diff options
author | Linas Vepstas <linas@linas.org> | 2005-11-03 19:49:51 -0500 |
---|---|---|
committer | Paul Mackerras <paulus@samba.org> | 2005-11-09 19:37:59 -0500 |
commit | 7f79da7accd63a6adb84f4602f66779f6a701e7b (patch) | |
tree | 7429718eb0ff907ebb2b80c257dae54b493815ac /arch/powerpc/platforms | |
parent | f8632c822719cce08cfb128859e354007744cbba (diff) |
[PATCH] ppc64: move eeh.c to powerpc directory from ppc64
11-eeh-move-to-powerpc.patch
Move arch/ppc64/kernel/eeh.c to arch//powerpc/platforms/pseries/eeh.c
No other changes (except for Makefile to build it)
Signed-off-by: Linas Vepstas <linas@austin.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc/platforms')
-rw-r--r-- | arch/powerpc/platforms/pseries/Makefile | 1 | ||||
-rw-r--r-- | arch/powerpc/platforms/pseries/eeh.c | 1093 |
2 files changed, 1094 insertions, 0 deletions
diff --git a/arch/powerpc/platforms/pseries/Makefile b/arch/powerpc/platforms/pseries/Makefile index b9938fece781..dbdffb2fe429 100644 --- a/arch/powerpc/platforms/pseries/Makefile +++ b/arch/powerpc/platforms/pseries/Makefile | |||
@@ -3,3 +3,4 @@ obj-y := pci.o lpar.o hvCall.o nvram.o reconfig.o \ | |||
3 | obj-$(CONFIG_SMP) += smp.o | 3 | obj-$(CONFIG_SMP) += smp.o |
4 | obj-$(CONFIG_IBMVIO) += vio.o | 4 | obj-$(CONFIG_IBMVIO) += vio.o |
5 | obj-$(CONFIG_XICS) += xics.o | 5 | obj-$(CONFIG_XICS) += xics.o |
6 | obj-$(CONFIG_EEH) += eeh.o | ||
diff --git a/arch/powerpc/platforms/pseries/eeh.c b/arch/powerpc/platforms/pseries/eeh.c new file mode 100644 index 000000000000..9df1d5018363 --- /dev/null +++ b/arch/powerpc/platforms/pseries/eeh.c | |||
@@ -0,0 +1,1093 @@ | |||
1 | /* | ||
2 | * eeh.c | ||
3 | * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
18 | */ | ||
19 | |||
20 | #include <linux/init.h> | ||
21 | #include <linux/list.h> | ||
22 | #include <linux/notifier.h> | ||
23 | #include <linux/pci.h> | ||
24 | #include <linux/proc_fs.h> | ||
25 | #include <linux/rbtree.h> | ||
26 | #include <linux/seq_file.h> | ||
27 | #include <linux/spinlock.h> | ||
28 | #include <asm/atomic.h> | ||
29 | #include <asm/eeh.h> | ||
30 | #include <asm/io.h> | ||
31 | #include <asm/machdep.h> | ||
32 | #include <asm/rtas.h> | ||
33 | #include <asm/atomic.h> | ||
34 | #include <asm/systemcfg.h> | ||
35 | #include <asm/ppc-pci.h> | ||
36 | |||
37 | #undef DEBUG | ||
38 | |||
39 | /** Overview: | ||
40 | * EEH, or "Extended Error Handling" is a PCI bridge technology for | ||
41 | * dealing with PCI bus errors that can't be dealt with within the | ||
42 | * usual PCI framework, except by check-stopping the CPU. Systems | ||
43 | * that are designed for high-availability/reliability cannot afford | ||
44 | * to crash due to a "mere" PCI error, thus the need for EEH. | ||
45 | * An EEH-capable bridge operates by converting a detected error | ||
46 | * into a "slot freeze", taking the PCI adapter off-line, making | ||
47 | * the slot behave, from the OS'es point of view, as if the slot | ||
48 | * were "empty": all reads return 0xff's and all writes are silently | ||
49 | * ignored. EEH slot isolation events can be triggered by parity | ||
50 | * errors on the address or data busses (e.g. during posted writes), | ||
51 | * which in turn might be caused by low voltage on the bus, dust, | ||
52 | * vibration, humidity, radioactivity or plain-old failed hardware. | ||
53 | * | ||
54 | * Note, however, that one of the leading causes of EEH slot | ||
55 | * freeze events are buggy device drivers, buggy device microcode, | ||
56 | * or buggy device hardware. This is because any attempt by the | ||
57 | * device to bus-master data to a memory address that is not | ||
58 | * assigned to the device will trigger a slot freeze. (The idea | ||
59 | * is to prevent devices-gone-wild from corrupting system memory). | ||
60 | * Buggy hardware/drivers will have a miserable time co-existing | ||
61 | * with EEH. | ||
62 | * | ||
63 | * Ideally, a PCI device driver, when suspecting that an isolation | ||
64 | * event has occured (e.g. by reading 0xff's), will then ask EEH | ||
65 | * whether this is the case, and then take appropriate steps to | ||
66 | * reset the PCI slot, the PCI device, and then resume operations. | ||
67 | * However, until that day, the checking is done here, with the | ||
68 | * eeh_check_failure() routine embedded in the MMIO macros. If | ||
69 | * the slot is found to be isolated, an "EEH Event" is synthesized | ||
70 | * and sent out for processing. | ||
71 | */ | ||
72 | |||
73 | /* EEH event workqueue setup. */ | ||
74 | static DEFINE_SPINLOCK(eeh_eventlist_lock); | ||
75 | LIST_HEAD(eeh_eventlist); | ||
76 | static void eeh_event_handler(void *); | ||
77 | DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL); | ||
78 | |||
79 | static struct notifier_block *eeh_notifier_chain; | ||
80 | |||
81 | /* If a device driver keeps reading an MMIO register in an interrupt | ||
82 | * handler after a slot isolation event has occurred, we assume it | ||
83 | * is broken and panic. This sets the threshold for how many read | ||
84 | * attempts we allow before panicking. | ||
85 | */ | ||
86 | #define EEH_MAX_FAILS 100000 | ||
87 | |||
88 | /* RTAS tokens */ | ||
89 | static int ibm_set_eeh_option; | ||
90 | static int ibm_set_slot_reset; | ||
91 | static int ibm_read_slot_reset_state; | ||
92 | static int ibm_read_slot_reset_state2; | ||
93 | static int ibm_slot_error_detail; | ||
94 | |||
