diff options
author | Paul Mackerras <paulus@samba.org> | 2005-10-19 19:23:26 -0400 |
---|---|---|
committer | Paul Mackerras <paulus@samba.org> | 2005-10-19 19:23:26 -0400 |
commit | f2783c15007468c14972e2617db51e9affc7fad9 (patch) | |
tree | 6c8f57ee8e5cdaeb810a3ccf7f697576a7df7615 /arch/powerpc/kernel/time.c | |
parent | 03f88e9f7145b03fd0d855918d54a3bf5342ac5e (diff) |
powerpc: Merge time.c and asm/time.h.
We now use the merged time.c for both 32-bit and 64-bit compilation
with ARCH=powerpc, and for ARCH=ppc64, but not for ARCH=ppc32.
This removes setup_default_decr (folds its function into time_init)
and moves wakeup_decrementer into time.c. This also makes an
asm-powerpc/rtc.h.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc/kernel/time.c')
-rw-r--r-- | arch/powerpc/kernel/time.c | 978 |
1 files changed, 978 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c new file mode 100644 index 000000000000..d1608473075f --- /dev/null +++ b/arch/powerpc/kernel/time.c | |||
@@ -0,0 +1,978 @@ | |||
1 | /* | ||
2 | * Common time routines among all ppc machines. | ||
3 | * | ||
4 | * Written by Cort Dougan (cort@cs.nmt.edu) to merge | ||
5 | * Paul Mackerras' version and mine for PReP and Pmac. | ||
6 | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | ||
7 | * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) | ||
8 | * | ||
9 | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | ||
10 | * to make clock more stable (2.4.0-test5). The only thing | ||
11 | * that this code assumes is that the timebases have been synchronized | ||
12 | * by firmware on SMP and are never stopped (never do sleep | ||
13 | * on SMP then, nap and doze are OK). | ||
14 | * | ||
15 | * Speeded up do_gettimeofday by getting rid of references to | ||
16 | * xtime (which required locks for consistency). (mikejc@us.ibm.com) | ||
17 | * | ||
18 | * TODO (not necessarily in this file): | ||
19 | * - improve precision and reproducibility of timebase frequency | ||
20 | * measurement at boot time. (for iSeries, we calibrate the timebase | ||
21 | * against the Titan chip's clock.) | ||
22 | * - for astronomical applications: add a new function to get | ||
23 | * non ambiguous timestamps even around leap seconds. This needs | ||
24 | * a new timestamp format and a good name. | ||
25 | * | ||
26 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
27 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
28 | * | ||
29 | * This program is free software; you can redistribute it and/or | ||
30 | * modify it under the terms of the GNU General Public License | ||
31 | * as published by the Free Software Foundation; either version | ||
32 | * 2 of the License, or (at your option) any later version. | ||
33 | */ | ||
34 | |||
35 | #include <linux/config.h> | ||
36 | #include <linux/errno.h> | ||
37 | #include <linux/module.h> | ||
38 | #include <linux/sched.h> | ||
39 | #include <linux/kernel.h> | ||
40 | #include <linux/param.h> | ||
41 | #include <linux/string.h> | ||
42 | #include <linux/mm.h> | ||
43 | #include <linux/interrupt.h> | ||
44 | #include <linux/timex.h> | ||
45 | #include <linux/kernel_stat.h> | ||
46 | #include <linux/time.h> | ||
47 | #include <linux/init.h> | ||
48 | #include <linux/profile.h> | ||
49 | #include <linux/cpu.h> | ||
50 | #include <linux/security.h> | ||
51 | #include <linux/percpu.h> | ||
52 | #include <linux/rtc.h> | ||
53 | |||
54 | #include <asm/io.h> | ||
55 | #include <asm/processor.h> | ||
56 | #include <asm/nvram.h> | ||
57 | #include <asm/cache.h> | ||
58 | #include <asm/machdep.h> | ||
59 | #include <asm/uaccess.h> | ||
60 | #include <asm/time.h> | ||
61 | #include <asm/prom.h> | ||
62 | #include <asm/irq.h> | ||
63 | #include <asm/div64.h> | ||
64 | #ifdef CONFIG_PPC64 | ||
65 | #include <asm/systemcfg.h> | ||
66 | #include <asm/firmware.h> | ||
67 | #endif | ||
68 | #ifdef CONFIG_PPC_ISERIES | ||
69 | #include <asm/iSeries/ItLpQueue.h> | ||
70 | #include <asm/iSeries/HvCallXm.h> | ||
71 | #endif | ||
72 | |||
73 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | ||
74 | |||
75 | EXPORT_SYMBOL(jiffies_64); | ||
76 | |||
77 | /* keep track of when we need to update the rtc */ | ||
78 | time_t last_rtc_update; | ||
79 | extern int piranha_simulator; | ||
80 | #ifdef CONFIG_PPC_ISERIES | ||
81 | unsigned long iSeries_recal_titan = 0; | ||
82 | unsigned long iSeries_recal_tb = 0; | ||
83 | static unsigned long first_settimeofday = 1; | ||
84 | #endif | ||
85 | |||
86 | /* The decrementer counts down by 128 every 128ns on a 601. */ | ||
87 | #define DECREMENTER_COUNT_601 (1000000000 / HZ) | ||
88 | |||
89 | #define XSEC_PER_SEC (1024*1024) | ||
90 | |||
91 | #ifdef CONFIG_PPC64 | ||
92 | #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) | ||
