diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/mips/kernel/traps.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/mips/kernel/traps.c')
-rw-r--r-- | arch/mips/kernel/traps.c | 1062 |
1 files changed, 1062 insertions, 0 deletions
diff --git a/arch/mips/kernel/traps.c b/arch/mips/kernel/traps.c new file mode 100644 index 000000000000..56c36e42e0a6 --- /dev/null +++ b/arch/mips/kernel/traps.c | |||
@@ -0,0 +1,1062 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle | ||
7 | * Copyright (C) 1995, 1996 Paul M. Antoine | ||
8 | * Copyright (C) 1998 Ulf Carlsson | ||
9 | * Copyright (C) 1999 Silicon Graphics, Inc. | ||
10 | * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | ||
11 | * Copyright (C) 2000, 01 MIPS Technologies, Inc. | ||
12 | * Copyright (C) 2002, 2003, 2004 Maciej W. Rozycki | ||
13 | */ | ||
14 | #include <linux/config.h> | ||
15 | #include <linux/init.h> | ||
16 | #include <linux/mm.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/smp.h> | ||
20 | #include <linux/smp_lock.h> | ||
21 | #include <linux/spinlock.h> | ||
22 | #include <linux/kallsyms.h> | ||
23 | |||
24 | #include <asm/bootinfo.h> | ||
25 | #include <asm/branch.h> | ||
26 | #include <asm/break.h> | ||
27 | #include <asm/cpu.h> | ||
28 | #include <asm/fpu.h> | ||
29 | #include <asm/module.h> | ||
30 | #include <asm/pgtable.h> | ||
31 | #include <asm/ptrace.h> | ||
32 | #include <asm/sections.h> | ||
33 | #include <asm/system.h> | ||
34 | #include <asm/tlbdebug.h> | ||
35 | #include <asm/traps.h> | ||
36 | #include <asm/uaccess.h> | ||
37 | #include <asm/mmu_context.h> | ||
38 | #include <asm/watch.h> | ||
39 | #include <asm/types.h> | ||
40 | |||
41 | extern asmlinkage void handle_tlbm(void); | ||
42 | extern asmlinkage void handle_tlbl(void); | ||
43 | extern asmlinkage void handle_tlbs(void); | ||
44 | extern asmlinkage void handle_adel(void); | ||
45 | extern asmlinkage void handle_ades(void); | ||
46 | extern asmlinkage void handle_ibe(void); | ||
47 | extern asmlinkage void handle_dbe(void); | ||
48 | extern asmlinkage void handle_sys(void); | ||
49 | extern asmlinkage void handle_bp(void); | ||
50 | extern asmlinkage void handle_ri(void); | ||
51 | extern asmlinkage void handle_cpu(void); | ||
52 | extern asmlinkage void handle_ov(void); | ||
53 | extern asmlinkage void handle_tr(void); | ||
54 | extern asmlinkage void handle_fpe(void); | ||
55 | extern asmlinkage void handle_mdmx(void); | ||
56 | extern asmlinkage void handle_watch(void); | ||
57 | extern asmlinkage void handle_mcheck(void); | ||
58 | extern asmlinkage void handle_reserved(void); | ||
59 | |||
60 | extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp, | ||
61 | struct mips_fpu_soft_struct *ctx); | ||
62 | |||
63 | void (*board_be_init)(void); | ||
64 | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); | ||
65 | |||
66 | /* | ||
67 | * These constant is for searching for possible module text segments. | ||
68 | * MODULE_RANGE is a guess of how much space is likely to be vmalloced. | ||
69 | */ | ||
70 | #define MODULE_RANGE (8*1024*1024) | ||
71 | |||
72 | /* | ||
73 | * This routine abuses get_user()/put_user() to reference pointers | ||
74 | * with at least a bit of error checking ... | ||
75 | */ | ||
76 | void show_stack(struct task_struct *task, unsigned long *sp) | ||
77 | { | ||
78 | const int field = 2 * sizeof(unsigned long); | ||
79 | long stackdata; | ||
80 | int i; | ||
81 | |||
82 | if (!sp) { | ||
83 | if (task && task != current) | ||
84 | sp = (unsigned long *) task->thread.reg29; | ||
85 | else | ||
86 | sp = (unsigned long *) &sp; | ||
87 | } | ||
88 | |||
89 | printk("Stack :"); | ||
90 | i = 0; | ||
91 | while ((unsigned long) sp & (PAGE_SIZE - 1)) { | ||
92 | if (i && ((i % (64 / field)) == 0)) | ||
93 | printk("\n "); | ||
94 | if (i > 39) { | ||
95 | printk(" ..."); | ||
96 | break; | ||
97 | } | ||
98 | |||
99 | if (__get_user(stackdata, sp++)) { | ||
100 | printk(" (Bad stack address)"); | ||
101 | break; | ||
102 | } | ||
103 | |||
104 | printk(" %0*lx", field, stackdata); | ||
105 | i++; | ||
106 | } | ||
107 | printk("\n"); | ||
108 | } | ||
109 | |||
110 | void show_trace(struct task_struct *task, unsigned long *stack) | ||
111 | { | ||
112 | const int field = 2 * sizeof(unsigned long); | ||
113 | unsigned long addr; | ||
114 | |||
115 | if (!stack) { | ||
116 | if (task && task != current) | ||
117 | stack = (unsigned long *) task->thread.reg29; | ||
118 | else | ||
