diff options
author | Ralf Baechle <ralf@linux-mips.org> | 2006-11-15 21:56:12 -0500 |
---|---|---|
committer | Ralf Baechle <ralf@linux-mips.org> | 2007-02-13 17:40:50 -0500 |
commit | 9a88cbb5227970757881b1a65be01dea61fe2584 (patch) | |
tree | 2a1e6934ae253e75141efd383ae9df7042452d7c /arch/mips/mm/dma-default.c | |
parent | f65e4fa8e0c6022ad58dc88d1b11b12589ed7f9f (diff) |
[MIPS] Unify dma-{coherent,noncoherent.ip27,ip32}
Platforms will now have to supply a function dma_device_is_coherent which
returns if a particular device participates in the coherence domain. For
most platforms this function will always return 0 or 1.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Diffstat (limited to 'arch/mips/mm/dma-default.c')
-rw-r--r-- | arch/mips/mm/dma-default.c | 363 |
1 files changed, 363 insertions, 0 deletions
diff --git a/arch/mips/mm/dma-default.c b/arch/mips/mm/dma-default.c new file mode 100644 index 000000000000..4a32e939698f --- /dev/null +++ b/arch/mips/mm/dma-default.c | |||
@@ -0,0 +1,363 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com> | ||
7 | * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org> | ||
8 | * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. | ||
9 | */ | ||
10 | |||
11 | #include <linux/types.h> | ||
12 | #include <linux/dma-mapping.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/string.h> | ||
16 | |||
17 | #include <asm/cache.h> | ||
18 | #include <asm/io.h> | ||
19 | |||
20 | #include <dma-coherence.h> | ||
21 | |||
22 | /* | ||
23 | * Warning on the terminology - Linux calls an uncached area coherent; | ||
24 | * MIPS terminology calls memory areas with hardware maintained coherency | ||
25 | * coherent. | ||
26 | */ | ||
27 | |||
28 | static inline int cpu_is_noncoherent_r10000(struct device *dev) | ||
29 | { | ||
30 | return !plat_device_is_coherent(dev) && | ||
31 | (current_cpu_data.cputype == CPU_R10000 && | ||
32 | current_cpu_data.cputype == CPU_R12000); | ||
33 | } | ||
34 | |||
35 | void *dma_alloc_noncoherent(struct device *dev, size_t size, | ||
36 | dma_addr_t * dma_handle, gfp_t gfp) | ||
37 | { | ||
38 | void *ret; | ||
39 | |||
40 | /* ignore region specifiers */ | ||
41 | gfp &= ~(__GFP_DMA | __GFP_HIGHMEM); | ||
42 | |||
43 | if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff)) | ||
44 | gfp |= GFP_DMA; | ||
45 | ret = (void *) __get_free_pages(gfp, get_order(size)); | ||
46 | |||
47 | if (ret != NULL) { | ||
48 | memset(ret, 0, size); | ||
49 | *dma_handle = plat_map_dma_mem(dev, ret, size); | ||
50 | } | ||
51 | |||
52 | return ret; | ||
53 | } | ||
54 | |||
55 | EXPORT_SYMBOL(dma_alloc_noncoherent); | ||
56 | |||
57 | void *dma_alloc_coherent(struct device *dev, size_t size, | ||
58 | dma_addr_t * dma_handle, gfp_t gfp) | ||
59 | { | ||
60 | void *ret; | ||
61 | |||
62 | /* ignore region specifiers */ | ||
63 | gfp &= ~(__GFP_DMA | __GFP_HIGHMEM); | ||
64 | |||
65 | if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff)) | ||
66 | gfp |= GFP_DMA; | ||
67 | ret = (void *) __get_free_pages(gfp, get_order(size)); | ||
68 | |||
69 | if (ret) { | ||
