diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/parisc/math-emu/sfdiv.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/parisc/math-emu/sfdiv.c')
-rw-r--r-- | arch/parisc/math-emu/sfdiv.c | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/arch/parisc/math-emu/sfdiv.c b/arch/parisc/math-emu/sfdiv.c new file mode 100644 index 000000000000..3e2a4d6daa9c --- /dev/null +++ b/arch/parisc/math-emu/sfdiv.c | |||
@@ -0,0 +1,392 @@ | |||
1 | /* | ||
2 | * Linux/PA-RISC Project (http://www.parisc-linux.org/) | ||
3 | * | ||
4 | * Floating-point emulation code | ||
5 | * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License as published by | ||
9 | * the Free Software Foundation; either version 2, or (at your option) | ||
10 | * any later version. | ||
11 | * | ||
12 | * This program is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | * GNU General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU General Public License | ||
18 | * along with this program; if not, write to the Free Software | ||
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
20 | */ | ||
21 | /* | ||
22 | * BEGIN_DESC | ||
23 | * | ||
24 | * File: | ||
25 | * @(#) pa/spmath/sfdiv.c $Revision: 1.1 $ | ||
26 | * | ||
27 | * Purpose: | ||
28 | * Single Precision Floating-point Divide | ||
29 | * | ||
30 | * External Interfaces: | ||
31 | * sgl_fdiv(srcptr1,srcptr2,dstptr,status) | ||
32 | * | ||
33 | * Internal Interfaces: | ||
34 | * | ||
35 | * Theory: | ||
36 | * <<please update with a overview of the operation of this file>> | ||
37 | * | ||
38 | * END_DESC | ||
39 | */ | ||
40 | |||
41 | |||
42 | #include "float.h" | ||
43 | #include "sgl_float.h" | ||
44 | |||
45 | /* | ||
46 | * Single Precision Floating-point Divide | ||
47 | */ | ||
48 | |||
49 | int | ||
50 | sgl_fdiv (sgl_floating_point * srcptr1, sgl_floating_point * srcptr2, | ||
51 | sgl_floating_point * dstptr, unsigned int *status) | ||
52 | { | ||
53 | register unsigned int opnd1, opnd2, opnd3, result; | ||
54 | register int dest_exponent, count; | ||
55 | register boolean inexact = FALSE, guardbit = FALSE, stickybit = FALSE; | ||
56 | boolean is_tiny; | ||
57 | |||
58 | opnd1 = *srcptr1; | ||
59 | opnd2 = *srcptr2; | ||
60 | /* | ||
61 | * set sign bit of result | ||
62 | */ | ||
63 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) Sgl_setnegativezero(result); | ||
64 | else Sgl_setzero(result); | ||
65 | /* | ||
66 | * check first operand for NaN's or infinity | ||
67 | */ | ||
68 | if (Sgl_isinfinity_exponent(opnd1)) { | ||
69 | if (Sgl_iszero_mantissa(opnd1)) { | ||
70 | if (Sgl_isnotnan(opnd2)) { | ||
71 | if (Sgl_isinfinity(opnd2)) { | ||
72 | /* | ||
73 | * invalid since both operands | ||
74 | * are infinity | ||
75 | */ | ||
76 | if (Is_invalidtrap_enabled()) | ||
77 | return(INVALIDEXCEPTION); | ||
78 | Set_invalidflag(); | ||
79 | Sgl_makequietnan(result); | ||
80 | *dstptr = result; | ||
81 | return(NOEXCEPTION); | ||
82 | } | ||
83 | /* | ||
84 | * return infinity | ||
85 | */ | ||
86 | Sgl_setinfinity_exponentmantissa(result); | ||
87 | *dstptr = result; | ||
88 | return(NOEXCEPTION); | ||
89 | } | ||
90 | } | ||
91 | else { | ||
92 | /* | ||