119 | stack = (unsigned long *) &stack; | ||
120 | } | ||
121 | |||
122 | printk("Call Trace:"); | ||
123 | #ifdef CONFIG_KALLSYMS | ||
124 | printk("\n"); | ||
125 | #endif | ||
126 | while (!kstack_end(stack)) { | ||
127 | addr = *stack++; | ||
128 | if (__kernel_text_address(addr)) { | ||
129 | printk(" [<%0*lx>] ", field, addr); | ||
130 | print_symbol("%s\n", addr); | ||
131 | } | ||
132 | } | ||
133 | printk("\n"); | ||
134 | } | ||
135 | |||
136 | /* | ||
137 | * The architecture-independent dump_stack generator | ||
138 | */ | ||
139 | void dump_stack(void) | ||
140 | { | ||
141 | unsigned long stack; | ||
142 | |||
143 | show_trace(current, &stack); | ||
144 | } | ||
145 | |||
146 | EXPORT_SYMBOL(dump_stack); | ||
147 | |||
148 | void show_code(unsigned int *pc) | ||
149 | { | ||
150 | long i; | ||
151 | |||
152 | printk("\nCode:"); | ||
153 | |||
154 | for(i = -3 ; i < 6 ; i++) { | ||
155 | unsigned int insn; | ||
156 | if (__get_user(insn, pc + i)) { | ||
157 | printk(" (Bad address in epc)\n"); | ||
158 | break; | ||
159 | } | ||
160 | printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>')); | ||
161 | } | ||
162 | } | ||
163 | |||
164 | void show_regs(struct pt_regs *regs) | ||
165 | { | ||
166 | const int field = 2 * sizeof(unsigned long); | ||
167 | unsigned int cause = regs->cp0_cause; | ||
168 | int i; | ||
169 | |||
170 | printk("Cpu %d\n", smp_processor_id()); | ||
171 | |||
172 | /* | ||
173 | * Saved main processor registers | ||
174 | */ | ||
175 | for (i = 0; i < 32; ) { | ||
176 | if ((i % 4) == 0) | ||
177 | printk("$%2d :", i); | ||
178 | if (i == 0) | ||
179 | printk(" %0*lx", field, 0UL); | ||
180 | else if (i == 26 || i == 27) | ||
181 | printk(" %*s", field, ""); | ||
182 | else | ||
183 | printk(" %0*lx", field, regs->regs[i]); | ||
184 | |||
185 | i++; | ||
186 | if ((i % 4) == 0) | ||
187 | printk("\n"); | ||
188 | } | ||
189 | |||
190 | printk("Hi : %0*lx\n", field, regs->hi); | ||
191 | printk("Lo : %0*lx\n", field, regs->lo); | ||
192 | |||
193 | /* | ||
194 | * Saved cp0 registers | ||
195 | */ | ||
196 | printk("epc : %0*lx ", field, regs->cp0_epc); | ||
197 | print_symbol("%s ", regs->cp0_epc); | ||
198 | printk(" %s\n", print_tainted()); | ||
199 | printk("ra : %0*lx ", field, regs->regs[31]); | ||
200 | print_symbol("%s\n", regs->regs[31]); | ||
201 | |||
202 | printk("Status: %08x ", (uint32_t) regs->cp0_status); | ||
203 | |||
204 | if (regs->cp0_status & ST0_KX) | ||
205 | printk("KX "); | ||
206 | if (regs->cp0_status & ST0_SX) | ||
207 | printk("SX "); | ||
208 | if (regs->cp0_status & ST0_UX) | ||
209 | printk("UX "); | ||
210 | switch (regs->cp0_status & ST0_KSU) { | ||
211 | case KSU_USER: | ||
212 | printk("USER "); | ||
213 | break; | ||
214 | case KSU_SUPERVISOR: | ||
215 | printk("SUPERVISOR "); | ||
216 | break; | ||
217 | case KSU_KERNEL: | ||
218 | printk("KERNEL "); | ||
219 | break; | ||
220 | default: | ||
221 | printk("BAD_MODE "); | ||
222 | break; | ||
223 | } | ||
224 | if (regs->cp0_status & ST0_ERL) | ||
225 | printk("ERL "); | ||
226 | if (regs->cp0_status & ST0_EXL) | ||
227 | printk("EXL "); | ||
228 | if (regs->cp0_status & ST0_IE) | ||
229 | printk("IE "); | ||
230 | printk("\n"); | ||
231 | |||
232 | printk("Cause : %08x\n", cause); | ||
233 | |||
234 | cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | ||
235 | if (1 <= cause && cause <= 5) | ||
236 | printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); | ||
237 | |||
238 | printk("PrId : %08x\n", read_c0_prid()); | ||
239 | } | ||
240 | |||
241 | void show_registers(struct pt_regs *regs) | ||
242 | { | ||
243 | show_regs(regs); | ||
244 | print_modules(); | ||
245 | printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n", | ||
246 | current->comm, current->pid, current_thread_info(), current); | ||
247 | show_stack(current, (long *) regs->regs[29]); | ||
248 | show_trace(current, (long *) regs->regs[29]); | ||
249 | show_code((unsigned int *) regs->cp0_epc); | ||
250 | printk("\n"); | ||
251 | } | ||
252 | |||
253 | static DEFINE_SPINLOCK(die_lock); | ||
254 | |||
255 | NORET_TYPE void __die(const char * str, struct pt_regs * regs, | ||
256 | const char * file, const char * func, unsigned long line) | ||
257 | { | ||
258 | static int die_counter; | ||
259 | |||
260 | console_verbose(); | ||
261 | spin_lock_irq(&die_lock); | ||
262 | printk("%s", str); | ||
263 | if (file && func) | ||
264 | printk(" in %s:%s, line %ld", file, func, line); | ||