93 | #else | ||
94 | /* compute ((xsec << 12) * max) >> 32 */ | ||
95 | #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) | ||
96 | #endif | ||
97 | |||
98 | unsigned long tb_ticks_per_jiffy; | ||
99 | unsigned long tb_ticks_per_usec = 100; /* sane default */ | ||
100 | EXPORT_SYMBOL(tb_ticks_per_usec); | ||
101 | unsigned long tb_ticks_per_sec; | ||
102 | u64 tb_to_xs; | ||
103 | unsigned tb_to_us; | ||
104 | unsigned long processor_freq; | ||
105 | DEFINE_SPINLOCK(rtc_lock); | ||
106 | EXPORT_SYMBOL_GPL(rtc_lock); | ||
107 | |||
108 | u64 tb_to_ns_scale; | ||
109 | unsigned tb_to_ns_shift; | ||
110 | |||
111 | struct gettimeofday_struct do_gtod; | ||
112 | |||
113 | extern unsigned long wall_jiffies; | ||
114 | |||
115 | extern struct timezone sys_tz; | ||
116 | static long timezone_offset; | ||
117 | |||
118 | void ppc_adjtimex(void); | ||
119 | |||
120 | static unsigned adjusting_time = 0; | ||
121 | |||
122 | unsigned long ppc_proc_freq; | ||
123 | unsigned long ppc_tb_freq; | ||
124 | |||
125 | #ifdef CONFIG_PPC32 /* XXX for now */ | ||
126 | #define boot_cpuid 0 | ||
127 | #endif | ||
128 | |||
129 | static __inline__ void timer_check_rtc(void) | ||
130 | { | ||
131 | /* | ||
132 | * update the rtc when needed, this should be performed on the | ||
133 | * right fraction of a second. Half or full second ? | ||
134 | * Full second works on mk48t59 clocks, others need testing. | ||
135 | * Note that this update is basically only used through | ||
136 | * the adjtimex system calls. Setting the HW clock in | ||
137 | * any other way is a /dev/rtc and userland business. | ||
138 | * This is still wrong by -0.5/+1.5 jiffies because of the | ||
139 | * timer interrupt resolution and possible delay, but here we | ||
140 | * hit a quantization limit which can only be solved by higher | ||
141 | * resolution timers and decoupling time management from timer | ||
142 | * interrupts. This is also wrong on the clocks | ||
143 | * which require being written at the half second boundary. | ||
144 | * We should have an rtc call that only sets the minutes and | ||
145 | * seconds like on Intel to avoid problems with non UTC clocks. | ||
146 | */ | ||
147 | if (ntp_synced() && | ||
148 | xtime.tv_sec - last_rtc_update >= 659 && | ||
149 | abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && | ||
150 | jiffies - wall_jiffies == 1) { | ||
151 | struct rtc_time tm; | ||
152 | to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); | ||
153 | tm.tm_year -= 1900; | ||
154 | tm.tm_mon -= 1; | ||
155 | if (ppc_md.set_rtc_time(&tm) == 0) | ||
156 | last_rtc_update = xtime.tv_sec + 1; | ||
157 | else | ||
158 | /* Try again one minute later */ | ||
159 | last_rtc_update += 60; | ||
160 | } | ||
161 | } | ||
162 | |||
163 | /* | ||
164 | * This version of gettimeofday has microsecond resolution. | ||
165 | */ | ||
166 | static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) | ||
167 | { | ||
168 | unsigned long sec, usec; | ||
169 | u64 tb_ticks, xsec; | ||
170 | struct gettimeofday_vars *temp_varp; | ||
171 | u64 temp_tb_to_xs, temp_stamp_xsec; | ||
172 | |||
173 | /* | ||
174 | * These calculations are faster (gets rid of divides) | ||
175 | * if done in units of 1/2^20 rather than microseconds. | ||
176 | * The conversion to microseconds at the end is done | ||
177 | * without a divide (and in fact, without a multiply) | ||
178 | */ | ||
179 | temp_varp = do_gtod.varp; | ||
180 | tb_ticks = tb_val - temp_varp->tb_orig_stamp; | ||
181 | temp_tb_to_xs = temp_varp->tb_to_xs; | ||
182 | temp_stamp_xsec = temp_varp->stamp_xsec; | ||
183 | xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); | ||
184 | sec = xsec / XSEC_PER_SEC; | ||
185 | usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); | ||
186 | usec = SCALE_XSEC(usec, 1000000); | ||
187 | |||
188 | tv->tv_sec = sec; | ||
189 | tv->tv_usec = usec; | ||
190 | } | ||
191 | |||
192 | void do_gettimeofday(struct timeval *tv) | ||
193 | { | ||
194 | __do_gettimeofday(tv, get_tb()); | ||
195 | } | ||
196 | |||
197 | EXPORT_SYMBOL(do_gettimeofday); | ||
198 | |||
199 | /* Synchronize xtime with do_gettimeofday */ | ||
200 | |||
201 | static inline void timer_sync_xtime(unsigned long cur_tb) | ||
202 | { | ||
203 | #ifdef CONFIG_PPC64 | ||
204 | /* why do we do this? */ | ||
205 | struct timeval my_tv; | ||
206 | |||
207 | __do_gettimeofday(&my_tv, cur_tb); | ||
208 | |||
209 | if (xtime.tv_sec <= my_tv.tv_sec) { | ||
210 | xtime.tv_sec = my_tv.tv_sec; | ||
211 | xtime.tv_nsec = my_tv.tv_usec * 1000; | ||
212 | } | ||
213 | #endif | ||
214 | } | ||
215 | |||
216 | /* | ||
217 | * There are two copies of tb_to_xs and stamp_xsec so that no | ||
