU_Status[R]=1, stop SPU execution
1031 * and wait for stop to complete.
1032 *
1033 * Returns 1 if SPU_Status[R]=1 on entry.
1034 * 0 otherwise
1035 */
1036 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1037 if (in_be32(&prob->spu_status_R) &
1038 SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1039 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1040 SPU_STATUS_RUNNING);
1041 }
1042 if ((in_be32(&prob->spu_status_R) &
1043 SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1044 || (in_be32(&prob->spu_status_R) &
1045 SPU_STATUS_ISOLATED_STATE)) {
1046 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1047 eieio();
1048 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1049 SPU_STATUS_RUNNING);
1050 out_be32(&prob->spu_runcntl_RW, 0x2);
1051 eieio();
1052 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1053 SPU_STATUS_RUNNING);
1054 }
1055 if (in_be32(&prob->spu_status_R) &
1056 SPU_STATUS_WAITING_FOR_CHANNEL) {
1057 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1058 eieio();
1059 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060 SPU_STATUS_RUNNING);
1061 }
1062 return 1;
1063 }
1064 return 0;
1065}
1066
1067static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1068{
1069 struct spu_problem __iomem *prob = spu->problem;
1070 struct spu_priv1 __iomem *priv1 = spu->priv1;
1071
1072 /* Restore, Step 10:
1073 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1074 * release SPU from isolate state.
1075 */
1076 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1077 if (in_be32(&prob->spu_status_R) &
1078 SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1079 out_be64(&priv1->mfc_sr1_RW,
1080 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1081 eieio();
1082 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1083 eieio();
1084 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1085 SPU_STATUS_RUNNING);
1086 }
1087 if ((in_be32(&prob->spu_status_R) &
1088 SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1089 || (in_be32(&prob->spu_status_R) &
1090 SPU_STATUS_ISOLATED_STATE)) {
1091 out_be64(&priv1->mfc_sr1_RW,
1092 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1093 eieio();
1094 out_be32(&prob->spu_runcntl_RW, 0x2);
1095 eieio();
1096 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1097 SPU_STATUS_RUNNING);
1098 }
1099 }
1100}
1101
1102static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1103{
1104 struct spu_priv2 __iomem *priv2 = spu->priv2;
1105 u64 ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1106 u64 idx;
1107 int i;
1108
1109 /* Restore, Step 20:
1110 * Reset the following CH: [0,1,3,4,24,25,27]
1111 */
1112 for (i = 0; i < 7; i++) {
1113 idx = ch_indices[i];
1114 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1115 eieio();
1116 out_be64(&priv2->spu_chnldata_RW, 0UL);
1117 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1118 eieio();
1119 }
1120}
1121
1122static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1123{
1124 struct spu_priv2 __iomem *priv2 = spu->priv2;
1125 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1126 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1127 u64 idx;
1128 int i;
1129
1130 /* Restore, Step 21:
1131 * Reset the following CH: [21, 23, 28, 29, 30]
1132 */
1133 for (i = 0; i < 5; i++) {
1134 idx = ch_indices[i];
1135 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1136 eieio();
1137 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1138 eieio();
1139 }
1140}
1141
1142static inline void setup_spu_status_part1(struct spu_state *csa,
1143 struct spu *spu)
1144{
1145 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1146 u32 status_I = SPU_STATUS_INVALID_INSTR;
1147 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1148 u32 status_S = SPU_STATUS_SINGLE_STEP;
1149 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1150 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1151 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1152 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1153 u32 status_code;
1154
1155 /* Restore, Step 27:
1156 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1157 * instruction sequence to the end of the SPU based restore
1158 * code (after the "context restored" stop and signal) to
1159 * restore the correct SPU status.
1160 *
1161 * NOTE: Rather than modifying the SPU executable, we
1162 * instead add a new 'stopped_status' field to the
1163 * LSCSA. The SPU-side restore reads this field and
1164 * takes the appropriate action when exiting.
1165 */
1166
1167 status_code =
1168 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1169 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1170
1171 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1172 * by Stop and Signal instruction, followed by 'br -4'.
1173 *
1174 */
1175 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1176 csa->lscsa->stopped_status.slot[1] = status_code;
1177
1178 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1179
1180 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1181 * by Stop and Signal instruction, followed by
1182 * 'br -4'.
1183 */
1184 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1185 csa->lscsa->stopped_status.slot[1] = status_code;
1186
1187 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1188
1189 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1190 * followed by 'br -4'.
1191 */
1192 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1193 csa->lscsa->stopped_status.slot[1] = status_code;
1194
1195 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1196
1197 /* SPU_Status[S,I]=1 - Illegal instruction followed
1198 * by 'br -4'.