265 | printk("[#%d]:\n", ++die_counter); | ||
266 | show_registers(regs); | ||
267 | spin_unlock_irq(&die_lock); | ||
268 | do_exit(SIGSEGV); | ||
269 | } | ||
270 | |||
271 | void __die_if_kernel(const char * str, struct pt_regs * regs, | ||
272 | const char * file, const char * func, unsigned long line) | ||
273 | { | ||
274 | if (!user_mode(regs)) | ||
275 | __die(str, regs, file, func, line); | ||
276 | } | ||
277 | |||
278 | extern const struct exception_table_entry __start___dbe_table[]; | ||
279 | extern const struct exception_table_entry __stop___dbe_table[]; | ||
280 | |||
281 | void __declare_dbe_table(void) | ||
282 | { | ||
283 | __asm__ __volatile__( | ||
284 | ".section\t__dbe_table,\"a\"\n\t" | ||
285 | ".previous" | ||
286 | ); | ||
287 | } | ||
288 | |||
289 | /* Given an address, look for it in the exception tables. */ | ||
290 | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) | ||
291 | { | ||
292 | const struct exception_table_entry *e; | ||
293 | |||
294 | e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); | ||
295 | if (!e) | ||
296 | e = search_module_dbetables(addr); | ||
297 | return e; | ||
298 | } | ||
299 | |||
300 | asmlinkage void do_be(struct pt_regs *regs) | ||
301 | { | ||
302 | const int field = 2 * sizeof(unsigned long); | ||
303 | const struct exception_table_entry *fixup = NULL; | ||
304 | int data = regs->cp0_cause & 4; | ||
305 | int action = MIPS_BE_FATAL; | ||
306 | |||
307 | /* XXX For now. Fixme, this searches the wrong table ... */ | ||
308 | if (data && !user_mode(regs)) | ||
309 | fixup = search_dbe_tables(exception_epc(regs)); | ||
310 | |||
311 | if (fixup) | ||
312 | action = MIPS_BE_FIXUP; | ||
313 | |||
314 | if (board_be_handler) | ||
315 | action = board_be_handler(regs, fixup != 0); | ||
316 | |||
317 | switch (action) { | ||
318 | case MIPS_BE_DISCARD: | ||
319 | return; | ||
320 | case MIPS_BE_FIXUP: | ||
321 | if (fixup) { | ||
322 | regs->cp0_epc = fixup->nextinsn; | ||
323 | return; | ||
324 | } | ||
325 | break; | ||
326 | default: | ||
327 | break; | ||
328 | } | ||
329 | |||
330 | /* | ||
331 | * Assume it would be too dangerous to continue ... | ||
332 | */ | ||
333 | printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", | ||
334 | data ? "Data" : "Instruction", | ||
335 | field, regs->cp0_epc, field, regs->regs[31]); | ||
336 | die_if_kernel("Oops", regs); | ||
337 | force_sig(SIGBUS, current); | ||
338 | } | ||
339 | |||
340 | static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode) | ||
341 | { | ||
342 | unsigned int *epc; | ||
343 | |||
344 | epc = (unsigned int *) regs->cp0_epc + | ||
345 | ((regs->cp0_cause & CAUSEF_BD) != 0); | ||
346 | if (!get_user(*opcode, epc)) | ||
347 | return 0; | ||
348 | |||
349 | force_sig(SIGSEGV, current); | ||
350 | return 1; | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * ll/sc emulation | ||
355 | */ | ||
356 | |||
357 | #define OPCODE 0xfc000000 | ||
358 | #define BASE 0x03e00000 | ||
359 | #define RT 0x001f0000 | ||
360 | #define OFFSET 0x0000ffff | ||
361 | #define LL 0xc0000000 | ||
362 | #define SC 0xe0000000 | ||
363 | |||
364 | /* | ||
365 | * The ll_bit is cleared by r*_switch.S | ||
366 | */ | ||
367 | |||
368 | unsigned long ll_bit; | ||
369 | |||
370 | static struct task_struct *ll_task = NULL; | ||
371 | |||
372 | static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode) | ||
373 | { | ||
374 | unsigned long value, *vaddr; | ||
375 | long offset; | ||
376 | int signal = 0; | ||
377 | |||
378 | /* | ||
379 | * analyse the ll instruction that just caused a ri exception | ||
380 | * and put the referenced address to addr. | ||
381 | */ | ||
382 | |||
383 | /* sign extend offset */ | ||
384 | offset = opcode & OFFSET; | ||
385 | offset <<= 16; | ||
386 | offset >>= 16; | ||
387 | |||
388 | vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset); | ||
389 | |||
390 | if ((unsigned long)vaddr & 3) { | ||
391 | signal = SIGBUS; | ||
392 | goto sig; | ||
393 | } | ||
394 | if (get_user(value, vaddr)) { | ||
395 | signal = SIGSEGV; | ||
396 | goto sig; | ||
397 | } | ||
398 | |||
399 | preempt_disable(); | ||
400 | |||
401 | if (ll_task == NULL || ll_task == current) { | ||
402 | ll_bit = 1; | ||
403 | } else { | ||
404 | ll_bit = 0; | ||
405 | } | ||
406 | ll_task = current; | ||
407 | |||
408 | preempt_enable(); | ||
409 | |||
410 | regs->regs[(opcode & RT) >> 16] = value; | ||
411 | |||