218 | * lock is needed to access and use these values in | ||
219 | * do_gettimeofday. We alternate the copies and as long as a | ||
220 | * reasonable time elapses between changes, there will never | ||
221 | * be inconsistent values. ntpd has a minimum of one minute | ||
222 | * between updates. | ||
223 | */ | ||
224 | static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, | ||
225 | unsigned int new_tb_to_xs) | ||
226 | { | ||
227 | unsigned temp_idx; | ||
228 | struct gettimeofday_vars *temp_varp; | ||
229 | |||
230 | temp_idx = (do_gtod.var_idx == 0); | ||
231 | temp_varp = &do_gtod.vars[temp_idx]; | ||
232 | |||
233 | temp_varp->tb_to_xs = new_tb_to_xs; | ||
234 | temp_varp->tb_orig_stamp = new_tb_stamp; | ||
235 | temp_varp->stamp_xsec = new_stamp_xsec; | ||
236 | smp_mb(); | ||
237 | do_gtod.varp = temp_varp; | ||
238 | do_gtod.var_idx = temp_idx; | ||
239 | |||
240 | #ifdef CONFIG_PPC64 | ||
241 | /* | ||
242 | * tb_update_count is used to allow the userspace gettimeofday code | ||
243 | * to assure itself that it sees a consistent view of the tb_to_xs and | ||
244 | * stamp_xsec variables. It reads the tb_update_count, then reads | ||
245 | * tb_to_xs and stamp_xsec and then reads tb_update_count again. If | ||
246 | * the two values of tb_update_count match and are even then the | ||
247 | * tb_to_xs and stamp_xsec values are consistent. If not, then it | ||
248 | * loops back and reads them again until this criteria is met. | ||
249 | */ | ||
250 | ++(systemcfg->tb_update_count); | ||
251 | smp_wmb(); | ||
252 | systemcfg->tb_orig_stamp = new_tb_stamp; | ||
253 | systemcfg->stamp_xsec = new_stamp_xsec; | ||
254 | systemcfg->tb_to_xs = new_tb_to_xs; | ||
255 | smp_wmb(); | ||
256 | ++(systemcfg->tb_update_count); | ||
257 | #endif | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * When the timebase - tb_orig_stamp gets too big, we do a manipulation | ||
262 | * between tb_orig_stamp and stamp_xsec. The goal here is to keep the | ||
263 | * difference tb - tb_orig_stamp small enough to always fit inside a | ||
264 | * 32 bits number. This is a requirement of our fast 32 bits userland | ||
265 | * implementation in the vdso. If we "miss" a call to this function | ||
266 | * (interrupt latency, CPU locked in a spinlock, ...) and we end up | ||
267 | * with a too big difference, then the vdso will fallback to calling | ||
268 | * the syscall | ||
269 | */ | ||
270 | static __inline__ void timer_recalc_offset(u64 cur_tb) | ||
271 | { | ||
272 | unsigned long offset; | ||
273 | u64 new_stamp_xsec; | ||
274 | |||
275 | offset = cur_tb - do_gtod.varp->tb_orig_stamp; | ||
276 | if ((offset & 0x80000000u) == 0) | ||
277 | return; | ||
278 | new_stamp_xsec = do_gtod.varp->stamp_xsec | ||
279 | + mulhdu(offset, do_gtod.varp->tb_to_xs); | ||
280 | update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); | ||
281 | } | ||
282 | |||
283 | #ifdef CONFIG_SMP | ||
284 | unsigned long profile_pc(struct pt_regs *regs) | ||
285 | { | ||
286 | unsigned long pc = instruction_pointer(regs); | ||
287 | |||
288 | if (in_lock_functions(pc)) | ||
289 | return regs->link; | ||
290 | |||
291 | return pc; | ||
292 | } | ||
293 | EXPORT_SYMBOL(profile_pc); | ||
294 | #endif | ||
295 | |||
296 | #ifdef CONFIG_PPC_ISERIES | ||
297 | |||
298 | /* | ||
299 | * This function recalibrates the timebase based on the 49-bit time-of-day | ||
300 | * value in the Titan chip. The Titan is much more accurate than the value | ||
301 | * returned by the service processor for the timebase frequency. | ||
302 | */ | ||
303 | |||
304 | static void iSeries_tb_recal(void) | ||
305 | { | ||
306 | struct div_result divres; | ||
307 | unsigned long titan, tb; | ||
308 | tb = get_tb(); | ||
309 | titan = HvCallXm_loadTod(); | ||
310 | if ( iSeries_recal_titan ) { | ||
311 | unsigned long tb_ticks = tb - iSeries_recal_tb; | ||
312 | unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; | ||
313 | unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; | ||
314 | unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; | ||
315 | long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; | ||
316 | char sign = '+'; | ||
317 | /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ | ||
318 | new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; | ||
319 | |||
320 | if ( tick_diff < 0 ) { | ||
321 | tick_diff = -tick_diff; | ||
322 | sign = '-'; | ||
323 | } | ||
324 | if ( tick_diff ) { | ||
325 | if ( tick_diff < tb_ticks_per_jiffy/25 ) { | ||
326 | printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", | ||
327 | new_tb_ticks_per_jiffy, sign, tick_diff ); | ||
328 | tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; | ||
329 | tb_ticks_per_sec = new_tb_ticks_per_sec; | ||