70 | memset(ret, 0, size); | ||
71 | *dma_handle = plat_map_dma_mem(dev, ret, size); | ||
72 | |||
73 | if (!plat_device_is_coherent(dev)) { | ||
74 | dma_cache_wback_inv((unsigned long) ret, size); | ||
75 | ret = UNCAC_ADDR(ret); | ||
76 | } | ||
77 | } | ||
78 | |||
79 | return ret; | ||
80 | } | ||
81 | |||
82 | EXPORT_SYMBOL(dma_alloc_coherent); | ||
83 | |||
84 | void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, | ||
85 | dma_addr_t dma_handle) | ||
86 | { | ||
87 | free_pages((unsigned long) vaddr, get_order(size)); | ||
88 | } | ||
89 | |||
90 | EXPORT_SYMBOL(dma_free_noncoherent); | ||
91 | |||
92 | void dma_free_coherent(struct device *dev, size_t size, void *vaddr, | ||
93 | dma_addr_t dma_handle) | ||
94 | { | ||
95 | unsigned long addr = (unsigned long) vaddr; | ||
96 | |||
97 | if (!plat_device_is_coherent(dev)) | ||
98 | addr = CAC_ADDR(addr); | ||
99 | |||
100 | free_pages(addr, get_order(size)); | ||
101 | } | ||
102 | |||
103 | EXPORT_SYMBOL(dma_free_coherent); | ||
104 | |||
105 | static inline void __dma_sync(unsigned long addr, size_t size, | ||
106 | enum dma_data_direction direction) | ||
107 | { | ||
108 | switch (direction) { | ||
109 | case DMA_TO_DEVICE: | ||
110 | dma_cache_wback(addr, size); | ||
111 | break; | ||
112 | |||
113 | case DMA_FROM_DEVICE: | ||
114 | dma_cache_inv(addr, size); | ||
115 | break; | ||
116 | |||
117 | case DMA_BIDIRECTIONAL: | ||
118 | dma_cache_wback_inv(addr, size); | ||
119 | break; | ||
120 | |||
121 | default: | ||
122 | BUG(); | ||
123 | } | ||
124 | } | ||
125 | |||
126 | dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, | ||
127 | enum dma_data_direction direction) | ||
128 | { | ||
129 | unsigned long addr = (unsigned long) ptr; | ||
130 | |||
131 | if (!plat_device_is_coherent(dev)) | ||
132 | __dma_sync(addr, size, direction); | ||
133 | |||
134 | return plat_map_dma_mem(dev, ptr, size); | ||
135 | } | ||
136 | |||
137 | EXPORT_SYMBOL(dma_map_single); | ||
138 | |||
139 | void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, | ||
140 | enum dma_data_direction direction) | ||
141 | { | ||
142 | if (cpu_is_noncoherent_r10000(dev)) | ||
143 | __dma_sync(plat_dma_addr_to_phys(dma_addr) + PAGE_OFFSET, size, | ||
144 | direction); | ||
145 | |||
146 | plat_unmap_dma_mem(dma_addr); | ||
147 | } | ||
148 | |||
149 | EXPORT_SYMBOL(dma_unmap_single); | ||
150 | |||
151 | int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | ||
152 | enum dma_data_direction direction) | ||
153 | { | ||
154 | int i; | ||
155 | |||
156 | BUG_ON(direction == DMA_NONE); | ||
157 | |||
158 | for (i = 0; i < nents; i++, sg++) { | ||
159 | unsigned long addr; | ||
160 | |||
161 | addr = (unsigned long) page_address(sg->page); | ||
162 | if (!plat_device_is_coherent(dev) && addr) | ||
163 | __dma_sync(addr + sg->offset, sg->length, direction); | ||
164 | sg->dma_address = plat_map_dma_mem_page(dev, sg->page) + | ||
165 | sg->offset; | ||
166 | } | ||
167 | |||
168 | return nents; | ||
169 | } | ||
170 | |||
171 | EXPORT_SYMBOL(dma_map_sg); | ||
172 | |||