412 | compute_return_epc(regs); | ||
413 | return; | ||
414 | |||
415 | sig: | ||
416 | force_sig(signal, current); | ||
417 | } | ||
418 | |||
419 | static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode) | ||
420 | { | ||
421 | unsigned long *vaddr, reg; | ||
422 | long offset; | ||
423 | int signal = 0; | ||
424 | |||
425 | /* | ||
426 | * analyse the sc instruction that just caused a ri exception | ||
427 | * and put the referenced address to addr. | ||
428 | */ | ||
429 | |||
430 | /* sign extend offset */ | ||
431 | offset = opcode & OFFSET; | ||
432 | offset <<= 16; | ||
433 | offset >>= 16; | ||
434 | |||
435 | vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset); | ||
436 | reg = (opcode & RT) >> 16; | ||
437 | |||
438 | if ((unsigned long)vaddr & 3) { | ||
439 | signal = SIGBUS; | ||
440 | goto sig; | ||
441 | } | ||
442 | |||
443 | preempt_disable(); | ||
444 | |||
445 | if (ll_bit == 0 || ll_task != current) { | ||
446 | regs->regs[reg] = 0; | ||
447 | preempt_enable(); | ||
448 | compute_return_epc(regs); | ||
449 | return; | ||
450 | } | ||
451 | |||
452 | preempt_enable(); | ||
453 | |||
454 | if (put_user(regs->regs[reg], vaddr)) { | ||
455 | signal = SIGSEGV; | ||
456 | goto sig; | ||
457 | } | ||
458 | |||
459 | regs->regs[reg] = 1; | ||
460 | |||
461 | compute_return_epc(regs); | ||
462 | return; | ||
463 | |||
464 | sig: | ||
465 | force_sig(signal, current); | ||
466 | } | ||
467 | |||
468 | /* | ||
469 | * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both | ||
470 | * opcodes are supposed to result in coprocessor unusable exceptions if | ||
471 | * executed on ll/sc-less processors. That's the theory. In practice a | ||
472 | * few processors such as NEC's VR4100 throw reserved instruction exceptions | ||
473 | * instead, so we're doing the emulation thing in both exception handlers. | ||
474 | */ | ||
475 | static inline int simulate_llsc(struct pt_regs *regs) | ||
476 | { | ||
477 | unsigned int opcode; | ||
478 | |||
479 | if (unlikely(get_insn_opcode(regs, &opcode))) | ||
480 | return -EFAULT; | ||
481 | |||
482 | if ((opcode & OPCODE) == LL) { | ||
483 | simulate_ll(regs, opcode); | ||
484 | return 0; | ||
485 | } | ||
486 | if ((opcode & OPCODE) == SC) { | ||
487 | simulate_sc(regs, opcode); | ||
488 | return 0; | ||
489 | } | ||
490 | |||
491 | return -EFAULT; /* Strange things going on ... */ | ||
492 | } | ||
493 | |||
494 | asmlinkage void do_ov(struct pt_regs *regs) | ||
495 | { | ||
496 | siginfo_t info; | ||
497 | |||
498 | info.si_code = FPE_INTOVF; | ||
499 | info.si_signo = SIGFPE; | ||
500 | info.si_errno = 0; | ||
501 | info.si_addr = (void *)regs->cp0_epc; | ||
502 | force_sig_info(SIGFPE, &info, current); | ||
503 | } | ||
504 | |||
505 | /* | ||
506 | * XXX Delayed fp exceptions when doing a lazy ctx switch XXX | ||
507 | */ | ||
508 | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) | ||
509 | { | ||
510 | if (fcr31 & FPU_CSR_UNI_X) { | ||
511 | int sig; | ||
512 | |||
513 | preempt_disable(); | ||
514 | |||
515 | /* | ||
516 | * Unimplemented operation exception. If we've got the full | ||
517 | * software emulator on-board, let's use it... | ||
518 | * | ||
519 | * Force FPU to dump state into task/thread context. We're | ||
520 | * moving a lot of data here for what is probably a single | ||
521 | * instruction, but the alternative is to pre-decode the FP | ||
522 | * register operands before invoking the emulator, which seems | ||
523 | * a bit extreme for what should be an infrequent event. | ||
524 | */ | ||
525 | save_fp(current); | ||
526 | |||
527 | /* Run the emulator */ | ||
528 | sig = fpu_emulator_cop1Handler (0, regs, | ||
529 | ¤t->thread.fpu.soft); | ||
530 | |||
531 | /* | ||
532 | * We can't allow the emulated instruction to leave any of | ||
533 | * the cause bit set in $fcr31. | ||
534 | */ | ||
535 | current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X; | ||
536 | |||
537 | /* Restore the hardware register state */ | ||
538 | restore_fp(current); | ||
539 | |||
540 | preempt_enable(); | ||
541 | |||
542 | /* If something went wrong, signal */ | ||
543 | if (sig) | ||
544 | force_sig(sig, current); | ||
545 | |||
546 | return; | ||
547 | } | ||
548 | |||
549 | force_sig(SIGFPE, current); | ||
550 | } | ||
551 | |||
552 | asmlinkage void do_bp(struct pt_regs *regs) | ||
553 | { | ||
554 | unsigned int opcode, bcode; | ||
555 | siginfo_t info; | ||
556 | |||