95 | static int eeh_subsystem_enabled; | ||
96 | |||
97 | /* Lock to avoid races due to multiple reports of an error */ | ||
98 | static DEFINE_SPINLOCK(confirm_error_lock); | ||
99 | |||
100 | /* Buffer for reporting slot-error-detail rtas calls */ | ||
101 | static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; | ||
102 | static DEFINE_SPINLOCK(slot_errbuf_lock); | ||
103 | static int eeh_error_buf_size; | ||
104 | |||
105 | /* System monitoring statistics */ | ||
106 | static DEFINE_PER_CPU(unsigned long, no_device); | ||
107 | static DEFINE_PER_CPU(unsigned long, no_dn); | ||
108 | static DEFINE_PER_CPU(unsigned long, no_cfg_addr); | ||
109 | static DEFINE_PER_CPU(unsigned long, ignored_check); | ||
110 | static DEFINE_PER_CPU(unsigned long, total_mmio_ffs); | ||
111 | static DEFINE_PER_CPU(unsigned long, false_positives); | ||
112 | static DEFINE_PER_CPU(unsigned long, ignored_failures); | ||
113 | static DEFINE_PER_CPU(unsigned long, slot_resets); | ||
114 | |||
115 | /** | ||
116 | * The pci address cache subsystem. This subsystem places | ||
117 | * PCI device address resources into a red-black tree, sorted | ||
118 | * according to the address range, so that given only an i/o | ||
119 | * address, the corresponding PCI device can be **quickly** | ||
120 | * found. It is safe to perform an address lookup in an interrupt | ||
121 | * context; this ability is an important feature. | ||
122 | * | ||
123 | * Currently, the only customer of this code is the EEH subsystem; | ||
124 | * thus, this code has been somewhat tailored to suit EEH better. | ||
125 | * In particular, the cache does *not* hold the addresses of devices | ||
126 | * for which EEH is not enabled. | ||
127 | * | ||
128 | * (Implementation Note: The RB tree seems to be better/faster | ||
129 | * than any hash algo I could think of for this problem, even | ||
130 | * with the penalty of slow pointer chases for d-cache misses). | ||
131 | */ | ||
132 | struct pci_io_addr_range | ||
133 | { | ||
134 | struct rb_node rb_node; | ||
135 | unsigned long addr_lo; | ||
136 | unsigned long addr_hi; | ||
137 | struct pci_dev *pcidev; | ||
138 | unsigned int flags; | ||
139 | }; | ||
140 | |||
141 | static struct pci_io_addr_cache | ||
142 | { | ||
143 | struct rb_root rb_root; | ||
144 | spinlock_t piar_lock; | ||
145 | } pci_io_addr_cache_root; | ||
146 | |||
147 | static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr) | ||
148 | { | ||
149 | struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; | ||
150 | |||
151 | while (n) { | ||
152 | struct pci_io_addr_range *piar; | ||
153 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); | ||
154 | |||
155 | if (addr < piar->addr_lo) { | ||
156 | n = n->rb_left; | ||
157 | } else { | ||
158 | if (addr > piar->addr_hi) { | ||
159 | n = n->rb_right; | ||
160 | } else { | ||
161 | pci_dev_get(piar->pcidev); | ||
162 | return piar->pcidev; | ||
163 | } | ||
164 | } | ||
165 | } | ||
166 | |||
167 | return NULL; | ||
168 | } | ||
169 | |||
170 | /** | ||
171 | * pci_get_device_by_addr - Get device, given only address | ||
172 | * @addr: mmio (PIO) phys address or i/o port number | ||
173 | * | ||
174 | * Given an mmio phys address, or a port number, find a pci device | ||
175 | * that implements this address. Be sure to pci_dev_put the device | ||
176 | * when finished. I/O port numbers are assumed to be offset | ||
177 | * from zero (that is, they do *not* have pci_io_addr added in). | ||
178 | * It is safe to call this function within an interrupt. | ||
179 | */ | ||
180 | static struct pci_dev *pci_get_device_by_addr(unsigned long addr) | ||
181 | { | ||
182 | struct pci_dev *dev; | ||
183 | unsigned long flags; | ||
184 | |||
185 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); | ||
186 | dev = __pci_get_device_by_addr(addr); | ||
187 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); | ||
188 | return dev; | ||
189 | } | ||
190 | |||
191 | #ifdef DEBUG | ||
192 | /* | ||
193 | * Handy-dandy debug print routine, does nothing more | ||
194 | * than print out the contents of our addr cache. | ||
195 | */ | ||
196 | static void pci_addr_cache_print(struct pci_io_addr_cache *cache) | ||
197 | { | ||
198 | struct rb_node *n; | ||
199 | int cnt = 0; | ||
200 | |||
201 | n = rb_first(&cache->rb_root); | ||
202 | while (n) { | ||
203 | struct pci_io_addr_range *piar; | ||
204 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); | ||
205 | printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n", | ||
206 | (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, | ||
207 | piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev)); | ||
208 | cnt++; | ||
209 | n = rb_next(n); | ||
210 | } | ||
211 | } | ||
212 | #endif | ||
213 | |||
214 | /* Insert address range into the rb tree. */ | ||
215 | static struct pci_io_addr_range * | ||
216 | pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo, | ||
217 | unsigned long ahi, unsigned int flags) | ||
218 | { | ||
219 | struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; | ||
220 | struct rb_node *parent = NULL; | ||
221 | struct pci_io_addr_range *piar; | ||
222 | |||
223 | /* Walk tree, find a place to insert into tree */ | ||
224 | while (*p) { | ||
225 | parent = *p; | ||
226 | piar = rb_entry(parent, struct pci_io_addr_range, rb_node); | ||
227 | if (ahi < piar->addr_lo) { | ||
228 | p = &parent->rb_left; | ||
229 | } else if (alo > piar->addr_hi) { | ||