330 | div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); | ||
331 | do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | ||
332 | tb_to_xs = divres.result_low; | ||
333 | do_gtod.varp->tb_to_xs = tb_to_xs; | ||
334 | systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; | ||
335 | systemcfg->tb_to_xs = tb_to_xs; | ||
336 | } | ||
337 | else { | ||
338 | printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" | ||
339 | " new tb_ticks_per_jiffy = %lu\n" | ||
340 | " old tb_ticks_per_jiffy = %lu\n", | ||
341 | new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); | ||
342 | } | ||
343 | } | ||
344 | } | ||
345 | iSeries_recal_titan = titan; | ||
346 | iSeries_recal_tb = tb; | ||
347 | } | ||
348 | #endif | ||
349 | |||
350 | /* | ||
351 | * For iSeries shared processors, we have to let the hypervisor | ||
352 | * set the hardware decrementer. We set a virtual decrementer | ||
353 | * in the lppaca and call the hypervisor if the virtual | ||
354 | * decrementer is less than the current value in the hardware | ||
355 | * decrementer. (almost always the new decrementer value will | ||
356 | * be greater than the current hardware decementer so the hypervisor | ||
357 | * call will not be needed) | ||
358 | */ | ||
359 | |||
360 | u64 tb_last_stamp __cacheline_aligned_in_smp; | ||
361 | |||
362 | /* | ||
363 | * Note that on ppc32 this only stores the bottom 32 bits of | ||
364 | * the timebase value, but that's enough to tell when a jiffy | ||
365 | * has passed. | ||
366 | */ | ||
367 | DEFINE_PER_CPU(unsigned long, last_jiffy); | ||
368 | |||
369 | /* | ||
370 | * timer_interrupt - gets called when the decrementer overflows, | ||
371 | * with interrupts disabled. | ||
372 | */ | ||
373 | void timer_interrupt(struct pt_regs * regs) | ||
374 | { | ||
375 | int next_dec; | ||
376 | int cpu = smp_processor_id(); | ||
377 | unsigned long ticks; | ||
378 | |||
379 | #ifdef CONFIG_PPC32 | ||
380 | if (atomic_read(&ppc_n_lost_interrupts) != 0) | ||
381 | do_IRQ(regs); | ||
382 | #endif | ||
383 | |||
384 | irq_enter(); | ||
385 | |||
386 | profile_tick(CPU_PROFILING, regs); | ||
387 | |||
388 | #ifdef CONFIG_PPC_ISERIES | ||
389 | get_paca()->lppaca.int_dword.fields.decr_int = 0; | ||
390 | #endif | ||
391 | |||
392 | while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) | ||
393 | >= tb_ticks_per_jiffy) { | ||
394 | /* Update last_jiffy */ | ||
395 | per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; | ||
396 | /* Handle RTCL overflow on 601 */ | ||
397 | if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) | ||
398 | per_cpu(last_jiffy, cpu) -= 1000000000; | ||
399 | |||
400 | /* | ||
401 | * We cannot disable the decrementer, so in the period | ||
402 | * between this cpu's being marked offline in cpu_online_map | ||
403 | * and calling stop-self, it is taking timer interrupts. | ||
404 | * Avoid calling into the scheduler rebalancing code if this | ||
405 | * is the case. | ||
406 | */ | ||
407 | if (!cpu_is_offline(cpu)) | ||
408 | update_process_times(user_mode(regs)); | ||
409 | |||
410 | /* | ||
411 | * No need to check whether cpu is offline here; boot_cpuid | ||
412 | * should have been fixed up by now. | ||
413 | */ | ||
414 | if (cpu != boot_cpuid) | ||
415 | continue; | ||
416 | |||
417 | write_seqlock(&xtime_lock); | ||
418 | tb_last_stamp += tb_ticks_per_jiffy; | ||
419 | timer_recalc_offset(tb_last_stamp); | ||
420 | do_timer(regs); | ||
421 | timer_sync_xtime(tb_last_stamp); | ||
422 | timer_check_rtc(); | ||
423 | write_sequnlock(&xtime_lock); | ||
424 | if (adjusting_time && (time_adjust == 0)) | ||
425 | ppc_adjtimex(); | ||
426 | } | ||
427 | |||
428 | next_dec = tb_ticks_per_jiffy - ticks; | ||
429 | set_dec(next_dec); | ||
430 | |||
431 | #ifdef CONFIG_PPC_ISERIES | ||
432 | if (hvlpevent_is_pending()) | ||
433 | process_hvlpevents(regs); | ||
434 | #endif | ||
435 | |||
436 | #ifdef CONFIG_PPC64 | ||
437 | /* collect purr register values often, for accurate calculations */ | ||
438 | if (firmware_has_feature(FW_FEATURE_SPLPAR)) { | ||
439 | struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); | ||
440 | cu->current_tb = mfspr(SPRN_PURR); | ||
441 | } | ||
442 | #endif | ||
443 | |||
444 | irq_exit(); | ||
445 | } | ||
446 | |||
447 | void wakeup_decrementer(void) | ||
448 | { | ||
449 | int i; | ||
450 | |||
451 | set_dec(tb_ticks_per_jiffy); | ||
452 | /* | ||
453 | * We don't expect this to be called on a machine with a 601, | ||
454 | * so using get_tbl is fine. | ||
455 | */ | ||
456 | tb_last_stamp = get_tb(); | ||
457 | for_each_cpu(i) | ||
458 | per_cpu(last_jiffy, i) = tb_last_stamp; | ||
459 | } | ||
460 | |||
461 | #ifdef CONFIG_SMPxxx | ||
462 | void __init smp_space_timers(unsigned int max_cpus) | ||