557 | die_if_kernel("Break instruction in kernel code", regs); | ||
558 | |||
559 | if (get_insn_opcode(regs, &opcode)) | ||
560 | return; | ||
561 | |||
562 | /* | ||
563 | * There is the ancient bug in the MIPS assemblers that the break | ||
564 | * code starts left to bit 16 instead to bit 6 in the opcode. | ||
565 | * Gas is bug-compatible, but not always, grrr... | ||
566 | * We handle both cases with a simple heuristics. --macro | ||
567 | */ | ||
568 | bcode = ((opcode >> 6) & ((1 << 20) - 1)); | ||
569 | if (bcode < (1 << 10)) | ||
570 | bcode <<= 10; | ||
571 | |||
572 | /* | ||
573 | * (A short test says that IRIX 5.3 sends SIGTRAP for all break | ||
574 | * insns, even for break codes that indicate arithmetic failures. | ||
575 | * Weird ...) | ||
576 | * But should we continue the brokenness??? --macro | ||
577 | */ | ||
578 | switch (bcode) { | ||
579 | case BRK_OVERFLOW << 10: | ||
580 | case BRK_DIVZERO << 10: | ||
581 | if (bcode == (BRK_DIVZERO << 10)) | ||
582 | info.si_code = FPE_INTDIV; | ||
583 | else | ||
584 | info.si_code = FPE_INTOVF; | ||
585 | info.si_signo = SIGFPE; | ||
586 | info.si_errno = 0; | ||
587 | info.si_addr = (void *)regs->cp0_epc; | ||
588 | force_sig_info(SIGFPE, &info, current); | ||
589 | break; | ||
590 | default: | ||
591 | force_sig(SIGTRAP, current); | ||
592 | } | ||
593 | } | ||
594 | |||
595 | asmlinkage void do_tr(struct pt_regs *regs) | ||
596 | { | ||
597 | unsigned int opcode, tcode = 0; | ||
598 | siginfo_t info; | ||
599 | |||
600 | die_if_kernel("Trap instruction in kernel code", regs); | ||
601 | |||
602 | if (get_insn_opcode(regs, &opcode)) | ||
603 | return; | ||
604 | |||
605 | /* Immediate versions don't provide a code. */ | ||
606 | if (!(opcode & OPCODE)) | ||
607 | tcode = ((opcode >> 6) & ((1 << 10) - 1)); | ||
608 | |||
609 | /* | ||
610 | * (A short test says that IRIX 5.3 sends SIGTRAP for all trap | ||
611 | * insns, even for trap codes that indicate arithmetic failures. | ||
612 | * Weird ...) | ||
613 | * But should we continue the brokenness??? --macro | ||
614 | */ | ||
615 | switch (tcode) { | ||
616 | case BRK_OVERFLOW: | ||
617 | case BRK_DIVZERO: | ||
618 | if (tcode == BRK_DIVZERO) | ||
619 | info.si_code = FPE_INTDIV; | ||
620 | else | ||
621 | info.si_code = FPE_INTOVF; | ||
622 | info.si_signo = SIGFPE; | ||
623 | info.si_errno = 0; | ||
624 | info.si_addr = (void *)regs->cp0_epc; | ||
625 | force_sig_info(SIGFPE, &info, current); | ||
626 | break; | ||
627 | default: | ||
628 | force_sig(SIGTRAP, current); | ||
629 | } | ||
630 | } | ||
631 | |||
632 | asmlinkage void do_ri(struct pt_regs *regs) | ||
633 | { | ||
634 | die_if_kernel("Reserved instruction in kernel code", regs); | ||
635 | |||
636 | if (!cpu_has_llsc) | ||
637 | if (!simulate_llsc(regs)) | ||
638 | return; | ||
639 | |||
640 | force_sig(SIGILL, current); | ||
641 | } | ||
642 | |||
643 | asmlinkage void do_cpu(struct pt_regs *regs) | ||
644 | { | ||
645 | unsigned int cpid; | ||
646 | |||
647 | die_if_kernel("do_cpu invoked from kernel context!", regs); | ||
648 | |||
649 | cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; | ||
650 | |||
651 | switch (cpid) { | ||
652 | case 0: | ||
653 | if (cpu_has_llsc) | ||
654 | break; | ||
655 | |||
656 | if (!simulate_llsc(regs)) | ||
657 | return; | ||
658 | break; | ||
659 | |||
660 | case 1: | ||
661 | preempt_disable(); | ||
662 | |||
663 | own_fpu(); | ||
664 | if (used_math()) { /* Using the FPU again. */ | ||
665 | restore_fp(current); | ||
666 | } else { /* First time FPU user. */ | ||
667 | init_fpu(); | ||
668 | set_used_math(); | ||
669 | } | ||
670 | |||
671 | if (!cpu_has_fpu) { | ||
672 | int sig = fpu_emulator_cop1Handler(0, regs, | ||
673 | ¤t->thread.fpu.soft); | ||
674 | if (sig) | ||
675 | force_sig(sig, current); | ||
676 | } | ||
677 | |||
678 | preempt_enable(); | ||
679 | |||
680 | return; | ||
681 | |||
682 | case 2: | ||
683 | case 3: | ||
684 | break; | ||
685 | } | ||
686 | |||
687 | force_sig(SIGILL, current); | ||
688 | } | ||
689 | |||
690 | asmlinkage void do_mdmx(struct pt_regs *regs) | ||
691 | { | ||
692 | force_sig(SIGILL, current); | ||
693 | } | ||
694 | |||
695 | asmlinkage void do_watch(struct pt_regs *regs) | ||
696 | { | ||
697 | /* | ||
698 | * We use the watch exception where available to detect stack | ||
699 | * overflows. | ||
700 | */ | ||
701 | dump_tlb_all(); | ||
702 | show_regs(regs); | ||
703 | panic("Caught WATCH exception - probably caused by stack overflow."); | ||