93 | * is NaN; signaling or quiet? | ||
94 | */ | ||
95 | if (Sgl_isone_signaling(opnd1)) { | ||
96 | /* trap if INVALIDTRAP enabled */ | ||
97 | if (Is_invalidtrap_enabled()) | ||
98 | return(INVALIDEXCEPTION); | ||
99 | /* make NaN quiet */ | ||
100 | Set_invalidflag(); | ||
101 | Sgl_set_quiet(opnd1); | ||
102 | } | ||
103 | /* | ||
104 | * is second operand a signaling NaN? | ||
105 | */ | ||
106 | else if (Sgl_is_signalingnan(opnd2)) { | ||
107 | /* trap if INVALIDTRAP enabled */ | ||
108 | if (Is_invalidtrap_enabled()) | ||
109 | return(INVALIDEXCEPTION); | ||
110 | /* make NaN quiet */ | ||
111 | Set_invalidflag(); | ||
112 | Sgl_set_quiet(opnd2); | ||
113 | *dstptr = opnd2; | ||
114 | return(NOEXCEPTION); | ||
115 | } | ||
116 | /* | ||
117 | * return quiet NaN | ||
118 | */ | ||
119 | *dstptr = opnd1; | ||
120 | return(NOEXCEPTION); | ||
121 | } | ||
122 | } | ||
123 | /* | ||
124 | * check second operand for NaN's or infinity | ||
125 | */ | ||
126 | if (Sgl_isinfinity_exponent(opnd2)) { | ||
127 | if (Sgl_iszero_mantissa(opnd2)) { | ||
128 | /* | ||
129 | * return zero | ||
130 | */ | ||
131 | Sgl_setzero_exponentmantissa(result); | ||
132 | *dstptr = result; | ||
133 | return(NOEXCEPTION); | ||
134 | } | ||
135 | /* | ||
136 | * is NaN; signaling or quiet? | ||
137 | */ | ||
138 | if (Sgl_isone_signaling(opnd2)) { | ||
139 | /* trap if INVALIDTRAP enabled */ | ||
140 | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | ||
141 | /* make NaN quiet */ | ||
142 | Set_invalidflag(); | ||
143 | Sgl_set_quiet(opnd2); | ||
144 | } | ||
145 | /* | ||
146 | * return quiet NaN | ||
147 | */ | ||
148 | *dstptr = opnd2; | ||
149 | return(NOEXCEPTION); | ||
150 | } | ||
151 | /* | ||
152 | * check for division by zero | ||
153 | */ | ||
154 | if (Sgl_iszero_exponentmantissa(opnd2)) { | ||
155 | if (Sgl_iszero_exponentmantissa(opnd1)) { | ||
156 | /* invalid since both operands are zero */ | ||
157 | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | ||
158 | Set_invalidflag(); | ||
159 | Sgl_makequietnan(result); | ||
160 | *dstptr = result; | ||
161 | return(NOEXCEPTION); | ||
162 | } | ||
163 | if (Is_divisionbyzerotrap_enabled()) | ||
164 | return(DIVISIONBYZEROEXCEPTION); | ||
165 | Set_divisionbyzeroflag(); | ||
166 | Sgl_setinfinity_exponentmantissa(result); | ||
167 | *dstptr = result; | ||
168 | return(NOEXCEPTION); | ||
169 | } | ||
170 | /* | ||
171 | * Generate exponent | ||
172 | */ | ||
173 | dest_exponent = Sgl_exponent(opnd1) - Sgl_exponent(opnd2) + SGL_BIAS; | ||
174 | |||
175 | /* | ||
176 | * Generate mantissa | ||
177 | */ | ||
178 | if (Sgl_isnotzero_exponent(opnd1)) { | ||
179 | /* set hidden bit */ | ||
180 | Sgl_clear_signexponent_set_hidden(opnd1); | ||
181 | } | ||
182 | else { | ||
183 | /* check for zero */ | ||
184 | if (Sgl_iszero_mantissa(opnd1)) { | ||
185 | Sgl_setzero_exponentmantissa(result); | ||
186 | *dstptr = result; | ||
187 | return(NOEXCEPTION); | ||
188 | } | ||
189 | /* is denormalized; want to normalize */ | ||
190 | Sgl_clear_signexponent(opnd1); | ||
191 | Sgl_leftshiftby1(opnd1); | ||
192 | Sgl_normalize(opnd1,dest_exponent); | ||
193 | } | ||
194 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ | ||
