aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/time.c
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2010-06-20 15:04:14 -0400
committerThomas Gleixner <tglx@linutronix.de>2010-07-28 15:07:12 -0400
commitd75d68cfef4936ddf38d2694ae2f7d1f7c45db05 (patch)
treed4cfa4a4d6513be8527945e6c55cd282a6152803 /arch/powerpc/kernel/time.c
parent0e469db8f70c2645acdc90981c0480a3e19d5e68 (diff)
powerpc: Clean up obsolete code relating to decrementer and timebase
Since the decrementer and timekeeping code was moved over to using the generic clockevents and timekeeping infrastructure, several variables and functions have been obsolete and effectively unused. This deletes them. In particular, wakeup_decrementer() is no longer needed since the generic code reprograms the decrementer as part of the process of resuming the timekeeping code, which happens during sysdev resume. Thus the wakeup_decrementer calls in the suspend_enter methods for 52xx platforms have been removed. The call in the powermac cpu frequency change code has been replaced by set_dec(1), which will cause a timer interrupt as soon as interrupts are enabled, and the generic code will then reprogram the decrementer with the correct value. This also simplifies the generic_suspend_en/disable_irqs functions and makes them static since they are not referenced outside time.c. The preempt_enable/disable calls are removed because the generic code has disabled all but the boot cpu at the point where these functions are called, so we can't be moved to another cpu. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Diffstat (limited to 'arch/powerpc/kernel/time.c')
-rw-r--r--arch/powerpc/kernel/time.c136
1 files changed, 3 insertions, 133 deletions
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
index 5adebaf47f13..ccb8759c8532 100644
--- a/arch/powerpc/kernel/time.c
+++ b/arch/powerpc/kernel/time.c
@@ -149,16 +149,6 @@ unsigned long tb_ticks_per_usec = 100; /* sane default */
149EXPORT_SYMBOL(tb_ticks_per_usec); 149EXPORT_SYMBOL(tb_ticks_per_usec);
150unsigned long tb_ticks_per_sec; 150unsigned long tb_ticks_per_sec;
151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
152u64 tb_to_xs;
153unsigned tb_to_us;
154
155#define TICKLEN_SCALE NTP_SCALE_SHIFT
156static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157static u64 ticklen_to_xs; /* 0.64 fraction */
158
159/* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162 152
163DEFINE_SPINLOCK(rtc_lock); 153DEFINE_SPINLOCK(rtc_lock);
164EXPORT_SYMBOL_GPL(rtc_lock); 154EXPORT_SYMBOL_GPL(rtc_lock);
@@ -174,7 +164,6 @@ unsigned long ppc_proc_freq;
174EXPORT_SYMBOL(ppc_proc_freq); 164EXPORT_SYMBOL(ppc_proc_freq);
175unsigned long ppc_tb_freq; 165unsigned long ppc_tb_freq;
176 166
177static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178static DEFINE_PER_CPU(u64, last_jiffy); 167static DEFINE_PER_CPU(u64, last_jiffy);
179 168
180#ifdef CONFIG_VIRT_CPU_ACCOUNTING 169#ifdef CONFIG_VIRT_CPU_ACCOUNTING
@@ -446,7 +435,6 @@ EXPORT_SYMBOL(profile_pc);
446 435
447static int __init iSeries_tb_recal(void) 436static int __init iSeries_tb_recal(void)
448{ 437{
449 struct div_result divres;
450 unsigned long titan, tb; 438 unsigned long titan, tb;
451 439
452 /* Make sure we only run on iSeries */ 440 /* Make sure we only run on iSeries */
@@ -477,10 +465,7 @@ static int __init iSeries_tb_recal(void)
477 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 465 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
478 tb_ticks_per_sec = new_tb_ticks_per_sec; 466 tb_ticks_per_sec = new_tb_ticks_per_sec;
479 calc_cputime_factors(); 467 calc_cputime_factors();
480 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
481 tb_to_xs = divres.result_low;
482 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 468 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
483 vdso_data->tb_to_xs = tb_to_xs;
484 setup_cputime_one_jiffy(); 469 setup_cputime_one_jiffy();
485 } 470 }
486 else { 471 else {
@@ -643,27 +628,9 @@ void timer_interrupt(struct pt_regs * regs)
643 trace_timer_interrupt_exit(regs); 628 trace_timer_interrupt_exit(regs);
644} 629}
645 630
646void wakeup_decrementer(void)
647{
648 unsigned long ticks;
649
650 /*
651 * The timebase gets saved on sleep and restored on wakeup,
652 * so all we need to do is to reset the decrementer.