704 | } | ||
705 | |||
706 | asmlinkage void do_mcheck(struct pt_regs *regs) | ||
707 | { | ||
708 | show_regs(regs); | ||
709 | dump_tlb_all(); | ||
710 | /* | ||
711 | * Some chips may have other causes of machine check (e.g. SB1 | ||
712 | * graduation timer) | ||
713 | */ | ||
714 | panic("Caught Machine Check exception - %scaused by multiple " | ||
715 | "matching entries in the TLB.", | ||
716 | (regs->cp0_status & ST0_TS) ? "" : "not "); | ||
717 | } | ||
718 | |||
719 | asmlinkage void do_reserved(struct pt_regs *regs) | ||
720 | { | ||
721 | /* | ||
722 | * Game over - no way to handle this if it ever occurs. Most probably | ||
723 | * caused by a new unknown cpu type or after another deadly | ||
724 | * hard/software error. | ||
725 | */ | ||
726 | show_regs(regs); | ||
727 | panic("Caught reserved exception %ld - should not happen.", | ||
728 | (regs->cp0_cause & 0x7f) >> 2); | ||
729 | } | ||
730 | |||
731 | /* | ||
732 | * Some MIPS CPUs can enable/disable for cache parity detection, but do | ||
733 | * it different ways. | ||
734 | */ | ||
735 | static inline void parity_protection_init(void) | ||
736 | { | ||
737 | switch (current_cpu_data.cputype) { | ||
738 | case CPU_24K: | ||
739 | /* 24K cache parity not currently implemented in FPGA */ | ||
740 | printk(KERN_INFO "Disable cache parity protection for " | ||
741 | "MIPS 24K CPU.\n"); | ||
742 | write_c0_ecc(read_c0_ecc() & ~0x80000000); | ||
743 | break; | ||
744 | case CPU_5KC: | ||
745 | /* Set the PE bit (bit 31) in the c0_ecc register. */ | ||
746 | printk(KERN_INFO "Enable cache parity protection for " | ||
747 | "MIPS 5KC/24K CPUs.\n"); | ||
748 | write_c0_ecc(read_c0_ecc() | 0x80000000); | ||
749 | break; | ||
750 | case CPU_20KC: | ||
751 | case CPU_25KF: | ||
752 | /* Clear the DE bit (bit 16) in the c0_status register. */ | ||
753 | printk(KERN_INFO "Enable cache parity protection for " | ||
754 | "MIPS 20KC/25KF CPUs.\n"); | ||
755 | clear_c0_status(ST0_DE); | ||
756 | break; | ||
757 | default: | ||
758 | break; | ||
759 | } | ||
760 | } | ||
761 | |||
762 | asmlinkage void cache_parity_error(void) | ||
763 | { | ||
764 | const int field = 2 * sizeof(unsigned long); | ||
765 | unsigned int reg_val; | ||
766 | |||
767 | /* For the moment, report the problem and hang. */ | ||
768 | printk("Cache error exception:\n"); | ||
769 | printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | ||
770 | reg_val = read_c0_cacheerr(); | ||
771 | printk("c0_cacheerr == %08x\n", reg_val); | ||
772 | |||
773 | printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | ||
774 | reg_val & (1<<30) ? "secondary" : "primary", | ||
775 | reg_val & (1<<31) ? "data" : "insn"); | ||
776 | printk("Error bits: %s%s%s%s%s%s%s\n", | ||
777 | reg_val & (1<<29) ? "ED " : "", | ||
778 | reg_val & (1<<28) ? "ET " : "", | ||
779 | reg_val & (1<<26) ? "EE " : "", | ||
780 | reg_val & (1<<25) ? "EB " : "", | ||
781 | reg_val & (1<<24) ? "EI " : "", | ||
782 | reg_val & (1<<23) ? "E1 " : "", | ||
783 | reg_val & (1<<22) ? "E0 " : ""); | ||
784 | printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); | ||
785 | |||
786 | #if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64) | ||
787 | if (reg_val & (1<<22)) | ||
788 | printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); | ||
789 | |||
790 | if (reg_val & (1<<23)) | ||
791 | printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); | ||
792 | #endif | ||
793 | |||
794 | panic("Can't handle the cache error!"); | ||
795 | } | ||
796 | |||
797 | /* | ||
798 | * SDBBP EJTAG debug exception handler. | ||
799 | * We skip the instruction and return to the next instruction. | ||
800 | */ | ||
801 | void ejtag_exception_handler(struct pt_regs *regs) | ||
802 | { | ||
803 | const int field = 2 * sizeof(unsigned long); | ||
804 | unsigned long depc, old_epc; | ||
805 | unsigned int debug; | ||
806 | |||
807 | printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); | ||
808 | depc = read_c0_depc(); | ||
809 | debug = read_c0_debug(); | ||
810 | printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); | ||
811 | if (debug & 0x80000000) { | ||
812 | /* | ||
813 | * In branch delay slot. | ||
814 | * We cheat a little bit here and use EPC to calculate the | ||
815 | * debug return address (DEPC). EPC is restored after the | ||
816 | * calculation. | ||
817 | */ | ||
818 | old_epc = regs->cp0_epc; | ||
819 | regs->cp0_epc = depc; | ||
