diff options
author | Grant Grundler <grundler@gsyprf11.external.hp.com> | 2006-09-09 02:29:22 -0400 |
---|---|---|
committer | Matthew Wilcox <willy@parisc-linux.org> | 2006-10-04 08:48:28 -0400 |
commit | bed583f76e1d5fbb5a6fdf27a0f7b2ae235f7e99 (patch) | |
tree | a5c6b964cb2379406b9f1c4efc04fa3c093c28e9 /arch/parisc/kernel/time.c | |
parent | 65ee8f0a7fc2f2267b983f1f0349acb8f19db6e6 (diff) |
[PARISC] Rewrite timer_interrupt() and gettimeoffset() using "unsigned" math.
It's just a bit easier to follow and timer code is complex enough.
So far, only tested on A500-5x (64-bit SMP), ie: gettimeoffset() code
hasn't been tested at all.
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
Diffstat (limited to 'arch/parisc/kernel/time.c')
-rw-r--r-- | arch/parisc/kernel/time.c | 140 |
1 files changed, 96 insertions, 44 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c index 47831c2cd093..fd425e1abe66 100644 --- a/arch/parisc/kernel/time.c +++ b/arch/parisc/kernel/time.c | |||
@@ -32,8 +32,8 @@ | |||
32 | 32 | ||
33 | #include <linux/timex.h> | 33 | #include <linux/timex.h> |
34 | 34 | ||
35 | static long clocktick __read_mostly; /* timer cycles per tick */ | 35 | static unsigned long clocktick __read_mostly; /* timer cycles per tick */ |
36 | static long halftick __read_mostly; | 36 | static unsigned long halftick __read_mostly; |
37 | 37 | ||
38 | #ifdef CONFIG_SMP | 38 | #ifdef CONFIG_SMP |
39 | extern void smp_do_timer(struct pt_regs *regs); | 39 | extern void smp_do_timer(struct pt_regs *regs); |
@@ -41,34 +41,77 @@ extern void smp_do_timer(struct pt_regs *regs); | |||
41 | 41 | ||
42 | irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 42 | irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
43 | { | 43 | { |
44 | long now; | 44 | unsigned long now; |
45 | long next_tick; | 45 | unsigned long next_tick; |
46 | int nticks; | 46 | unsigned long cycles_elapsed; |
47 | unsigned long cycles_remainder; | ||
48 | unsigned long ticks_elapsed = 1; /* at least one elapsed */ | ||
47 | int cpu = smp_processor_id(); | 49 | int cpu = smp_processor_id(); |
48 | 50 | ||
49 | profile_tick(CPU_PROFILING, regs); | 51 | profile_tick(CPU_PROFILING, regs); |
50 | 52 | ||
51 | now = mfctl(16); | 53 | /* Initialize next_tick to the expected tick time. */ |
52 | /* initialize next_tick to time at last clocktick */ | ||
53 | next_tick = cpu_data[cpu].it_value; | 54 | next_tick = cpu_data[cpu].it_value; |
54 | 55 | ||
55 | /* since time passes between the interrupt and the mfctl() | 56 | /* Get current interval timer. |
56 | * above, it is never true that last_tick + clocktick == now. If we | 57 | * CR16 reads as 64 bits in CPU wide mode. |
57 | * never miss a clocktick, we could set next_tick = last_tick + clocktick | 58 | * CR16 reads as 32 bits in CPU narrow mode. |
58 | * but maybe we'll miss ticks, hence the loop. | ||
59 | * | ||
60 | * Variables are *signed*. | ||
61 | */ | 59 | */ |
60 | now = mfctl(16); | ||
62 | 61 | ||
63 | nticks = 0; | 62 | cycles_elapsed = now - next_tick; |
64 | while((next_tick - now) < halftick) { | 63 | |
65 | next_tick += clocktick; | 64 | /* Determine how much time elapsed. */ |
66 | nticks++; | 65 | if (now < next_tick) { |
