diff options
author | Benjamin Herrenschmidt <benh@kernel.crashing.org> | 2009-09-24 15:30:05 -0400 |
---|---|---|
committer | Benjamin Herrenschmidt <benh@kernel.crashing.org> | 2009-10-30 02:20:53 -0400 |
commit | 3d541c4b7f6efd55a98189afd1b2f1c9d048c1b3 (patch) | |
tree | 37ea005412feedefe836afd0752051b0c93f4f71 /arch/powerpc/kernel/rtasd.c | |
parent | 188917e183cf9ad0374b571006d0fc6d48a7f447 (diff) |
powerpc/chrp: Use the same RTAS daemon as pSeries
The CHRP code has some fishy timer based code to scan the RTAS event
log, which uses a 1KB stack buffer and doesn't even use the results.
The pSeries code as a nicer daemon that allows userspace to read the
event log and basically uses the same RTAS interface
This patch moves rtasd.c out of platform/pseries and makes it usable
by CHRP, after removing the old crufty event log mechanism in there.
The nvram logging part of the daemon is still only available on 64-bit
since the underlying nvram management routines aren't currently shared.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Diffstat (limited to 'arch/powerpc/kernel/rtasd.c')
-rw-r--r-- | arch/powerpc/kernel/rtasd.c | 539 |
1 files changed, 539 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/rtasd.c b/arch/powerpc/kernel/rtasd.c new file mode 100644 index 000000000000..2e4832ab2108 --- /dev/null +++ b/arch/powerpc/kernel/rtasd.c | |||
@@ -0,0 +1,539 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation; either version | ||
7 | * 2 of the License, or (at your option) any later version. | ||
8 | * | ||
9 | * Communication to userspace based on kernel/printk.c | ||
10 | */ | ||
11 | |||
12 | #include <linux/types.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/sched.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/poll.h> | ||
17 | #include <linux/proc_fs.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/vmalloc.h> | ||
20 | #include <linux/spinlock.h> | ||
21 | #include <linux/cpu.h> | ||
22 | #include <linux/workqueue.h> | ||
23 | |||
24 | #include <asm/uaccess.h> | ||
25 | #include <asm/io.h> | ||
26 | #include <asm/rtas.h> | ||
27 | #include <asm/prom.h> | ||
28 | #include <asm/nvram.h> | ||
29 | #include <asm/atomic.h> | ||
30 | #include <asm/machdep.h> | ||
31 | |||
32 | |||
33 | static DEFINE_SPINLOCK(rtasd_log_lock); | ||
34 | |||
35 | static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); | ||
36 | |||
37 | static char *rtas_log_buf; | ||
38 | static unsigned long rtas_log_start; | ||
39 | static unsigned long rtas_log_size; | ||
40 | |||
41 | static int surveillance_timeout = -1; | ||
42 | |||
43 | static unsigned int rtas_error_log_max; | ||
44 | static unsigned int rtas_error_log_buffer_max; | ||
45 | |||
46 | /* RTAS service tokens */ | ||
47 | static unsigned int event_scan; | ||
48 | static unsigned int rtas_event_scan_rate; | ||
49 | |||
50 | static int full_rtas_msgs = 0; | ||
51 | |||
52 | /* Stop logging to nvram after first fatal error */ | ||
53 | static int logging_enabled; /* Until we initialize everything, | ||
54 | * make sure we don't try logging | ||
55 | * anything */ | ||
56 | static int error_log_cnt; | ||
57 | |||
58 | /* | ||
59 | * Since we use 32 bit RTAS, the physical address of this must be below | ||
60 | * 4G or else bad things happen. Allocate this in the kernel data and | ||
61 | * make it big enough. | ||
62 | */ | ||
63 | static unsigned char logdata[RTAS_ERROR_LOG_MAX]; | ||
64 | |||
65 | static char *rtas_type[] = { | ||
66 | "Unknown", "Retry", "TCE Error", "Internal Device Failure", | ||
67 | "Timeout", "Data Parity", "Address Parity", "Cache Parity", | ||
68 | "Address Invalid", "ECC Uncorrected", "ECC Corrupted", | ||
69 | }; | ||
70 | |||
71 | static char *rtas_event_type(int type) | ||
72 | { | ||
73 | if ((type > 0) && (type < 11)) | ||
74 | return rtas_type[type]; | ||
75 | |||
76 | switch (type) { | ||
77 | case RTAS_TYPE_EPOW: | ||