820 | __compute_return_epc(regs); | ||
821 | depc = regs->cp0_epc; | ||
822 | regs->cp0_epc = old_epc; | ||
823 | } else | ||
824 | depc += 4; | ||
825 | write_c0_depc(depc); | ||
826 | |||
827 | #if 0 | ||
828 | printk("\n\n----- Enable EJTAG single stepping ----\n\n"); | ||
829 | write_c0_debug(debug | 0x100); | ||
830 | #endif | ||
831 | } | ||
832 | |||
833 | /* | ||
834 | * NMI exception handler. | ||
835 | */ | ||
836 | void nmi_exception_handler(struct pt_regs *regs) | ||
837 | { | ||
838 | printk("NMI taken!!!!\n"); | ||
839 | die("NMI", regs); | ||
840 | while(1) ; | ||
841 | } | ||
842 | |||
843 | unsigned long exception_handlers[32]; | ||
844 | |||
845 | /* | ||
846 | * As a side effect of the way this is implemented we're limited | ||
847 | * to interrupt handlers in the address range from | ||
848 | * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ... | ||
849 | */ | ||
850 | void *set_except_vector(int n, void *addr) | ||
851 | { | ||
852 | unsigned long handler = (unsigned long) addr; | ||
853 | unsigned long old_handler = exception_handlers[n]; | ||
854 | |||
855 | exception_handlers[n] = handler; | ||
856 | if (n == 0 && cpu_has_divec) { | ||
857 | *(volatile u32 *)(CAC_BASE + 0x200) = 0x08000000 | | ||
858 | (0x03ffffff & (handler >> 2)); | ||
859 | flush_icache_range(CAC_BASE + 0x200, CAC_BASE + 0x204); | ||
860 | } | ||
861 | return (void *)old_handler; | ||
862 | } | ||
863 | |||
864 | /* | ||
865 | * This is used by native signal handling | ||
866 | */ | ||
867 | asmlinkage int (*save_fp_context)(struct sigcontext *sc); | ||
868 | asmlinkage int (*restore_fp_context)(struct sigcontext *sc); | ||
869 | |||
870 | extern asmlinkage int _save_fp_context(struct sigcontext *sc); | ||
871 | extern asmlinkage int _restore_fp_context(struct sigcontext *sc); | ||
872 | |||
873 | extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc); | ||
874 | extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc); | ||
875 | |||
876 | static inline void signal_init(void) | ||
877 | { | ||
878 | if (cpu_has_fpu) { | ||
879 | save_fp_context = _save_fp_context; | ||
880 | restore_fp_context = _restore_fp_context; | ||
881 | } else { | ||
882 | save_fp_context = fpu_emulator_save_context; | ||
883 | restore_fp_context = fpu_emulator_restore_context; | ||
884 | } | ||
885 | } | ||
886 | |||
887 | #ifdef CONFIG_MIPS32_COMPAT | ||
888 | |||
889 | /* | ||
890 | * This is used by 32-bit signal stuff on the 64-bit kernel | ||
891 | */ | ||
892 | asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc); | ||
893 | asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc); | ||
894 | |||
895 | extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc); | ||
896 | extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc); | ||
897 | |||
898 | extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc); | ||
899 | extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc); | ||
900 | |||
901 | static inline void signal32_init(void) | ||
902 | { | ||
903 | if (cpu_has_fpu) { | ||
904 | save_fp_context32 = _save_fp_context32; | ||
905 | restore_fp_context32 = _restore_fp_context32; | ||
906 | } else { | ||
907 | save_fp_context32 = fpu_emulator_save_context32; | ||
908 | restore_fp_context32 = fpu_emulator_restore_context32; | ||
909 | } | ||
910 | } | ||
911 | #endif | ||
912 | |||
913 | extern void cpu_cache_init(void); | ||
914 | extern void tlb_init(void); | ||
915 | |||
916 | void __init per_cpu_trap_init(void) | ||
917 | { | ||
918 | unsigned int cpu = smp_processor_id(); | ||
919 | unsigned int status_set = ST0_CU0; | ||
920 | |||
921 | /* | ||
922 | * Disable coprocessors and select 32-bit or 64-bit addressing | ||
923 | * and the 16/32 or 32/32 FPR register model. Reset the BEV | ||
924 | * flag that some firmware may have left set and the TS bit (for | ||
925 | * IP27). Set XX for ISA IV code to work. | ||
926 | */ | ||
927 | #ifdef CONFIG_MIPS64 | ||
928 | status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; | ||
929 | #endif | ||
930 | if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) | ||
931 | status_set |= ST0_XX; | ||
932 | change_c0_status(ST0_CU|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, | ||
933 | status_set); | ||
934 | |||
935 | /* | ||
936 | * Some MIPS CPUs have a dedicated interrupt vector which reduces the | ||
937 | * interrupt processing overhead. Use it where available. | ||
938 | */ | ||
939 | if (cpu_has_divec) | ||
