aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/rtasd.c
diff options
context:
space:
mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2009-09-24 15:30:05 -0400
committerBenjamin Herrenschmidt <benh@kernel.crashing.org>2009-10-30 02:20:53 -0400
commit3d541c4b7f6efd55a98189afd1b2f1c9d048c1b3 (patch)
tree37ea005412feedefe836afd0752051b0c93f4f71 /arch/powerpc/kernel/rtasd.c
parent188917e183cf9ad0374b571006d0fc6d48a7f447 (diff)
powerpc/chrp: Use the same RTAS daemon as pSeries
The CHRP code has some fishy timer based code to scan the RTAS event log, which uses a 1KB stack buffer and doesn't even use the results. The pSeries code as a nicer daemon that allows userspace to read the event log and basically uses the same RTAS interface This patch moves rtasd.c out of platform/pseries and makes it usable by CHRP, after removing the old crufty event log mechanism in there. The nvram logging part of the daemon is still only available on 64-bit since the underlying nvram management routines aren't currently shared. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Diffstat (limited to 'arch/powerpc/kernel/rtasd.c')
-rw-r--r--arch/powerpc/kernel/rtasd.c539
1 files changed, 539 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/rtasd.c b/arch/powerpc/kernel/rtasd.c
new file mode 100644
index 000000000000..2e4832ab2108
--- /dev/null
+++ b/arch/powerpc/kernel/rtasd.c
@@ -0,0 +1,539 @@
1/*
2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Communication to userspace based on kernel/printk.c
10 */
11
12#include <linux/types.h>
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/kernel.h>
16#include <linux/poll.h>
17#include <linux/proc_fs.h>
18#include <linux/init.h>
19#include <linux/vmalloc.h>
20#include <linux/spinlock.h>
21#include <linux/cpu.h>
22#include <linux/workqueue.h>
23
24#include <asm/uaccess.h>
25#include <asm/io.h>
26#include <asm/rtas.h>
27#include <asm/prom.h>
28#include <asm/nvram.h>
29#include <asm/atomic.h>
30#include <asm/machdep.h>
31
32
33static DEFINE_SPINLOCK(rtasd_log_lock);
34
35static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
36
37static char *rtas_log_buf;
38static unsigned long rtas_log_start;
39static unsigned long rtas_log_size;
40
41static int surveillance_timeout = -1;
42
43static unsigned int rtas_error_log_max;
44static unsigned int rtas_error_log_buffer_max;
45
46/* RTAS service tokens */
47static unsigned int event_scan;
48static unsigned int rtas_event_scan_rate;
49
50static int full_rtas_msgs = 0;
51
52/* Stop logging to nvram after first fatal error */
53static int logging_enabled; /* Until we initialize everything,
54 * make sure we don't try logging
55 * anything */
56static int error_log_cnt;
57
58/*
59 * Since we use 32 bit RTAS, the physical address of this must be below
60 * 4G or else bad things happen. Allocate this in the kernel data and
61 * make it big enough.
62 */
63static unsigned char logdata[RTAS_ERROR_LOG_MAX];
64
65static char *rtas_type[] = {
66 "Unknown", "Retry", "TCE Error", "Internal Device Failure",
67 "Timeout", "Data Parity", "Address Parity", "Cache Parity",
68 "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
69};
70
71static char *rtas_event_type(int type)
72{
73 if ((type > 0) && (type < 11))
74 return rtas_type[type];
75
76 switch (type) {
77 case RTAS_TYPE_EPOW:
78 return "EPOW";
79 case RTAS_TYPE_PLATFORM:
80 return "Platform Error";
81 case RTAS_TYPE_IO:
82 return "I/O Event";
83 case RTAS_TYPE_INFO:
84 return "Platform Information Event";
85 case RTAS_TYPE_DEALLOC:
86 return "Resource Deallocation Event";
87 case RTAS_TYPE_DUMP:
88 return "Dump Notification Event";
89 }
90
91 return rtas_type[0];
92}
93
94/* To see this info, grep RTAS /var/log/messages and each entry
95 * will be collected together with obvious begin/end.
96 * There will be a unique identifier on the begin and end lines.
97 * This will persist across reboots.