1199 */
1200 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1201 csa->lscsa->stopped_status.slot[1] = status_code;
1202
1203 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1204
1205 /* SPU_Status[P]=1 - Stop and Signal instruction
1206 * followed by 'br -4'.
1207 */
1208 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1209 csa->lscsa->stopped_status.slot[1] = status_code;
1210
1211 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1212
1213 /* SPU_Status[H]=1 - Halt Conditional, followed
1214 * by 'br -4'.
1215 */
1216 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1217
1218 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1219
1220 /* SPU_Status[S]=1 - Two nop instructions.
1221 */
1222 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1223
1224 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1225
1226 /* SPU_Status[I]=1 - Illegal instruction followed
1227 * by 'br -4'.
1228 */
1229 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1230
1231 }
1232}
1233
1234static inline void setup_spu_status_part2(struct spu_state *csa,
1235 struct spu *spu)
1236{
1237 u32 mask;
1238
1239 /* Restore, Step 28:
1240 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1241 * add a 'br *' instruction to the end of
1242 * the SPU based restore code.
1243 *
1244 * NOTE: Rather than modifying the SPU executable, we
1245 * instead add a new 'stopped_status' field to the
1246 * LSCSA. The SPU-side restore reads this field and
1247 * takes the appropriate action when exiting.
1248 */
1249 mask = SPU_STATUS_INVALID_INSTR |
1250 SPU_STATUS_SINGLE_STEP |
1251 SPU_STATUS_STOPPED_BY_HALT |
1252 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1253 if (!(csa->prob.spu_status_R & mask)) {
1254 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1255 }
1256}
1257
1258static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1259{
1260 struct spu_priv1 __iomem *priv1 = spu->priv1;
1261
1262 /* Restore, Step 29:
1263 * Restore RA_GROUP_ID register and the
1264 * RA_ENABLE reigster from the CSA.
1265 */
1266 out_be64(&priv1->resource_allocation_groupID_RW,
1267 csa->priv1.resource_allocation_groupID_RW);
1268 out_be64(&priv1->resource_allocation_enable_RW,
1269 csa->priv1.resource_allocation_enable_RW);
1270}
1271
1272static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1273{
1274 unsigned long addr = (unsigned long)&spu_restore_code[0];
1275 unsigned int ls_offset = 0x0;
1276 unsigned int size = sizeof(spu_restore_code);
1277 unsigned int tag = 0;
1278 unsigned int rclass = 0;
1279 unsigned int cmd = MFC_GETFS_CMD;
1280
1281 /* Restore, Step 37:
1282 * Issue MFC DMA command to copy context
1283 * restore code to local storage.
1284 */
1285 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1286}
1287
1288static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1289{
1290 /* Restore, Step 34:
1291 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1292 * running) then adjust decrementer, set
1293 * decrementer running status in LSCSA,
1294 * and set decrementer "wrapped" status
1295 * in LSCSA.
1296 */
1297 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1298 cycles_t resume_time = get_cycles();
1299 cycles_t delta_time = resume_time - csa->suspend_time;
1300
1301 csa->lscsa->decr.slot[0] = delta_time;
1302 }
1303}
1304
1305static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1306{
1307 /* Restore, Step 35:
1308 * Copy the CSA.PU_MB data into the LSCSA.
1309 */
1310 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1311}
1312
1313static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1314{
1315 /* Restore, Step 36:
1316 * Copy the CSA.PUINT_MB data into the LSCSA.
1317 */
1318 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1319}
1320
1321static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1322{
1323 struct spu_problem __iomem *prob = spu->problem;
1324 u32 complete;
1325
1326 /* Restore, Step 40:
1327 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1328 * context restore succeeded, otherwise context restore
1329 * failed.
1330 */
1331 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1332 SPU_STATUS_STOPPED_BY_STOP);
1333 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1334}
1335
1336static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1337{
1338 struct spu_priv2 __iomem *priv2 = spu->priv2;
1339
1340 /* Restore, Step 41:
1341 * Restore SPU_PrivCntl from the CSA.
1342 */
1343 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1344 eieio();
1345}
1346
1347static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1348{
1349 struct spu_problem __iomem *prob = spu->problem;
1350 u32 mask;
1351
1352 /* Restore, Step 42:
1353 * If any CSA.SPU_Status[I,S,H,P]=1, then
1354 * restore the error or single step state.