653 */
654 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
655 if (ticks < tb_ticks_per_jiffy)
656 ticks = tb_ticks_per_jiffy - ticks;
657 else
658 ticks = 1;
659 set_dec(ticks);
660}
661
662#ifdef CONFIG_SUSPEND 631#ifdef CONFIG_SUSPEND
663void generic_suspend_disable_irqs(void) 632static void generic_suspend_disable_irqs(void)
664{ 633{
665 preempt_disable();
666
667 /* Disable the decrementer, so that it doesn't interfere 634 /* Disable the decrementer, so that it doesn't interfere
668 * with suspending. 635 * with suspending.
669 */ 636 */
@@ -673,12 +640,9 @@ void generic_suspend_disable_irqs(void)
673 set_dec(0x7fffffff); 640 set_dec(0x7fffffff);
674} 641}
675 642
676void generic_suspend_enable_irqs(void) 643static void generic_suspend_enable_irqs(void)
677{ 644{
678 wakeup_decrementer();
679
680 local_irq_enable(); 645 local_irq_enable();
681 preempt_enable();
682} 646}
683 647
684/* Overrides the weak version in kernel/power/main.c */ 648/* Overrides the weak version in kernel/power/main.c */
@@ -698,23 +662,6 @@ void arch_suspend_enable_irqs(void)
698} 662}
699#endif 663#endif
700 664
701#ifdef CONFIG_SMP
702void __init smp_space_timers(unsigned int max_cpus)
703{
704 int i;
705 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
706
707 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
708 previous_tb -= tb_ticks_per_jiffy;
709
710 for_each_possible_cpu(i) {
711 if (i == boot_cpuid)
712 continue;
713 per_cpu(last_jiffy, i) = previous_tb;
714 }
715}
716#endif
717
718/* 665/*
719 * Scheduler clock - returns current time in nanosec units. 666 * Scheduler clock - returns current time in nanosec units.
720 * 667 *
@@ -1014,15 +961,13 @@ void secondary_cpu_time_init(void)
1014/* This function is only called on the boot processor */ 961/* This function is only called on the boot processor */
1015void __init time_init(void) 962void __init time_init(void)
1016{ 963{
1017 unsigned long flags;
1018 struct div_result res; 964 struct div_result res;
1019 u64 scale, x; 965 u64 scale;
1020 unsigned shift; 966 unsigned shift;
1021 967
1022 if (__USE_RTC()) { 968 if (__USE_RTC()) {
1023 /* 601 processor: dec counts down by 128 every 128ns */ 969 /* 601 processor: dec counts down by 128 every 128ns */
1024 ppc_tb_freq = 1000000000; 970 ppc_tb_freq = 1000000000;
1025 tb_last_jiffy = get_rtcl();
1026 } else { 971 } else {
1027 /* Normal PowerPC with timebase register */ 972 /* Normal PowerPC with timebase register */
1028 ppc_md.calibrate_decr(); 973 ppc_md.calibrate_decr();
@@ -1030,50 +975,15 @@ void __init time_init(void)
1030 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 975 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1031 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 976 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
1032 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 977 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1033 tb_last_jiffy = get_tb();
1034 } 978 }
1035 979
1036 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 980 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1037 tb_ticks_per_sec = ppc_tb_freq; 981 tb_ticks_per_sec = ppc_tb_freq;
1038 tb_ticks_per_usec = ppc_tb_freq / 1000000; 982 tb_ticks_per_usec = ppc_tb_freq / 1000000;
1039 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
1040 calc_cputime_factors(); 983 calc_cputime_factors();
1041 setup_cputime_one_jiffy(); 984 setup_cputime_one_jiffy();
1042 985
1043 /* 986 /*
1044 * Calculate the length of each tick in ns. It will not be
1045 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1046 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1047 * rounded up.