98 *
99 * format of error logs returned from RTAS:
100 * bytes (size) : contents
101 * --------------------------------------------------------
102 * 0-7 (8) : rtas_error_log
103 * 8-47 (40) : extended info
104 * 48-51 (4) : vendor id
105 * 52-1023 (vendor specific) : location code and debug data
106 */
107static void printk_log_rtas(char *buf, int len)
108{
109
110 int i,j,n = 0;
111 int perline = 16;
112 char buffer[64];
113 char * str = "RTAS event";
114
115 if (full_rtas_msgs) {
116 printk(RTAS_DEBUG "%d -------- %s begin --------\n",
117 error_log_cnt, str);
118
119 /*
120 * Print perline bytes on each line, each line will start
121 * with RTAS and a changing number, so syslogd will
122 * print lines that are otherwise the same. Separate every
123 * 4 bytes with a space.
124 */
125 for (i = 0; i < len; i++) {
126 j = i % perline;
127 if (j == 0) {
128 memset(buffer, 0, sizeof(buffer));
129 n = sprintf(buffer, "RTAS %d:", i/perline);
130 }
131
132 if ((i % 4) == 0)
133 n += sprintf(buffer+n, " ");
134
135 n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
136
137 if (j == (perline-1))
138 printk(KERN_DEBUG "%s\n", buffer);
139 }
140 if ((i % perline) != 0)
141 printk(KERN_DEBUG "%s\n", buffer);
142
143 printk(RTAS_DEBUG "%d -------- %s end ----------\n",
144 error_log_cnt, str);
145 } else {
146 struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
147
148 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
149 error_log_cnt, rtas_event_type(errlog->type),
150 errlog->severity);
151 }
152}
153
154static int log_rtas_len(char * buf)
155{
156 int len;
157 struct rtas_error_log *err;
158
159 /* rtas fixed header */
160 len = 8;
161 err = (struct rtas_error_log *)buf;
162 if (err->extended_log_length) {
163
164 /* extended header */
165 len += err->extended_log_length;
166 }
167
168 if (rtas_error_log_max == 0)
169 rtas_error_log_max = rtas_get_error_log_max();
170
171 if (len > rtas_error_log_max)
172 len = rtas_error_log_max;
173
174 return len;
175}
176
177/*
178 * First write to nvram, if fatal error, that is the only
179 * place we log the info. The error will be picked up
180 * on the next reboot by rtasd. If not fatal, run the
181 * method for the type of error. Currently, only RTAS
182 * errors have methods implemented, but in the future
183 * there might be a need to store data in nvram before a
184 * call to panic().
185 *
186 * XXX We write to nvram periodically, to indicate error has
187 * been written and sync'd, but there is a possibility
188 * that if we don't shutdown correctly, a duplicate error
189 * record will be created on next reboot.
190 */
191void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
192{
193 unsigned long offset;
194 unsigned long s;
195 int len = 0;
196
197 pr_debug("rtasd: logging event\n");
198 if (buf == NULL)
199 return;
200
201 spin_lock_irqsave(&rtasd_log_lock, s);
202
203 /* get length and increase count */
204 switch (err_type & ERR_TYPE_MASK) {
205 case ERR_TYPE_RTAS_LOG:
206 len = log_rtas_len(buf);
207 if (!(err_type & ERR_FLAG_BOOT))
208 error_log_cnt++;
209 break;
210 case ERR_TYPE_KERNEL_PANIC:
211 default:
212 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
213 spin_unlock_irqrestore(&rtasd_log_lock, s);
214 return;
215 }
216
217#ifdef CONFIG_PPC64
218 /* Write error to NVRAM */
219 if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
220 nvram_write_error_log(buf, len, err_type, error_log_cnt);
221#endif /* CONFIG_PPC64 */
222
223 /*
224 * rtas errors can occur during boot, and we do want to capture
225 * those somewhere, even if nvram isn't ready (why not?), and even
226 * if rtasd isn't ready. Put them into the boot log, at least.
