aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2005-11-02 22:41:19 -0500
committerPaul Mackerras <paulus@samba.org>2005-11-02 22:41:19 -0500
commitf4fcbbe9a7fdf11305fea657202b954bdc2228ec (patch)
treed3f6a54b82b6d28f7e78cebd8043df2d9b596b5a /arch/powerpc/kernel
parent398382999bcff46ec1c7e7ab7574b10b087481c7 (diff)
powerpc: Merge remaining RTAS code
This moves rtas-proc.c and rtas_flash.c into arch/powerpc/kernel, since cell wants them as well as pseries (and chrp can use rtas-proc.c too, at least in principle). rtas_fw.c is gone, with its bits moved into rtas_flash.c and rtas.c. Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc/kernel')
-rw-r--r--arch/powerpc/kernel/Makefile3
-rw-r--r--arch/powerpc/kernel/rtas-proc.c808
-rw-r--r--arch/powerpc/kernel/rtas.c19
-rw-r--r--arch/powerpc/kernel/rtas_flash.c834
-rw-r--r--arch/powerpc/kernel/rtas_fw.c136
5 files changed, 1662 insertions, 138 deletions
diff --git a/arch/powerpc/kernel/Makefile b/arch/powerpc/kernel/Makefile
index abad3059a21a..601ddbf1c20b 100644
--- a/arch/powerpc/kernel/Makefile
+++ b/arch/powerpc/kernel/Makefile
@@ -18,7 +18,8 @@ obj-$(CONFIG_ALTIVEC) += vecemu.o vector.o
18obj-$(CONFIG_POWER4) += idle_power4.o 18obj-$(CONFIG_POWER4) += idle_power4.o
19obj-$(CONFIG_PPC_OF) += of_device.o 19obj-$(CONFIG_PPC_OF) += of_device.o
20obj-$(CONFIG_PPC_RTAS) += rtas.o 20obj-$(CONFIG_PPC_RTAS) += rtas.o
21obj-$(CONFIG_RTAS_FW) += rtas_fw.o 21obj-$(CONFIG_RTAS_FLASH) += rtas_flash.o
22obj-$(CONFIG_RTAS_PROC) += rtas-proc.o
22obj-$(CONFIG_IBMVIO) += vio.o 23obj-$(CONFIG_IBMVIO) += vio.o
23 24
24ifeq ($(CONFIG_PPC_MERGE),y) 25ifeq ($(CONFIG_PPC_MERGE),y)
diff --git a/arch/powerpc/kernel/rtas-proc.c b/arch/powerpc/kernel/rtas-proc.c
new file mode 100644
index 000000000000..5bdd5b079d96
--- /dev/null
+++ b/arch/powerpc/kernel/rtas-proc.c
@@ -0,0 +1,808 @@
1/*
2 * arch/ppc64/kernel/rtas-proc.c
3 * Copyright (C) 2000 Tilmann Bitterberg
4 * (tilmann@bitterberg.de)
5 *
6 * RTAS (Runtime Abstraction Services) stuff
7 * Intention is to provide a clean user interface
8 * to use the RTAS.
9 *
10 * TODO:
11 * Split off a header file and maybe move it to a different
12 * location. Write Documentation on what the /proc/rtas/ entries
13 * actually do.
14 */
15
16#include <linux/errno.h>
17#include <linux/sched.h>
18#include <linux/proc_fs.h>
19#include <linux/stat.h>
20#include <linux/ctype.h>
21#include <linux/time.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/seq_file.h>
25#include <linux/bitops.h>
26#include <linux/rtc.h>
27
28#include <asm/uaccess.h>
29#include <asm/processor.h>
30#include <asm/io.h>
31#include <asm/prom.h>
32#include <asm/rtas.h>
33#include <asm/machdep.h> /* for ppc_md */
34#include <asm/time.h>
35#include <asm/systemcfg.h>
36
37/* Token for Sensors */
38#define KEY_SWITCH 0x0001
39#define ENCLOSURE_SWITCH 0x0002
40#define THERMAL_SENSOR 0x0003
41#define LID_STATUS 0x0004
42#define POWER_SOURCE 0x0005
43#define BATTERY_VOLTAGE 0x0006
44#define BATTERY_REMAINING 0x0007
45#define BATTERY_PERCENTAGE 0x0008
46#define EPOW_SENSOR 0x0009
47#define BATTERY_CYCLESTATE 0x000a
48#define BATTERY_CHARGING 0x000b
49
50/* IBM specific sensors */
51#define IBM_SURVEILLANCE 0x2328 /* 9000 */
52#define IBM_FANRPM 0x2329 /* 9001 */
53#define IBM_VOLTAGE 0x232a /* 9002 */
54#define IBM_DRCONNECTOR 0x232b /* 9003 */
55#define IBM_POWERSUPPLY 0x232c /* 9004 */
56
57/* Status return values */
58#define SENSOR_CRITICAL_HIGH 13
59#define SENSOR_WARNING_HIGH 12
60#define SENSOR_NORMAL 11
61#define SENSOR_WARNING_LOW 10
62#define SENSOR_CRITICAL_LOW 9
63#define SENSOR_SUCCESS 0
64#define SENSOR_HW_ERROR -1
65#define SENSOR_BUSY -2
66#define SENSOR_NOT_EXIST -3
67#define SENSOR_DR_ENTITY -9000
68
69/* Location Codes */
70#define LOC_SCSI_DEV_ADDR 'A'
71#define LOC_SCSI_DEV_LOC 'B'
72#define LOC_CPU 'C'
73#define LOC_DISKETTE 'D'
74#define LOC_ETHERNET 'E'
75#define LOC_FAN 'F'
76#define LOC_GRAPHICS 'G'
77/* reserved / not used 'H' */
78#define LOC_IO_ADAPTER 'I'
79/* reserved / not used 'J' */
80#define LOC_KEYBOARD 'K'
81#define LOC_LCD 'L'
82#define LOC_MEMORY 'M'
83#define LOC_NV_MEMORY 'N'
84#define LOC_MOUSE 'O'
85#define LOC_PLANAR 'P'
86#define LOC_OTHER_IO 'Q'
87#define LOC_PARALLEL 'R'
88#define LOC_SERIAL 'S'
89#define LOC_DEAD_RING 'T'
90#define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
91#define LOC_VOLTAGE 'V'
92#define LOC_SWITCH_ADAPTER 'W'
93#define LOC_OTHER 'X'
94#define LOC_FIRMWARE 'Y'
95#define LOC_SCSI 'Z'
96
97/* Tokens for indicators */
98#define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
99#define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
100#define SYSTEM_POWER_STATE 0x0003
101#define WARNING_LIGHT 0x0004
102#define DISK_ACTIVITY_LIGHT 0x0005
103#define HEX_DISPLAY_UNIT 0x0006
104#define BATTERY_WARNING_TIME 0x0007
105#define CONDITION_CYCLE_REQUEST 0x0008
106#define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
107#define DR_ACTION 0x2329 /* 9001 */
108#define DR_INDICATOR 0x232a /* 9002 */
109/* 9003 - 9004: Vendor specific */
110/* 9006 - 9999: Vendor specific */
111
112/* other */
113#define MAX_SENSORS 17 /* I only know of 17 sensors */
114#define MAX_LINELENGTH 256
115#define SENSOR_PREFIX "ibm,sensor-"
116#define cel_to_fahr(x) ((x*9/5)+32)
117
118
119/* Globals */
120static struct rtas_sensors sensors;
121static struct device_node *rtas_node = NULL;
122static unsigned long power_on_time = 0; /* Save the time the user set */
123static char progress_led[MAX_LINELENGTH];
124
125static unsigned long rtas_tone_frequency = 1000;
126static unsigned long rtas_tone_volume = 0;
127
128/* ****************STRUCTS******************************************* */
129struct individual_sensor {
130 unsigned int token;
131 unsigned int quant;
132};
133
134struct rtas_sensors {
135 struct individual_sensor sensor[MAX_SENSORS];
136 unsigned int quant;
137};
138
139/* ****************************************************************** */
140/* Declarations */
141static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
142static int ppc_rtas_clock_show(struct seq_file *m, void *v);
143static ssize_t ppc_rtas_clock_write(struct file *file,
144 const char __user *buf, size_t count, loff_t *ppos);
145static int ppc_rtas_progress_show(struct seq_file *m, void *v);
146static ssize_t ppc_rtas_progress_write(struct file *file,
147 const char __user *buf, size_t count, loff_t *ppos);
148static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
149static ssize_t ppc_rtas_poweron_write(struct file *file,
150 const char __user *buf, size_t count, loff_t *ppos);
151
152static ssize_t ppc_rtas_tone_freq_write(struct file *file,
153 const char __user *buf, size_t count, loff_t *ppos);
154static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
155static ssize_t ppc_rtas_tone_volume_write(struct file *file,
156 const char __user *buf, size_t count, loff_t *ppos);
157static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
158static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
159
160static int sensors_open(struct inode *inode, struct file *file)
161{
162 return single_open(file, ppc_rtas_sensors_show, NULL);
163}
164
165struct file_operations ppc_rtas_sensors_operations = {