230 | p = &parent->rb_right; | ||
231 | } else { | ||
232 | if (dev != piar->pcidev || | ||
233 | alo != piar->addr_lo || ahi != piar->addr_hi) { | ||
234 | printk(KERN_WARNING "PIAR: overlapping address range\n"); | ||
235 | } | ||
236 | return piar; | ||
237 | } | ||
238 | } | ||
239 | piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); | ||
240 | if (!piar) | ||
241 | return NULL; | ||
242 | |||
243 | piar->addr_lo = alo; | ||
244 | piar->addr_hi = ahi; | ||
245 | piar->pcidev = dev; | ||
246 | piar->flags = flags; | ||
247 | |||
248 | #ifdef DEBUG | ||
249 | printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n", | ||
250 | alo, ahi, pci_name (dev)); | ||
251 | #endif | ||
252 | |||
253 | rb_link_node(&piar->rb_node, parent, p); | ||
254 | rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); | ||
255 | |||
256 | return piar; | ||
257 | } | ||
258 | |||
259 | static void __pci_addr_cache_insert_device(struct pci_dev *dev) | ||
260 | { | ||
261 | struct device_node *dn; | ||
262 | struct pci_dn *pdn; | ||
263 | int i; | ||
264 | int inserted = 0; | ||
265 | |||
266 | dn = pci_device_to_OF_node(dev); | ||
267 | if (!dn) { | ||
268 | printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev)); | ||
269 | return; | ||
270 | } | ||
271 | |||
272 | /* Skip any devices for which EEH is not enabled. */ | ||
273 | pdn = PCI_DN(dn); | ||
274 | if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) || | ||
275 | pdn->eeh_mode & EEH_MODE_NOCHECK) { | ||
276 | #ifdef DEBUG | ||
277 | printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n", | ||
278 | pci_name(dev), pdn->node->full_name); | ||
279 | #endif | ||
280 | return; | ||
281 | } | ||
282 | |||
283 | /* The cache holds a reference to the device... */ | ||
284 | pci_dev_get(dev); | ||
285 | |||
286 | /* Walk resources on this device, poke them into the tree */ | ||
287 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | ||
288 | unsigned long start = pci_resource_start(dev,i); | ||
289 | unsigned long end = pci_resource_end(dev,i); | ||
290 | unsigned int flags = pci_resource_flags(dev,i); | ||
291 | |||
292 | /* We are interested only bus addresses, not dma or other stuff */ | ||
293 | if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) | ||
294 | continue; | ||
295 | if (start == 0 || ~start == 0 || end == 0 || ~end == 0) | ||
296 | continue; | ||
297 | pci_addr_cache_insert(dev, start, end, flags); | ||
298 | inserted = 1; | ||
299 | } | ||
300 | |||
301 | /* If there was nothing to add, the cache has no reference... */ | ||
302 | if (!inserted) | ||
303 | pci_dev_put(dev); | ||
304 | } | ||
305 | |||
306 | /** | ||
307 | * pci_addr_cache_insert_device - Add a device to the address cache | ||
308 | * @dev: PCI device whose I/O addresses we are interested in. | ||
309 | * | ||
310 | * In order to support the fast lookup of devices based on addresses, | ||
311 | * we maintain a cache of devices that can be quickly searched. | ||
312 | * This routine adds a device to that cache. | ||
313 | */ | ||
314 | static void pci_addr_cache_insert_device(struct pci_dev *dev) | ||
315 | { | ||
316 | unsigned long flags; | ||
317 | |||
318 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); | ||
319 | __pci_addr_cache_insert_device(dev); | ||
320 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); | ||
321 | } | ||
322 | |||
323 | static inline void __pci_addr_cache_remove_device(struct pci_dev *dev) | ||
324 | { | ||
325 | struct rb_node *n; | ||
326 | int removed = 0; | ||
327 | |||
328 | restart: | ||
329 | n = rb_first(&pci_io_addr_cache_root.rb_root); | ||
330 | while (n) { | ||
331 | struct pci_io_addr_range *piar; | ||
332 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); | ||
333 | |||
334 | if (piar->pcidev == dev) { | ||
335 | rb_erase(n, &pci_io_addr_cache_root.rb_root); | ||
336 | removed = 1; | ||
337 | kfree(piar); | ||
338 | goto restart; | ||
339 | } | ||
340 | n = rb_next(n); | ||
341 | } | ||
342 | |||
343 | /* The cache no longer holds its reference to this device... */ | ||
344 | if (removed) | ||
345 | pci_dev_put(dev); | ||
346 | } | ||
347 | |||
348 | /** | ||
349 | * pci_addr_cache_remove_device - remove pci device from addr cache | ||
350 | * @dev: device to remove | ||
351 | * | ||
352 | * Remove a device from the addr-cache tree. | ||
353 | * This is potentially expensive, since it will walk | ||
354 | * the tree multiple times (once per resource). | ||
355 | * But so what; device removal doesn't need to be that fast. | ||
356 | */ | ||
357 | static void pci_addr_cache_remove_device(struct pci_dev *dev) | ||
358 | { | ||
359 | unsigned long flags; | ||
360 | |||
361 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); | ||
362 | __pci_addr_cache_remove_device(dev); | ||
363 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); | ||
364 | } | ||
365 | |||
366 | /** | ||
367 | * pci_addr_cache_build - Build a cache of I/O addresses | ||
368 | * | ||
369 | * Build a cache of pci i/o addresses. This cache will be used to | ||
370 | * find the pci device that corresponds to a given address. | ||
371 | * This routine scans all pci busses to build the cache. | ||
372 | * Must be run late in boot process, after the pci controllers | ||
373 | * have been scaned for devices (after all device resources are known). | ||
374 | */ | ||
375 | void __init pci_addr_cache_build(void) | ||
376 | { | ||