66 | /* Scenario 2: CR16 wrapped after clock tick. | ||
67 | * 1's complement will give us the "elapse cycles". | ||
68 | * | ||
69 | * This "cr16 wrapped" cruft is primarily for 32-bit kernels. | ||
70 | * So think "unsigned long is u32" when reading the code. | ||
71 | * And yes, of course 64-bit will someday wrap, but only | ||
72 | * every 198841 days on a 1GHz machine. | ||
73 | */ | ||
74 | cycles_elapsed = ~cycles_elapsed; /* off by one cycle - don't care */ | ||
67 | } | 75 | } |
76 | |||
77 | ticks_elapsed += cycles_elapsed / clocktick; | ||
78 | cycles_remainder = cycles_elapsed % clocktick; | ||
79 | |||
80 | /* Can we differentiate between "early CR16" (aka Scenario 1) and | ||
81 | * "long delay" (aka Scenario 3)? I don't think so. | ||
82 | * | ||
83 | * We expected timer_interrupt to be delivered at least a few hundred | ||
84 | * cycles after the IT fires. But it's arbitrary how much time passes | ||
85 | * before we call it "late". I've picked one second. | ||
86 | */ | ||
87 | if (ticks_elapsed > HZ) { | ||
88 | /* Scenario 3: very long delay? bad in any case */ | ||
89 | printk (KERN_CRIT "timer_interrupt(CPU %d): delayed! run ntpdate" | ||
90 | " ticks %ld cycles %lX rem %lX" | ||
91 | " next/now %lX/%lX\n", | ||
92 | cpu, | ||
93 | ticks_elapsed, cycles_elapsed, cycles_remainder, | ||
94 | next_tick, now ); | ||
95 | |||
96 | ticks_elapsed = 1; /* hack to limit damage in loop below */ | ||
97 | } | ||
98 | |||
99 | |||
100 | /* Determine when (in CR16 cycles) next IT interrupt will fire. | ||
101 | * We want IT to fire modulo clocktick even if we miss/skip some. | ||
102 | * But those interrupts don't in fact get delivered that regularly. | ||
103 | */ | ||
104 | next_tick = now + (clocktick - cycles_remainder); | ||
105 | |||
106 | /* Program the IT when to deliver the next interrupt. */ | ||
107 | /* Only bottom 32-bits of next_tick are written to cr16. */ | ||
68 | mtctl(next_tick, 16); | 108 | mtctl(next_tick, 16); |
69 | cpu_data[cpu].it_value = next_tick; | 109 | cpu_data[cpu].it_value = next_tick; |
70 | 110 | ||
71 | while (nticks--) { | 111 | /* Now that we are done mucking with unreliable delivery of interrupts, |
112 | * go do system house keeping. | ||
113 | */ | ||
114 | while (ticks_elapsed--) { | ||
72 | #ifdef CONFIG_SMP | 115 | #ifdef CONFIG_SMP |
73 | smp_do_timer(regs); | 116 | smp_do_timer(regs); |
74 | #else | 117 | #else |
@@ -121,21 +164,41 @@ gettimeoffset (void) | |||
121 | * Once parisc-linux learns the cr16 difference between processors, | 164 | * Once parisc-linux learns the cr16 difference between processors, |
122 | * this could be made to work. | 165 | * this could be made to work. |
123 | */ | 166 | */ |
124 | long last_tick; | 167 | unsigned long now; |
125 | long elapsed_cycles; | 168 | unsigned long prev_tick; |
169 | unsigned long next_tick; | ||
170 | unsigned long elapsed_cycles; | ||
171 | unsigned long usec; | ||
126 | 172 | ||
127 | /* it_value is the intended time of the next tick */ | 173 | next_tick = cpu_data[smp_processor_id()].it_value; |
128 | last_tick = cpu_data[smp_processor_id()].it_value; | 174 | now = mfctl(16); /* Read the hardware interval timer. */ |
129 | 175 | ||
