aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/kernel/gdb-stub.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/mips/kernel/gdb-stub.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/mips/kernel/gdb-stub.c')
-rw-r--r--arch/mips/kernel/gdb-stub.c1091
1 files changed, 1091 insertions, 0 deletions
diff --git a/arch/mips/kernel/gdb-stub.c b/arch/mips/kernel/gdb-stub.c
new file mode 100644
index 000000000000..269889302a27
--- /dev/null
+++ b/arch/mips/kernel/gdb-stub.c
@@ -0,0 +1,1091 @@
1/*
2 * arch/mips/kernel/gdb-stub.c
3 *
4 * Originally written by Glenn Engel, Lake Stevens Instrument Division
5 *
6 * Contributed by HP Systems
7 *
8 * Modified for SPARC by Stu Grossman, Cygnus Support.
9 *
10 * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
11 * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
12 *
13 * Copyright (C) 1995 Andreas Busse
14 *
15 * Copyright (C) 2003 MontaVista Software Inc.
16 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
17 */
18
19/*
20 * To enable debugger support, two things need to happen. One, a
21 * call to set_debug_traps() is necessary in order to allow any breakpoints
22 * or error conditions to be properly intercepted and reported to gdb.
23 * Two, a breakpoint needs to be generated to begin communication. This
24 * is most easily accomplished by a call to breakpoint(). Breakpoint()
25 * simulates a breakpoint by executing a BREAK instruction.
26 *
27 *
28 * The following gdb commands are supported:
29 *
30 * command function Return value
31 *
32 * g return the value of the CPU registers hex data or ENN
33 * G set the value of the CPU registers OK or ENN
34 *
35 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
36 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
37 *
38 * c Resume at current address SNN ( signal NN)
39 * cAA..AA Continue at address AA..AA SNN
40 *
41 * s Step one instruction SNN
42 * sAA..AA Step one instruction from AA..AA SNN
43 *
44 * k kill
45 *
46 * ? What was the last sigval ? SNN (signal NN)
47 *
48 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
49 * baud rate
50 *
51 * All commands and responses are sent with a packet which includes a
52 * checksum. A packet consists of
53 *
54 * $<packet info>#<checksum>.
55 *
56 * where
57 * <packet info> :: <characters representing the command or response>
58 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
59 *
60 * When a packet is received, it is first acknowledged with either '+' or '-'.
61 * '+' indicates a successful transfer. '-' indicates a failed transfer.
62 *
63 * Example:
64 *
65 * Host: Reply:
66 * $m0,10#2a +$00010203040506070809101112131415#42
67 *
68 *
69 * ==============
70 * MORE EXAMPLES:
71 * ==============
72 *
73 * For reference -- the following are the steps that one
74 * company took (RidgeRun Inc) to get remote gdb debugging
75 * going. In this scenario the host machine was a PC and the
76 * target platform was a Galileo EVB64120A MIPS evaluation
77 * board.
78 *
79 * Step 1:
80 * First download gdb-5.0.tar.gz from the internet.
81 * and then build/install the package.
82 *
83 * Example:
84 * $ tar zxf gdb-5.0.tar.gz
85 * $ cd gdb-5.0
86 * $ ./configure --target=mips-linux-elf
87 * $ make
88 * $ install
89 * $ which mips-linux-elf-gdb
90 * /usr/local/bin/mips-linux-elf-gdb
91 *
92 * Step 2:
93 * Configure linux for remote debugging and build it.
94 *
95 * Example:
96 * $ cd ~/linux
97 * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
98 * $ make
99 *
100 * Step 3:
101 * Download the kernel to the remote target and start
102 * the kernel running. It will promptly halt and wait
103 * for the host gdb session to connect. It does this
104 * since the "Kernel Hacking" option has defined
105 * CONFIG_KGDB which in turn enables your calls
106 * to:
107 * set_debug_traps();
108 * breakpoint();
109 *
110 * Step 4:
111 * Start the gdb session on the host.
112 *
113 * Example:
114 * $ mips-linux-elf-gdb vmlinux
115 * (gdb) set remotebaud 115200
116 * (gdb) target remote /dev/ttyS1
117 * ...at this point you are connected to
118 * the remote target and can use gdb
119 * in the normal fasion. Setting
120 * breakpoints, single stepping,
121 * printing variables, etc.