377 | struct pci_dev *dev = NULL; | ||
378 | |||
379 | if (!eeh_subsystem_enabled) | ||
380 | return; | ||
381 | |||
382 | spin_lock_init(&pci_io_addr_cache_root.piar_lock); | ||
383 | |||
384 | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { | ||
385 | /* Ignore PCI bridges ( XXX why ??) */ | ||
386 | if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) { | ||
387 | continue; | ||
388 | } | ||
389 | pci_addr_cache_insert_device(dev); | ||
390 | } | ||
391 | |||
392 | #ifdef DEBUG | ||
393 | /* Verify tree built up above, echo back the list of addrs. */ | ||
394 | pci_addr_cache_print(&pci_io_addr_cache_root); | ||
395 | #endif | ||
396 | } | ||
397 | |||
398 | /* --------------------------------------------------------------- */ | ||
399 | /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */ | ||
400 | |||
401 | void eeh_slot_error_detail (struct pci_dn *pdn, int severity) | ||
402 | { | ||
403 | unsigned long flags; | ||
404 | int rc; | ||
405 | |||
406 | /* Log the error with the rtas logger */ | ||
407 | spin_lock_irqsave(&slot_errbuf_lock, flags); | ||
408 | memset(slot_errbuf, 0, eeh_error_buf_size); | ||
409 | |||
410 | rc = rtas_call(ibm_slot_error_detail, | ||
411 | 8, 1, NULL, pdn->eeh_config_addr, | ||
412 | BUID_HI(pdn->phb->buid), | ||
413 | BUID_LO(pdn->phb->buid), NULL, 0, | ||
414 | virt_to_phys(slot_errbuf), | ||
415 | eeh_error_buf_size, | ||
416 | severity); | ||
417 | |||
418 | if (rc == 0) | ||
419 | log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); | ||
420 | spin_unlock_irqrestore(&slot_errbuf_lock, flags); | ||
421 | } | ||
422 | |||
423 | /** | ||
424 | * eeh_register_notifier - Register to find out about EEH events. | ||
425 | * @nb: notifier block to callback on events | ||
426 | */ | ||
427 | int eeh_register_notifier(struct notifier_block *nb) | ||
428 | { | ||
429 | return notifier_chain_register(&eeh_notifier_chain, nb); | ||
430 | } | ||
431 | |||
432 | /** | ||
433 | * eeh_unregister_notifier - Unregister to an EEH event notifier. | ||
434 | * @nb: notifier block to callback on events | ||
435 | */ | ||
436 | int eeh_unregister_notifier(struct notifier_block *nb) | ||
437 | { | ||
438 | return notifier_chain_unregister(&eeh_notifier_chain, nb); | ||
439 | } | ||
440 | |||
441 | /** | ||
442 | * read_slot_reset_state - Read the reset state of a device node's slot | ||
443 | * @dn: device node to read | ||
444 | * @rets: array to return results in | ||
445 | */ | ||
446 | static int read_slot_reset_state(struct pci_dn *pdn, int rets[]) | ||
447 | { | ||
448 | int token, outputs; | ||
449 | |||
450 | if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { | ||
451 | token = ibm_read_slot_reset_state2; | ||
452 | outputs = 4; | ||
453 | } else { | ||
454 | token = ibm_read_slot_reset_state; | ||
455 | rets[2] = 0; /* fake PE Unavailable info */ | ||
456 | outputs = 3; | ||
457 | } | ||
458 | |||
459 | return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr, | ||
460 | BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid)); | ||
461 | } | ||
462 | |||
463 | /** | ||
464 | * eeh_panic - call panic() for an eeh event that cannot be handled. | ||
465 | * The philosophy of this routine is that it is better to panic and | ||
466 | * halt the OS than it is to risk possible data corruption by | ||
467 | * oblivious device drivers that don't know better. | ||
468 | * | ||
469 | * @dev pci device that had an eeh event | ||
470 | * @reset_state current reset state of the device slot | ||
471 | */ | ||
472 | static void eeh_panic(struct pci_dev *dev, int reset_state) | ||
473 | { | ||
474 | /* | ||
475 | * XXX We should create a separate sysctl for this. | ||
476 | * | ||
477 | * Since the panic_on_oops sysctl is used to halt the system | ||
478 | * in light of potential corruption, we can use it here. | ||
479 | */ | ||
480 | if (panic_on_oops) { | ||
481 | struct device_node *dn = pci_device_to_OF_node(dev); | ||
482 | eeh_slot_error_detail (PCI_DN(dn), 2 /* Permanent Error */); | ||
483 | panic("EEH: MMIO failure (%d) on device:%s\n", reset_state, | ||
484 | pci_name(dev)); | ||
485 | } | ||
486 | else { | ||
487 | __get_cpu_var(ignored_failures)++; | ||
488 | printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n", | ||
489 | reset_state, pci_name(dev)); | ||
490 | } | ||
491 | } | ||
492 | |||
493 | /** | ||
494 | * eeh_event_handler - dispatch EEH events. The detection of a frozen | ||
495 | * slot can occur inside an interrupt, where it can be hard to do | ||
496 | * anything about it. The goal of this routine is to pull these | ||
497 | * detection events out of the context of the interrupt handler, and | ||
498 | * re-dispatch them for processing at a later time in a normal context. | ||
499 | * | ||
500 | * @dummy - unused | ||
501 | */ | ||
502 | static void eeh_event_handler(void *dummy) | ||
503 | { | ||
504 | unsigned long flags; | ||
505 | struct eeh_event *event; | ||
506 | |||
507 | while (1) { | ||
508 | spin_lock_irqsave(&eeh_eventlist_lock, flags); | ||
509 | event = NULL; | ||
510 | if (!list_empty(&eeh_eventlist)) { | ||
511 | event = list_entry(eeh_eventlist.next, struct eeh_event, list); | ||
512 | list_del(&event->list); | ||
513 | } | ||
514 | spin_unlock_irqrestore(&eeh_eventlist_lock, flags); | ||
515 | if (event == NULL) | ||
516 | break; | ||
517 | |||
518 | printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device " | ||
519 | "%s\n", event->reset_state, | ||