463 | { | ||
464 | int i; | ||
465 | unsigned long offset = tb_ticks_per_jiffy / max_cpus; | ||
466 | unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); | ||
467 | |||
468 | for_each_cpu(i) { | ||
469 | if (i != boot_cpuid) { | ||
470 | previous_tb += offset; | ||
471 | per_cpu(last_jiffy, i) = previous_tb; | ||
472 | } | ||
473 | } | ||
474 | } | ||
475 | #endif | ||
476 | |||
477 | /* | ||
478 | * Scheduler clock - returns current time in nanosec units. | ||
479 | * | ||
480 | * Note: mulhdu(a, b) (multiply high double unsigned) returns | ||
481 | * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b | ||
482 | * are 64-bit unsigned numbers. | ||
483 | */ | ||
484 | unsigned long long sched_clock(void) | ||
485 | { | ||
486 | return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; | ||
487 | } | ||
488 | |||
489 | int do_settimeofday(struct timespec *tv) | ||
490 | { | ||
491 | time_t wtm_sec, new_sec = tv->tv_sec; | ||
492 | long wtm_nsec, new_nsec = tv->tv_nsec; | ||
493 | unsigned long flags; | ||
494 | long int tb_delta; | ||
495 | u64 new_xsec; | ||
496 | |||
497 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
498 | return -EINVAL; | ||
499 | |||
500 | write_seqlock_irqsave(&xtime_lock, flags); | ||
501 | |||
502 | /* | ||
503 | * Updating the RTC is not the job of this code. If the time is | ||
504 | * stepped under NTP, the RTC will be updated after STA_UNSYNC | ||
505 | * is cleared. Tools like clock/hwclock either copy the RTC | ||
506 | * to the system time, in which case there is no point in writing | ||
507 | * to the RTC again, or write to the RTC but then they don't call | ||
508 | * settimeofday to perform this operation. | ||
509 | */ | ||
510 | #ifdef CONFIG_PPC_ISERIES | ||
511 | if (first_settimeofday) { | ||
512 | iSeries_tb_recal(); | ||
513 | first_settimeofday = 0; | ||
514 | } | ||
515 | #endif | ||
516 | tb_delta = tb_ticks_since(tb_last_stamp); | ||
517 | tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; | ||
518 | |||
519 | new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta); | ||
520 | |||
521 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); | ||
522 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); | ||
523 | |||
524 | set_normalized_timespec(&xtime, new_sec, new_nsec); | ||
525 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
526 | |||
527 | /* In case of a large backwards jump in time with NTP, we want the | ||
528 | * clock to be updated as soon as the PLL is again in lock. | ||
529 | */ | ||
530 | last_rtc_update = new_sec - 658; | ||
531 | |||
532 | ntp_clear(); | ||
533 | |||
534 | new_xsec = (u64)new_nsec * XSEC_PER_SEC; | ||
535 | do_div(new_xsec, NSEC_PER_SEC); | ||
536 | new_xsec += (u64)new_sec * XSEC_PER_SEC; | ||
537 | update_gtod(tb_last_stamp, new_xsec, do_gtod.varp->tb_to_xs); | ||
538 | |||
539 | #ifdef CONFIG_PPC64 | ||
540 | systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; | ||
541 | systemcfg->tz_dsttime = sys_tz.tz_dsttime; | ||
542 | #endif | ||
543 | |||
544 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
545 | clock_was_set(); | ||
546 | return 0; | ||
547 | } | ||
548 | |||
549 | EXPORT_SYMBOL(do_settimeofday); | ||
550 | |||
551 | #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_MAPLE) || defined(CONFIG_PPC_BPA) || defined(CONFIG_PPC_ISERIES) | ||
552 | void __init generic_calibrate_decr(void) | ||
553 | { | ||
554 | struct device_node *cpu; | ||
555 | struct div_result divres; | ||
556 | unsigned int *fp; | ||
557 | int node_found; | ||
558 | |||
559 | /* | ||
560 | * The cpu node should have a timebase-frequency property | ||
561 | * to tell us the rate at which the decrementer counts. | ||
562 | */ | ||
563 | cpu = of_find_node_by_type(NULL, "cpu"); | ||
564 | |||
565 | ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ | ||
566 | node_found = 0; | ||
567 | if (cpu != 0) { | ||
568 | fp = (unsigned int *)get_property(cpu, "timebase-frequency", | ||
569 | NULL); | ||
570 | if (fp != 0) { | ||
571 | node_found = 1; | ||
572 | ppc_tb_freq = *fp; | ||
573 | } | ||
574 | } | ||
575 | if (!node_found) | ||
576 | printk(KERN_ERR "WARNING: Estimating decrementer frequency " | ||
577 | "(not found)\n"); | ||
578 | |||
579 | ppc_proc_freq = DEFAULT_PROC_FREQ; | ||
580 | node_found = 0; | ||
581 | if (cpu != 0) { | ||
582 | fp = (unsigned int *)get_property(cpu, "clock-frequency", | ||
583 | NULL); | ||
584 | if (fp != 0) { | ||
585 | node_found = 1; | ||
586 | ppc_proc_freq = *fp; | ||
587 | } | ||
588 | } | ||
589 | if (!node_found) | ||
590 | printk(KERN_ERR "WARNING: Estimating processor frequency " | ||
591 | "(not found)\n"); | ||
592 | |||
593 | of_node_put(cpu); | ||
594 | |||