122 */
123#include <linux/config.h>
124#include <linux/string.h>
125#include <linux/kernel.h>
126#include <linux/signal.h>
127#include <linux/sched.h>
128#include <linux/mm.h>
129#include <linux/console.h>
130#include <linux/init.h>
131#include <linux/smp.h>
132#include <linux/spinlock.h>
133#include <linux/slab.h>
134#include <linux/reboot.h>
135
136#include <asm/asm.h>
137#include <asm/cacheflush.h>
138#include <asm/mipsregs.h>
139#include <asm/pgtable.h>
140#include <asm/system.h>
141#include <asm/gdb-stub.h>
142#include <asm/inst.h>
143
144/*
145 * external low-level support routines
146 */
147
148extern int putDebugChar(char c); /* write a single character */
149extern char getDebugChar(void); /* read and return a single char */
150extern void trap_low(void);
151
152/*
153 * breakpoint and test functions
154 */
155extern void breakpoint(void);
156extern void breakinst(void);
157extern void async_breakpoint(void);
158extern void async_breakinst(void);
159extern void adel(void);
160
161/*
162 * local prototypes
163 */
164
165static void getpacket(char *buffer);
166static void putpacket(char *buffer);
167static int computeSignal(int tt);
168static int hex(unsigned char ch);
169static int hexToInt(char **ptr, int *intValue);
170static int hexToLong(char **ptr, long *longValue);
171static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
172void handle_exception(struct gdb_regs *regs);
173
174int kgdb_enabled;
175
176/*
177 * spin locks for smp case
178 */
179static spinlock_t kgdb_lock = SPIN_LOCK_UNLOCKED;
180static spinlock_t kgdb_cpulock[NR_CPUS] = { [0 ... NR_CPUS-1] = SPIN_LOCK_UNLOCKED};
181
182/*
183 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
184 * at least NUMREGBYTES*2 are needed for register packets
185 */
186#define BUFMAX 2048
187
188static char input_buffer[BUFMAX];
189static char output_buffer[BUFMAX];
190static int initialized; /* !0 means we've been initialized */
191static int kgdb_started;
192static const char hexchars[]="0123456789abcdef";
193
194/* Used to prevent crashes in memory access. Note that they'll crash anyway if
195 we haven't set up fault handlers yet... */
196int kgdb_read_byte(unsigned char *address, unsigned char *dest);
197int kgdb_write_byte(unsigned char val, unsigned char *dest);
198
199/*
200 * Convert ch from a hex digit to an int
201 */
202static int hex(unsigned char ch)
203{
204 if (ch >= 'a' && ch <= 'f')
205 return ch-'a'+10;
206 if (ch >= '0' && ch <= '9')
207 return ch-'0';
208 if (ch >= 'A' && ch <= 'F')
209 return ch-'A'+10;
210 return -1;
211}
212
213/*
214 * scan for the sequence $<data>#<checksum>
215 */
216static void getpacket(char *buffer)
217{
218 unsigned char checksum;
219 unsigned char xmitcsum;
220 int i;
221 int count;
222 unsigned char ch;
223
224 do {
225 /*
226 * wait around for the start character,
227 * ignore all other characters
228 */
229 while ((ch = (getDebugChar() & 0x7f)) != '$') ;
230
231 checksum = 0;
232 xmitcsum = -1;
233 count = 0;
234
235 /*
236 * now, read until a # or end of buffer is found
237 */
238 while (count < BUFMAX) {
239 ch = getDebugChar();
240 if (ch == '#')
241 break;
242 checksum = checksum + ch;
243 buffer[count] = ch;
244 count = count + 1;
245 }
246
247 if (count >= BUFMAX)
248 continue;
249
250 buffer[count] = 0;
251
252 if (ch == '#') {
253 xmitcsum = hex(getDebugChar() & 0x7f) << 4;
254 xmitcsum |= hex(getDebugChar() & 0x7f);
255
256 if (checksum != xmitcsum)
257 putDebugChar('-'); /* failed checksum */
258 else {
259 putDebugChar('+'); /* successful transfer */
260
261 /*
262 * if a sequence char is present,
263 * reply the sequence ID
264 */
265 if (buffer[2] == ':') {
266 putDebugChar(buffer[0]);
267 putDebugChar(buffer[1]);
268
269 /*
270 * remove sequence chars from buffer
271 */
272 count = strlen(buffer);
273 for (i=3; i <= count; i++)
274 buffer[i-3] = buffer[i];
275 }
276 }
277 }
278 }
279 while (checksum != xmitcsum);
280}
281
282/*
283 * send the packet in buffer.
284 */
285static void putpacket(char *buffer)
286{
287 unsigned char checksum;
288 int count;
289 unsigned char ch;
290
291 /*
292 * $<packet info>#<checksum>.