520 | pci_name(event->dev)); | ||
521 | |||
522 | notifier_call_chain (&eeh_notifier_chain, | ||
523 | EEH_NOTIFY_FREEZE, event); | ||
524 | |||
525 | pci_dev_put(event->dev); | ||
526 | kfree(event); | ||
527 | } | ||
528 | } | ||
529 | |||
530 | /** | ||
531 | * eeh_token_to_phys - convert EEH address token to phys address | ||
532 | * @token i/o token, should be address in the form 0xA.... | ||
533 | */ | ||
534 | static inline unsigned long eeh_token_to_phys(unsigned long token) | ||
535 | { | ||
536 | pte_t *ptep; | ||
537 | unsigned long pa; | ||
538 | |||
539 | ptep = find_linux_pte(init_mm.pgd, token); | ||
540 | if (!ptep) | ||
541 | return token; | ||
542 | pa = pte_pfn(*ptep) << PAGE_SHIFT; | ||
543 | |||
544 | return pa | (token & (PAGE_SIZE-1)); | ||
545 | } | ||
546 | |||
547 | /** | ||
548 | * Return the "partitionable endpoint" (pe) under which this device lies | ||
549 | */ | ||
550 | static struct device_node * find_device_pe(struct device_node *dn) | ||
551 | { | ||
552 | while ((dn->parent) && PCI_DN(dn->parent) && | ||
553 | (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) { | ||
554 | dn = dn->parent; | ||
555 | } | ||
556 | return dn; | ||
557 | } | ||
558 | |||
559 | /** Mark all devices that are peers of this device as failed. | ||
560 | * Mark the device driver too, so that it can see the failure | ||
561 | * immediately; this is critical, since some drivers poll | ||
562 | * status registers in interrupts ... If a driver is polling, | ||
563 | * and the slot is frozen, then the driver can deadlock in | ||
564 | * an interrupt context, which is bad. | ||
565 | */ | ||
566 | |||
567 | static inline void __eeh_mark_slot (struct device_node *dn) | ||
568 | { | ||
569 | while (dn) { | ||
570 | PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED; | ||
571 | |||
572 | if (dn->child) | ||
573 | __eeh_mark_slot (dn->child); | ||
574 | dn = dn->sibling; | ||
575 | } | ||
576 | } | ||
577 | |||
578 | static inline void __eeh_clear_slot (struct device_node *dn) | ||
579 | { | ||
580 | while (dn) { | ||
581 | PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED; | ||
582 | if (dn->child) | ||
583 | __eeh_clear_slot (dn->child); | ||
584 | dn = dn->sibling; | ||
585 | } | ||
586 | } | ||
587 | |||
588 | static inline void eeh_clear_slot (struct device_node *dn) | ||
589 | { | ||
590 | unsigned long flags; | ||
591 | spin_lock_irqsave(&confirm_error_lock, flags); | ||
592 | __eeh_clear_slot (dn); | ||
593 | spin_unlock_irqrestore(&confirm_error_lock, flags); | ||
594 | } | ||
595 | |||
596 | /** | ||
597 | * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze | ||
598 | * @dn device node | ||
599 | * @dev pci device, if known | ||
600 | * | ||
601 | * Check for an EEH failure for the given device node. Call this | ||
602 | * routine if the result of a read was all 0xff's and you want to | ||
603 | * find out if this is due to an EEH slot freeze. This routine | ||
604 | * will query firmware for the EEH status. | ||
605 | * | ||
606 | * Returns 0 if there has not been an EEH error; otherwise returns | ||
607 | * a non-zero value and queues up a slot isolation event notification. | ||
608 | * | ||
609 | * It is safe to call this routine in an interrupt context. | ||
610 | */ | ||
611 | int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) | ||
612 | { | ||
613 | int ret; | ||
614 | int rets[3]; | ||
615 | unsigned long flags; | ||
616 | int reset_state; | ||
617 | struct eeh_event *event; | ||
618 | struct pci_dn *pdn; | ||
619 | struct device_node *pe_dn; | ||
620 | int rc = 0; | ||
621 | |||
622 | __get_cpu_var(total_mmio_ffs)++; | ||
623 | |||
624 | if (!eeh_subsystem_enabled) | ||
625 | return 0; | ||
626 | |||
627 | if (!dn) { | ||
628 | __get_cpu_var(no_dn)++; | ||
629 | return 0; | ||
630 | } | ||
631 | pdn = PCI_DN(dn); | ||
632 | |||
633 | /* Access to IO BARs might get this far and still not want checking. */ | ||
634 | if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) || | ||
635 | pdn->eeh_mode & EEH_MODE_NOCHECK) { | ||
636 | __get_cpu_var(ignored_check)++; | ||
637 | #ifdef DEBUG | ||
638 | printk ("EEH:ignored check (%x) for %s %s\n", | ||
639 | pdn->eeh_mode, pci_name (dev), dn->full_name); | ||
640 | #endif | ||
641 | return 0; | ||
642 | } | ||
643 | |||
644 | if (!pdn->eeh_config_addr) { | ||
645 | __get_cpu_var(no_cfg_addr)++; | ||
646 | return 0; | ||
647 | } | ||
648 | |||
649 | /* If we already have a pending isolation event for this | ||
650 | * slot, we know it's bad already, we don't need to check. | ||
651 | * Do this checking under a lock; as multiple PCI devices | ||
652 | * in one slot might report errors simultaneously, and we | ||
653 | * only want one error recovery routine running. | ||
654 | */ | ||
655 | spin_lock_irqsave(&confirm_error_lock, flags); | ||
656 | rc = 1; | ||
657 | if (pdn->eeh_mode & EEH_MODE_ISOLATED) { | ||
658 | pdn->eeh_check_count ++; | ||
659 | if (pdn->eeh_check_count >= EEH_MAX_FAILS) { | ||
660 | printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n", | ||
661 | pdn->eeh_check_count); | ||
662 | dump_stack(); | ||
663 | |||
664 | /* re-read the slot reset state */ | ||
665 | if (read_slot_reset_state(pdn, rets) != 0) | ||
666 | rets[0] = -1; /* reset state unknown */ | ||
667 | |||
668 | /* If we are here, then we hit an infinite loop. Stop. */ | ||
669 | panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev)); | ||