195 | if (Sgl_isnotzero_exponent(opnd2)) { | ||
196 | Sgl_clear_signexponent_set_hidden(opnd2); | ||
197 | } | ||
198 | else { | ||
199 | /* is denormalized; want to normalize */ | ||
200 | Sgl_clear_signexponent(opnd2); | ||
201 | Sgl_leftshiftby1(opnd2); | ||
202 | while(Sgl_iszero_hiddenhigh7mantissa(opnd2)) { | ||
203 | Sgl_leftshiftby8(opnd2); | ||
204 | dest_exponent += 8; | ||
205 | } | ||
206 | if(Sgl_iszero_hiddenhigh3mantissa(opnd2)) { | ||
207 | Sgl_leftshiftby4(opnd2); | ||
208 | dest_exponent += 4; | ||
209 | } | ||
210 | while(Sgl_iszero_hidden(opnd2)) { | ||
211 | Sgl_leftshiftby1(opnd2); | ||
212 | dest_exponent += 1; | ||
213 | } | ||
214 | } | ||
215 | |||
216 | /* Divide the source mantissas */ | ||
217 | |||
218 | /* | ||
219 | * A non_restoring divide algorithm is used. | ||
220 | */ | ||
221 | Sgl_subtract(opnd1,opnd2,opnd1); | ||
222 | Sgl_setzero(opnd3); | ||
223 | for (count=1;count<=SGL_P && Sgl_all(opnd1);count++) { | ||
224 | Sgl_leftshiftby1(opnd1); | ||
225 | Sgl_leftshiftby1(opnd3); | ||
226 | if (Sgl_iszero_sign(opnd1)) { | ||
227 | Sgl_setone_lowmantissa(opnd3); | ||
228 | Sgl_subtract(opnd1,opnd2,opnd1); | ||
229 | } | ||
230 | else Sgl_addition(opnd1,opnd2,opnd1); | ||
231 | } | ||
232 | if (count <= SGL_P) { | ||
233 | Sgl_leftshiftby1(opnd3); | ||
234 | Sgl_setone_lowmantissa(opnd3); | ||
235 | Sgl_leftshift(opnd3,SGL_P-count); | ||
236 | if (Sgl_iszero_hidden(opnd3)) { | ||
237 | Sgl_leftshiftby1(opnd3); | ||
238 | dest_exponent--; | ||
239 | } | ||
240 | } | ||
241 | else { | ||
242 | if (Sgl_iszero_hidden(opnd3)) { | ||
243 | /* need to get one more bit of result */ | ||
244 | Sgl_leftshiftby1(opnd1); | ||
245 | Sgl_leftshiftby1(opnd3); | ||
246 | if (Sgl_iszero_sign(opnd1)) { | ||
247 | Sgl_setone_lowmantissa(opnd3); | ||
248 | Sgl_subtract(opnd1,opnd2,opnd1); | ||
249 | } | ||
250 | else Sgl_addition(opnd1,opnd2,opnd1); | ||
251 | dest_exponent--; | ||
252 | } | ||
253 | if (Sgl_iszero_sign(opnd1)) guardbit = TRUE; | ||
254 | stickybit = Sgl_all(opnd1); | ||
255 | } | ||
256 | inexact = guardbit | stickybit; | ||
257 | |||
258 | /* | ||
259 | * round result | ||
260 | */ | ||
261 | if (inexact && (dest_exponent > 0 || Is_underflowtrap_enabled())) { | ||
262 | Sgl_clear_signexponent(opnd3); | ||
263 | switch (Rounding_mode()) { | ||
264 | case ROUNDPLUS: | ||
265 | if (Sgl_iszero_sign(result)) | ||
266 | Sgl_increment_mantissa(opnd3); | ||
267 | break; | ||
268 | case ROUNDMINUS: | ||
269 | if (Sgl_isone_sign(result)) | ||
270 | Sgl_increment_mantissa(opnd3); | ||
271 | break; | ||
272 | case ROUNDNEAREST: | ||
273 | if (guardbit) { | ||
274 | if (stickybit || Sgl_isone_lowmantissa(opnd3)) | ||
275 | Sgl_increment_mantissa(opnd3); | ||
276 | } | ||
277 | } | ||
278 | if (Sgl_isone_hidden(opnd3)) dest_exponent++; | ||
279 | } | ||
280 | Sgl_set_mantissa(result,opnd3); | ||
281 | |||
282 | /* | ||
283 | * Test for overflow | ||
284 | */ | ||
285 | if (dest_exponent >= SGL_INFINITY_EXPONENT) { | ||
286 | /* trap if OVERFLOWTRAP enabled */ | ||
287 | if (Is_overflowtrap_enabled()) { | ||
288 | /* | ||
289 | * Adjust bias of result | ||
290 | */ | ||