78 | return "EPOW"; | ||
79 | case RTAS_TYPE_PLATFORM: | ||
80 | return "Platform Error"; | ||
81 | case RTAS_TYPE_IO: | ||
82 | return "I/O Event"; | ||
83 | case RTAS_TYPE_INFO: | ||
84 | return "Platform Information Event"; | ||
85 | case RTAS_TYPE_DEALLOC: | ||
86 | return "Resource Deallocation Event"; | ||
87 | case RTAS_TYPE_DUMP: | ||
88 | return "Dump Notification Event"; | ||
89 | } | ||
90 | |||
91 | return rtas_type[0]; | ||
92 | } | ||
93 | |||
94 | /* To see this info, grep RTAS /var/log/messages and each entry | ||
95 | * will be collected together with obvious begin/end. | ||
96 | * There will be a unique identifier on the begin and end lines. | ||
97 | * This will persist across reboots. | ||
98 | * | ||
99 | * format of error logs returned from RTAS: | ||
100 | * bytes (size) : contents | ||
101 | * -------------------------------------------------------- | ||
102 | * 0-7 (8) : rtas_error_log | ||
103 | * 8-47 (40) : extended info | ||
104 | * 48-51 (4) : vendor id | ||
105 | * 52-1023 (vendor specific) : location code and debug data | ||
106 | */ | ||
107 | static void printk_log_rtas(char *buf, int len) | ||
108 | { | ||
109 | |||
110 | int i,j,n = 0; | ||
111 | int perline = 16; | ||
112 | char buffer[64]; | ||
113 | char * str = "RTAS event"; | ||
114 | |||
115 | if (full_rtas_msgs) { | ||
116 | printk(RTAS_DEBUG "%d -------- %s begin --------\n", | ||
117 | error_log_cnt, str); | ||
118 | |||
119 | /* | ||
120 | * Print perline bytes on each line, each line will start | ||
121 | * with RTAS and a changing number, so syslogd will | ||
122 | * print lines that are otherwise the same. Separate every | ||
123 | * 4 bytes with a space. | ||
124 | */ | ||
125 | for (i = 0; i < len; i++) { | ||
126 | j = i % perline; | ||
127 | if (j == 0) { | ||
128 | memset(buffer, 0, sizeof(buffer)); | ||
129 | n = sprintf(buffer, "RTAS %d:", i/perline); | ||
130 | } | ||
131 | |||
132 | if ((i % 4) == 0) | ||
133 | n += sprintf(buffer+n, " "); | ||
134 | |||
135 | n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); | ||
136 | |||
137 | if (j == (perline-1)) | ||
138 | printk(KERN_DEBUG "%s\n", buffer); | ||
139 | } | ||
140 | if ((i % perline) != 0) | ||
141 | printk(KERN_DEBUG "%s\n", buffer); | ||
142 | |||
143 | printk(RTAS_DEBUG "%d -------- %s end ----------\n", | ||
144 | error_log_cnt, str); | ||
145 | } else { | ||
146 | struct rtas_error_log *errlog = (struct rtas_error_log *)buf; | ||
147 | |||
148 | printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", | ||
149 | error_log_cnt, rtas_event_type(errlog->type), | ||
150 | errlog->severity); | ||
151 | } | ||
152 | } | ||
153 | |||
154 | static int log_rtas_len(char * buf) | ||
155 | { | ||
156 | int len; | ||
157 | struct rtas_error_log *err; | ||
158 | |||
159 | /* rtas fixed header */ | ||
160 | len = 8; | ||
161 | err = (struct rtas_error_log *)buf; | ||
162 | if (err->extended_log_length) { | ||
163 | |||
164 | /* extended header */ | ||
165 | len += err->extended_log_length; | ||
166 | } | ||
167 | |||
168 | if (rtas_error_log_max == 0) | ||
169 | rtas_error_log_max = rtas_get_error_log_max(); | ||
170 | |||
171 | if (len > rtas_error_log_max) | ||
172 | len = rtas_error_log_max; | ||
173 | |||
174 | return len; | ||
175 | } | ||
176 | |||
177 | /* | ||
178 | * First write to nvram, if fatal error, that is the only | ||
179 | * place we log the info. The error will be picked up | ||
180 | * on the next reboot by rtasd. If not fatal, run the | ||
181 | * method for the type of error. Currently, only RTAS | ||
182 | * errors have methods implemented, but in the future | ||
183 | * there might be a need to store data in nvram before a | ||
184 | * call to panic(). | ||
185 | * | ||
186 | * XXX We write to nvram periodically, to indicate error has | ||
187 | * been written and sync'd, but there is a possibility | ||