1355 */
1356 mask = SPU_STATUS_INVALID_INSTR |
1357 SPU_STATUS_SINGLE_STEP |
1358 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1359 if (csa->prob.spu_status_R & mask) {
1360 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1361 eieio();
1362 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1363 SPU_STATUS_RUNNING);
1364 }
1365}
1366
1367static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1368{
1369 struct spu_problem __iomem *prob = spu->problem;
1370 u32 mask;
1371
1372 /* Restore, Step 43:
1373 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1374 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1375 * then write '00' to SPU_RunCntl[R0R1] and wait
1376 * for SPU_Status[R]=0.
1377 */
1378 mask = SPU_STATUS_INVALID_INSTR |
1379 SPU_STATUS_SINGLE_STEP |
1380 SPU_STATUS_STOPPED_BY_HALT |
1381 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1382 if (!(csa->prob.spu_status_R & mask)) {
1383 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1384 eieio();
1385 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1386 SPU_STATUS_RUNNING);
1387 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1388 eieio();
1389 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1390 SPU_STATUS_RUNNING);
1391 }
1392}
1393
1394static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1395{
1396 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1397 unsigned int ls_offset = 0x0;
1398 unsigned int size = 16384;
1399 unsigned int tag = 0;
1400 unsigned int rclass = 0;
1401 unsigned int cmd = MFC_GET_CMD;
1402
1403 /* Restore, Step 44:
1404 * Issue a DMA command to restore the first
1405 * 16kb of local storage from CSA.
1406 */
1407 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1408}
1409
1410static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1411{
1412 struct spu_priv1 __iomem *priv1 = spu->priv1;
1413
1414 /* Restore, Step 49:
1415 * Write INT_MASK_class0 with value of 0.
1416 * Write INT_MASK_class1 with value of 0.
1417 * Write INT_MASK_class2 with value of 0.
1418 * Write INT_STAT_class0 with value of -1.
1419 * Write INT_STAT_class1 with value of -1.
1420 * Write INT_STAT_class2 with value of -1.
1421 */
1422 spin_lock_irq(&spu->register_lock);
1423 out_be64(&priv1->int_mask_class0_RW, 0UL);
1424 out_be64(&priv1->int_mask_class1_RW, 0UL);
1425 out_be64(&priv1->int_mask_class2_RW, 0UL);
1426 out_be64(&priv1->int_stat_class0_RW, ~(0UL));
1427 out_be64(&priv1->int_stat_class1_RW, ~(0UL));
1428 out_be64(&priv1->int_stat_class2_RW, ~(0UL));
1429 spin_unlock_irq(&spu->register_lock);
1430}
1431
1432static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1433{
1434 struct spu_priv2 __iomem *priv2 = spu->priv2;
1435 int i;
1436
1437 /* Restore, Step 50:
1438 * If MFC_Cntl[Se]!=0 then restore
1439 * MFC command queues.
1440 */
1441 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1442 for (i = 0; i < 8; i++) {
1443 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1444 csa->priv2.puq[i].mfc_cq_data0_RW);
1445 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1446 csa->priv2.puq[i].mfc_cq_data1_RW);
1447 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1448 csa->priv2.puq[i].mfc_cq_data2_RW);
1449 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1450 csa->priv2.puq[i].mfc_cq_data3_RW);
1451 }
1452 for (i = 0; i < 16; i++) {
1453 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1454 csa->priv2.spuq[i].mfc_cq_data0_RW);
1455 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1456 csa->priv2.spuq[i].mfc_cq_data1_RW);
1457 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1458 csa->priv2.spuq[i].mfc_cq_data2_RW);
1459 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1460 csa->priv2.spuq[i].mfc_cq_data3_RW);
1461 }
1462 }
1463 eieio();
1464}
1465
1466static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1467{
1468 struct spu_problem __iomem *prob = spu->problem;
1469
1470 /* Restore, Step 51:
1471 * Restore the PPU_QueryMask register from CSA.
1472 */
1473 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1474 eieio();
1475}
1476
1477static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1478{
1479 struct spu_problem __iomem *prob = spu->problem;
1480
1481 /* Restore, Step 52:
1482 * Restore the PPU_QueryType register from CSA.
1483 */
1484 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1485 eieio();
1486}
1487
1488static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1489{
1490 struct spu_priv2 __iomem *priv2 = spu->priv2;
1491
1492 /* Restore, Step 53:
1493 * Restore the MFC_CSR_TSQ register from CSA.
1494 */
1495 out_be64(&priv2->spu_tag_status_query_RW,
1496 csa->priv2.spu_tag_status_query_RW);
1497 eieio();
1498}
1499
1500static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1501{
1502 struct spu_priv2 __iomem *priv2 = spu->priv2;
1503
1504 /* Restore, Step 54:
1505 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1506 * registers from CSA.