166 .open = sensors_open,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170};
171
172static int poweron_open(struct inode *inode, struct file *file)
173{
174 return single_open(file, ppc_rtas_poweron_show, NULL);
175}
176
177struct file_operations ppc_rtas_poweron_operations = {
178 .open = poweron_open,
179 .read = seq_read,
180 .llseek = seq_lseek,
181 .write = ppc_rtas_poweron_write,
182 .release = single_release,
183};
184
185static int progress_open(struct inode *inode, struct file *file)
186{
187 return single_open(file, ppc_rtas_progress_show, NULL);
188}
189
190struct file_operations ppc_rtas_progress_operations = {
191 .open = progress_open,
192 .read = seq_read,
193 .llseek = seq_lseek,
194 .write = ppc_rtas_progress_write,
195 .release = single_release,
196};
197
198static int clock_open(struct inode *inode, struct file *file)
199{
200 return single_open(file, ppc_rtas_clock_show, NULL);
201}
202
203struct file_operations ppc_rtas_clock_operations = {
204 .open = clock_open,
205 .read = seq_read,
206 .llseek = seq_lseek,
207 .write = ppc_rtas_clock_write,
208 .release = single_release,
209};
210
211static int tone_freq_open(struct inode *inode, struct file *file)
212{
213 return single_open(file, ppc_rtas_tone_freq_show, NULL);
214}
215
216struct file_operations ppc_rtas_tone_freq_operations = {
217 .open = tone_freq_open,
218 .read = seq_read,
219 .llseek = seq_lseek,
220 .write = ppc_rtas_tone_freq_write,
221 .release = single_release,
222};
223
224static int tone_volume_open(struct inode *inode, struct file *file)
225{
226 return single_open(file, ppc_rtas_tone_volume_show, NULL);
227}
228
229struct file_operations ppc_rtas_tone_volume_operations = {
230 .open = tone_volume_open,
231 .read = seq_read,
232 .llseek = seq_lseek,
233 .write = ppc_rtas_tone_volume_write,
234 .release = single_release,
235};
236
237static int rmo_buf_open(struct inode *inode, struct file *file)
238{
239 return single_open(file, ppc_rtas_rmo_buf_show, NULL);
240}
241
242struct file_operations ppc_rtas_rmo_buf_ops = {
243 .open = rmo_buf_open,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247};
248
249static int ppc_rtas_find_all_sensors(void);
250static void ppc_rtas_process_sensor(struct seq_file *m,
251 struct individual_sensor *s, int state, int error, char *loc);
252static char *ppc_rtas_process_error(int error);
253static void get_location_code(struct seq_file *m,
254 struct individual_sensor *s, char *loc);
255static void check_location_string(struct seq_file *m, char *c);
256static void check_location(struct seq_file *m, char *c);
257
258static int __init proc_rtas_init(void)
259{
260 struct proc_dir_entry *entry;
261
262 if (!(systemcfg->platform & PLATFORM_PSERIES))
263 return 1;
264
265 rtas_node = of_find_node_by_name(NULL, "rtas");
266 if (rtas_node == NULL)
267 return 1;
268
269 entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
270 if (entry)
271 entry->proc_fops = &ppc_rtas_progress_operations;
272
273 entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
274 if (entry)
275 entry->proc_fops = &ppc_rtas_clock_operations;
276
277 entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
278 if (entry)
279 entry->proc_fops = &ppc_rtas_poweron_operations;
280
281 entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
282 if (entry)
283 entry->proc_fops = &ppc_rtas_sensors_operations;
284
285 entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
286 NULL);
287 if (entry)
288 entry->proc_fops = &ppc_rtas_tone_freq_operations;
289
290 entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
291 if (entry)
292 entry->proc_fops = &ppc_rtas_tone_volume_operations;
293
294 entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
295 if (entry)
296 entry->proc_fops = &ppc_rtas_rmo_buf_ops;
297
298 return 0;
299}
300
301__initcall(proc_rtas_init);
302
303static int parse_number(const char __user *p, size_t count, unsigned long *val)
304{
305 char buf[40];
306 char *end;
307
308 if (count > 39)
309 return -EINVAL;
310
311 if (copy_from_user(buf, p, count))
312 return -EFAULT;
313
314 buf[count] = 0;
315
316 *val = simple_strtoul(buf, &end, 10);
317 if (*end && *end != '\n')
318 return -EINVAL;
319
320 return 0;
321}
322
323/* ****************************************************************** */
324/* POWER-ON-TIME */
325/* ****************************************************************** */
326static ssize_t ppc_rtas_poweron_write(struct file *file,
327 const char __user *buf, size_t count, loff_t *ppos)
328{
329 struct rtc_time tm;
330 unsigned long nowtime;
331 int error = parse_number(buf, count, &nowtime);
332 if (error)
333 return error;
334
335 power_on_time = nowtime; /* save the time */
336
337 to_tm(nowtime, &tm);
338
339 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
340 tm.tm_year, tm.tm_mon, tm.tm_mday,
341 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
342 if (error)
343 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
344 ppc_rtas_process_error(error));
345 return count;
346}
347/* ****************************************************************** */
348static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
349{
350 if (power_on_time == 0)
351 seq_printf(m, "Power on time not set\n");
352 else
353 seq_printf(m, "%lu\n",power_on_time);
354 return 0;
355}
356
357/* ****************************************************************** */
358/* PROGRESS */
359/* ****************************************************************** */
360static ssize_t ppc_rtas_progress_write(struct file *file,
361 const char __user *buf, size_t count, loff_t *ppos)
362{
363 unsigned long hex;
364
365 if (count >= MAX_LINELENGTH)
366 count = MAX_LINELENGTH -1;
367 if (copy_from_user(progress_led, buf, count)) { /* save the string */
368 return -EFAULT;
369 }
370 progress_led[count] = 0;
371
372 /* Lets see if the user passed hexdigits */
373 hex = simple_strtoul(progress_led, NULL, 10);
374
375 rtas_progress ((char *)progress_led, hex);
376 return count;
377
378 /* clear the line */
379 /* rtas_progress(" ", 0xffff);*/
380}
381/* ****************************************************************** */
382static int ppc_rtas_progress_show(struct seq_file *m, void *v)
383{
384 if (progress_led)
385 seq_printf(m, "%s\n", progress_led);
386 return 0;
387}
388
389/* ****************************************************************** */
390/* CLOCK */
391/* ****************************************************************** */
392static ssize_t ppc_rtas_clock_write(struct file *file,
393 const char __user *buf, size_t count, loff_t *ppos)
394{
395 struct rtc_time tm;
396 unsigned long nowtime;
397 int error = parse_number(buf, count, &nowtime);
398 if (error)
399 return error;
400
401 to_tm(nowtime, &tm);
402 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
403 tm.tm_year, tm.tm_mon, tm.tm_mday,
404 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
405 if (error)
406 printk(KERN_WARNING "error: setting the clock returned: %s\n",
407 ppc_rtas_process_error(error));
408 return count;
409}
410/* ****************************************************************** */
411static int ppc_rtas_clock_show(struct seq_file *m, void *v)