188 | * that if we don't shutdown correctly, a duplicate error | ||
189 | * record will be created on next reboot. | ||
190 | */ | ||
191 | void pSeries_log_error(char *buf, unsigned int err_type, int fatal) | ||
192 | { | ||
193 | unsigned long offset; | ||
194 | unsigned long s; | ||
195 | int len = 0; | ||
196 | |||
197 | pr_debug("rtasd: logging event\n"); | ||
198 | if (buf == NULL) | ||
199 | return; | ||
200 | |||
201 | spin_lock_irqsave(&rtasd_log_lock, s); | ||
202 | |||
203 | /* get length and increase count */ | ||
204 | switch (err_type & ERR_TYPE_MASK) { | ||
205 | case ERR_TYPE_RTAS_LOG: | ||
206 | len = log_rtas_len(buf); | ||
207 | if (!(err_type & ERR_FLAG_BOOT)) | ||
208 | error_log_cnt++; | ||
209 | break; | ||
210 | case ERR_TYPE_KERNEL_PANIC: | ||
211 | default: | ||
212 | WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ | ||
213 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
214 | return; | ||
215 | } | ||
216 | |||
217 | #ifdef CONFIG_PPC64 | ||
218 | /* Write error to NVRAM */ | ||
219 | if (logging_enabled && !(err_type & ERR_FLAG_BOOT)) | ||
220 | nvram_write_error_log(buf, len, err_type, error_log_cnt); | ||
221 | #endif /* CONFIG_PPC64 */ | ||
222 | |||
223 | /* | ||
224 | * rtas errors can occur during boot, and we do want to capture | ||
225 | * those somewhere, even if nvram isn't ready (why not?), and even | ||
226 | * if rtasd isn't ready. Put them into the boot log, at least. | ||
227 | */ | ||
228 | if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) | ||
229 | printk_log_rtas(buf, len); | ||
230 | |||
231 | /* Check to see if we need to or have stopped logging */ | ||
232 | if (fatal || !logging_enabled) { | ||
233 | logging_enabled = 0; | ||
234 | WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ | ||
235 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
236 | return; | ||
237 | } | ||
238 | |||
239 | /* call type specific method for error */ | ||
240 | switch (err_type & ERR_TYPE_MASK) { | ||
241 | case ERR_TYPE_RTAS_LOG: | ||
242 | offset = rtas_error_log_buffer_max * | ||
243 | ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); | ||
244 | |||
245 | /* First copy over sequence number */ | ||
246 | memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); | ||
247 | |||
248 | /* Second copy over error log data */ | ||
249 | offset += sizeof(int); | ||
250 | memcpy(&rtas_log_buf[offset], buf, len); | ||
251 | |||
252 | if (rtas_log_size < LOG_NUMBER) | ||
253 | rtas_log_size += 1; | ||
254 | else | ||
255 | rtas_log_start += 1; | ||
256 | |||
257 | WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ | ||
258 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
259 | wake_up_interruptible(&rtas_log_wait); | ||
260 | break; | ||
261 | case ERR_TYPE_KERNEL_PANIC: | ||
262 | default: | ||
263 | WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ | ||
264 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
265 | return; | ||
266 | } | ||
267 | |||
268 | } | ||
269 | |||
270 | static int rtas_log_open(struct inode * inode, struct file * file) | ||
271 | { | ||
272 | return 0; | ||
273 | } | ||
274 | |||
275 | static int rtas_log_release(struct inode * inode, struct file * file) | ||
276 | { | ||
277 | return 0; | ||
278 | } | ||
279 | |||
280 | /* This will check if all events are logged, if they are then, we | ||
281 | * know that we can safely clear the events in NVRAM. | ||
282 | * Next we'll sit and wait for something else to log. | ||
283 | */ | ||
284 | static ssize_t rtas_log_read(struct file * file, char __user * buf, | ||
285 | size_t count, loff_t *ppos) | ||
286 | { | ||
287 | int error; | ||
288 | char *tmp; | ||
289 | unsigned long s; | ||
290 | unsigned long offset; | ||
291 | |||
292 | if (!buf || count < rtas_error_log_buffer_max) | ||
293 | return -EINVAL; | ||
294 | |||
295 | count = rtas_error_log_buffer_max; | ||
296 | |||
297 | if (!access_ok(VERIFY_WRITE, buf, count)) | ||