293 */
294
295 do {
296 putDebugChar('$');
297 checksum = 0;
298 count = 0;
299
300 while ((ch = buffer[count]) != 0) {
301 if (!(putDebugChar(ch)))
302 return;
303 checksum += ch;
304 count += 1;
305 }
306
307 putDebugChar('#');
308 putDebugChar(hexchars[checksum >> 4]);
309 putDebugChar(hexchars[checksum & 0xf]);
310
311 }
312 while ((getDebugChar() & 0x7f) != '+');
313}
314
315
316/*
317 * Convert the memory pointed to by mem into hex, placing result in buf.
318 * Return a pointer to the last char put in buf (null), in case of mem fault,
319 * return 0.
320 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
321 * not used.
322 */
323static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
324{
325 unsigned char ch;
326
327 while (count-- > 0) {
328 if (kgdb_read_byte(mem++, &ch) != 0)
329 return 0;
330 *buf++ = hexchars[ch >> 4];
331 *buf++ = hexchars[ch & 0xf];
332 }
333
334 *buf = 0;
335
336 return buf;
337}
338
339/*
340 * convert the hex array pointed to by buf into binary to be placed in mem
341 * return a pointer to the character AFTER the last byte written
342 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
343 * not used.
344 */
345static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
346{
347 int i;
348 unsigned char ch;
349
350 for (i=0; i<count; i++)
351 {
352 if (binary) {
353 ch = *buf++;
354 if (ch == 0x7d)
355 ch = 0x20 ^ *buf++;
356 }
357 else {
358 ch = hex(*buf++) << 4;
359 ch |= hex(*buf++);
360 }
361 if (kgdb_write_byte(ch, mem++) != 0)
362 return 0;
363 }
364
365 return mem;
366}
367
368/*
369 * This table contains the mapping between SPARC hardware trap types, and
370 * signals, which are primarily what GDB understands. It also indicates
371 * which hardware traps we need to commandeer when initializing the stub.
372 */
373static struct hard_trap_info {
374 unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */
375 unsigned char signo; /* Signal that we map this trap into */
376} hard_trap_info[] = {
377 { 6, SIGBUS }, /* instruction bus error */
378 { 7, SIGBUS }, /* data bus error */
379 { 9, SIGTRAP }, /* break */
380 { 10, SIGILL }, /* reserved instruction */
381/* { 11, SIGILL }, */ /* CPU unusable */
382 { 12, SIGFPE }, /* overflow */
383 { 13, SIGTRAP }, /* trap */
384 { 14, SIGSEGV }, /* virtual instruction cache coherency */
385 { 15, SIGFPE }, /* floating point exception */
386 { 23, SIGSEGV }, /* watch */
387 { 31, SIGSEGV }, /* virtual data cache coherency */
388 { 0, 0} /* Must be last */
389};
390
391/* Save the normal trap handlers for user-mode traps. */
392void *saved_vectors[32];
393
394/*
395 * Set up exception handlers for tracing and breakpoints
396 */
397void set_debug_traps(void)
398{
399 struct hard_trap_info *ht;
400 unsigned long flags;
401 unsigned char c;
402
403 local_irq_save(flags);
404 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
405 saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
406
407 putDebugChar('+'); /* 'hello world' */
408 /*
409 * In case GDB is started before us, ack any packets
410 * (presumably "$?#xx") sitting there.
411 */
412 while((c = getDebugChar()) != '$');
413 while((c = getDebugChar()) != '#');
414 c = getDebugChar(); /* eat first csum byte */
415 c = getDebugChar(); /* eat second csum byte */
416 putDebugChar('+'); /* ack it */
417
418 initialized = 1;
419 local_irq_restore(flags);
420}
421
422void restore_debug_traps(void)
423{
424 struct hard_trap_info *ht;
425 unsigned long flags;
426
427 local_irq_save(flags);
428 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
429 set_except_vector(ht->tt, saved_vectors[ht->tt]);
430 local_irq_restore(flags);
431}
432
433/*
434 * Convert the MIPS hardware trap type code to a Unix signal number.
435 */
436static int computeSignal(int tt)
437{
438 struct hard_trap_info *ht;
439
440 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
441 if (ht->tt == tt)
442 return ht->signo;
443
444 return SIGHUP; /* default for things we don't know about */
445}
446
447/*
448 * While we find nice hex chars, build an int.
449 * Return number of chars processed.