412{
413 int ret[8];
414 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
415
416 if (error) {
417 printk(KERN_WARNING "error: reading the clock returned: %s\n",
418 ppc_rtas_process_error(error));
419 seq_printf(m, "0");
420 } else {
421 unsigned int year, mon, day, hour, min, sec;
422 year = ret[0]; mon = ret[1]; day = ret[2];
423 hour = ret[3]; min = ret[4]; sec = ret[5];
424 seq_printf(m, "%lu\n",
425 mktime(year, mon, day, hour, min, sec));
426 }
427 return 0;
428}
429
430/* ****************************************************************** */
431/* SENSOR STUFF */
432/* ****************************************************************** */
433static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
434{
435 int i,j;
436 int state, error;
437 int get_sensor_state = rtas_token("get-sensor-state");
438
439 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
440 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
441 seq_printf(m, "********************************************************\n");
442
443 if (ppc_rtas_find_all_sensors() != 0) {
444 seq_printf(m, "\nNo sensors are available\n");
445 return 0;
446 }
447
448 for (i=0; i<sensors.quant; i++) {
449 struct individual_sensor *p = &sensors.sensor[i];
450 char rstr[64];
451 char *loc;
452 int llen, offs;
453
454 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
455 loc = (char *) get_property(rtas_node, rstr, &llen);
456
457 /* A sensor may have multiple instances */
458 for (j = 0, offs = 0; j <= p->quant; j++) {
459 error = rtas_call(get_sensor_state, 2, 2, &state,
460 p->token, j);
461
462 ppc_rtas_process_sensor(m, p, state, error, loc);
463 seq_putc(m, '\n');
464 if (loc) {
465 offs += strlen(loc) + 1;
466 loc += strlen(loc) + 1;
467 if (offs >= llen)
468 loc = NULL;
469 }
470 }
471 }
472 return 0;
473}
474
475/* ****************************************************************** */
476
477static int ppc_rtas_find_all_sensors(void)
478{
479 unsigned int *utmp;
480 int len, i;
481
482 utmp = (unsigned int *) get_property(rtas_node, "rtas-sensors", &len);
483 if (utmp == NULL) {
484 printk (KERN_ERR "error: could not get rtas-sensors\n");
485 return 1;
486 }
487
488 sensors.quant = len / 8; /* int + int */
489
490 for (i=0; i<sensors.quant; i++) {
491 sensors.sensor[i].token = *utmp++;
492 sensors.sensor[i].quant = *utmp++;
493 }
494 return 0;
495}
496
497/* ****************************************************************** */
498/*
499 * Builds a string of what rtas returned
500 */
501static char *ppc_rtas_process_error(int error)
502{
503 switch (error) {
504 case SENSOR_CRITICAL_HIGH:
505 return "(critical high)";
506 case SENSOR_WARNING_HIGH:
507 return "(warning high)";
508 case SENSOR_NORMAL:
509 return "(normal)";
510 case SENSOR_WARNING_LOW:
511 return "(warning low)";
512 case SENSOR_CRITICAL_LOW:
513 return "(critical low)";
514 case SENSOR_SUCCESS:
515 return "(read ok)";
516 case SENSOR_HW_ERROR:
517 return "(hardware error)";
518 case SENSOR_BUSY:
519 return "(busy)";
520 case SENSOR_NOT_EXIST:
521 return "(non existent)";
522 case SENSOR_DR_ENTITY:
523 return "(dr entity removed)";
524 default:
525 return "(UNKNOWN)";
526 }
527}
528
529/* ****************************************************************** */
530/*
531 * Builds a string out of what the sensor said
532 */
533
534static void ppc_rtas_process_sensor(struct seq_file *m,
535 struct individual_sensor *s, int state, int error, char *loc)
536{
537 /* Defined return vales */
538 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
539 "Maintenance" };
540 const char * enclosure_switch[] = { "Closed", "Open" };
541 const char * lid_status[] = { " ", "Open", "Closed" };
542 const char * power_source[] = { "AC\t", "Battery",
543 "AC & Battery" };
544 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
545 const char * epow_sensor[] = {
546 "EPOW Reset", "Cooling warning", "Power warning",
547 "System shutdown", "System halt", "EPOW main enclosure",
548 "EPOW power off" };
549 const char * battery_cyclestate[] = { "None", "In progress",
550 "Requested" };
551 const char * battery_charging[] = { "Charging", "Discharching",
552 "No current flow" };
553 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
554 "Exchange" };
555
556 int have_strings = 0;
557 int num_states = 0;
558 int temperature = 0;
559 int unknown = 0;
560
561 /* What kind of sensor do we have here? */
562
563 switch (s->token) {
564 case KEY_SWITCH:
565 seq_printf(m, "Key switch:\t");
566 num_states = sizeof(key_switch) / sizeof(char *);
567 if (state < num_states) {
568 seq_printf(m, "%s\t", key_switch[state]);
569 have_strings = 1;
570 }
571 break;
572 case ENCLOSURE_SWITCH:
573 seq_printf(m, "Enclosure switch:\t");
574 num_states = sizeof(enclosure_switch) / sizeof(char *);
575 if (state < num_states) {
576 seq_printf(m, "%s\t",
577 enclosure_switch[state]);
578 have_strings = 1;
579 }
580 break;
581 case THERMAL_SENSOR:
582 seq_printf(m, "Temp. (C/F):\t");
583 temperature = 1;
584 break;
585 case LID_STATUS:
586 seq_printf(m, "Lid status:\t");
587 num_states = sizeof(lid_status) / sizeof(char *);
588 if (state < num_states) {
589 seq_printf(m, "%s\t", lid_status[state]);
590 have_strings = 1;
591 }
592 break;
593 case POWER_SOURCE:
594 seq_printf(m, "Power source:\t");
595 num_states = sizeof(power_source) / sizeof(char *);
596 if (state < num_states) {
597 seq_printf(m, "%s\t",
598 power_source[state]);
599 have_strings = 1;
600 }
601 break;
602 case BATTERY_VOLTAGE:
603 seq_printf(m, "Battery voltage:\t");
604 break;
605 case BATTERY_REMAINING:
606 seq_printf(m, "Battery remaining:\t");
607 num_states = sizeof(battery_remaining) / sizeof(char *);
608 if (state < num_states)
609 {
610 seq_printf(m, "%s\t",
611 battery_remaining[state]);
612 have_strings = 1;
613 }
614 break;
615 case BATTERY_PERCENTAGE:
616 seq_printf(m, "Battery percentage:\t");
617 break;
618 case EPOW_SENSOR:
619 seq_printf(m, "EPOW Sensor:\t");
620 num_states = sizeof(epow_sensor) / sizeof(char *);
621 if (state < num_states) {
622 seq_printf(m, "%s\t", epow_sensor[state]);
623 have_strings = 1;
624 }
625 break;
626 case BATTERY_CYCLESTATE:
627 seq_printf(m, "Battery cyclestate:\t");
628 num_states = sizeof(battery_cyclestate) /
629 sizeof(char *);
630 if (state < num_states) {
631 seq_printf(m, "%s\t",
632 battery_cyclestate[state]);
633 have_strings = 1;
634 }
635 break;
636 case BATTERY_CHARGING:
637 seq_printf(m, "Battery Charging:\t");
638 num_states = sizeof(battery_charging) / sizeof(char *);
639 if (state < num_states) {
640 seq_printf(m, "%s\t",
641 battery_charging[state]);
642 have_strings = 1;
643 }
644 break;
645 case IBM_SURVEILLANCE:
646 seq_printf(m, "Surveillance:\t");
647 break;
648 case IBM_FANRPM:
649 seq_printf(m, "Fan (rpm):\t");
650 break;
651 case IBM_VOLTAGE:
652 seq_printf(m, "Voltage (mv):\t");
653 break;
654 case IBM_DRCONNECTOR:
655 seq_printf(m, "DR connector:\t");
656 num_states = sizeof(ibm_drconnector) / sizeof(char *);
657 if (state < num_states) {
658 seq_printf(m, "%s\t",
659 ibm_drconnector[state]);
660 have_strings = 1;
661 }
662 break;
663 case IBM_POWERSUPPLY:
664 seq_printf(m, "Powersupply:\t");
665 break;
666 default:
667 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
668 s->token);
669 unknown = 1;
670 have_strings = 1;
671 break;
672 }
673 if (have_strings == 0) {
674 if (temperature) {
675 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
676 } else
677 seq_printf(m, "%10d\t", state);
678 }
679 if (unknown == 0) {
680 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
681 get_location_code(m, s, loc);
682 }
683}
684
685/* ****************************************************************** */
686
687static void check_location(struct seq_file *m, char *c)
688{
689 switch (c[0]) {
690 case LOC_PLANAR:
691 seq_printf(m, "Planar #%c", c[1]);
692 break;
693 case LOC_CPU:
694 seq_printf(m, "CPU #%c", c[1]);
695 break;
696 case LOC_FAN:
697 seq_printf(m, "Fan #%c", c[1]);
698 break;
699 case LOC_RACKMOUNTED:
700 seq_printf(m, "Rack #%c", c[1]);
701 break;
702 case LOC_VOLTAGE:
703 seq_printf(m, "Voltage #%c", c[1]);
704 break;
705 case LOC_LCD:
706 seq_printf(m, "LCD #%c", c[1]);
707 break;
708 case '.':
709 seq_printf(m, "- %c", c[1]);
710 break;
711 default:
712 seq_printf(m, "Unknown location");
713 break;
714 }
715}
716
717
718/* ****************************************************************** */
719/*
720 * Format:
721 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
722 * the '.' may be an abbrevation
723 */
724static void check_location_string(struct seq_file *m, char *c)
725{
726 while (*c) {
727 if (isalpha(*c) || *c == '.')
728 check_location(m, c);
729 else if (*c == '/' || *c == '-')
730 seq_printf(m, " at ");
731 c++;
732 }
733}
734
735
736/* ****************************************************************** */
737
738static void get_location_code(struct seq_file *m, struct individual_sensor *s, char *loc)
739{
740 if (!loc || !*loc) {
741 seq_printf(m, "---");/* does not have a location */
742 } else {
743 check_location_string(m, loc);
744 }
745 seq_putc(m, ' ');
746}
747/* ****************************************************************** */
748/* INDICATORS - Tone Frequency */
749/* ****************************************************************** */
750static ssize_t ppc_rtas_tone_freq_write(struct file *file,
751 const char __user *buf, size_t count, loff_t *ppos)
752{
753 unsigned long freq;
754 int error = parse_number(buf, count, &freq);
755 if (error)
756 return error;
757
758 rtas_tone_frequency = freq; /* save it for later */
759 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
760 TONE_FREQUENCY, 0, freq);
761 if (error)
762 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
763 ppc_rtas_process_error(error));
764 return count;
765}
766/* ****************************************************************** */
767static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
768{
769 seq_printf(m, "%lu\n", rtas_tone_frequency);
770 return 0;
771}
772/* ****************************************************************** */
773/* INDICATORS - Tone Volume */
774/* ****************************************************************** */
775static ssize_t ppc_rtas_tone_volume_write(struct file *file,
776 const char __user *buf, size_t count, loff_t *ppos)
777{
778 unsigned long volume;
779 int error = parse_number(buf, count, &volume);
780 if (error)
781 return error;
782
783 if (volume > 100)
784 volume = 100;
785
786 rtas_tone_volume = volume; /* save it for later */
787 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
788 TONE_VOLUME, 0, volume);
789 if (error)
790 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
791 ppc_rtas_process_error(error));
792 return count;
793}
794/* ****************************************************************** */
795static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
796{
797 seq_printf(m, "%lu\n", rtas_tone_volume);
798 return 0;
799}
800
801#define RMO_READ_BUF_MAX 30
802
803/* RTAS Userspace access */
804static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
805{
806 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
807 return 0;
808}
diff --git a/arch/powerpc/kernel/rtas.c b/arch/powerpc/kernel/rtas.c
index 4d22eeeeb91d..b7fc2d884950 100644
--- a/arch/powerpc/kernel/rtas.c
+++ b/arch/powerpc/kernel/rtas.c
@@ -43,6 +43,13 @@ char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
43unsigned long rtas_rmo_buf; 43unsigned long rtas_rmo_buf;
44 44
45/* 45/*
46 * If non-NULL, this gets called when the kernel terminates.
47 * This is done like this so rtas_flash can be a module.
48 */
49void (*rtas_flash_term_hook)(int);
50EXPORT_SYMBOL(rtas_flash_term_hook);
51
52/*
46 * call_rtas_display_status and call_rtas_display_status_delay 53 * call_rtas_display_status and call_rtas_display_status_delay
47 * are designed only for very early low-level debugging, which 54 * are designed only for very early low-level debugging, which
48 * is why the token is hard-coded to 10. 55 * is why the token is hard-coded to 10.
@@ -206,6 +213,7 @@ void rtas_progress(char *s, unsigned short hex)
206 213
207 spin_unlock(&progress_lock); 214 spin_unlock(&progress_lock);
208} 215}
216EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */
209 217
210int rtas_token(const char *service) 218int rtas_token(const char *service)
211{ 219{
@@ -492,6 +500,8 @@ int rtas_set_indicator(int indicator, int index, int new_value)
492 500
493void rtas_restart(char *cmd) 501void rtas_restart(char *cmd)
494{ 502{
503 if (rtas_flash_term_hook)
504 rtas_flash_term_hook(SYS_RESTART);
495 printk("RTAS system-reboot returned %d\n", 505 printk("RTAS system-reboot returned %d\n",
496 rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); 506 rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
497 for (;;); 507 for (;;);
@@ -499,6 +509,8 @@ void rtas_restart(char *cmd)
499 509
500void rtas_power_off(void) 510void rtas_power_off(void)
501{ 511{
512 if (rtas_flash_term_hook)
513 rtas_flash_term_hook(SYS_POWER_OFF);
502 /* allow power on only with power button press */ 514 /* allow power on only with power button press */
503 printk("RTAS power-off returned %d\n", 515 printk("RTAS power-off returned %d\n",
504 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); 516 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
@@ -507,7 +519,12 @@ void rtas_power_off(void)
507 519
508void rtas_halt(void) 520void rtas_halt(void)
509{ 521{
510 rtas_power_off(); 522 if (rtas_flash_term_hook)
523 rtas_flash_term_hook(SYS_HALT);
524 /* allow power on only with power button press */
525 printk("RTAS power-off returned %d\n",
526 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
527 for (;;);
511} 528}
512 529
513/* Must be in the RMO region, so we place it here */ 530/* Must be in the RMO region, so we place it here */
diff --git a/arch/powerpc/kernel/rtas_flash.c b/arch/powerpc/kernel/rtas_flash.c
new file mode 100644
index 000000000000..50500093c97f
--- /dev/null
+++ b/arch/powerpc/kernel/rtas_flash.c
@@ -0,0 +1,834 @@
1/*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /proc/ppc64/rtas/firmware_flash interface
10 *
11 * This file implements a firmware_flash interface to pump a firmware
12 * image into the kernel. At reboot time rtas_restart() will see the
13 * firmware image and flash it as it reboots (see rtas.c).