173 | dma_addr_t dma_map_page(struct device *dev, struct page *page, | ||
174 | unsigned long offset, size_t size, enum dma_data_direction direction) | ||
175 | { | ||
176 | BUG_ON(direction == DMA_NONE); | ||
177 | |||
178 | if (!plat_device_is_coherent(dev)) { | ||
179 | unsigned long addr; | ||
180 | |||
181 | addr = (unsigned long) page_address(page) + offset; | ||
182 | dma_cache_wback_inv(addr, size); | ||
183 | } | ||
184 | |||
185 | return plat_map_dma_mem_page(dev, page) + offset; | ||
186 | } | ||
187 | |||
188 | EXPORT_SYMBOL(dma_map_page); | ||
189 | |||
190 | void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, | ||
191 | enum dma_data_direction direction) | ||
192 | { | ||
193 | BUG_ON(direction == DMA_NONE); | ||
194 | |||
195 | if (!plat_device_is_coherent(dev) && direction != DMA_TO_DEVICE) { | ||
196 | unsigned long addr; | ||
197 | |||
198 | addr = plat_dma_addr_to_phys(dma_address); | ||
199 | dma_cache_wback_inv(addr, size); | ||
200 | } | ||
201 | |||
202 | plat_unmap_dma_mem(dma_address); | ||
203 | } | ||
204 | |||
205 | EXPORT_SYMBOL(dma_unmap_page); | ||
206 | |||
207 | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, | ||
208 | enum dma_data_direction direction) | ||
209 | { | ||
210 | unsigned long addr; | ||
211 | int i; | ||
212 | |||
213 | BUG_ON(direction == DMA_NONE); | ||
214 | |||
215 | for (i = 0; i < nhwentries; i++, sg++) { | ||
216 | if (!plat_device_is_coherent(dev) && | ||
217 | direction != DMA_TO_DEVICE) { | ||
218 | addr = (unsigned long) page_address(sg->page); | ||
219 | if (addr) | ||
220 | __dma_sync(addr + sg->offset, sg->length, | ||
221 | direction); | ||
222 | } | ||
223 | plat_unmap_dma_mem(sg->dma_address); | ||
224 | } | ||
225 | } | ||
226 | |||
227 | EXPORT_SYMBOL(dma_unmap_sg); | ||
228 | |||
229 | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
230 | size_t size, enum dma_data_direction direction) | ||
231 | { | ||
232 | BUG_ON(direction == DMA_NONE); | ||
233 | |||
234 | if (cpu_is_noncoherent_r10000(dev)) { | ||
235 | unsigned long addr; | ||
236 | |||
237 | addr = PAGE_OFFSET + plat_dma_addr_to_phys(dma_handle); | ||
238 | __dma_sync(addr, size, direction); | ||
239 | } | ||
240 | } | ||
241 | |||
242 | EXPORT_SYMBOL(dma_sync_single_for_cpu); | ||
243 | |||
244 | void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, | ||
245 | size_t size, enum dma_data_direction direction) | ||
246 | { | ||
247 | BUG_ON(direction == DMA_NONE); | ||
248 | |||
249 | if (cpu_is_noncoherent_r10000(dev)) { | ||
250 | unsigned long addr; | ||
251 | |||
252 | addr = plat_dma_addr_to_phys(dma_handle); | ||
253 | __dma_sync(addr, size, direction); | ||
254 | } | ||
255 | } | ||
256 | |||
257 | EXPORT_SYMBOL(dma_sync_single_for_device); | ||
258 | |||
259 | void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
260 | unsigned long offset, size_t size, enum dma_data_direction direction) | ||
261 | { | ||
262 | BUG_ON(direction == DMA_NONE); | ||
263 | |||
264 | if (cpu_is_noncoherent_r10000(dev)) { | ||
265 | unsigned long addr; | ||
266 | |||
267 | addr = PAGE_OFFSET + plat_dma_addr_to_phys(dma_handle); | ||