291 | Sgl_setwrapped_exponent(result,dest_exponent,ovfl); | ||
292 | *dstptr = result; | ||
293 | if (inexact) | ||
294 | if (Is_inexacttrap_enabled()) | ||
295 | return(OVERFLOWEXCEPTION | INEXACTEXCEPTION); | ||
296 | else Set_inexactflag(); | ||
297 | return(OVERFLOWEXCEPTION); | ||
298 | } | ||
299 | Set_overflowflag(); | ||
300 | /* set result to infinity or largest number */ | ||
301 | Sgl_setoverflow(result); | ||
302 | inexact = TRUE; | ||
303 | } | ||
304 | /* | ||
305 | * Test for underflow | ||
306 | */ | ||
307 | else if (dest_exponent <= 0) { | ||
308 | /* trap if UNDERFLOWTRAP enabled */ | ||
309 | if (Is_underflowtrap_enabled()) { | ||
310 | /* | ||
311 | * Adjust bias of result | ||
312 | */ | ||
313 | Sgl_setwrapped_exponent(result,dest_exponent,unfl); | ||
314 | *dstptr = result; | ||
315 | if (inexact) | ||
316 | if (Is_inexacttrap_enabled()) | ||
317 | return(UNDERFLOWEXCEPTION | INEXACTEXCEPTION); | ||
318 | else Set_inexactflag(); | ||
319 | return(UNDERFLOWEXCEPTION); | ||
320 | } | ||
321 | |||
322 | /* Determine if should set underflow flag */ | ||
323 | is_tiny = TRUE; | ||
324 | if (dest_exponent == 0 && inexact) { | ||
325 | switch (Rounding_mode()) { | ||
326 | case ROUNDPLUS: | ||
327 | if (Sgl_iszero_sign(result)) { | ||
328 | Sgl_increment(opnd3); | ||
329 | if (Sgl_isone_hiddenoverflow(opnd3)) | ||
330 | is_tiny = FALSE; | ||
331 | Sgl_decrement(opnd3); | ||
332 | } | ||
333 | break; | ||
334 | case ROUNDMINUS: | ||
335 | if (Sgl_isone_sign(result)) { | ||
336 | Sgl_increment(opnd3); | ||
337 | if (Sgl_isone_hiddenoverflow(opnd3)) | ||
338 | is_tiny = FALSE; | ||
339 | Sgl_decrement(opnd3); | ||
340 | } | ||
341 | break; | ||
342 | case ROUNDNEAREST: | ||
343 | if (guardbit && (stickybit || | ||
344 | Sgl_isone_lowmantissa(opnd3))) { | ||
345 | Sgl_increment(opnd3); | ||
346 | if (Sgl_isone_hiddenoverflow(opnd3)) | ||
347 | is_tiny = FALSE; | ||
348 | Sgl_decrement(opnd3); | ||
349 | } | ||
350 | break; | ||
351 | } | ||
352 | } | ||
353 | |||
354 | /* | ||
355 | * denormalize result or set to signed zero | ||
356 | */ | ||
357 | stickybit = inexact; | ||
358 | Sgl_denormalize(opnd3,dest_exponent,guardbit,stickybit,inexact); | ||
359 | |||
360 | /* return rounded number */ | ||
361 | if (inexact) { | ||
362 | switch (Rounding_mode()) { | ||
363 | case ROUNDPLUS: | ||
364 | if (Sgl_iszero_sign(result)) { | ||
365 | Sgl_increment(opnd3); | ||
366 | } | ||
367 | break; | ||
368 | case ROUNDMINUS: | ||
369 | if (Sgl_isone_sign(result)) { | ||
370 | Sgl_increment(opnd3); | ||
371 | } | ||
372 | break; | ||
373 | case ROUNDNEAREST: | ||
374 | if (guardbit && (stickybit || | ||
375 | Sgl_isone_lowmantissa(opnd3))) { | ||
376 | Sgl_increment(opnd3); | ||
377 | } | ||
378 | break; | ||
379 | } | ||
380 | if (is_tiny) Set_underflowflag(); | ||
381 | } | ||
382 | Sgl_set_exponentmantissa(result,opnd3); | ||
383 | } | ||
384 | else Sgl_set_exponent(result,dest_exponent); | ||
385 | *dstptr = result; | ||
386 | /* check for inexact */ | ||
387 | if (inexact) { | ||
388 | if (Is_inexacttrap_enabled()) return(INEXACTEXCEPTION); | ||
389 | else Set_inexactflag(); | ||
390 | } | ||
391 | return(NOEXCEPTION); | ||
392 | } | ||