670 | } | ||
671 | goto dn_unlock; | ||
672 | } | ||
673 | |||
674 | /* | ||
675 | * Now test for an EEH failure. This is VERY expensive. | ||
676 | * Note that the eeh_config_addr may be a parent device | ||
677 | * in the case of a device behind a bridge, or it may be | ||
678 | * function zero of a multi-function device. | ||
679 | * In any case they must share a common PHB. | ||
680 | */ | ||
681 | ret = read_slot_reset_state(pdn, rets); | ||
682 | |||
683 | /* If the call to firmware failed, punt */ | ||
684 | if (ret != 0) { | ||
685 | printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n", | ||
686 | ret, dn->full_name); | ||
687 | __get_cpu_var(false_positives)++; | ||
688 | rc = 0; | ||
689 | goto dn_unlock; | ||
690 | } | ||
691 | |||
692 | /* If EEH is not supported on this device, punt. */ | ||
693 | if (rets[1] != 1) { | ||
694 | printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n", | ||
695 | ret, dn->full_name); | ||
696 | __get_cpu_var(false_positives)++; | ||
697 | rc = 0; | ||
698 | goto dn_unlock; | ||
699 | } | ||
700 | |||
701 | /* If not the kind of error we know about, punt. */ | ||
702 | if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) { | ||
703 | __get_cpu_var(false_positives)++; | ||
704 | rc = 0; | ||
705 | goto dn_unlock; | ||
706 | } | ||
707 | |||
708 | /* Note that config-io to empty slots may fail; | ||
709 | * we recognize empty because they don't have children. */ | ||
710 | if ((rets[0] == 5) && (dn->child == NULL)) { | ||
711 | __get_cpu_var(false_positives)++; | ||
712 | rc = 0; | ||
713 | goto dn_unlock; | ||
714 | } | ||
715 | |||
716 | __get_cpu_var(slot_resets)++; | ||
717 | |||
718 | /* Avoid repeated reports of this failure, including problems | ||
719 | * with other functions on this device, and functions under | ||
720 | * bridges. */ | ||
721 | pe_dn = find_device_pe (dn); | ||
722 | __eeh_mark_slot (pe_dn); | ||
723 | spin_unlock_irqrestore(&confirm_error_lock, flags); | ||
724 | |||
725 | reset_state = rets[0]; | ||
726 | |||
727 | eeh_slot_error_detail (pdn, 1 /* Temporary Error */); | ||
728 | |||
729 | printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n", | ||
730 | rets[0], dn->name, dn->full_name); | ||
731 | event = kmalloc(sizeof(*event), GFP_ATOMIC); | ||
732 | if (event == NULL) { | ||
733 | eeh_panic(dev, reset_state); | ||
734 | return 1; | ||
735 | } | ||
736 | |||
737 | event->dev = dev; | ||
738 | event->dn = dn; | ||
739 | event->reset_state = reset_state; | ||
740 | |||
741 | /* We may or may not be called in an interrupt context */ | ||
742 | spin_lock_irqsave(&eeh_eventlist_lock, flags); | ||
743 | list_add(&event->list, &eeh_eventlist); | ||
744 | spin_unlock_irqrestore(&eeh_eventlist_lock, flags); | ||
745 | |||
746 | /* Most EEH events are due to device driver bugs. Having | ||
747 | * a stack trace will help the device-driver authors figure | ||
748 | * out what happened. So print that out. */ | ||
749 | if (rets[0] != 5) dump_stack(); | ||
750 | schedule_work(&eeh_event_wq); | ||
751 | |||
752 | return 1; | ||
753 | |||
754 | dn_unlock: | ||
755 | spin_unlock_irqrestore(&confirm_error_lock, flags); | ||
756 | return rc; | ||
757 | } | ||
758 | |||
759 | EXPORT_SYMBOL_GPL(eeh_dn_check_failure); | ||
760 | |||
761 | /** | ||
762 | * eeh_check_failure - check if all 1's data is due to EEH slot freeze | ||
763 | * @token i/o token, should be address in the form 0xA.... | ||
764 | * @val value, should be all 1's (XXX why do we need this arg??) | ||
765 | * | ||
766 | * Check for an EEH failure at the given token address. Call this | ||
767 | * routine if the result of a read was all 0xff's and you want to | ||
768 | * find out if this is due to an EEH slot freeze event. This routine | ||
769 | * will query firmware for the EEH status. | ||
770 | * | ||
771 | * Note this routine is safe to call in an interrupt context. | ||
772 | */ | ||
773 | unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) | ||
774 | { | ||
775 | unsigned long addr; | ||
776 | struct pci_dev *dev; | ||
777 | struct device_node *dn; | ||
778 | |||
779 | /* Finding the phys addr + pci device; this is pretty quick. */ | ||
780 | addr = eeh_token_to_phys((unsigned long __force) token); | ||
781 | dev = pci_get_device_by_addr(addr); | ||
782 | if (!dev) { | ||
783 | __get_cpu_var(no_device)++; | ||
784 | return val; | ||
785 | } | ||
786 | |||
787 | dn = pci_device_to_OF_node(dev); | ||
788 | eeh_dn_check_failure (dn, dev); | ||
789 | |||
790 | pci_dev_put(dev); | ||
791 | return val; | ||
792 | } | ||
793 | |||
794 | EXPORT_SYMBOL(eeh_check_failure); | ||
795 | |||
796 | struct eeh_early_enable_info { | ||
797 | unsigned int buid_hi; | ||
798 | unsigned int buid_lo; | ||
799 | }; | ||
800 | |||
801 | /* Enable eeh for the given device node. */ | ||
802 | static void *early_enable_eeh(struct device_node *dn, void *data) | ||
803 | { | ||
804 | struct eeh_early_enable_info *info = data; | ||
805 | int ret; | ||
806 | char *status = get_property(dn, "status", NULL); | ||
807 | u32 *class_code = (u32 *)get_property(dn, "class-code", NULL); | ||
808 | u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL); | ||
809 | u32 *device_id = (u32 *)get_property(dn, "device-id", NULL); | ||
810 | u32 *regs; | ||
811 | int enable; | ||
812 | struct pci_dn *pdn = PCI_DN(dn); | ||
813 | |||
814 | pdn->eeh_mode = 0; | ||
815 | pdn->eeh_check_count = 0; | ||