14 */
15
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/proc_fs.h>
19#include <asm/delay.h>
20#include <asm/uaccess.h>
21#include <asm/rtas.h>
22#include <asm/abs_addr.h>
23
24#define MODULE_VERS "1.0"
25#define MODULE_NAME "rtas_flash"
26
27#define FIRMWARE_FLASH_NAME "firmware_flash"
28#define FIRMWARE_UPDATE_NAME "firmware_update"
29#define MANAGE_FLASH_NAME "manage_flash"
30#define VALIDATE_FLASH_NAME "validate_flash"
31
32/* General RTAS Status Codes */
33#define RTAS_RC_SUCCESS 0
34#define RTAS_RC_HW_ERR -1
35#define RTAS_RC_BUSY -2
36
37/* Flash image status values */
38#define FLASH_AUTH -9002 /* RTAS Not Service Authority Partition */
39#define FLASH_NO_OP -1099 /* No operation initiated by user */
40#define FLASH_IMG_SHORT -1005 /* Flash image shorter than expected */
41#define FLASH_IMG_BAD_LEN -1004 /* Bad length value in flash list block */
42#define FLASH_IMG_NULL_DATA -1003 /* Bad data value in flash list block */
43#define FLASH_IMG_READY 0 /* Firmware img ready for flash on reboot */
44
45/* Manage image status values */
46#define MANAGE_AUTH -9002 /* RTAS Not Service Authority Partition */
47#define MANAGE_ACTIVE_ERR -9001 /* RTAS Cannot Overwrite Active Img */
48#define MANAGE_NO_OP -1099 /* No operation initiated by user */
49#define MANAGE_PARAM_ERR -3 /* RTAS Parameter Error */
50#define MANAGE_HW_ERR -1 /* RTAS Hardware Error */
51
52/* Validate image status values */
53#define VALIDATE_AUTH -9002 /* RTAS Not Service Authority Partition */
54#define VALIDATE_NO_OP -1099 /* No operation initiated by the user */
55#define VALIDATE_INCOMPLETE -1002 /* User copied < VALIDATE_BUF_SIZE */
56#define VALIDATE_READY -1001 /* Firmware image ready for validation */
57#define VALIDATE_PARAM_ERR -3 /* RTAS Parameter Error */
58#define VALIDATE_HW_ERR -1 /* RTAS Hardware Error */
59#define VALIDATE_TMP_UPDATE 0 /* Validate Return Status */
60#define VALIDATE_FLASH_AUTH 1 /* Validate Return Status */
61#define VALIDATE_INVALID_IMG 2 /* Validate Return Status */
62#define VALIDATE_CUR_UNKNOWN 3 /* Validate Return Status */
63#define VALIDATE_TMP_COMMIT_DL 4 /* Validate Return Status */
64#define VALIDATE_TMP_COMMIT 5 /* Validate Return Status */
65#define VALIDATE_TMP_UPDATE_DL 6 /* Validate Return Status */
66
67/* ibm,manage-flash-image operation tokens */
68#define RTAS_REJECT_TMP_IMG 0
69#define RTAS_COMMIT_TMP_IMG 1
70
71/* Array sizes */
72#define VALIDATE_BUF_SIZE 4096
73#define RTAS_MSG_MAXLEN 64
74
75struct flash_block {
76 char *data;
77 unsigned long length;
78};
79
80/* This struct is very similar but not identical to
81 * that needed by the rtas flash update.
82 * All we need to do for rtas is rewrite num_blocks
83 * into a version/length and translate the pointers
84 * to absolute.
85 */
86#define FLASH_BLOCKS_PER_NODE ((PAGE_SIZE - 16) / sizeof(struct flash_block))
87struct flash_block_list {
88 unsigned long num_blocks;
89 struct flash_block_list *next;
90 struct flash_block blocks[FLASH_BLOCKS_PER_NODE];
91};
92struct flash_block_list_header { /* just the header of flash_block_list */
93 unsigned long num_blocks;
94 struct flash_block_list *next;
95};
96
97static struct flash_block_list_header rtas_firmware_flash_list = {0, NULL};
98
99#define FLASH_BLOCK_LIST_VERSION (1UL)
100
101/* Local copy of the flash block list.
102 * We only allow one open of the flash proc file and create this
103 * list as we go. This list will be put in the
104 * rtas_firmware_flash_list var once it is fully read.
105 *
106 * For convenience as we build the list we use virtual addrs,
107 * we do not fill in the version number, and the length field
108 * is treated as the number of entries currently in the block
109 * (i.e. not a byte count). This is all fixed on release.
110 */
111
112/* Status int must be first member of struct */
113struct rtas_update_flash_t
114{
115 int status; /* Flash update status */
116 struct flash_block_list *flist; /* Local copy of flash block list */
117};
118
119/* Status int must be first member of struct */
120struct rtas_manage_flash_t
121{
122 int status; /* Returned status */
123 unsigned int op; /* Reject or commit image */
124};
125
126/* Status int must be first member of struct */
127struct rtas_validate_flash_t
128{
129 int status; /* Returned status */
130 char buf[VALIDATE_BUF_SIZE]; /* Candidate image buffer */
131 unsigned int buf_size; /* Size of image buf */
132 unsigned int update_results; /* Update results token */
133};
134
135static DEFINE_SPINLOCK(flash_file_open_lock);
136static struct proc_dir_entry *firmware_flash_pde;
137static struct proc_dir_entry *firmware_update_pde;
138static struct proc_dir_entry *validate_pde;
139static struct proc_dir_entry *manage_pde;
140
141/* Do simple sanity checks on the flash image. */
142static int flash_list_valid(struct flash_block_list *flist)
143{
144 struct flash_block_list *f;
145 int i;
146 unsigned long block_size, image_size;
147
148 /* Paranoid self test here. We also collect the image size. */
149 image_size = 0;
150 for (f = flist; f; f = f->next) {
151 for (i = 0; i < f->num_blocks; i++) {
152 if (f->blocks[i].data == NULL) {
153 return FLASH_IMG_NULL_DATA;
154 }
155 block_size = f->blocks[i].length;
156 if (block_size <= 0 || block_size > PAGE_SIZE) {
157 return FLASH_IMG_BAD_LEN;
158 }
159 image_size += block_size;
160 }
161 }
162
163 if (image_size < (256 << 10)) {
164 if (image_size < 2)
165 return FLASH_NO_OP;
166 }
167
168 printk(KERN_INFO "FLASH: flash image with %ld bytes stored for hardware flash on reboot\n", image_size);
169
170 return FLASH_IMG_READY;
171}
172
173static void free_flash_list(struct flash_block_list *f)
174{
175 struct flash_block_list *next;
176 int i;
177
178 while (f) {
179 for (i = 0; i < f->num_blocks; i++)
180 free_page((unsigned long)(f->blocks[i].data));
181 next = f->next;
182 free_page((unsigned long)f);
183 f = next;
184 }
185}
186
187static int rtas_flash_release(struct inode *inode, struct file *file)
188{
189 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
190 struct rtas_update_flash_t *uf;
191
192 uf = (struct rtas_update_flash_t *) dp->data;
193 if (uf->flist) {
194 /* File was opened in write mode for a new flash attempt */
195 /* Clear saved list */
196 if (rtas_firmware_flash_list.next) {
197 free_flash_list(rtas_firmware_flash_list.next);
198 rtas_firmware_flash_list.next = NULL;
199 }
200
201 if (uf->status != FLASH_AUTH)
202 uf->status = flash_list_valid(uf->flist);
203
204 if (uf->status == FLASH_IMG_READY)
205 rtas_firmware_flash_list.next = uf->flist;
206 else
207 free_flash_list(uf->flist);
208
209 uf->flist = NULL;
210 }
211
212 atomic_dec(&dp->count);
213 return 0;
214}
215
216static void get_flash_status_msg(int status, char *buf)
217{
218 char *msg;
219
220 switch (status) {
221 case FLASH_AUTH:
222 msg = "error: this partition does not have service authority\n";
223 break;
224 case FLASH_NO_OP:
225 msg = "info: no firmware image for flash\n";
226 break;
227 case FLASH_IMG_SHORT:
228 msg = "error: flash image short\n";
229 break;
230 case FLASH_IMG_BAD_LEN:
231 msg = "error: internal error bad length\n";
232 break;
233 case FLASH_IMG_NULL_DATA:
234 msg = "error: internal error null data\n";
235 break;
236 case FLASH_IMG_READY:
237 msg = "ready: firmware image ready for flash on reboot\n";
238 break;
239 default:
240 sprintf(buf, "error: unexpected status value %d\n", status);
241 return;
242 }
243
244 strcpy(buf, msg);
245}
246
247/* Reading the proc file will show status (not the firmware contents) */
248static ssize_t rtas_flash_read(struct file *file, char __user *buf,
249 size_t count, loff_t *ppos)
250{
251 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
252 struct rtas_update_flash_t *uf;
253 char msg[RTAS_MSG_MAXLEN];
254 int msglen;
255
256 uf = (struct rtas_update_flash_t *) dp->data;
257
258 if (!strcmp(dp->name, FIRMWARE_FLASH_NAME)) {
259 get_flash_status_msg(uf->status, msg);
260 } else { /* FIRMWARE_UPDATE_NAME */
261 sprintf(msg, "%d\n", uf->status);
262 }
263 msglen = strlen(msg);
264 if (msglen > count)
265 msglen = count;
266
267 if (ppos && *ppos != 0)
268 return 0; /* be cheap */
269
270 if (!access_ok(VERIFY_WRITE, buf, msglen))
271 return -EINVAL;
272
273 if (copy_to_user(buf, msg, msglen))
274 return -EFAULT;
275
276 if (ppos)
277 *ppos = msglen;
278 return msglen;
279}
280
281/* We could be much more efficient here. But to keep this function
282 * simple we allocate a page to the block list no matter how small the
283 * count is. If the system is low on memory it will be just as well
284 * that we fail....
285 */
286static ssize_t rtas_flash_write(struct file *file, const char __user *buffer,
287 size_t count, loff_t *off)
288{
289 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
290 struct rtas_update_flash_t *uf;
291 char *p;
292 int next_free;
293 struct flash_block_list *fl;
294
295 uf = (struct rtas_update_flash_t *) dp->data;
296
297 if (uf->status == FLASH_AUTH || count == 0)
298 return count; /* discard data */
299
300 /* In the case that the image is not ready for flashing, the memory
301 * allocated for the block list will be freed upon the release of the
302 * proc file
303 */
304 if (uf->flist == NULL) {
305 uf->flist = (struct flash_block_list *) get_zeroed_page(GFP_KERNEL);
306 if (!uf->flist)
307 return -ENOMEM;
308 }
309
310 fl = uf->flist;
311 while (fl->next)
312 fl = fl->next; /* seek to last block_list for append */
313 next_free = fl->num_blocks;
314 if (next_free == FLASH_BLOCKS_PER_NODE) {
315 /* Need to allocate another block_list */
316 fl->next = (struct flash_block_list *)get_zeroed_page(GFP_KERNEL);
317 if (!fl->next)
318 return -ENOMEM;
319 fl = fl->next;
320 next_free = 0;
321 }
322
323 if (count > PAGE_SIZE)
324 count = PAGE_SIZE;
325 p = (char *)get_zeroed_page(GFP_KERNEL);
326 if (!p)
327 return -ENOMEM;
328
329 if(copy_from_user(p, buffer, count)) {
330 free_page((unsigned long)p);
331 return -EFAULT;
332 }
333 fl->blocks[next_free].data = p;
334 fl->blocks[next_free].length = count;
335 fl->num_blocks++;
336
337 return count;
338}
339
340static int rtas_excl_open(struct inode *inode, struct file *file)
341{
342 struct proc_dir_entry *dp = PDE(inode);
343
344 /* Enforce exclusive open with use count of PDE */
345 spin_lock(&flash_file_open_lock);
346 if (atomic_read(&dp->count) > 1) {
347 spin_unlock(&flash_file_open_lock);
348 return -EBUSY;
349 }
350
351 atomic_inc(&dp->count);
352 spin_unlock(&flash_file_open_lock);
353
354 return 0;
355}
356
357static int rtas_excl_release(struct inode *inode, struct file *file)
358{
359 struct proc_dir_entry *dp = PDE(inode);
360
361 atomic_dec(&dp->count);
362
363 return 0;
364}
365
366static void manage_flash(struct rtas_manage_flash_t *args_buf)
367{
368 unsigned int wait_time;
369 s32 rc;
370
371 while (1) {
372 rc = rtas_call(rtas_token("ibm,manage-flash-image"), 1,
373 1, NULL, args_buf->op);
374 if (rc == RTAS_RC_BUSY)
375 udelay(1);
376 else if (rtas_is_extended_busy(rc)) {
377 wait_time = rtas_extended_busy_delay_time(rc);
378 udelay(wait_time * 1000);
379 } else
380 break;
381 }
382
383 args_buf->status = rc;
384}
385
386static ssize_t manage_flash_read(struct file *file, char __user *buf,
387 size_t count, loff_t *ppos)
388{
389 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
390 struct rtas_manage_flash_t *args_buf;
391 char msg[RTAS_MSG_MAXLEN];
392 int msglen;
393
394 args_buf = (struct rtas_manage_flash_t *) dp->data;
395 if (args_buf == NULL)
396 return 0;
397
398 msglen = sprintf(msg, "%d\n", args_buf->status);
399 if (msglen > count)
400 msglen = count;
401
402 if (ppos && *ppos != 0)
403 return 0; /* be cheap */
404
405 if (!access_ok(VERIFY_WRITE, buf, msglen))
406 return -EINVAL;
407
408 if (copy_to_user(buf, msg, msglen))
409 return -EFAULT;
410
411 if (ppos)
412 *ppos = msglen;
413 return msglen;
414}
415
416static ssize_t manage_flash_write(struct file *file, const char __user *buf,
417 size_t count, loff_t *off)
418{
419 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
420 struct rtas_manage_flash_t *args_buf;
421 const char reject_str[] = "0";
422 const char commit_str[] = "1";
423 char stkbuf[10];
424 int op;
425
426 args_buf = (struct rtas_manage_flash_t *) dp->data;
427 if ((args_buf->status == MANAGE_AUTH) || (count == 0))
428 return count;
429
430 op = -1;
431 if (buf) {
432 if (count > 9) count = 9;
433 if (copy_from_user (stkbuf, buf, count)) {
434 return -EFAULT;
435 }
436 if (strncmp(stkbuf, reject_str, strlen(reject_str)) == 0)
437 op = RTAS_REJECT_TMP_IMG;
438 else if (strncmp(stkbuf, commit_str, strlen(commit_str)) == 0)
439 op = RTAS_COMMIT_TMP_IMG;
440 }
441
442 if (op == -1) /* buf is empty, or contains invalid string */
443 return -EINVAL;
444
445 args_buf->op = op;
446 manage_flash(args_buf);
447
448 return count;
449}
450
451static void validate_flash(struct rtas_validate_flash_t *args_buf)
452{
453 int token = rtas_token("ibm,validate-flash-image");
454 unsigned int wait_time;
455 int update_results;
456 s32 rc;
457
458 rc = 0;
459 while(1) {
460 spin_lock(&rtas_data_buf_lock);
461 memcpy(rtas_data_buf, args_buf->buf, VALIDATE_BUF_SIZE);
462 rc = rtas_call(token, 2, 2, &update_results,
463 (u32) __pa(rtas_data_buf), args_buf->buf_size);
464 memcpy(args_buf->buf, rtas_data_buf, VALIDATE_BUF_SIZE);
465 spin_unlock(&rtas_data_buf_lock);
466
467 if (rc == RTAS_RC_BUSY)
468 udelay(1);
469 else if (rtas_is_extended_busy(rc)) {
470 wait_time = rtas_extended_busy_delay_time(rc);
471 udelay(wait_time * 1000);
472 } else
473 break;
474 }
475
476 args_buf->status = rc;
477 args_buf->update_results = update_results;