940 | set_c0_cause(CAUSEF_IV); | ||
941 | |||
942 | cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; | ||
943 | TLBMISS_HANDLER_SETUP(); | ||
944 | |||
945 | atomic_inc(&init_mm.mm_count); | ||
946 | current->active_mm = &init_mm; | ||
947 | BUG_ON(current->mm); | ||
948 | enter_lazy_tlb(&init_mm, current); | ||
949 | |||
950 | cpu_cache_init(); | ||
951 | tlb_init(); | ||
952 | } | ||
953 | |||
954 | void __init trap_init(void) | ||
955 | { | ||
956 | extern char except_vec3_generic, except_vec3_r4000; | ||
957 | extern char except_vec_ejtag_debug; | ||
958 | extern char except_vec4; | ||
959 | unsigned long i; | ||
960 | |||
961 | per_cpu_trap_init(); | ||
962 | |||
963 | /* | ||
964 | * Copy the generic exception handlers to their final destination. | ||
965 | * This will be overriden later as suitable for a particular | ||
966 | * configuration. | ||
967 | */ | ||
968 | memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); | ||
969 | |||
970 | /* | ||
971 | * Setup default vectors | ||
972 | */ | ||
973 | for (i = 0; i <= 31; i++) | ||
974 | set_except_vector(i, handle_reserved); | ||
975 | |||
976 | /* | ||
977 | * Copy the EJTAG debug exception vector handler code to it's final | ||
978 | * destination. | ||
979 | */ | ||
980 | if (cpu_has_ejtag) | ||
981 | memcpy((void *)(CAC_BASE + 0x300), &except_vec_ejtag_debug, 0x80); | ||
982 | |||
983 | /* | ||
984 | * Only some CPUs have the watch exceptions. | ||
985 | */ | ||
986 | if (cpu_has_watch) | ||
987 | set_except_vector(23, handle_watch); | ||
988 | |||
989 | /* | ||
990 | * Some MIPS CPUs have a dedicated interrupt vector which reduces the | ||
991 | * interrupt processing overhead. Use it where available. | ||
992 | */ | ||
993 | if (cpu_has_divec) | ||
994 | memcpy((void *)(CAC_BASE + 0x200), &except_vec4, 0x8); | ||
995 | |||
996 | /* | ||
997 | * Some CPUs can enable/disable for cache parity detection, but does | ||
998 | * it different ways. | ||
999 | */ | ||
1000 | parity_protection_init(); | ||
1001 | |||
1002 | /* | ||
1003 | * The Data Bus Errors / Instruction Bus Errors are signaled | ||
1004 | * by external hardware. Therefore these two exceptions | ||
1005 | * may have board specific handlers. | ||
1006 | */ | ||
1007 | if (board_be_init) | ||
1008 | board_be_init(); | ||
1009 | |||
1010 | set_except_vector(1, handle_tlbm); | ||
1011 | set_except_vector(2, handle_tlbl); | ||
1012 | set_except_vector(3, handle_tlbs); | ||
1013 | |||
1014 | set_except_vector(4, handle_adel); | ||
1015 | set_except_vector(5, handle_ades); | ||
1016 | |||
1017 | set_except_vector(6, handle_ibe); | ||
1018 | set_except_vector(7, handle_dbe); | ||
1019 | |||
1020 | set_except_vector(8, handle_sys); | ||
1021 | set_except_vector(9, handle_bp); | ||
1022 | set_except_vector(10, handle_ri); | ||
1023 | set_except_vector(11, handle_cpu); | ||
1024 | set_except_vector(12, handle_ov); | ||
1025 | set_except_vector(13, handle_tr); | ||
1026 | set_except_vector(22, handle_mdmx); | ||
1027 | |||
1028 | if (cpu_has_fpu && !cpu_has_nofpuex) | ||
1029 | set_except_vector(15, handle_fpe); | ||
1030 | |||
1031 | if (cpu_has_mcheck) | ||
1032 | set_except_vector(24, handle_mcheck); | ||
1033 | |||
1034 | if (cpu_has_vce) | ||
1035 | /* Special exception: R4[04]00 uses also the divec space. */ | ||
1036 | memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100); | ||
1037 | else if (cpu_has_4kex) | ||
1038 | memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); | ||
1039 | else | ||
1040 | memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80); | ||
1041 | |||
1042 | if (current_cpu_data.cputype == CPU_R6000 || | ||
1043 | current_cpu_data.cputype == CPU_R6000A) { | ||
1044 | /* | ||
1045 | * The R6000 is the only R-series CPU that features a machine | ||
1046 | * check exception (similar to the R4000 cache error) and | ||
1047 | * unaligned ldc1/sdc1 exception. The handlers have not been | ||
1048 | * written yet. Well, anyway there is no R6000 machine on the | ||
1049 | * current list of targets for Linux/MIPS. | ||
1050 | * (Duh, crap, there is someone with a triple R6k machine) | ||
1051 | */ | ||
1052 | //set_except_vector(14, handle_mc); | ||
1053 | //set_except_vector(15, handle_ndc); | ||
1054 | } | ||
1055 | |||
1056 | signal_init(); | ||
1057 | #ifdef CONFIG_MIPS32_COMPAT | ||
1058 | signal32_init(); | ||
1059 | #endif | ||
1060 | |||
1061 | flush_icache_range(CAC_BASE, CAC_BASE + 0x400); | ||
1062 | } | ||