450 */
451static int hexToInt(char **ptr, int *intValue)
452{
453 int numChars = 0;
454 int hexValue;
455
456 *intValue = 0;
457
458 while (**ptr) {
459 hexValue = hex(**ptr);
460 if (hexValue < 0)
461 break;
462
463 *intValue = (*intValue << 4) | hexValue;
464 numChars ++;
465
466 (*ptr)++;
467 }
468
469 return (numChars);
470}
471
472static int hexToLong(char **ptr, long *longValue)
473{
474 int numChars = 0;
475 int hexValue;
476
477 *longValue = 0;
478
479 while (**ptr) {
480 hexValue = hex(**ptr);
481 if (hexValue < 0)
482 break;
483
484 *longValue = (*longValue << 4) | hexValue;
485 numChars ++;
486
487 (*ptr)++;
488 }
489
490 return numChars;
491}
492
493
494#if 0
495/*
496 * Print registers (on target console)
497 * Used only to debug the stub...
498 */
499void show_gdbregs(struct gdb_regs * regs)
500{
501 /*
502 * Saved main processor registers
503 */
504 printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
505 regs->reg0, regs->reg1, regs->reg2, regs->reg3,
506 regs->reg4, regs->reg5, regs->reg6, regs->reg7);
507 printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
508 regs->reg8, regs->reg9, regs->reg10, regs->reg11,
509 regs->reg12, regs->reg13, regs->reg14, regs->reg15);
510 printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
511 regs->reg16, regs->reg17, regs->reg18, regs->reg19,
512 regs->reg20, regs->reg21, regs->reg22, regs->reg23);
513 printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
514 regs->reg24, regs->reg25, regs->reg26, regs->reg27,
515 regs->reg28, regs->reg29, regs->reg30, regs->reg31);
516
517 /*
518 * Saved cp0 registers
519 */
520 printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n",
521 regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
522}
523#endif /* dead code */
524
525/*
526 * We single-step by setting breakpoints. When an exception
527 * is handled, we need to restore the instructions hoisted
528 * when the breakpoints were set.
529 *
530 * This is where we save the original instructions.
531 */
532static struct gdb_bp_save {
533 unsigned long addr;
534 unsigned int val;
535} step_bp[2];
536
537#define BP 0x0000000d /* break opcode */
538
539/*
540 * Set breakpoint instructions for single stepping.
541 */
542static void single_step(struct gdb_regs *regs)
543{
544 union mips_instruction insn;
545 unsigned long targ;
546 int is_branch, is_cond, i;
547
548 targ = regs->cp0_epc;
549 insn.word = *(unsigned int *)targ;
550 is_branch = is_cond = 0;
551
552 switch (insn.i_format.opcode) {
553 /*
554 * jr and jalr are in r_format format.
555 */
556 case spec_op:
557 switch (insn.r_format.func) {
558 case jalr_op:
559 case jr_op:
560 targ = *(&regs->reg0 + insn.r_format.rs);
561 is_branch = 1;
562 break;
563 }
564 break;
565
566 /*
567 * This group contains:
568 * bltz_op, bgez_op, bltzl_op, bgezl_op,
569 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
570 */
571 case bcond_op:
572 is_branch = is_cond = 1;
573 targ += 4 + (insn.i_format.simmediate << 2);
574 break;
575
576 /*
577 * These are unconditional and in j_format.
578 */
579 case jal_op:
580 case j_op:
581 is_branch = 1;
582 targ += 4;
583 targ >>= 28;
584 targ <<= 28;
585 targ |= (insn.j_format.target << 2);
586 break;
587
588 /*
589 * These are conditional.
590 */
591 case beq_op:
592 case beql_op:
593 case bne_op:
594 case bnel_op:
595 case blez_op:
596 case blezl_op:
597 case bgtz_op:
598 case bgtzl_op:
599 case cop0_op:
600 case cop1_op:
601 case cop2_op:
602 case cop1x_op:
603 is_branch = is_cond = 1;
604 targ += 4 + (insn.i_format.simmediate << 2);
605 break;
606 }
607
608 if (is_branch) {
609 i = 0;
610 if (is_cond && targ != (regs->cp0_epc + 8)) {
611 step_bp[i].addr = regs->cp0_epc + 8;
612 step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
613 *(unsigned *)(regs->cp0_epc + 8) = BP;
614 }
615 step_bp[i].addr = targ;
616 step_bp[i].val = *(unsigned *)targ;
617 *(unsigned *)targ = BP;
618 } else {
619 step_bp[0].addr = regs->cp0_epc + 4;
620 step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4);
621 *(unsigned *)(regs->cp0_epc + 4) = BP;
622 }
623}
624
625/*
626 * If asynchronously interrupted by gdb, then we need to set a breakpoint
627 * at the interrupted instruction so that we wind up stopped with a
628 * reasonable stack frame.
