aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/mmu-hash64.h
diff options
context:
space:
mode:
authorStephen Rothwell <sfr@canb.auug.org.au>2008-08-01 01:20:30 -0400
committerPaul Mackerras <paulus@samba.org>2008-08-03 22:02:00 -0400
commitb8b572e1015f81b4e748417be2629dfe51ab99f9 (patch)
tree7df58667d5ed71d6c8f8f4ce40ca16b6fb776d0b /arch/powerpc/include/asm/mmu-hash64.h
parent2b12a4c524812fb3f6ee590a02e65b95c8c32229 (diff)
powerpc: Move include files to arch/powerpc/include/asm
from include/asm-powerpc. This is the result of a mkdir arch/powerpc/include/asm git mv include/asm-powerpc/* arch/powerpc/include/asm Followed by a few documentation/comment fixups and a couple of places where <asm-powepc/...> was being used explicitly. Of the latter only one was outside the arch code and it is a driver only built for powerpc. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc/include/asm/mmu-hash64.h')
-rw-r--r--arch/powerpc/include/asm/mmu-hash64.h478
1 files changed, 478 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h
new file mode 100644
index 000000000000..19c7a9403490
--- /dev/null
+++ b/arch/powerpc/include/asm/mmu-hash64.h
@@ -0,0 +1,478 @@
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * Segment table
20 */
21
22#define STE_ESID_V 0x80
23#define STE_ESID_KS 0x20
24#define STE_ESID_KP 0x10
25#define STE_ESID_N 0x08
26
27#define STE_VSID_SHIFT 12
28
29/* Location of cpu0's segment table */
30#define STAB0_PAGE 0x6
31#define STAB0_OFFSET (STAB0_PAGE << 12)
32#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34#ifndef __ASSEMBLY__
35extern char initial_stab[];
36#endif /* ! __ASSEMBLY */
37
38/*
39 * SLB
40 */
41
42#define SLB_NUM_BOLTED 3
43#define SLB_CACHE_ENTRIES 8
44
45/* Bits in the SLB ESID word */
46#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
47
48/* Bits in the SLB VSID word */
49#define SLB_VSID_SHIFT 12
50#define SLB_VSID_SHIFT_1T 24
51#define SLB_VSID_SSIZE_SHIFT 62
52#define SLB_VSID_B ASM_CONST(0xc000000000000000)
53#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
54#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
55#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
56#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
57#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
58#define SLB_VSID_L ASM_CONST(0x0000000000000100)
59#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
60#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
61#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
62#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
63#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
64#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
65#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
66
67#define SLB_VSID_KERNEL (SLB_VSID_KP)
68#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
69
70#define SLBIE_C (0x08000000)
71#define SLBIE_SSIZE_SHIFT 25
72
73/*
74 * Hash table
75 */
76
77#define HPTES_PER_GROUP 8
78
79#define HPTE_V_SSIZE_SHIFT 62
80#define HPTE_V_AVPN_SHIFT 7
81#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
82#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
83#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
84#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
89
90#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91#define HPTE_R_TS ASM_CONST(0x4000000000000000)
92#define HPTE_R_RPN_SHIFT 12
93#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95#define HPTE_R_PP ASM_CONST(0x0000000000000003)
96#define HPTE_R_N ASM_CONST(0x0000000000000004)
97#define HPTE_R_C ASM_CONST(0x0000000000000080)
98#define HPTE_R_R ASM_CONST(0x0000000000000100)
99
100#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
101#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
102
103/* Values for PP (assumes Ks=0, Kp=1) */
104/* pp0 will always be 0 for linux */
105#define PP_RWXX 0 /* Supervisor read/write, User none */
106#define PP_RWRX 1 /* Supervisor read/write, User read */
107#define PP_RWRW 2 /* Supervisor read/write, User read/write */
108#define PP_RXRX 3 /* Supervisor read, User read */
109
110#ifndef __ASSEMBLY__
111
112struct hash_pte {
113 unsigned long v;
114 unsigned long r;
115};
116
117extern struct hash_pte *htab_address;
118extern unsigned long htab_size_bytes;
119extern unsigned long htab_hash_mask;
120
121/*
122 * Page size definition
123 *
124 * shift : is the "PAGE_SHIFT" value for that page size
125 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
126 * directly to a slbmte "vsid" value
127 * penc : is the HPTE encoding mask for the "LP" field:
128 *
129 */
130struct mmu_psize_def
131{
132 unsigned int shift; /* number of bits */
133 unsigned int penc; /* HPTE encoding */
134 unsigned int tlbiel; /* tlbiel supported for that page size */
135 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
136 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
137};
138
139#endif /* __ASSEMBLY__ */
140
141/*
142 * The kernel use the constants below to index in the page sizes array.