816 | pdn->eeh_freeze_count = 0; | ||
817 | |||
818 | if (status && strcmp(status, "ok") != 0) | ||
819 | return NULL; /* ignore devices with bad status */ | ||
820 | |||
821 | /* Ignore bad nodes. */ | ||
822 | if (!class_code || !vendor_id || !device_id) | ||
823 | return NULL; | ||
824 | |||
825 | /* There is nothing to check on PCI to ISA bridges */ | ||
826 | if (dn->type && !strcmp(dn->type, "isa")) { | ||
827 | pdn->eeh_mode |= EEH_MODE_NOCHECK; | ||
828 | return NULL; | ||
829 | } | ||
830 | |||
831 | /* | ||
832 | * Now decide if we are going to "Disable" EEH checking | ||
833 | * for this device. We still run with the EEH hardware active, | ||
834 | * but we won't be checking for ff's. This means a driver | ||
835 | * could return bad data (very bad!), an interrupt handler could | ||
836 | * hang waiting on status bits that won't change, etc. | ||
837 | * But there are a few cases like display devices that make sense. | ||
838 | */ | ||
839 | enable = 1; /* i.e. we will do checking */ | ||
840 | if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY) | ||
841 | enable = 0; | ||
842 | |||
843 | if (!enable) | ||
844 | pdn->eeh_mode |= EEH_MODE_NOCHECK; | ||
845 | |||
846 | /* Ok... see if this device supports EEH. Some do, some don't, | ||
847 | * and the only way to find out is to check each and every one. */ | ||
848 | regs = (u32 *)get_property(dn, "reg", NULL); | ||
849 | if (regs) { | ||
850 | /* First register entry is addr (00BBSS00) */ | ||
851 | /* Try to enable eeh */ | ||
852 | ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, | ||
853 | regs[0], info->buid_hi, info->buid_lo, | ||
854 | EEH_ENABLE); | ||
855 | if (ret == 0) { | ||
856 | eeh_subsystem_enabled = 1; | ||
857 | pdn->eeh_mode |= EEH_MODE_SUPPORTED; | ||
858 | pdn->eeh_config_addr = regs[0]; | ||
859 | #ifdef DEBUG | ||
860 | printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name); | ||
861 | #endif | ||
862 | } else { | ||
863 | |||
864 | /* This device doesn't support EEH, but it may have an | ||
865 | * EEH parent, in which case we mark it as supported. */ | ||
866 | if (dn->parent && PCI_DN(dn->parent) | ||
867 | && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) { | ||
868 | /* Parent supports EEH. */ | ||
869 | pdn->eeh_mode |= EEH_MODE_SUPPORTED; | ||
870 | pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr; | ||
871 | return NULL; | ||
872 | } | ||
873 | } | ||
874 | } else { | ||
875 | printk(KERN_WARNING "EEH: %s: unable to get reg property.\n", | ||
876 | dn->full_name); | ||
877 | } | ||
878 | |||
879 | return NULL; | ||
880 | } | ||
881 | |||
882 | /* | ||
883 | * Initialize EEH by trying to enable it for all of the adapters in the system. | ||
884 | * As a side effect we can determine here if eeh is supported at all. | ||
885 | * Note that we leave EEH on so failed config cycles won't cause a machine | ||
886 | * check. If a user turns off EEH for a particular adapter they are really | ||
887 | * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't | ||
888 | * grant access to a slot if EEH isn't enabled, and so we always enable | ||
889 | * EEH for all slots/all devices. | ||
890 | * | ||
891 | * The eeh-force-off option disables EEH checking globally, for all slots. | ||
892 | * Even if force-off is set, the EEH hardware is still enabled, so that | ||
893 | * newer systems can boot. | ||
894 | */ | ||
895 | void __init eeh_init(void) | ||
896 | { | ||
897 | struct device_node *phb, *np; | ||
898 | struct eeh_early_enable_info info; | ||
899 | |||
900 | spin_lock_init(&confirm_error_lock); | ||
901 | spin_lock_init(&slot_errbuf_lock); | ||
902 | |||
903 | np = of_find_node_by_path("/rtas"); | ||
904 | if (np == NULL) | ||
905 | return; | ||
906 | |||
907 | ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); | ||
908 | ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); | ||
909 | ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); | ||
910 | ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); | ||
911 | ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); | ||
912 | |||
913 | if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) | ||
914 | return; | ||
915 | |||
916 | eeh_error_buf_size = rtas_token("rtas-error-log-max"); | ||
917 | if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { | ||
918 | eeh_error_buf_size = 1024; | ||
919 | } | ||
920 | if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { | ||
921 | printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated " | ||
922 | "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX); | ||
923 | eeh_error_buf_size = RTAS_ERROR_LOG_MAX; | ||
924 | } | ||
925 | |||
926 | /* Enable EEH for all adapters. Note that eeh requires buid's */ | ||
927 | for (phb = of_find_node_by_name(NULL, "pci"); phb; | ||
928 | phb = of_find_node_by_name(phb, "pci")) { | ||
929 | unsigned long buid; | ||
930 | |||
931 | buid = get_phb_buid(phb); | ||
932 | if (buid == 0 || PCI_DN(phb) == NULL) | ||
933 | continue; | ||
934 | |||
935 | info.buid_lo = BUID_LO(buid); | ||
936 | info.buid_hi = BUID_HI(buid); | ||
937 | traverse_pci_devices(phb, early_enable_eeh, &info); | ||
938 | } | ||
939 | |||
940 | if (eeh_subsystem_enabled) | ||
941 | printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n"); | ||
942 | else | ||
943 | printk(KERN_WARNING "EEH: No capable adapters found\n"); | ||
944 | } | ||
945 | |||
946 | /** | ||