1507 */
1508 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1509 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1510 eieio();
1511}
1512
1513static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1514{
1515 struct spu_priv2 __iomem *priv2 = spu->priv2;
1516
1517 /* Restore, Step 55:
1518 * Restore the MFC_CSR_ATO register from CSA.
1519 */
1520 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1521}
1522
1523static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1524{
1525 struct spu_priv1 __iomem *priv1 = spu->priv1;
1526
1527 /* Restore, Step 56:
1528 * Restore the MFC_TCLASS_ID register from CSA.
1529 */
1530 out_be64(&priv1->mfc_tclass_id_RW, csa->priv1.mfc_tclass_id_RW);
1531 eieio();
1532}
1533
1534static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1535{
1536 u64 ch0_cnt, ch0_data;
1537 u64 ch1_data;
1538
1539 /* Restore, Step 57:
1540 * Set the Lock Line Reservation Lost Event by:
1541 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1542 * 2. If CSA.SPU_Channel_0_Count=0 and
1543 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1544 * CSA.SPU_Event_Status[Lr]=0 then set
1545 * CSA.SPU_Event_Status_Count=1.
1546 */
1547 ch0_cnt = csa->spu_chnlcnt_RW[0];
1548 ch0_data = csa->spu_chnldata_RW[0];
1549 ch1_data = csa->spu_chnldata_RW[1];
1550 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1551 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1552 (ch1_data & MFC_LLR_LOST_EVENT)) {
1553 csa->spu_chnlcnt_RW[0] = 1;
1554 }
1555}
1556
1557static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1558{
1559 /* Restore, Step 58:
1560 * If the status of the CSA software decrementer
1561 * "wrapped" flag is set, OR in a '1' to
1562 * CSA.SPU_Event_Status[Tm].
1563 */
1564 if (csa->lscsa->decr_status.slot[0] == 1) {
1565 csa->spu_chnldata_RW[0] |= 0x20;
1566 }
1567 if ((csa->lscsa->decr_status.slot[0] == 1) &&
1568 (csa->spu_chnlcnt_RW[0] == 0 &&
1569 ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1570 ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1571 csa->spu_chnlcnt_RW[0] = 1;
1572 }
1573}
1574
1575static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1576{
1577 struct spu_priv2 __iomem *priv2 = spu->priv2;
1578 u64 idx, ch_indices[7] = { 0UL, 1UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1579 int i;
1580
1581 /* Restore, Step 59:
1582 * Restore the following CH: [0,1,3,4,24,25,27]
1583 */
1584 for (i = 0; i < 7; i++) {
1585 idx = ch_indices[i];
1586 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1587 eieio();
1588 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1589 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1590 eieio();
1591 }
1592}
1593
1594static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1595{
1596 struct spu_priv2 __iomem *priv2 = spu->priv2;
1597 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1598 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1599 u64 idx;
1600 int i;
1601
1602 /* Restore, Step 60:
1603 * Restore the following CH: [9,21,23].
1604 */
1605 ch_counts[0] = 1UL;
1606 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1607 ch_counts[2] = 1UL;
1608 for (i = 0; i < 3; i++) {
1609 idx = ch_indices[i];
1610 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1611 eieio();
1612 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1613 eieio();
1614 }
1615}
1616
1617static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1618{
1619 struct spu_priv2 __iomem *priv2 = spu->priv2;
1620
1621 /* Restore, Step 61:
1622 * Restore the SPU_LSLR register from CSA.
1623 */
1624 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1625 eieio();
1626}
1627
1628static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1629{
1630 struct spu_priv2 __iomem *priv2 = spu->priv2;
1631
1632 /* Restore, Step 62:
1633 * Restore the SPU_Cfg register from CSA.
1634 */
1635 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1636 eieio();
1637}
1638
1639static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1640{
1641 /* Restore, Step 63:
1642 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1643 * Not performed by this implementation.
1644 */
1645}
1646
1647static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1648{
1649 struct spu_problem __iomem *prob = spu->problem;
1650
1651 /* Restore, Step 64:
1652 * Restore SPU_NPC from CSA.
1653 */
1654 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1655 eieio();
1656}
1657
1658static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1659{
1660 struct spu_priv2 __iomem *priv2 = spu->priv2;
1661 int i;
1662
1663 /* Restore, Step 65:
1664 * Restore MFC_RdSPU_MB from CSA.