143 * The use of fixed constants for this purpose is better for performances
144 * of the low level hash refill handlers.
145 *
146 * A non supported page size has a "shift" field set to 0
147 *
148 * Any new page size being implemented can get a new entry in here. Whether
149 * the kernel will use it or not is a different matter though. The actual page
150 * size used by hugetlbfs is not defined here and may be made variable
151 */
152
153#define MMU_PAGE_4K 0 /* 4K */
154#define MMU_PAGE_64K 1 /* 64K */
155#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
156#define MMU_PAGE_1M 3 /* 1M */
157#define MMU_PAGE_16M 4 /* 16M */
158#define MMU_PAGE_16G 5 /* 16G */
159#define MMU_PAGE_COUNT 6
160
161/*
162 * Segment sizes.
163 * These are the values used by hardware in the B field of
164 * SLB entries and the first dword of MMU hashtable entries.
165 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
166 */
167#define MMU_SEGSIZE_256M 0
168#define MMU_SEGSIZE_1T 1
169
170
171#ifndef __ASSEMBLY__
172
173/*
174 * The current system page and segment sizes
175 */
176extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
177extern int mmu_linear_psize;
178extern int mmu_virtual_psize;
179extern int mmu_vmalloc_psize;
180extern int mmu_vmemmap_psize;
181extern int mmu_io_psize;
182extern int mmu_kernel_ssize;
183extern int mmu_highuser_ssize;
184extern u16 mmu_slb_size;
185extern unsigned long tce_alloc_start, tce_alloc_end;
186
187/*
188 * If the processor supports 64k normal pages but not 64k cache
189 * inhibited pages, we have to be prepared to switch processes
190 * to use 4k pages when they create cache-inhibited mappings.
191 * If this is the case, mmu_ci_restrictions will be set to 1.
192 */
193extern int mmu_ci_restrictions;
194
195#ifdef CONFIG_HUGETLB_PAGE
196/*
197 * The page size indexes of the huge pages for use by hugetlbfs
198 */
199extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
200
201#endif /* CONFIG_HUGETLB_PAGE */
202
203/*
204 * This function sets the AVPN and L fields of the HPTE appropriately
205 * for the page size
206 */
207static inline unsigned long hpte_encode_v(unsigned long va, int psize,
208 int ssize)
209{
210 unsigned long v;
211 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
212 v <<= HPTE_V_AVPN_SHIFT;
213 if (psize != MMU_PAGE_4K)
214 v |= HPTE_V_LARGE;
215 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
216 return v;
217}
218
219/*
220 * This function sets the ARPN, and LP fields of the HPTE appropriately
221 * for the page size. We assume the pa is already "clean" that is properly
222 * aligned for the requested page size
223 */
224static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
225{
226 unsigned long r;
227
228 /* A 4K page needs no special encoding */
229 if (psize == MMU_PAGE_4K)
230 return pa & HPTE_R_RPN;
231 else {
232 unsigned int penc = mmu_psize_defs[psize].penc;
233 unsigned int shift = mmu_psize_defs[psize].shift;
234 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
235 }
236 return r;
237}
238
239/*
240 * Build a VA given VSID, EA and segment size
241 */
242static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
243 int ssize)
244{
245 if (ssize == MMU_SEGSIZE_256M)
246 return (vsid << 28) | (ea & 0xfffffffUL);
247 return (vsid << 40) | (ea & 0xffffffffffUL);
248}
249
250/*
251 * This hashes a virtual address
252 */
253
254static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
255 int ssize)
256{
257 unsigned long hash, vsid;
258
259 if (ssize == MMU_SEGSIZE_256M) {
260 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
261 } else {
262 vsid = va >> 40;
263 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