298 | return -EFAULT; | ||
299 | |||
300 | tmp = kmalloc(count, GFP_KERNEL); | ||
301 | if (!tmp) | ||
302 | return -ENOMEM; | ||
303 | |||
304 | spin_lock_irqsave(&rtasd_log_lock, s); | ||
305 | |||
306 | /* if it's 0, then we know we got the last one (the one in NVRAM) */ | ||
307 | while (rtas_log_size == 0) { | ||
308 | if (file->f_flags & O_NONBLOCK) { | ||
309 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
310 | error = -EAGAIN; | ||
311 | goto out; | ||
312 | } | ||
313 | |||
314 | if (!logging_enabled) { | ||
315 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
316 | error = -ENODATA; | ||
317 | goto out; | ||
318 | } | ||
319 | #ifdef CONFIG_PPC64 | ||
320 | nvram_clear_error_log(); | ||
321 | #endif /* CONFIG_PPC64 */ | ||
322 | |||
323 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
324 | error = wait_event_interruptible(rtas_log_wait, rtas_log_size); | ||
325 | if (error) | ||
326 | goto out; | ||
327 | spin_lock_irqsave(&rtasd_log_lock, s); | ||
328 | } | ||
329 | |||
330 | offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); | ||
331 | memcpy(tmp, &rtas_log_buf[offset], count); | ||
332 | |||
333 | rtas_log_start += 1; | ||
334 | rtas_log_size -= 1; | ||
335 | spin_unlock_irqrestore(&rtasd_log_lock, s); | ||
336 | |||
337 | error = copy_to_user(buf, tmp, count) ? -EFAULT : count; | ||
338 | out: | ||
339 | kfree(tmp); | ||
340 | return error; | ||
341 | } | ||
342 | |||
343 | static unsigned int rtas_log_poll(struct file *file, poll_table * wait) | ||
344 | { | ||
345 | poll_wait(file, &rtas_log_wait, wait); | ||
346 | if (rtas_log_size) | ||
347 | return POLLIN | POLLRDNORM; | ||
348 | return 0; | ||
349 | } | ||
350 | |||
351 | static const struct file_operations proc_rtas_log_operations = { | ||
352 | .read = rtas_log_read, | ||
353 | .poll = rtas_log_poll, | ||
354 | .open = rtas_log_open, | ||
355 | .release = rtas_log_release, | ||
356 | }; | ||
357 | |||
358 | static int enable_surveillance(int timeout) | ||
359 | { | ||
360 | int error; | ||
361 | |||
362 | error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); | ||
363 | |||
364 | if (error == 0) | ||
365 | return 0; | ||
366 | |||
367 | if (error == -EINVAL) { | ||
368 | printk(KERN_DEBUG "rtasd: surveillance not supported\n"); | ||
369 | return 0; | ||
370 | } | ||
371 | |||
372 | printk(KERN_ERR "rtasd: could not update surveillance\n"); | ||
373 | return -1; | ||
374 | } | ||
375 | |||
376 | static void do_event_scan(void) | ||
377 | { | ||
378 | int error; | ||
379 | do { | ||
380 | memset(logdata, 0, rtas_error_log_max); | ||
381 | error = rtas_call(event_scan, 4, 1, NULL, | ||
382 | RTAS_EVENT_SCAN_ALL_EVENTS, 0, | ||
383 | __pa(logdata), rtas_error_log_max); | ||
384 | if (error == -1) { | ||
385 | printk(KERN_ERR "event-scan failed\n"); | ||
386 | break; | ||
387 | } | ||
388 | |||
389 | if (error == 0) | ||
390 | pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); | ||
391 | |||
392 | } while(error == 0); | ||
393 | } | ||
394 | |||
395 | static void rtas_event_scan(struct work_struct *w); | ||
396 | DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan); | ||
397 | |||
398 | /* | ||
399 | * Delay should be at least one second since some machines have problems if | ||
400 | * we call event-scan too quickly. | ||
401 | */ | ||
402 | static unsigned long event_scan_delay = 1*HZ; | ||
403 | static int first_pass = 1; | ||
404 | |||
405 | static void rtas_event_scan(struct work_struct *w) | ||
406 | { | ||
407 | unsigned int cpu; | ||
408 | |||
409 | do_event_scan(); | ||
410 | |||
411 | get_online_cpus(); | ||
412 | |||
413 | cpu = next_cpu(smp_processor_id(), cpu_online_map); | ||
414 | if (cpu == NR_CPUS) { | ||
415 | cpu = first_cpu(cpu_online_map); | ||
416 | |||
417 | if (first_pass) { | ||
418 | first_pass = 0; | ||
419 | event_scan_delay = 30*HZ/rtas_event_scan_rate; | ||
420 | |||