1665 */
1666 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1667 eieio();
1668 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1669 for (i = 0; i < 4; i++) {
1670 out_be64(&priv2->spu_chnldata_RW, csa->pu_mailbox_data[i]);
1671 }
1672 eieio();
1673}
1674
1675static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1676{
1677 struct spu_problem __iomem *prob = spu->problem;
1678 u32 dummy = 0;
1679
1680 /* Restore, Step 66:
1681 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1682 * read from the PPU_MB register.
1683 */
1684 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1685 dummy = in_be32(&prob->pu_mb_R);
1686 eieio();
1687 }
1688}
1689
1690static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1691{
1692 struct spu_priv1 __iomem *priv1 = spu->priv1;
1693 struct spu_priv2 __iomem *priv2 = spu->priv2;
1694 u64 dummy = 0UL;
1695
1696 /* Restore, Step 66:
1697 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1698 * read from the PPUINT_MB register.
1699 */
1700 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1701 dummy = in_be64(&priv2->puint_mb_R);
1702 eieio();
1703 out_be64(&priv1->int_stat_class2_RW,
1704 CLASS2_ENABLE_MAILBOX_INTR);
1705 eieio();
1706 }
1707}
1708
1709static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1710{
1711 struct spu_priv2 __iomem *priv2 = spu->priv2;
1712 int i;
1713
1714 /* Restore, Step 68:
1715 * If MFC_SR1[R]='1', restore SLBs from CSA.
1716 */
1717 if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1718 for (i = 0; i < 8; i++) {
1719 out_be64(&priv2->slb_index_W, i);
1720 eieio();
1721 out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1722 out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1723 eieio();
1724 }
1725 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1726 eieio();
1727 }
1728}
1729
1730static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1731{
1732 struct spu_priv1 __iomem *priv1 = spu->priv1;
1733
1734 /* Restore, Step 69:
1735 * Restore the MFC_SR1 register from CSA.
1736 */
1737 out_be64(&priv1->mfc_sr1_RW, csa->priv1.mfc_sr1_RW);
1738 eieio();
1739}
1740
1741static inline void restore_other_spu_access(struct spu_state *csa,
1742 struct spu *spu)
1743{
1744 /* Restore, Step 70:
1745 * Restore other SPU mappings to this SPU. TBD.
1746 */
1747}
1748
1749static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1750{
1751 struct spu_problem __iomem *prob = spu->problem;
1752
1753 /* Restore, Step 71:
1754 * If CSA.SPU_Status[R]=1 then write
1755 * SPU_RunCntl[R0R1]='01'.
1756 */
1757 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1758 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1759 eieio();
1760 }
1761}
1762
1763static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1764{
1765 struct spu_priv2 __iomem *priv2 = spu->priv2;
1766
1767 /* Restore, Step 72:
1768 * Restore the MFC_CNTL register for the CSA.
1769 */
1770 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1771 eieio();
1772}
1773
1774static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1775{
1776 /* Restore, Step 73:
1777 * Enable user-space access (if provided) to this
1778 * SPU by mapping the virtual pages assigned to
1779 * the SPU memory-mapped I/O (MMIO) for problem
1780 * state. TBD.
1781 */
1782}
1783
1784static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1785{
1786 /* Restore, Step 74:
1787 * Reset the "context switch active" flag.
1788 */
1789 clear_bit(SPU_CONTEXT_SWITCH_ACTIVE_nr, &spu->flags);
1790 mb();
1791}
1792
1793static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1794{
1795 struct spu_priv1 __iomem *priv1 = spu->priv1;
1796
1797 /* Restore, Step 75:
1798 * Re-enable SPU interrupts.
1799 */
1800 spin_lock_irq(&spu->register_lock);
1801 out_be64(&priv1->int_mask_class0_RW, csa->priv1.int_mask_class0_RW);
1802 out_be64(&priv1->int_mask_class1_RW, csa->priv1.int_mask_class1_RW);
1803 out_be64(&priv1->int_mask_class2_RW, csa->priv1.int_mask_class2_RW);
1804 spin_unlock_irq(&spu->register_lock);
1805}
1806
1807static int quiece_spu(struct spu_state *prev, struct spu *spu)
1808{
1809 /*
1810 * Combined steps 2-18 of SPU context save sequence, which
1811 * quiesce the SPU state (disable SPU execution, MFC command
1812 * queues, decrementer, SPU interrupts, etc.).
1813 *
1814 * Returns 0 on success.
1815 * 2 if failed step 2.
1816 * 6 if failed step 6.