264 }
265 return hash & 0x7fffffffffUL;
266}
267
268extern int __hash_page_4K(unsigned long ea, unsigned long access,
269 unsigned long vsid, pte_t *ptep, unsigned long trap,
270 unsigned int local, int ssize, int subpage_prot);
271extern int __hash_page_64K(unsigned long ea, unsigned long access,
272 unsigned long vsid, pte_t *ptep, unsigned long trap,
273 unsigned int local, int ssize);
274struct mm_struct;
275extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
276extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
277 unsigned long ea, unsigned long vsid, int local,
278 unsigned long trap);
279
280extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
281 unsigned long pstart, unsigned long mode,
282 int psize, int ssize);
283extern void set_huge_psize(int psize);
284extern void add_gpage(unsigned long addr, unsigned long page_size,
285 unsigned long number_of_pages);
286extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
287
288extern void htab_initialize(void);
289extern void htab_initialize_secondary(void);
290extern void hpte_init_native(void);
291extern void hpte_init_lpar(void);
292extern void hpte_init_iSeries(void);
293extern void hpte_init_beat(void);
294extern void hpte_init_beat_v3(void);
295
296extern void stabs_alloc(void);
297extern void slb_initialize(void);
298extern void slb_flush_and_rebolt(void);
299extern void stab_initialize(unsigned long stab);
300
301extern void slb_vmalloc_update(void);
302#endif /* __ASSEMBLY__ */
303
304/*
305 * VSID allocation
306 *
307 * We first generate a 36-bit "proto-VSID". For kernel addresses this
308 * is equal to the ESID, for user addresses it is:
309 * (context << 15) | (esid & 0x7fff)
310 *
311 * The two forms are distinguishable because the top bit is 0 for user
312 * addresses, whereas the top two bits are 1 for kernel addresses.
313 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
314 * now.
315 *
316 * The proto-VSIDs are then scrambled into real VSIDs with the
317 * multiplicative hash:
318 *
319 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
320 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
321 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
322 *
323 * This scramble is only well defined for proto-VSIDs below
324 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
325 * reserved. VSID_MULTIPLIER is prime, so in particular it is
326 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
327 * Because the modulus is 2^n-1 we can compute it efficiently without
328 * a divide or extra multiply (see below).
329 *
330 * This scheme has several advantages over older methods:
331 *
332 * - We have VSIDs allocated for every kernel address
333 * (i.e. everything above 0xC000000000000000), except the very top
334 * segment, which simplifies several things.
335 *
336 * - We allow for 15 significant bits of ESID and 20 bits of
337 * context for user addresses. i.e. 8T (43 bits) of address space for
338 * up to 1M contexts (although the page table structure and context
339 * allocation will need changes to take advantage of this).
340 *
341 * - The scramble function gives robust scattering in the hash
342 * table (at least based on some initial results). The previous
343 * method was more susceptible to pathological cases giving excessive
344 * hash collisions.
345 */
346/*
347 * WARNING - If you change these you must make sure the asm
348 * implementations in slb_allocate (slb_low.S), do_stab_bolted
349 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
350 *
351 * You'll also need to change the precomputed VSID values in head.S
352 * which are used by the iSeries firmware.