629 */
630static struct gdb_bp_save async_bp;
631
632/*
633 * Swap the interrupted EPC with our asynchronous breakpoint routine.
634 * This is safer than stuffing the breakpoint in-place, since no cache
635 * flushes (or resulting smp_call_functions) are required. The
636 * assumption is that only one CPU will be handling asynchronous bp's,
637 * and only one can be active at a time.
638 */
639extern spinlock_t smp_call_lock;
640void set_async_breakpoint(unsigned long *epc)
641{
642 /* skip breaking into userland */
643 if ((*epc & 0x80000000) == 0)
644 return;
645
646 /* avoid deadlock if someone is make IPC */
647 if (spin_is_locked(&smp_call_lock))
648 return;
649
650 async_bp.addr = *epc;
651 *epc = (unsigned long)async_breakpoint;
652}
653
654void kgdb_wait(void *arg)
655{
656 unsigned flags;
657 int cpu = smp_processor_id();
658
659 local_irq_save(flags);
660
661 spin_lock(&kgdb_cpulock[cpu]);
662 spin_unlock(&kgdb_cpulock[cpu]);
663
664 local_irq_restore(flags);
665}
666
667
668/*
669 * This function does all command processing for interfacing to gdb. It
670 * returns 1 if you should skip the instruction at the trap address, 0
671 * otherwise.
672 */
673void handle_exception (struct gdb_regs *regs)
674{
675 int trap; /* Trap type */
676 int sigval;
677 long addr;
678 int length;
679 char *ptr;
680 unsigned long *stack;
681 int i;
682 int bflag = 0;
683
684 kgdb_started = 1;
685
686 /*
687 * acquire the big kgdb spinlock
688 */
689 if (!spin_trylock(&kgdb_lock)) {
690 /*
691 * some other CPU has the lock, we should go back to
692 * receive the gdb_wait IPC
693 */
694 return;
695 }
696
697 /*
698 * If we're in async_breakpoint(), restore the real EPC from
699 * the breakpoint.
700 */
701 if (regs->cp0_epc == (unsigned long)async_breakinst) {
702 regs->cp0_epc = async_bp.addr;
703 async_bp.addr = 0;
704 }
705
706 /*
707 * acquire the CPU spinlocks
708 */
709 for (i = num_online_cpus()-1; i >= 0; i--)
710 if (spin_trylock(&kgdb_cpulock[i]) == 0)
711 panic("kgdb: couldn't get cpulock %d\n", i);
712
713 /*
714 * force other cpus to enter kgdb
715 */
716 smp_call_function(kgdb_wait, NULL, 0, 0);
717
718 /*
719 * If we're in breakpoint() increment the PC
720 */
721 trap = (regs->cp0_cause & 0x7c) >> 2;
722 if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
723 regs->cp0_epc += 4;
724
725 /*
726 * If we were single_stepping, restore the opcodes hoisted
727 * for the breakpoint[s].