227 */
228 if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
229 printk_log_rtas(buf, len);
230
231 /* Check to see if we need to or have stopped logging */
232 if (fatal || !logging_enabled) {
233 logging_enabled = 0;
234 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
235 spin_unlock_irqrestore(&rtasd_log_lock, s);
236 return;
237 }
238
239 /* call type specific method for error */
240 switch (err_type & ERR_TYPE_MASK) {
241 case ERR_TYPE_RTAS_LOG:
242 offset = rtas_error_log_buffer_max *
243 ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
244
245 /* First copy over sequence number */
246 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
247
248 /* Second copy over error log data */
249 offset += sizeof(int);
250 memcpy(&rtas_log_buf[offset], buf, len);
251
252 if (rtas_log_size < LOG_NUMBER)
253 rtas_log_size += 1;
254 else
255 rtas_log_start += 1;
256
257 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
258 spin_unlock_irqrestore(&rtasd_log_lock, s);
259 wake_up_interruptible(&rtas_log_wait);
260 break;
261 case ERR_TYPE_KERNEL_PANIC:
262 default:
263 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
264 spin_unlock_irqrestore(&rtasd_log_lock, s);
265 return;
266 }
267
268}
269
270static int rtas_log_open(struct inode * inode, struct file * file)
271{
272 return 0;
273}
274
275static int rtas_log_release(struct inode * inode, struct file * file)
276{
277 return 0;
278}
279
280/* This will check if all events are logged, if they are then, we
281 * know that we can safely clear the events in NVRAM.
282 * Next we'll sit and wait for something else to log.
283 */
284static ssize_t rtas_log_read(struct file * file, char __user * buf,
285 size_t count, loff_t *ppos)
286{
287 int error;
288 char *tmp;
289 unsigned long s;
290 unsigned long offset;
291
292 if (!buf || count < rtas_error_log_buffer_max)
293 return -EINVAL;
294
295 count = rtas_error_log_buffer_max;
296
297 if (!access_ok(VERIFY_WRITE, buf, count))
298 return -EFAULT;
299
300 tmp = kmalloc(count, GFP_KERNEL);
301 if (!tmp)
302 return -ENOMEM;
303
304 spin_lock_irqsave(&rtasd_log_lock, s);
305
306 /* if it's 0, then we know we got the last one (the one in NVRAM) */
307 while (rtas_log_size == 0) {
308 if (file->f_flags & O_NONBLOCK) {
309 spin_unlock_irqrestore(&rtasd_log_lock, s);
310 error = -EAGAIN;
311 goto out;
312 }
313
314 if (!logging_enabled) {
315 spin_unlock_irqrestore(&rtasd_log_lock, s);
316 error = -ENODATA;
317 goto out;
318 }
319#ifdef CONFIG_PPC64
320 nvram_clear_error_log();
321#endif /* CONFIG_PPC64 */
322
323 spin_unlock_irqrestore(&rtasd_log_lock, s);
324 error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
325 if (error)
326 goto out;
327 spin_lock_irqsave(&rtasd_log_lock, s);
328 }
329
330 offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
331 memcpy(tmp, &rtas_log_buf[offset], count);
332
333 rtas_log_start += 1;
334 rtas_log_size -= 1;
335 spin_unlock_irqrestore(&rtasd_log_lock, s);
336
337 error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
338out:
339 kfree(tmp);
340 return error;
341}
342
343static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
344{
345 poll_wait(file, &rtas_log_wait, wait);
346 if (rtas_log_size)
347 return POLLIN | POLLRDNORM;
348 return 0;
349}
350
351static const struct file_operations proc_rtas_log_operations = {
352 .read = rtas_log_read,
353 .poll = rtas_log_poll,
354 .open = rtas_log_open,
355 .release = rtas_log_release,
356};
357
358static int enable_surveillance(int timeout)
359{
360 int error;
361
362 error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
363
364 if (error == 0)
365 return 0;
366
367 if (error == -EINVAL) {
368 printk(KERN_DEBUG "rtasd: surveillance not supported\n");
369 return 0;
370 }
371
372 printk(KERN_ERR "rtasd: could not update surveillance\n");
373 return -1;
374}
375
376static void do_event_scan(void)
377{
378 int error;
379 do {
380 memset(logdata, 0, rtas_error_log_max);
381 error = rtas_call(event_scan, 4, 1, NULL,
382 RTAS_EVENT_SCAN_ALL_EVENTS, 0,
383 __pa(logdata), rtas_error_log_max);
384 if (error == -1) {
385 printk(KERN_ERR "event-scan failed\n");
386 break;
387 }
388
389 if (error == 0)
390 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
391
392 } while(error == 0);
393}
394
395static void rtas_event_scan(struct work_struct *w);
396DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
397
398/*
399 * Delay should be at least one second since some machines have problems if
400 * we call event-scan too quickly.