1817 */
1818
1819 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1820 return 2;
1821 }
1822 disable_interrupts(prev, spu); /* Step 3. */
1823 set_watchdog_timer(prev, spu); /* Step 4. */
1824 inhibit_user_access(prev, spu); /* Step 5. */
1825 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1826 return 6;
1827 }
1828 set_switch_pending(prev, spu); /* Step 7. */
1829 save_mfc_cntl(prev, spu); /* Step 8. */
1830 save_spu_runcntl(prev, spu); /* Step 9. */
1831 save_mfc_sr1(prev, spu); /* Step 10. */
1832 save_spu_status(prev, spu); /* Step 11. */
1833 save_mfc_decr(prev, spu); /* Step 12. */
1834 halt_mfc_decr(prev, spu); /* Step 13. */
1835 save_timebase(prev, spu); /* Step 14. */
1836 remove_other_spu_access(prev, spu); /* Step 15. */
1837 do_mfc_mssync(prev, spu); /* Step 16. */
1838 issue_mfc_tlbie(prev, spu); /* Step 17. */
1839 handle_pending_interrupts(prev, spu); /* Step 18. */
1840
1841 return 0;
1842}
1843
1844static void save_csa(struct spu_state *prev, struct spu *spu)
1845{
1846 /*
1847 * Combine steps 19-44 of SPU context save sequence, which
1848 * save regions of the privileged & problem state areas.
1849 */
1850
1851 save_mfc_queues(prev, spu); /* Step 19. */
1852 save_ppu_querymask(prev, spu); /* Step 20. */
1853 save_ppu_querytype(prev, spu); /* Step 21. */
1854 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1855 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1856 save_mfc_csr_ato(prev, spu); /* Step 24. */
1857 save_mfc_tclass_id(prev, spu); /* Step 25. */
1858 set_mfc_tclass_id(prev, spu); /* Step 26. */
1859 purge_mfc_queue(prev, spu); /* Step 27. */
1860 wait_purge_complete(prev, spu); /* Step 28. */
1861 save_mfc_slbs(prev, spu); /* Step 29. */
1862 setup_mfc_sr1(prev, spu); /* Step 30. */
1863 save_spu_npc(prev, spu); /* Step 31. */
1864 save_spu_privcntl(prev, spu); /* Step 32. */
1865 reset_spu_privcntl(prev, spu); /* Step 33. */
1866 save_spu_lslr(prev, spu); /* Step 34. */
1867 reset_spu_lslr(prev, spu); /* Step 35. */
1868 save_spu_cfg(prev, spu); /* Step 36. */
1869 save_pm_trace(prev, spu); /* Step 37. */
1870 save_mfc_rag(prev, spu); /* Step 38. */
1871 save_ppu_mb_stat(prev, spu); /* Step 39. */
1872 save_ppu_mb(prev, spu); /* Step 40. */
1873 save_ppuint_mb(prev, spu); /* Step 41. */
1874 save_ch_part1(prev, spu); /* Step 42. */
1875 save_spu_mb(prev, spu); /* Step 43. */
1876 save_mfc_cmd(prev, spu); /* Step 44. */
1877 reset_ch(prev, spu); /* Step 45. */
1878}
1879
1880static void save_lscsa(struct spu_state *prev, struct spu *spu)
1881{
1882 /*
1883 * Perform steps 46-57 of SPU context save sequence,
1884 * which save regions of the local store and register
1885 * file.
1886 */
1887
1888 resume_mfc_queue(prev, spu); /* Step 46. */
1889 setup_mfc_slbs(prev, spu); /* Step 47. */
1890 set_switch_active(prev, spu); /* Step 48. */
1891 enable_interrupts(prev, spu); /* Step 49. */
1892 save_ls_16kb(prev, spu); /* Step 50. */
1893 set_spu_npc(prev, spu); /* Step 51. */
1894 set_signot1(prev, spu); /* Step 52. */
1895 set_signot2(prev, spu); /* Step 53. */
1896 send_save_code(prev, spu); /* Step 54. */
1897 set_ppu_querymask(prev, spu); /* Step 55. */
1898 wait_tag_complete(prev, spu); /* Step 56. */
1899 wait_spu_stopped(prev, spu); /* Step 57. */
1900}
1901
1902static void harvest(struct spu_state *prev, struct spu *spu)
1903{
1904 /*
1905 * Perform steps 2-25 of SPU context restore sequence,
1906 * which resets an SPU either after a failed save, or
1907 * when using SPU for first time.