421 | if (surveillance_timeout != -1) { | ||
422 | pr_debug("rtasd: enabling surveillance\n"); | ||
423 | enable_surveillance(surveillance_timeout); | ||
424 | pr_debug("rtasd: surveillance enabled\n"); | ||
425 | } | ||
426 | } | ||
427 | } | ||
428 | |||
429 | schedule_delayed_work_on(cpu, &event_scan_work, | ||
430 | __round_jiffies_relative(event_scan_delay, cpu)); | ||
431 | |||
432 | put_online_cpus(); | ||
433 | } | ||
434 | |||
435 | #ifdef CONFIG_PPC64 | ||
436 | static void retreive_nvram_error_log(void) | ||
437 | { | ||
438 | unsigned int err_type ; | ||
439 | int rc ; | ||
440 | |||
441 | /* See if we have any error stored in NVRAM */ | ||
442 | memset(logdata, 0, rtas_error_log_max); | ||
443 | rc = nvram_read_error_log(logdata, rtas_error_log_max, | ||
444 | &err_type, &error_log_cnt); | ||
445 | /* We can use rtas_log_buf now */ | ||
446 | logging_enabled = 1; | ||
447 | if (!rc) { | ||
448 | if (err_type != ERR_FLAG_ALREADY_LOGGED) { | ||
449 | pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); | ||
450 | } | ||
451 | } | ||
452 | } | ||
453 | #else /* CONFIG_PPC64 */ | ||
454 | static void retreive_nvram_error_log(void) | ||
455 | { | ||
456 | } | ||
457 | #endif /* CONFIG_PPC64 */ | ||
458 | |||
459 | static void start_event_scan(void) | ||
460 | { | ||
461 | printk(KERN_DEBUG "RTAS daemon started\n"); | ||
462 | pr_debug("rtasd: will sleep for %d milliseconds\n", | ||
463 | (30000 / rtas_event_scan_rate)); | ||
464 | |||
465 | /* Retreive errors from nvram if any */ | ||
466 | retreive_nvram_error_log(); | ||
467 | |||
468 | schedule_delayed_work_on(first_cpu(cpu_online_map), &event_scan_work, | ||
469 | event_scan_delay); | ||
470 | } | ||
471 | |||
472 | static int __init rtas_init(void) | ||
473 | { | ||
474 | struct proc_dir_entry *entry; | ||
475 | |||
476 | if (!machine_is(pseries) && !machine_is(chrp)) | ||
477 | return 0; | ||
478 | |||
479 | /* No RTAS */ | ||
480 | event_scan = rtas_token("event-scan"); | ||
481 | if (event_scan == RTAS_UNKNOWN_SERVICE) { | ||
482 | printk(KERN_INFO "rtasd: No event-scan on system\n"); | ||
483 | return -ENODEV; | ||
484 | } | ||
485 | |||
486 | rtas_event_scan_rate = rtas_token("rtas-event-scan-rate"); | ||
487 | if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) { | ||
488 | printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n"); | ||
489 | return -ENODEV; | ||
490 | } | ||
491 | |||
492 | /* Make room for the sequence number */ | ||
493 | rtas_error_log_max = rtas_get_error_log_max(); | ||
494 | rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); | ||
495 | |||
496 | rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); | ||
497 | if (!rtas_log_buf) { | ||
498 | printk(KERN_ERR "rtasd: no memory\n"); | ||
499 | return -ENOMEM; | ||
500 | } | ||
501 | |||
502 | entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL, | ||
503 | &proc_rtas_log_operations); | ||
504 | if (!entry) | ||
505 | printk(KERN_ERR "Failed to create error_log proc entry\n"); | ||
506 | |||
507 | start_event_scan(); | ||
508 | |||
509 | return 0; | ||
510 | } | ||
511 | __initcall(rtas_init); | ||
512 | |||
513 | static int __init surveillance_setup(char *str) | ||
514 | { | ||
515 | int i; | ||
516 | |||
517 | /* We only do surveillance on pseries */ | ||
518 | if (!machine_is(pseries)) | ||
519 | return 0; | ||
520 | |||
521 | if (get_option(&str,&i)) { | ||
522 | if (i >= 0 && i <= 255) | ||
523 | surveillance_timeout = i; | ||
524 | } | ||
525 | |||
526 | return 1; | ||
527 | } | ||
528 | __setup("surveillance=", surveillance_setup); | ||
529 | |||
530 | static int __init rtasmsgs_setup(char *str) | ||
531 | { | ||
532 | if (strcmp(str, "on") == 0) | ||
533 | full_rtas_msgs = 1; | ||
534 | else if (strcmp(str, "off") == 0) | ||
535 | full_rtas_msgs = 0; | ||
536 | |||
537 | return 1; | ||
538 | } | ||
539 | __setup("rtasmsgs=", rtasmsgs_setup); | ||