947 | * eeh_add_device_early - enable EEH for the indicated device_node | ||
948 | * @dn: device node for which to set up EEH | ||
949 | * | ||
950 | * This routine must be used to perform EEH initialization for PCI | ||
951 | * devices that were added after system boot (e.g. hotplug, dlpar). | ||
952 | * This routine must be called before any i/o is performed to the | ||
953 | * adapter (inluding any config-space i/o). | ||
954 | * Whether this actually enables EEH or not for this device depends | ||
955 | * on the CEC architecture, type of the device, on earlier boot | ||
956 | * command-line arguments & etc. | ||
957 | */ | ||
958 | void eeh_add_device_early(struct device_node *dn) | ||
959 | { | ||
960 | struct pci_controller *phb; | ||
961 | struct eeh_early_enable_info info; | ||
962 | |||
963 | if (!dn || !PCI_DN(dn)) | ||
964 | return; | ||
965 | phb = PCI_DN(dn)->phb; | ||
966 | if (NULL == phb || 0 == phb->buid) { | ||
967 | printk(KERN_WARNING "EEH: Expected buid but found none for %s\n", | ||
968 | dn->full_name); | ||
969 | dump_stack(); | ||
970 | return; | ||
971 | } | ||
972 | |||
973 | info.buid_hi = BUID_HI(phb->buid); | ||
974 | info.buid_lo = BUID_LO(phb->buid); | ||
975 | early_enable_eeh(dn, &info); | ||
976 | } | ||
977 | EXPORT_SYMBOL_GPL(eeh_add_device_early); | ||
978 | |||
979 | /** | ||
980 | * eeh_add_device_late - perform EEH initialization for the indicated pci device | ||
981 | * @dev: pci device for which to set up EEH | ||
982 | * | ||
983 | * This routine must be used to complete EEH initialization for PCI | ||
984 | * devices that were added after system boot (e.g. hotplug, dlpar). | ||
985 | */ | ||
986 | void eeh_add_device_late(struct pci_dev *dev) | ||
987 | { | ||
988 | struct device_node *dn; | ||
989 | |||
990 | if (!dev || !eeh_subsystem_enabled) | ||
991 | return; | ||
992 | |||
993 | #ifdef DEBUG | ||
994 | printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev)); | ||
995 | #endif | ||
996 | |||
997 | pci_dev_get (dev); | ||
998 | dn = pci_device_to_OF_node(dev); | ||
999 | PCI_DN(dn)->pcidev = dev; | ||
1000 | |||
1001 | pci_addr_cache_insert_device (dev); | ||
1002 | } | ||
1003 | EXPORT_SYMBOL_GPL(eeh_add_device_late); | ||
1004 | |||
1005 | /** | ||
1006 | * eeh_remove_device - undo EEH setup for the indicated pci device | ||
1007 | * @dev: pci device to be removed | ||
1008 | * | ||
1009 | * This routine should be when a device is removed from a running | ||
1010 | * system (e.g. by hotplug or dlpar). | ||
1011 | */ | ||
1012 | void eeh_remove_device(struct pci_dev *dev) | ||
1013 | { | ||
1014 | struct device_node *dn; | ||
1015 | if (!dev || !eeh_subsystem_enabled) | ||
1016 | return; | ||
1017 | |||
1018 | /* Unregister the device with the EEH/PCI address search system */ | ||
1019 | #ifdef DEBUG | ||
1020 | printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev)); | ||
1021 | #endif | ||
1022 | pci_addr_cache_remove_device(dev); | ||
1023 | |||
1024 | dn = pci_device_to_OF_node(dev); | ||
1025 | PCI_DN(dn)->pcidev = NULL; | ||
1026 | pci_dev_put (dev); | ||
1027 | } | ||
1028 | EXPORT_SYMBOL_GPL(eeh_remove_device); | ||
1029 | |||
1030 | static int proc_eeh_show(struct seq_file *m, void *v) | ||
1031 | { | ||
1032 | unsigned int cpu; | ||
1033 | unsigned long ffs = 0, positives = 0, failures = 0; | ||
1034 | unsigned long resets = 0; | ||
1035 | unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0; | ||
1036 | |||
1037 | for_each_cpu(cpu) { | ||
1038 | ffs += per_cpu(total_mmio_ffs, cpu); | ||
1039 | positives += per_cpu(false_positives, cpu); | ||
1040 | failures += per_cpu(ignored_failures, cpu); | ||
1041 | resets += per_cpu(slot_resets, cpu); | ||
1042 | no_dev += per_cpu(no_device, cpu); | ||
1043 | no_dn += per_cpu(no_dn, cpu); | ||
1044 | no_cfg += per_cpu(no_cfg_addr, cpu); | ||
1045 | no_check += per_cpu(ignored_check, cpu); | ||
1046 | } | ||
1047 | |||
1048 | if (0 == eeh_subsystem_enabled) { | ||
1049 | seq_printf(m, "EEH Subsystem is globally disabled\n"); | ||
1050 | seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs); | ||
1051 | } else { | ||
1052 | seq_printf(m, "EEH Subsystem is enabled\n"); | ||
1053 | seq_printf(m, | ||
1054 | "no device=%ld\n" | ||
1055 | "no device node=%ld\n" | ||
1056 | "no config address=%ld\n" | ||
1057 | "check not wanted=%ld\n" | ||
1058 | "eeh_total_mmio_ffs=%ld\n" | ||
1059 | "eeh_false_positives=%ld\n" | ||
1060 | "eeh_ignored_failures=%ld\n" | ||
1061 | "eeh_slot_resets=%ld\n", | ||
1062 | no_dev, no_dn, no_cfg, no_check, | ||
1063 | ffs, positives, failures, resets); | ||
1064 | } | ||
1065 | |||
1066 | return 0; | ||
1067 | } | ||
1068 | |||
1069 | static int proc_eeh_open(struct inode *inode, struct file *file) | ||
1070 | { | ||
1071 | return single_open(file, proc_eeh_show, NULL); | ||
1072 | } | ||
1073 | |||
1074 | static struct file_operations proc_eeh_operations = { | ||
1075 | .open = proc_eeh_open, | ||
1076 | .read = seq_read, | ||
1077 | .llseek = seq_lseek, | ||
1078 | .release = single_release, | ||
1079 | }; | ||
1080 | |||
1081 | static int __init eeh_init_proc(void) | ||
1082 | { | ||
1083 | struct proc_dir_entry *e; | ||
1084 | |||
1085 | if (systemcfg->platform & PLATFORM_PSERIES) { | ||
1086 | e = create_proc_entry("ppc64/eeh", 0, NULL); | ||
1087 | if (e) | ||
1088 | e->proc_fops = &proc_eeh_operations; | ||
1089 | } | ||
1090 | |||
1091 | return 0; | ||
1092 | } | ||
1093 | __initcall(eeh_init_proc); | ||