268 | __dma_sync(addr + offset, size, direction); | ||
269 | } | ||
270 | } | ||
271 | |||
272 | EXPORT_SYMBOL(dma_sync_single_range_for_cpu); | ||
273 | |||
274 | void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle, | ||
275 | unsigned long offset, size_t size, enum dma_data_direction direction) | ||
276 | { | ||
277 | BUG_ON(direction == DMA_NONE); | ||
278 | |||
279 | if (cpu_is_noncoherent_r10000(dev)) { | ||
280 | unsigned long addr; | ||
281 | |||
282 | addr = PAGE_OFFSET + plat_dma_addr_to_phys(dma_handle); | ||
283 | __dma_sync(addr + offset, size, direction); | ||
284 | } | ||
285 | } | ||
286 | |||
287 | EXPORT_SYMBOL(dma_sync_single_range_for_device); | ||
288 | |||
289 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, | ||
290 | enum dma_data_direction direction) | ||
291 | { | ||
292 | int i; | ||
293 | |||
294 | BUG_ON(direction == DMA_NONE); | ||
295 | |||
296 | /* Make sure that gcc doesn't leave the empty loop body. */ | ||
297 | for (i = 0; i < nelems; i++, sg++) { | ||
298 | if (!plat_device_is_coherent(dev)) | ||
299 | __dma_sync((unsigned long)page_address(sg->page), | ||
300 | sg->length, direction); | ||
301 | plat_unmap_dma_mem(sg->dma_address); | ||
302 | } | ||
303 | } | ||
304 | |||
305 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | ||
306 | |||
307 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, | ||
308 | enum dma_data_direction direction) | ||
309 | { | ||
310 | int i; | ||
311 | |||
312 | BUG_ON(direction == DMA_NONE); | ||
313 | |||
314 | /* Make sure that gcc doesn't leave the empty loop body. */ | ||
315 | for (i = 0; i < nelems; i++, sg++) { | ||
316 | if (!plat_device_is_coherent(dev)) | ||
317 | __dma_sync((unsigned long)page_address(sg->page), | ||
318 | sg->length, direction); | ||
319 | plat_unmap_dma_mem(sg->dma_address); | ||
320 | } | ||
321 | } | ||
322 | |||
323 | EXPORT_SYMBOL(dma_sync_sg_for_device); | ||
324 | |||
325 | int dma_mapping_error(dma_addr_t dma_addr) | ||
326 | { | ||
327 | return 0; | ||
328 | } | ||
329 | |||
330 | EXPORT_SYMBOL(dma_mapping_error); | ||
331 | |||
332 | int dma_supported(struct device *dev, u64 mask) | ||
333 | { | ||
334 | /* | ||
335 | * we fall back to GFP_DMA when the mask isn't all 1s, | ||
336 | * so we can't guarantee allocations that must be | ||
337 | * within a tighter range than GFP_DMA.. | ||
338 | */ | ||
339 | if (mask < 0x00ffffff) | ||
340 | return 0; | ||
341 | |||
342 | return 1; | ||
343 | } | ||
344 | |||
345 | EXPORT_SYMBOL(dma_supported); | ||
346 | |||
347 | int dma_is_consistent(struct device *dev, dma_addr_t dma_addr) | ||
348 | { | ||
349 | return plat_device_is_coherent(dev); | ||
350 | } | ||
351 | |||
352 | EXPORT_SYMBOL(dma_is_consistent); | ||
353 | |||
354 | void dma_cache_sync(struct device *dev, void *vaddr, size_t size, | ||
355 | enum dma_data_direction direction) | ||
356 | { | ||
357 | BUG_ON(direction == DMA_NONE); | ||
358 | |||
359 | if (!plat_device_is_coherent(dev)) | ||
360 | dma_cache_wback_inv((unsigned long)vaddr, size); | ||
361 | } | ||
362 | |||
363 | EXPORT_SYMBOL(dma_cache_sync); | ||