1908 */
1909
1910 disable_interrupts(prev, spu); /* Step 2. */
1911 inhibit_user_access(prev, spu); /* Step 3. */
1912 terminate_spu_app(prev, spu); /* Step 4. */
1913 set_switch_pending(prev, spu); /* Step 5. */
1914 remove_other_spu_access(prev, spu); /* Step 6. */
1915 suspend_mfc(prev, spu); /* Step 7. */
1916 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1917 if (!suspend_spe(prev, spu)) /* Step 9. */
1918 clear_spu_status(prev, spu); /* Step 10. */
1919 do_mfc_mssync(prev, spu); /* Step 11. */
1920 issue_mfc_tlbie(prev, spu); /* Step 12. */
1921 handle_pending_interrupts(prev, spu); /* Step 13. */
1922 purge_mfc_queue(prev, spu); /* Step 14. */
1923 wait_purge_complete(prev, spu); /* Step 15. */
1924 reset_spu_privcntl(prev, spu); /* Step 16. */
1925 reset_spu_lslr(prev, spu); /* Step 17. */
1926 setup_mfc_sr1(prev, spu); /* Step 18. */
1927 invalidate_slbs(prev, spu); /* Step 19. */
1928 reset_ch_part1(prev, spu); /* Step 20. */
1929 reset_ch_part2(prev, spu); /* Step 21. */
1930 enable_interrupts(prev, spu); /* Step 22. */
1931 set_switch_active(prev, spu); /* Step 23. */
1932 set_mfc_tclass_id(prev, spu); /* Step 24. */
1933 resume_mfc_queue(prev, spu); /* Step 25. */
1934}
1935
1936static void restore_lscsa(struct spu_state *next, struct spu *spu)
1937{
1938 /*
1939 * Perform steps 26-40 of SPU context restore sequence,
1940 * which restores regions of the local store and register
1941 * file.
1942 */
1943
1944 set_watchdog_timer(next, spu); /* Step 26. */
1945 setup_spu_status_part1(next, spu); /* Step 27. */
1946 setup_spu_status_part2(next, spu); /* Step 28. */
1947 restore_mfc_rag(next, spu); /* Step 29. */
1948 setup_mfc_slbs(next, spu); /* Step 30. */
1949 set_spu_npc(next, spu); /* Step 31. */
1950 set_signot1(next, spu); /* Step 32. */
1951 set_signot2(next, spu); /* Step 33. */
1952 setup_decr(next, spu); /* Step 34. */
1953 setup_ppu_mb(next, spu); /* Step 35. */
1954 setup_ppuint_mb(next, spu); /* Step 36. */
1955 send_restore_code(next, spu); /* Step 37. */
1956 set_ppu_querymask(next, spu); /* Step 38. */
1957 wait_tag_complete(next, spu); /* Step 39. */
1958 wait_spu_stopped(next, spu); /* Step 40. */
1959}
1960
1961static void restore_csa(struct spu_state *next, struct spu *spu)
1962{
1963 /*
1964 * Combine steps 41-76 of SPU context restore sequence, which
1965 * restore regions of the privileged & problem state areas.
1966 */
1967
1968 restore_spu_privcntl(next, spu); /* Step 41. */
1969 restore_status_part1(next, spu); /* Step 42. */
1970 restore_status_part2(next, spu); /* Step 43. */
1971 restore_ls_16kb(next, spu); /* Step 44. */
1972 wait_tag_complete(next, spu); /* Step 45. */
1973 suspend_mfc(next, spu); /* Step 46. */
1974 wait_suspend_mfc_complete(next, spu); /* Step 47. */
1975 issue_mfc_tlbie(next, spu); /* Step 48. */
1976 clear_interrupts(next, spu); /* Step 49. */
1977 restore_mfc_queues(next, spu); /* Step 50. */
1978 restore_ppu_querymask(next, spu); /* Step 51. */
1979 restore_ppu_querytype(next, spu); /* Step 52. */
1980 restore_mfc_csr_tsq(next, spu); /* Step 53. */
1981 restore_mfc_csr_cmd(next, spu); /* Step 54. */
1982 restore_mfc_csr_ato(next, spu); /* Step 55. */
1983 restore_mfc_tclass_id(next, spu); /* Step 56. */
1984 set_llr_event(next, spu); /* Step 57. */
1985 restore_decr_wrapped(next, spu); /* Step 58. */
1986 restore_ch_part1(next, spu); /* Step 59. */
1987 restore_ch_part2(next, spu); /* Step 60. */
1988 restore_spu_lslr(next, spu); /* Step 61. */
1989 restore_spu_cfg(next, spu); /* Step 62. */
1990 restore_pm_trace(next, spu); /* Step 63. */
1991 restore_spu_npc(next, spu); /* Step 64. */
1992 restore_spu_mb(next, spu); /* Step 65. */
1993 check_ppu_mb_stat(next, spu); /* Step 66. */
1994 check_ppuint_mb_stat(next, spu); /* Step 67. */
1995 restore_mfc_slbs(next, spu); /* Step 68. */
1996 restore_mfc_sr1(next, spu); /* Step 69. */
1997 restore_other_spu_access(next, spu); /* Step 70. */
1998 restore_spu_runcntl(next, spu); /* Step 71. */
1999 restore_mfc_cntl(next, spu); /* Step 72. */
2000 enable_user_access(next, spu); /* Step 73. */
2001 reset_switch_active(next, spu); /* Step 74. */
2002 reenable_interrupts(next, spu); /* Step 75. */
2003}
2004
2005static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2006{
2007 int rc;
2008
2009 /*
2010 * SPU context save can be broken into three phases:
2011 *
2012 * (a) quiesce [steps 2-16].