1048 */
1049 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
1050 do_div(x, ppc_tb_freq);
1051 tick_nsec = x;
1052 last_tick_len = x << TICKLEN_SCALE;
1053
1054 /*
1055 * Compute ticklen_to_xs, which is a factor which gets multiplied
1056 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1057 * It is computed as:
1058 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1059 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1060 * which turns out to be N = 51 - SHIFT_HZ.
1061 * This gives the result as a 0.64 fixed-point fraction.
1062 * That value is reduced by an offset amounting to 1 xsec per
1063 * 2^31 timebase ticks to avoid problems with time going backwards
1064 * by 1 xsec when we do timer_recalc_offset due to losing the
1065 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1066 * since there are 2^20 xsec in a second.
1067 */
1068 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1069 tb_ticks_per_jiffy << SHIFT_HZ, &res);
1070 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1071 ticklen_to_xs = res.result_low;
1072
1073 /* Compute tb_to_xs from tick_nsec */
1074 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1075
1076 /*
1077 * Compute scale factor for sched_clock. 987 * Compute scale factor for sched_clock.
1078 * The calibrate_decr() function has set tb_ticks_per_sec, 988 * The calibrate_decr() function has set tb_ticks_per_sec,
1079 * which is the timebase frequency. 989 * which is the timebase frequency.
@@ -1094,21 +1004,14 @@ void __init time_init(void)
1094 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 1004 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1095 boot_tb = get_tb_or_rtc(); 1005 boot_tb = get_tb_or_rtc();
1096 1006
1097 write_seqlock_irqsave(&xtime_lock, flags);
1098
1099 /* If platform provided a timezone (pmac), we correct the time */ 1007 /* If platform provided a timezone (pmac), we correct the time */
1100 if (timezone_offset) { 1008 if (timezone_offset) {
1101 sys_tz.tz_minuteswest = -timezone_offset / 60; 1009 sys_tz.tz_minuteswest = -timezone_offset / 60;
1102 sys_tz.tz_dsttime = 0; 1010 sys_tz.tz_dsttime = 0;
1103 } 1011 }
1104 1012
1105 vdso_data->tb_orig_stamp = tb_last_jiffy;
1106 vdso_data->tb_update_count = 0; 1013 vdso_data->tb_update_count = 0;
1107 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1014 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1108 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1109 vdso_data->tb_to_xs = tb_to_xs;
1110
1111 write_sequnlock_irqrestore(&xtime_lock, flags);
1112 1015
1113 /* Start the decrementer on CPUs that have manual control 1016 /* Start the decrementer on CPUs that have manual control
1114 * such as BookE 1017 * such as BookE
@@ -1202,39 +1105,6 @@ void to_tm(int tim, struct rtc_time * tm)
1202 GregorianDay(tm); 1105 GregorianDay(tm);
1203} 1106}
1204 1107
1205/* Auxiliary function to compute scaling factors */
1206/* Actually the choice of a timebase running at 1/4 the of the bus
1207 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1208 * It makes this computation very precise (27-28 bits typically) which
1209 * is optimistic considering the stability of most processor clock
1210 * oscillators and the precision with which the timebase frequency
1211 * is measured but does not harm.
1212 */
1213unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1214{
1215 unsigned mlt=0, tmp, err;
1216 /* No concern for performance, it's done once: use a stupid
1217 * but safe and compact method to find the multiplier.
1218 */
1219
1220 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1221 if (mulhwu(inscale, mlt|tmp) < outscale)
1222 mlt |= tmp;
1223 }
1224
1225 /* We might still be off by 1 for the best approximation.
1226 * A side effect of this is that if outscale is too large
1227 * the returned value will be zero.
1228 * Many corner cases have been checked and seem to work,
1229 * some might have been forgotten in the test however.
1230 */
1231
1232 err = inscale * (mlt+1);
1233 if (err <= inscale/2)
1234 mlt++;
1235 return mlt;
1236}
1237
1238/* 1108/*
1239 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1109 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1240 * result. 1110 * result.