401 */
402static unsigned long event_scan_delay = 1*HZ;
403static int first_pass = 1;
404
405static void rtas_event_scan(struct work_struct *w)
406{
407 unsigned int cpu;
408
409 do_event_scan();
410
411 get_online_cpus();
412
413 cpu = next_cpu(smp_processor_id(), cpu_online_map);
414 if (cpu == NR_CPUS) {
415 cpu = first_cpu(cpu_online_map);
416
417 if (first_pass) {
418 first_pass = 0;
419 event_scan_delay = 30*HZ/rtas_event_scan_rate;
420
421 if (surveillance_timeout != -1) {
422 pr_debug("rtasd: enabling surveillance\n");
423 enable_surveillance(surveillance_timeout);
424 pr_debug("rtasd: surveillance enabled\n");
425 }
426 }
427 }
428
429 schedule_delayed_work_on(cpu, &event_scan_work,
430 __round_jiffies_relative(event_scan_delay, cpu));
431
432 put_online_cpus();
433}
434
435#ifdef CONFIG_PPC64
436static void retreive_nvram_error_log(void)
437{
438 unsigned int err_type ;
439 int rc ;
440
441 /* See if we have any error stored in NVRAM */
442 memset(logdata, 0, rtas_error_log_max);
443 rc = nvram_read_error_log(logdata, rtas_error_log_max,
444 &err_type, &error_log_cnt);
445 /* We can use rtas_log_buf now */
446 logging_enabled = 1;
447 if (!rc) {
448 if (err_type != ERR_FLAG_ALREADY_LOGGED) {
449 pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
450 }
451 }
452}
453#else /* CONFIG_PPC64 */
454static void retreive_nvram_error_log(void)
455{
456}
457#endif /* CONFIG_PPC64 */
458
459static void start_event_scan(void)
460{
461 printk(KERN_DEBUG "RTAS daemon started\n");
462 pr_debug("rtasd: will sleep for %d milliseconds\n",
463 (30000 / rtas_event_scan_rate));
464
465 /* Retreive errors from nvram if any */
466 retreive_nvram_error_log();
467
468 schedule_delayed_work_on(first_cpu(cpu_online_map), &event_scan_work,
469 event_scan_delay);
470}
471
472static int __init rtas_init(void)
473{
474 struct proc_dir_entry *entry;
475
476 if (!machine_is(pseries) && !machine_is(chrp))
477 return 0;
478
479 /* No RTAS */
480 event_scan = rtas_token("event-scan");
481 if (event_scan == RTAS_UNKNOWN_SERVICE) {
482 printk(KERN_INFO "rtasd: No event-scan on system\n");
483 return -ENODEV;
484 }
485
486 rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
487 if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
488 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
489 return -ENODEV;
490 }
491
492 /* Make room for the sequence number */
493 rtas_error_log_max = rtas_get_error_log_max();
494 rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
495
496 rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
497 if (!rtas_log_buf) {
498 printk(KERN_ERR "rtasd: no memory\n");
499 return -ENOMEM;
500 }
501
502 entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
503 &proc_rtas_log_operations);
504 if (!entry)
505 printk(KERN_ERR "Failed to create error_log proc entry\n");
506
507 start_event_scan();
508
509 return 0;
510}
511__initcall(rtas_init);
512
513static int __init surveillance_setup(char *str)
514{
515 int i;
516
517 /* We only do surveillance on pseries */
518 if (!machine_is(pseries))
519 return 0;
520
521 if (get_option(&str,&i)) {
522 if (i >= 0 && i <= 255)
523 surveillance_timeout = i;
524 }
525
526 return 1;
527}
528__setup("surveillance=", surveillance_setup);
529
530static int __init rtasmsgs_setup(char *str)
531{
532 if (strcmp(str, "on") == 0)
533 full_rtas_msgs = 1;
534 else if (strcmp(str, "off") == 0)
535 full_rtas_msgs = 0;
536
537 return 1;
538}
539__setup("rtasmsgs=", rtasmsgs_setup);