2013 * (b) save of CSA, performed by PPE [steps 17-42]
2014 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2015 *
2016 * Returns 0 on success.
2017 * 2,6 if failed to quiece SPU
2018 * 53 if SPU-side of save failed.
2019 */
2020
2021 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2022 switch (rc) {
2023 default:
2024 case 2:
2025 case 6:
2026 harvest(prev, spu);
2027 return rc;
2028 break;
2029 case 0:
2030 break;
2031 }
2032 save_csa(prev, spu); /* Steps 17-43. */
2033 save_lscsa(prev, spu); /* Steps 44-53. */
2034 return check_save_status(prev, spu); /* Step 54. */
2035}
2036
2037static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2038{
2039 int rc;
2040
2041 /*
2042 * SPU context restore can be broken into three phases:
2043 *
2044 * (a) harvest (or reset) SPU [steps 2-24].
2045 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2046 * (c) restore CSA [steps 41-76], performed by PPE.
2047 *
2048 * The 'harvest' step is not performed here, but rather
2049 * as needed below.
2050 */
2051
2052 restore_lscsa(next, spu); /* Steps 24-39. */
2053 rc = check_restore_status(next, spu); /* Step 40. */
2054 switch (rc) {
2055 default:
2056 /* Failed. Return now. */
2057 return rc;
2058 break;
2059 case 0:
2060 /* Fall through to next step. */
2061 break;
2062 }
2063 restore_csa(next, spu);
2064
2065 return 0;
2066}
2067
55/** 2068/**
56 * spu_save - SPU context save, with locking. 2069 * spu_save - SPU context save, with locking.
57 * @prev: pointer to SPU context save area, to be saved. 2070 * @prev: pointer to SPU context save area, to be saved.
@@ -61,9 +2074,13 @@
61 */ 2074 */
62int spu_save(struct spu_state *prev, struct spu *spu) 2075int spu_save(struct spu_state *prev, struct spu *spu)
63{ 2076{
64 /* XXX missing */ 2077 int rc;
65 2078
66 return 0; 2079 acquire_spu_lock(spu); /* Step 1. */
2080 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2081 release_spu_lock(spu);
2082
2083 return rc;
67} 2084}
68 2085
69/** 2086/**
@@ -77,9 +2094,14 @@ int spu_save(struct spu_state *prev, struct spu *spu)
77 */ 2094 */
78int spu_restore(struct spu_state *new, struct spu *spu) 2095int spu_restore(struct spu_state *new, struct spu *spu)
79{ 2096{
80 /* XXX missing */ 2097 int rc;
81 2098
82 return 0; 2099 acquire_spu_lock(spu);
2100 harvest(NULL, spu);
2101 rc = __do_spu_restore(new, spu);
2102 release_spu_lock(spu);
2103
2104 return rc;
83} 2105}
84 2106
85/** 2107/**
@@ -93,9 +2115,17 @@ int spu_restore(struct spu_state *new, struct spu *spu)
93 */ 2115 */
94int spu_switch(struct spu_state *prev, struct spu_state *new, struct spu *spu) 2116int spu_switch(struct spu_state *prev, struct spu_state *new, struct spu *spu)
95{ 2117{
96 /* XXX missing */ 2118 int rc;
97 2119
98 return 0; 2120 acquire_spu_lock(spu); /* Save, Step 1. */
2121 rc = __do_spu_save(prev, spu); /* Save, Steps 2-53. */
2122 if (rc != 0) {
2123 harvest(prev, spu);
2124 }
2125 rc = __do_spu_restore(new, spu);
2126 release_spu_lock(spu);
2127
2128 return rc;
99} 2129}
100 2130
101static void init_prob(struct spu_state *csa) 2131static void init_prob(struct spu_state *csa)