478}
479
480static int get_validate_flash_msg(struct rtas_validate_flash_t *args_buf,
481 char *msg)
482{
483 int n;
484
485 if (args_buf->status >= VALIDATE_TMP_UPDATE) {
486 n = sprintf(msg, "%d\n", args_buf->update_results);
487 if ((args_buf->update_results >= VALIDATE_CUR_UNKNOWN) ||
488 (args_buf->update_results == VALIDATE_TMP_UPDATE))
489 n += sprintf(msg + n, "%s\n", args_buf->buf);
490 } else {
491 n = sprintf(msg, "%d\n", args_buf->status);
492 }
493 return n;
494}
495
496static ssize_t validate_flash_read(struct file *file, char __user *buf,
497 size_t count, loff_t *ppos)
498{
499 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
500 struct rtas_validate_flash_t *args_buf;
501 char msg[RTAS_MSG_MAXLEN];
502 int msglen;
503
504 args_buf = (struct rtas_validate_flash_t *) dp->data;
505
506 if (ppos && *ppos != 0)
507 return 0; /* be cheap */
508
509 msglen = get_validate_flash_msg(args_buf, msg);
510 if (msglen > count)
511 msglen = count;
512
513 if (!access_ok(VERIFY_WRITE, buf, msglen))
514 return -EINVAL;
515
516 if (copy_to_user(buf, msg, msglen))
517 return -EFAULT;
518
519 if (ppos)
520 *ppos = msglen;
521 return msglen;
522}
523
524static ssize_t validate_flash_write(struct file *file, const char __user *buf,
525 size_t count, loff_t *off)
526{
527 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
528 struct rtas_validate_flash_t *args_buf;
529 int rc;
530
531 args_buf = (struct rtas_validate_flash_t *) dp->data;
532
533 if (dp->data == NULL) {
534 dp->data = kmalloc(sizeof(struct rtas_validate_flash_t),
535 GFP_KERNEL);
536 if (dp->data == NULL)
537 return -ENOMEM;
538 }
539
540 /* We are only interested in the first 4K of the
541 * candidate image */
542 if ((*off >= VALIDATE_BUF_SIZE) ||
543 (args_buf->status == VALIDATE_AUTH)) {
544 *off += count;
545 return count;
546 }
547
548 if (*off + count >= VALIDATE_BUF_SIZE) {
549 count = VALIDATE_BUF_SIZE - *off;
550 args_buf->status = VALIDATE_READY;
551 } else {
552 args_buf->status = VALIDATE_INCOMPLETE;
553 }
554
555 if (!access_ok(VERIFY_READ, buf, count)) {
556 rc = -EFAULT;
557 goto done;
558 }
559 if (copy_from_user(args_buf->buf + *off, buf, count)) {
560 rc = -EFAULT;
561 goto done;
562 }
563
564 *off += count;
565 rc = count;
566done:
567 if (rc < 0) {
568 kfree(dp->data);
569 dp->data = NULL;
570 }
571 return rc;
572}
573
574static int validate_flash_release(struct inode *inode, struct file *file)
575{
576 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
577 struct rtas_validate_flash_t *args_buf;
578
579 args_buf = (struct rtas_validate_flash_t *) dp->data;
580
581 if (args_buf->status == VALIDATE_READY) {
582 args_buf->buf_size = VALIDATE_BUF_SIZE;
583 validate_flash(args_buf);
584 }
585
586 /* The matching atomic_inc was in rtas_excl_open() */
587 atomic_dec(&dp->count);
588
589 return 0;
590}
591
592static void rtas_flash_firmware(int reboot_type)
593{
594 unsigned long image_size;
595 struct flash_block_list *f, *next, *flist;
596 unsigned long rtas_block_list;
597 int i, status, update_token;
598
599 if (rtas_firmware_flash_list.next == NULL)
600 return; /* nothing to do */
601
602 if (reboot_type != SYS_RESTART) {
603 printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
604 printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
605 return;
606 }
607
608 update_token = rtas_token("ibm,update-flash-64-and-reboot");
609 if (update_token == RTAS_UNKNOWN_SERVICE) {
610 printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot "
611 "is not available -- not a service partition?\n");
612 printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
613 return;
614 }
615
616 /* NOTE: the "first" block list is a global var with no data
617 * blocks in the kernel data segment. We do this because
618 * we want to ensure this block_list addr is under 4GB.
619 */
620 rtas_firmware_flash_list.num_blocks = 0;
621 flist = (struct flash_block_list *)&rtas_firmware_flash_list;
622 rtas_block_list = virt_to_abs(flist);
623 if (rtas_block_list >= 4UL*1024*1024*1024) {
624 printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
625 return;
626 }
627
628 printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
629 /* Update the block_list in place. */
630 image_size = 0;
631 for (f = flist; f; f = next) {
632 /* Translate data addrs to absolute */
633 for (i = 0; i < f->num_blocks; i++) {
634 f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
635 image_size += f->blocks[i].length;
636 }
637 next = f->next;
638 /* Don't translate NULL pointer for last entry */
639 if (f->next)
640 f->next = (struct flash_block_list *)virt_to_abs(f->next);
641 else
642 f->next = NULL;
643 /* make num_blocks into the version/length field */
644 f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
645 }
646
647 printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
648 printk(KERN_ALERT "FLASH: performing flash and reboot\n");
649 rtas_progress("Flashing \n", 0x0);
650 rtas_progress("Please Wait... ", 0x0);
651 printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n");
652 status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
653 switch (status) { /* should only get "bad" status */
654 case 0:
655 printk(KERN_ALERT "FLASH: success\n");
656 break;
657 case -1:
658 printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n");
659 break;
660 case -3:
661 printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n");
662 break;
663 case -4:
664 printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n");
665 break;
666 default:
667 printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
668 break;
669 }
670}
671
672static void remove_flash_pde(struct proc_dir_entry *dp)
673{
674 if (dp) {
675 if (dp->data != NULL)
676 kfree(dp->data);
677 dp->owner = NULL;
678 remove_proc_entry(dp->name, dp->parent);
679 }
680}
681
682static int initialize_flash_pde_data(const char *rtas_call_name,
683 size_t buf_size,
684 struct proc_dir_entry *dp)
685{
686 int *status;
687 int token;
688
689 dp->data = kmalloc(buf_size, GFP_KERNEL);
690 if (dp->data == NULL) {
691 remove_flash_pde(dp);
692 return -ENOMEM;
693 }
694
695 memset(dp->data, 0, buf_size);
696
697 /*
698 * This code assumes that the status int is the first member of the
699 * struct
700 */
701 status = (int *) dp->data;
702 token = rtas_token(rtas_call_name);
703 if (token == RTAS_UNKNOWN_SERVICE)
704 *status = FLASH_AUTH;
705 else
706 *status = FLASH_NO_OP;
707
708 return 0;
709}
710
711static struct proc_dir_entry *create_flash_pde(const char *filename,
712 struct file_operations *fops)
713{
714 struct proc_dir_entry *ent = NULL;
715
716 ent = create_proc_entry(filename, S_IRUSR | S_IWUSR, NULL);
717 if (ent != NULL) {
718 ent->nlink = 1;
719 ent->proc_fops = fops;
720 ent->owner = THIS_MODULE;
721 }
722
723 return ent;