595 | printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", | ||
596 | ppc_tb_freq/1000000, ppc_tb_freq%1000000); | ||
597 | printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", | ||
598 | ppc_proc_freq/1000000, ppc_proc_freq%1000000); | ||
599 | |||
600 | tb_ticks_per_jiffy = ppc_tb_freq / HZ; | ||
601 | tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; | ||
602 | tb_ticks_per_usec = ppc_tb_freq / 1000000; | ||
603 | tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); | ||
604 | div128_by_32(1024*1024, 0, tb_ticks_per_sec, &divres); | ||
605 | tb_to_xs = divres.result_low; | ||
606 | } | ||
607 | #endif | ||
608 | |||
609 | unsigned long get_boot_time(void) | ||
610 | { | ||
611 | struct rtc_time tm; | ||
612 | |||
613 | if (ppc_md.get_boot_time) | ||
614 | return ppc_md.get_boot_time(); | ||
615 | if (!ppc_md.get_rtc_time) | ||
616 | return 0; | ||
617 | ppc_md.get_rtc_time(&tm); | ||
618 | return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, | ||
619 | tm.tm_hour, tm.tm_min, tm.tm_sec); | ||
620 | } | ||
621 | |||
622 | /* This function is only called on the boot processor */ | ||
623 | void __init time_init(void) | ||
624 | { | ||
625 | unsigned long flags; | ||
626 | unsigned long tm = 0; | ||
627 | struct div_result res; | ||
628 | u64 scale; | ||
629 | unsigned shift; | ||
630 | |||
631 | if (ppc_md.time_init != NULL) | ||
632 | timezone_offset = ppc_md.time_init(); | ||
633 | |||
634 | ppc_md.calibrate_decr(); | ||
635 | |||
636 | #ifdef CONFIG_PPC64 | ||
637 | get_paca()->default_decr = tb_ticks_per_jiffy; | ||
638 | #endif | ||
639 | |||
640 | /* | ||
641 | * Compute scale factor for sched_clock. | ||
642 | * The calibrate_decr() function has set tb_ticks_per_sec, | ||
643 | * which is the timebase frequency. | ||
644 | * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret | ||
645 | * the 128-bit result as a 64.64 fixed-point number. | ||
646 | * We then shift that number right until it is less than 1.0, | ||
647 | * giving us the scale factor and shift count to use in | ||
648 | * sched_clock(). | ||
649 | */ | ||
650 | div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); | ||
651 | scale = res.result_low; | ||
652 | for (shift = 0; res.result_high != 0; ++shift) { | ||
653 | scale = (scale >> 1) | (res.result_high << 63); | ||
654 | res.result_high >>= 1; | ||
655 | } | ||
656 | tb_to_ns_scale = scale; | ||
657 | tb_to_ns_shift = shift; | ||
658 | |||
659 | #ifdef CONFIG_PPC_ISERIES | ||
660 | if (!piranha_simulator) | ||
661 | #endif | ||
662 | tm = get_boot_time(); | ||
663 | |||
664 | write_seqlock_irqsave(&xtime_lock, flags); | ||
665 | xtime.tv_sec = tm; | ||
666 | xtime.tv_nsec = 0; | ||
667 | tb_last_stamp = get_tb(); | ||
668 | do_gtod.varp = &do_gtod.vars[0]; | ||
669 | do_gtod.var_idx = 0; | ||
670 | do_gtod.varp->tb_orig_stamp = tb_last_stamp; | ||
671 | __get_cpu_var(last_jiffy) = tb_last_stamp; | ||
672 | do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; | ||
673 | do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | ||
674 | do_gtod.varp->tb_to_xs = tb_to_xs; | ||
675 | do_gtod.tb_to_us = tb_to_us; | ||
676 | #ifdef CONFIG_PPC64 | ||
677 | systemcfg->tb_orig_stamp = tb_last_stamp; | ||
678 | systemcfg->tb_update_count = 0; | ||
679 | systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; | ||
680 | systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; | ||
681 | systemcfg->tb_to_xs = tb_to_xs; | ||
682 | #endif | ||
683 | |||
684 | time_freq = 0; | ||
685 | |||
686 | /* If platform provided a timezone (pmac), we correct the time */ | ||
687 | if (timezone_offset) { | ||
688 | sys_tz.tz_minuteswest = -timezone_offset / 60; | ||
689 | sys_tz.tz_dsttime = 0; | ||
690 | xtime.tv_sec -= timezone_offset; | ||
691 | } | ||
692 | |||
693 | last_rtc_update = xtime.tv_sec; | ||
694 | set_normalized_timespec(&wall_to_monotonic, | ||
695 | -xtime.tv_sec, -xtime.tv_nsec); | ||
696 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
697 | |||
698 | /* Not exact, but the timer interrupt takes care of this */ | ||
699 | set_dec(tb_ticks_per_jiffy); | ||
700 | } | ||
701 | |||
702 | /* | ||
703 | * After adjtimex is called, adjust the conversion of tb ticks | ||
704 | * to microseconds to keep do_gettimeofday synchronized | ||
705 | * with ntpd. | ||
706 | * | ||
707 | * Use the time_adjust, time_freq and time_offset computed by adjtimex to | ||
708 | * adjust the frequency. | ||
709 | */ | ||
710 | |||
711 | /* #define DEBUG_PPC_ADJTIMEX 1 */ | ||
712 | |||
713 | void ppc_adjtimex(void) | ||
714 | { | ||
715 | #ifdef CONFIG_PPC64 | ||
716 | unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, | ||
717 | new_tb_to_xs, new_xsec, new_stamp_xsec; | ||
718 | unsigned long tb_ticks_per_sec_delta; | ||