130 | /* Subtract one tick and account for possible difference between | 176 | prev_tick = next_tick - clocktick; |
131 | * when we expected the tick and when it actually arrived. | 177 | |
132 | * (aka wall vs real) | 178 | /* Assume Scenario 1: "now" is later than prev_tick. */ |
133 | */ | 179 | elapsed_cycles = now - prev_tick; |
134 | last_tick -= clocktick * (jiffies - wall_jiffies + 1); | 180 | |
135 | elapsed_cycles = mfctl(16) - last_tick; | 181 | if (now < prev_tick) { |
182 | /* Scenario 2: CR16 wrapped! | ||
183 | * 1's complement is close enough. | ||
184 | */ | ||
185 | elapsed_cycles = ~elapsed_cycles; | ||
186 | } | ||
136 | 187 | ||
137 | /* the precision of this math could be improved */ | 188 | if (elapsed_cycles > (HZ * clocktick)) { |
138 | return elapsed_cycles / (PAGE0->mem_10msec / 10000); | 189 | /* Scenario 3: clock ticks are missing. */ |
190 | printk (KERN_CRIT "gettimeoffset(CPU %d): missing ticks!" | ||
191 | "cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n", | ||
192 | cpuid, | ||
193 | elapsed_cycles, prev_tick, now, next_tick, clocktick); | ||
194 | } | ||
195 | |||
196 | /* FIXME: Can we improve the precision? Not with PAGE0. */ | ||
197 | usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec; | ||
198 | |||
199 | /* add in "lost" jiffies */ | ||
200 | usec += clocktick * (jiffies - wall_jiffies); | ||
201 | return usec; | ||
139 | #else | 202 | #else |
140 | return 0; | 203 | return 0; |
141 | #endif | 204 | #endif |
@@ -146,6 +209,7 @@ do_gettimeofday (struct timeval *tv) | |||
146 | { | 209 | { |
147 | unsigned long flags, seq, usec, sec; | 210 | unsigned long flags, seq, usec, sec; |
148 | 211 | ||
212 | /* Hold xtime_lock and adjust timeval. */ | ||
149 | do { | 213 | do { |
150 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | 214 | seq = read_seqbegin_irqsave(&xtime_lock, flags); |
151 | usec = gettimeoffset(); | 215 | usec = gettimeoffset(); |
@@ -153,25 +217,13 @@ do_gettimeofday (struct timeval *tv) | |||
153 | usec += (xtime.tv_nsec / 1000); | 217 | usec += (xtime.tv_nsec / 1000); |
154 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | 218 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
155 | 219 | ||
156 | if (unlikely(usec > LONG_MAX)) { | 220 | /* Move adjusted usec's into sec's. */ |
157 | /* This can happen if the gettimeoffset adjustment is | ||
158 | * negative and xtime.tv_nsec is smaller than the | ||
159 | * adjustment */ | ||
160 | printk(KERN_ERR "do_gettimeofday() spurious xtime.tv_nsec of %ld\n", usec); | ||
161 | usec += USEC_PER_SEC; | ||
162 | --sec; | ||
163 | /* This should never happen, it means the negative | ||
164 | * time adjustment was more than a second, so there's | ||
165 | * something seriously wrong */ | ||
166 | BUG_ON(usec > LONG_MAX); | ||
167 | } | ||
168 | |||
169 | |||
170 | while (usec >= USEC_PER_SEC) { | 221 | while (usec >= USEC_PER_SEC) { |
171 | usec -= USEC_PER_SEC; | 222 | usec -= USEC_PER_SEC; |
172 | ++sec; | 223 | ++sec; |
173 | } | 224 | } |
174 | 225 | ||
226 | /* Return adjusted result. */ | ||
175 | tv->tv_sec = sec; | 227 | tv->tv_sec = sec; |
176 | tv->tv_usec = usec; | 228 | tv->tv_usec = usec; |
177 | } | 229 | } |