724}
725
726static struct file_operations rtas_flash_operations = {
727 .read = rtas_flash_read,
728 .write = rtas_flash_write,
729 .open = rtas_excl_open,
730 .release = rtas_flash_release,
731};
732
733static struct file_operations manage_flash_operations = {
734 .read = manage_flash_read,
735 .write = manage_flash_write,
736 .open = rtas_excl_open,
737 .release = rtas_excl_release,
738};
739
740static struct file_operations validate_flash_operations = {
741 .read = validate_flash_read,
742 .write = validate_flash_write,
743 .open = rtas_excl_open,
744 .release = validate_flash_release,
745};
746
747int __init rtas_flash_init(void)
748{
749 int rc;
750
751 if (rtas_token("ibm,update-flash-64-and-reboot") ==
752 RTAS_UNKNOWN_SERVICE) {
753 printk(KERN_ERR "rtas_flash: no firmware flash support\n");
754 return 1;
755 }
756
757 firmware_flash_pde = create_flash_pde("ppc64/rtas/"
758 FIRMWARE_FLASH_NAME,
759 &rtas_flash_operations);
760 if (firmware_flash_pde == NULL) {
761 rc = -ENOMEM;
762 goto cleanup;
763 }
764
765 rc = initialize_flash_pde_data("ibm,update-flash-64-and-reboot",
766 sizeof(struct rtas_update_flash_t),
767 firmware_flash_pde);
768 if (rc != 0)
769 goto cleanup;
770
771 firmware_update_pde = create_flash_pde("ppc64/rtas/"
772 FIRMWARE_UPDATE_NAME,
773 &rtas_flash_operations);
774 if (firmware_update_pde == NULL) {
775 rc = -ENOMEM;
776 goto cleanup;
777 }
778
779 rc = initialize_flash_pde_data("ibm,update-flash-64-and-reboot",
780 sizeof(struct rtas_update_flash_t),
781 firmware_update_pde);
782 if (rc != 0)
783 goto cleanup;
784
785 validate_pde = create_flash_pde("ppc64/rtas/" VALIDATE_FLASH_NAME,
786 &validate_flash_operations);
787 if (validate_pde == NULL) {
788 rc = -ENOMEM;
789 goto cleanup;
790 }
791
792 rc = initialize_flash_pde_data("ibm,validate-flash-image",
793 sizeof(struct rtas_validate_flash_t),
794 validate_pde);
795 if (rc != 0)
796 goto cleanup;
797
798 manage_pde = create_flash_pde("ppc64/rtas/" MANAGE_FLASH_NAME,
799 &manage_flash_operations);
800 if (manage_pde == NULL) {
801 rc = -ENOMEM;
802 goto cleanup;
803 }
804
805 rc = initialize_flash_pde_data("ibm,manage-flash-image",
806 sizeof(struct rtas_manage_flash_t),
807 manage_pde);
808 if (rc != 0)
809 goto cleanup;
810
811 rtas_flash_term_hook = rtas_flash_firmware;
812 return 0;
813
814cleanup:
815 remove_flash_pde(firmware_flash_pde);
816 remove_flash_pde(firmware_update_pde);
817 remove_flash_pde(validate_pde);
818 remove_flash_pde(manage_pde);
819
820 return rc;
821}
822
823void __exit rtas_flash_cleanup(void)
824{
825 rtas_flash_term_hook = NULL;
826 remove_flash_pde(firmware_flash_pde);
827 remove_flash_pde(firmware_update_pde);
828 remove_flash_pde(validate_pde);
829 remove_flash_pde(manage_pde);
830}
831
832module_init(rtas_flash_init);
833module_exit(rtas_flash_cleanup);
834MODULE_LICENSE("GPL");
diff --git a/arch/powerpc/kernel/rtas_fw.c b/arch/powerpc/kernel/rtas_fw.c
deleted file mode 100644
index 448922e8af1b..000000000000
--- a/arch/powerpc/kernel/rtas_fw.c
+++ /dev/null
@@ -1,136 +0,0 @@
1/*
2 *
3 * Procedures for firmware flash updates.
4 *
5 * Peter Bergner, IBM March 2001.
6 * Copyright (C) 2001 IBM.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#include <stdarg.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/spinlock.h>
18#include <linux/module.h>
19#include <linux/init.h>
20
21#include <asm/prom.h>
22#include <asm/rtas.h>
23#include <asm/semaphore.h>
24#include <asm/machdep.h>
25#include <asm/page.h>
26#include <asm/param.h>
27#include <asm/system.h>
28#include <asm/abs_addr.h>
29#include <asm/udbg.h>
30#include <asm/delay.h>
31#include <asm/uaccess.h>
32#include <asm/systemcfg.h>
33
34struct flash_block_list_header rtas_firmware_flash_list = {0, NULL};
35
36#define FLASH_BLOCK_LIST_VERSION (1UL)
37
38static void rtas_flash_firmware(void)
39{
40 unsigned long image_size;
41 struct flash_block_list *f, *next, *flist;
42 unsigned long rtas_block_list;
43 int i, status, update_token;
44
45 update_token = rtas_token("ibm,update-flash-64-and-reboot");
46 if (update_token == RTAS_UNKNOWN_SERVICE) {
47 printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n");
48 printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
49 return;
50 }
51
52 /* NOTE: the "first" block list is a global var with no data
53 * blocks in the kernel data segment. We do this because
54 * we want to ensure this block_list addr is under 4GB.
55 */
56 rtas_firmware_flash_list.num_blocks = 0;
57 flist = (struct flash_block_list *)&rtas_firmware_flash_list;
58 rtas_block_list = virt_to_abs(flist);
59 if (rtas_block_list >= 4UL*1024*1024*1024) {
60 printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
61 return;
62 }
63
64 printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
65 /* Update the block_list in place. */
66 image_size = 0;
67 for (f = flist; f; f = next) {
68 /* Translate data addrs to absolute */
69 for (i = 0; i < f->num_blocks; i++) {
70 f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
71 image_size += f->blocks[i].length;
72 }
73 next = f->next;
74 /* Don't translate NULL pointer for last entry */
75 if (f->next)
76 f->next = (struct flash_block_list *)virt_to_abs(f->next);
77 else
78 f->next = NULL;
79 /* make num_blocks into the version/length field */
80 f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
81 }
82
83 printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
84 printk(KERN_ALERT "FLASH: performing flash and reboot\n");
85 rtas_progress("Flashing \n", 0x0);
86 rtas_progress("Please Wait... ", 0x0);
87 printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n");
88 status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
89 switch (status) { /* should only get "bad" status */
90 case 0:
91 printk(KERN_ALERT "FLASH: success\n");
92 break;
93 case -1:
94 printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n");
95 break;
96 case -3:
97 printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n");
98 break;
99 case -4:
100 printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n");
101 break;
102 default:
103 printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
104 break;
105 }
106}
107
108void rtas_flash_bypass_warning(void)
109{
110 printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
111 printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
112}
113
114
115void rtas_fw_restart(char *cmd)
116{
117 if (rtas_firmware_flash_list.next)
118 rtas_flash_firmware();
119 rtas_restart(cmd);
120}
121
122void rtas_fw_power_off(void)
123{
124 if (rtas_firmware_flash_list.next)
125 rtas_flash_bypass_warning();
126 rtas_power_off();
127}
128
129void rtas_fw_halt(void)
130{
131 if (rtas_firmware_flash_list.next)
132 rtas_flash_bypass_warning();
133 rtas_halt();
134}
135
136EXPORT_SYMBOL(rtas_firmware_flash_list);