719 | long delta_freq, ltemp; | ||
720 | struct div_result divres; | ||
721 | unsigned long flags; | ||
722 | long singleshot_ppm = 0; | ||
723 | |||
724 | /* | ||
725 | * Compute parts per million frequency adjustment to | ||
726 | * accomplish the time adjustment implied by time_offset to be | ||
727 | * applied over the elapsed time indicated by time_constant. | ||
728 | * Use SHIFT_USEC to get it into the same units as | ||
729 | * time_freq. | ||
730 | */ | ||
731 | if ( time_offset < 0 ) { | ||
732 | ltemp = -time_offset; | ||
733 | ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | ||
734 | ltemp >>= SHIFT_KG + time_constant; | ||
735 | ltemp = -ltemp; | ||
736 | } else { | ||
737 | ltemp = time_offset; | ||
738 | ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | ||
739 | ltemp >>= SHIFT_KG + time_constant; | ||
740 | } | ||
741 | |||
742 | /* If there is a single shot time adjustment in progress */ | ||
743 | if ( time_adjust ) { | ||
744 | #ifdef DEBUG_PPC_ADJTIMEX | ||
745 | printk("ppc_adjtimex: "); | ||
746 | if ( adjusting_time == 0 ) | ||
747 | printk("starting "); | ||
748 | printk("single shot time_adjust = %ld\n", time_adjust); | ||
749 | #endif | ||
750 | |||
751 | adjusting_time = 1; | ||
752 | |||
753 | /* | ||
754 | * Compute parts per million frequency adjustment | ||
755 | * to match time_adjust | ||
756 | */ | ||
757 | singleshot_ppm = tickadj * HZ; | ||
758 | /* | ||
759 | * The adjustment should be tickadj*HZ to match the code in | ||
760 | * linux/kernel/timer.c, but experiments show that this is too | ||
761 | * large. 3/4 of tickadj*HZ seems about right | ||
762 | */ | ||
763 | singleshot_ppm -= singleshot_ppm / 4; | ||
764 | /* Use SHIFT_USEC to get it into the same units as time_freq */ | ||
765 | singleshot_ppm <<= SHIFT_USEC; | ||
766 | if ( time_adjust < 0 ) | ||
767 | singleshot_ppm = -singleshot_ppm; | ||
768 | } | ||
769 | else { | ||
770 | #ifdef DEBUG_PPC_ADJTIMEX | ||
771 | if ( adjusting_time ) | ||
772 | printk("ppc_adjtimex: ending single shot time_adjust\n"); | ||
773 | #endif | ||
774 | adjusting_time = 0; | ||
775 | } | ||
776 | |||
777 | /* Add up all of the frequency adjustments */ | ||
778 | delta_freq = time_freq + ltemp + singleshot_ppm; | ||
779 | |||
780 | /* | ||
781 | * Compute a new value for tb_ticks_per_sec based on | ||
782 | * the frequency adjustment | ||
783 | */ | ||
784 | den = 1000000 * (1 << (SHIFT_USEC - 8)); | ||
785 | if ( delta_freq < 0 ) { | ||
786 | tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; | ||
787 | new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; | ||
788 | } | ||
789 | else { | ||
790 | tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; | ||
791 | new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; | ||
792 | } | ||
793 | |||
794 | #ifdef DEBUG_PPC_ADJTIMEX | ||
795 | printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); | ||
796 | printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); | ||
797 | #endif | ||
798 | |||
799 | /* | ||
800 | * Compute a new value of tb_to_xs (used to convert tb to | ||
801 | * microseconds) and a new value of stamp_xsec which is the | ||
802 | * time (in 1/2^20 second units) corresponding to | ||
803 | * tb_orig_stamp. This new value of stamp_xsec compensates | ||
804 | * for the change in frequency (implied by the new tb_to_xs) | ||
805 | * which guarantees that the current time remains the same. | ||
806 | */ | ||
807 | write_seqlock_irqsave( &xtime_lock, flags ); | ||
808 | tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; | ||
809 | div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); | ||
810 | new_tb_to_xs = divres.result_low; | ||
811 | new_xsec = mulhdu(tb_ticks, new_tb_to_xs); | ||
812 | |||
813 | old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); | ||
814 | new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; | ||
815 | |||
816 | update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); | ||
817 | |||
818 | write_sequnlock_irqrestore( &xtime_lock, flags ); | ||
819 | #endif /* CONFIG_PPC64 */ | ||
820 | } | ||
821 | |||
822 | |||
823 | #define FEBRUARY 2 | ||
824 | #define STARTOFTIME 1970 | ||
825 | #define SECDAY 86400L | ||
826 | #define SECYR (SECDAY * 365) | ||
827 | #define leapyear(year) ((year) % 4 == 0 && \ | ||
828 | ((year) % 100 != 0 || (year) % 400 == 0)) | ||
829 | #define days_in_year(a) (leapyear(a) ? 366 : 365) | ||
830 | #define days_in_month(a) (month_days[(a) - 1]) | ||
831 | |||
832 | static int month_days[12] = { | ||
833 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | ||
834 | }; | ||
835 | |||
836 | /* | ||
837 | * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) | ||
838 | */ | ||