353 */
354
355#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
356#define VSID_BITS_256M 36
357#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
358
359#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
360#define VSID_BITS_1T 24
361#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
362
363#define CONTEXT_BITS 19
364#define USER_ESID_BITS 16
365#define USER_ESID_BITS_1T 4
366
367#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
368
369/*
370 * This macro generates asm code to compute the VSID scramble
371 * function. Used in slb_allocate() and do_stab_bolted. The function
372 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
373 *
374 * rt = register continaing the proto-VSID and into which the
375 * VSID will be stored
376 * rx = scratch register (clobbered)
377 *
378 * - rt and rx must be different registers
379 * - The answer will end up in the low VSID_BITS bits of rt. The higher
380 * bits may contain other garbage, so you may need to mask the
381 * result.
382 */
383#define ASM_VSID_SCRAMBLE(rt, rx, size) \
384 lis rx,VSID_MULTIPLIER_##size@h; \
385 ori rx,rx,VSID_MULTIPLIER_##size@l; \
386 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
387 \
388 srdi rx,rt,VSID_BITS_##size; \
389 clrldi rt,rt,(64-VSID_BITS_##size); \
390 add rt,rt,rx; /* add high and low bits */ \
391 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
392 * 2^36-1+2^28-1. That in particular means that if r3 >= \
393 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
394 * the bit clear, r3 already has the answer we want, if it \
395 * doesn't, the answer is the low 36 bits of r3+1. So in all \
396 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
397 addi rx,rt,1; \
398 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
399 add rt,rt,rx
400
401
402#ifndef __ASSEMBLY__
403
404typedef unsigned long mm_context_id_t;
405
406typedef struct {
407 mm_context_id_t id;
408 u16 user_psize; /* page size index */
409
410#ifdef CONFIG_PPC_MM_SLICES
411 u64 low_slices_psize; /* SLB page size encodings */
412 u64 high_slices_psize; /* 4 bits per slice for now */
413#else
414 u16 sllp; /* SLB page size encoding */
415#endif
416 unsigned long vdso_base;
417} mm_context_t;
418
419
420#if 0
421/*
422 * The code below is equivalent to this function for arguments
423 * < 2^VSID_BITS, which is all this should ever be called
424 * with. However gcc is not clever enough to compute the
425 * modulus (2^n-1) without a second multiply.
426 */
427#define vsid_scrample(protovsid, size) \
428 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
429
430#else /* 1 */
431#define vsid_scramble(protovsid, size) \
432 ({ \
433 unsigned long x; \
434 x = (protovsid) * VSID_MULTIPLIER_##size; \
435 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
436 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
437 })
438#endif /* 1 */
439
440/* This is only valid for addresses >= KERNELBASE */
441static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
442{
443 if (ssize == MMU_SEGSIZE_256M)
444 return vsid_scramble(ea >> SID_SHIFT, 256M);
445 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
446}
447
448/* Returns the segment size indicator for a user address */
449static inline int user_segment_size(unsigned long addr)
450{
451 /* Use 1T segments if possible for addresses >= 1T */
452 if (addr >= (1UL << SID_SHIFT_1T))
453 return mmu_highuser_ssize;
454 return MMU_SEGSIZE_256M;
455}
456
457/* This is only valid for user addresses (which are below 2^44) */
458static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
459 int ssize)
460{
461 if (ssize == MMU_SEGSIZE_256M)
462 return vsid_scramble((context << USER_ESID_BITS)
463 | (ea >> SID_SHIFT), 256M);
464 return vsid_scramble((context << USER_ESID_BITS_1T)
465 | (ea >> SID_SHIFT_1T), 1T);
466}
467
468/*
469 * This is only used on legacy iSeries in lparmap.c,
470 * hence the 256MB segment assumption.
471 */
472#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
473 VSID_MODULUS_256M)
474#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
475
476#endif /* __ASSEMBLY__ */
477
478#endif /* _ASM_POWERPC_MMU_HASH64_H_ */