839 | void GregorianDay(struct rtc_time * tm) | ||
840 | { | ||
841 | int leapsToDate; | ||
842 | int lastYear; | ||
843 | int day; | ||
844 | int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; | ||
845 | |||
846 | lastYear = tm->tm_year - 1; | ||
847 | |||
848 | /* | ||
849 | * Number of leap corrections to apply up to end of last year | ||
850 | */ | ||
851 | leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; | ||
852 | |||
853 | /* | ||
854 | * This year is a leap year if it is divisible by 4 except when it is | ||
855 | * divisible by 100 unless it is divisible by 400 | ||
856 | * | ||
857 | * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was | ||
858 | */ | ||
859 | day = tm->tm_mon > 2 && leapyear(tm->tm_year); | ||
860 | |||
861 | day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + | ||
862 | tm->tm_mday; | ||
863 | |||
864 | tm->tm_wday = day % 7; | ||
865 | } | ||
866 | |||
867 | void to_tm(int tim, struct rtc_time * tm) | ||
868 | { | ||
869 | register int i; | ||
870 | register long hms, day; | ||
871 | |||
872 | day = tim / SECDAY; | ||
873 | hms = tim % SECDAY; | ||
874 | |||
875 | /* Hours, minutes, seconds are easy */ | ||
876 | tm->tm_hour = hms / 3600; | ||
877 | tm->tm_min = (hms % 3600) / 60; | ||
878 | tm->tm_sec = (hms % 3600) % 60; | ||
879 | |||
880 | /* Number of years in days */ | ||
881 | for (i = STARTOFTIME; day >= days_in_year(i); i++) | ||
882 | day -= days_in_year(i); | ||
883 | tm->tm_year = i; | ||
884 | |||
885 | /* Number of months in days left */ | ||
886 | if (leapyear(tm->tm_year)) | ||
887 | days_in_month(FEBRUARY) = 29; | ||
888 | for (i = 1; day >= days_in_month(i); i++) | ||
889 | day -= days_in_month(i); | ||
890 | days_in_month(FEBRUARY) = 28; | ||
891 | tm->tm_mon = i; | ||
892 | |||
893 | /* Days are what is left over (+1) from all that. */ | ||
894 | tm->tm_mday = day + 1; | ||
895 | |||
896 | /* | ||
897 | * Determine the day of week | ||
898 | */ | ||
899 | GregorianDay(tm); | ||
900 | } | ||
901 | |||
902 | /* Auxiliary function to compute scaling factors */ | ||
903 | /* Actually the choice of a timebase running at 1/4 the of the bus | ||
904 | * frequency giving resolution of a few tens of nanoseconds is quite nice. | ||
905 | * It makes this computation very precise (27-28 bits typically) which | ||
906 | * is optimistic considering the stability of most processor clock | ||
907 | * oscillators and the precision with which the timebase frequency | ||
908 | * is measured but does not harm. | ||
909 | */ | ||
910 | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) | ||
911 | { | ||
912 | unsigned mlt=0, tmp, err; | ||
913 | /* No concern for performance, it's done once: use a stupid | ||
914 | * but safe and compact method to find the multiplier. | ||
915 | */ | ||
916 | |||
917 | for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | ||
918 | if (mulhwu(inscale, mlt|tmp) < outscale) | ||
919 | mlt |= tmp; | ||
920 | } | ||
921 | |||
922 | /* We might still be off by 1 for the best approximation. | ||
923 | * A side effect of this is that if outscale is too large | ||
924 | * the returned value will be zero. | ||
925 | * Many corner cases have been checked and seem to work, | ||
926 | * some might have been forgotten in the test however. | ||
927 | */ | ||
928 | |||
929 | err = inscale * (mlt+1); | ||
930 | if (err <= inscale/2) | ||
931 | mlt++; | ||
932 | return mlt; | ||
933 | } | ||
934 | |||
935 | /* | ||
936 | * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit | ||
937 | * result. | ||
938 | */ | ||
939 | void div128_by_32(u64 dividend_high, u64 dividend_low, | ||
940 | unsigned divisor, struct div_result *dr) | ||
941 | { | ||
942 | unsigned long a, b, c, d; | ||
943 | unsigned long w, x, y, z; | ||
944 | u64 ra, rb, rc; | ||
945 | |||
946 | a = dividend_high >> 32; | ||
947 | b = dividend_high & 0xffffffff; | ||
948 | c = dividend_low >> 32; | ||
949 | d = dividend_low & 0xffffffff; | ||
950 | |||
951 | w = a / divisor; | ||
952 | ra = ((u64)(a - (w * divisor)) << 32) + b; | ||
953 | |||
954 | #ifdef CONFIG_PPC64 | ||
955 | x = ra / divisor; | ||
956 | rb = ((ra - (x * divisor)) << 32) + c; | ||
957 | |||
958 | y = rb / divisor; | ||
959 | rc = ((rb - (y * divisor)) << 32) + d; | ||
960 | |||
961 | z = rc / divisor; | ||
962 | #else | ||
963 | /* for 32-bit, use do_div from div64.h */ | ||
964 | rb = ((u64) do_div(ra, divisor) << 32) + c; | ||
965 | x = ra; | ||
966 | |||
967 | rc = ((u64) do_div(rb, divisor) << 32) + d; | ||
968 | y = rb; | ||
969 | |||
970 | do_div(rc, divisor); | ||
971 | z = rc; | ||
972 | #endif | ||
973 | |||
974 | dr->result_high = ((u64)w << 32) + x; | ||
975 | dr->result_low = ((u64)y << 32) + z; | ||
976 | |||
977 | } | ||
978 | |||