728 */
729 if (step_bp[0].addr) {
730 *(unsigned *)step_bp[0].addr = step_bp[0].val;
731 step_bp[0].addr = 0;
732
733 if (step_bp[1].addr) {
734 *(unsigned *)step_bp[1].addr = step_bp[1].val;
735 step_bp[1].addr = 0;
736 }
737 }
738
739 stack = (long *)regs->reg29; /* stack ptr */
740 sigval = computeSignal(trap);
741
742 /*
743 * reply to host that an exception has occurred
744 */
745 ptr = output_buffer;
746
747 /*
748 * Send trap type (converted to signal)
749 */
750 *ptr++ = 'T';
751 *ptr++ = hexchars[sigval >> 4];
752 *ptr++ = hexchars[sigval & 0xf];
753
754 /*
755 * Send Error PC
756 */
757 *ptr++ = hexchars[REG_EPC >> 4];
758 *ptr++ = hexchars[REG_EPC & 0xf];
759 *ptr++ = ':';
760 ptr = mem2hex((char *)&regs->cp0_epc, ptr, sizeof(long), 0);
761 *ptr++ = ';';
762
763 /*
764 * Send frame pointer
765 */
766 *ptr++ = hexchars[REG_FP >> 4];
767 *ptr++ = hexchars[REG_FP & 0xf];
768 *ptr++ = ':';
769 ptr = mem2hex((char *)&regs->reg30, ptr, sizeof(long), 0);
770 *ptr++ = ';';
771
772 /*
773 * Send stack pointer
774 */
775 *ptr++ = hexchars[REG_SP >> 4];
776 *ptr++ = hexchars[REG_SP & 0xf];
777 *ptr++ = ':';
778 ptr = mem2hex((char *)&regs->reg29, ptr, sizeof(long), 0);
779 *ptr++ = ';';
780
781 *ptr++ = 0;
782 putpacket(output_buffer); /* send it off... */
783
784 /*
785 * Wait for input from remote GDB
786 */
787 while (1) {
788 output_buffer[0] = 0;
789 getpacket(input_buffer);
790
791 switch (input_buffer[0])
792 {
793 case '?':
794 output_buffer[0] = 'S';
795 output_buffer[1] = hexchars[sigval >> 4];
796 output_buffer[2] = hexchars[sigval & 0xf];
797 output_buffer[3] = 0;
798 break;
799
800 /*
801 * Detach debugger; let CPU run
802 */
803 case 'D':
804 putpacket(output_buffer);
805 goto finish_kgdb;
806 break;
807
808 case 'd':
809 /* toggle debug flag */
810 break;
811
812 /*
813 * Return the value of the CPU registers
814 */
815 case 'g':
816 ptr = output_buffer;
817 ptr = mem2hex((char *)&regs->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
818 ptr = mem2hex((char *)&regs->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
819 ptr = mem2hex((char *)&regs->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
820 ptr = mem2hex((char *)&regs->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
821 ptr = mem2hex((char *)&regs->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
822 ptr = mem2hex((char *)&regs->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
823 break;
824
825 /*
826 * set the value of the CPU registers - return OK
827 */
828 case 'G':
829 {
830 ptr = &input_buffer[1];
831 hex2mem(ptr, (char *)&regs->reg0, 32*sizeof(long), 0, 0);
832 ptr += 32*(2*sizeof(long));
833 hex2mem(ptr, (char *)&regs->cp0_status, 6*sizeof(long), 0, 0);
834 ptr += 6*(2*sizeof(long));
835 hex2mem(ptr, (char *)&regs->fpr0, 32*sizeof(long), 0, 0);
836 ptr += 32*(2*sizeof(long));
837 hex2mem(ptr, (char *)&regs->cp1_fsr, 2*sizeof(long), 0, 0);
838 ptr += 2*(2*sizeof(long));
839 hex2mem(ptr, (char *)&regs->frame_ptr, 2*sizeof(long), 0, 0);
840 ptr += 2*(2*sizeof(long));
841 hex2mem(ptr, (char *)&regs->cp0_index, 16*sizeof(long), 0, 0);
842 strcpy(output_buffer,"OK");
843 }
844 break;
845
846 /*
847 * mAA..AA,LLLL Read LLLL bytes at address AA..AA
848 */
849 case 'm':
850 ptr = &input_buffer[1];
851
852 if (hexToLong(&ptr, &addr)
853 && *ptr++ == ','
854 && hexToInt(&ptr, &length)) {
855 if (mem2hex((char *)addr, output_buffer, length, 1))
856 break;
857 strcpy (output_buffer, "E03");
858 } else
859 strcpy(output_buffer,"E01");
860 break;
861
862 /*
863 * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
864 */
865 case 'X':
866 bflag = 1;
867 /* fall through */
868
869 /*
870 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
871 */
872 case 'M':
873 ptr = &input_buffer[1];
874
875 if (hexToLong(&ptr, &addr)
876 && *ptr++ == ','
877 && hexToInt(&ptr, &length)
878 && *ptr++ == ':') {
879 if (hex2mem(ptr, (char *)addr, length, bflag, 1))
880 strcpy(output_buffer, "OK");
881 else
882 strcpy(output_buffer, "E03");
883 }
884 else
885 strcpy(output_buffer, "E02");
886 break;
887
888 /*
889 * cAA..AA Continue at address AA..AA(optional)
890 */
891 case 'c':
892 /* try to read optional parameter, pc unchanged if no parm */
893
894 ptr = &input_buffer[1];
895 if (hexToLong(&ptr, &addr))
896 regs->cp0_epc = addr;
897
898 goto exit_kgdb_exception;
899 break;
900
901 /*
902 * kill the program; let us try to restart the machine
903 * Reset the whole machine.
904 */
905 case 'k':
906 case 'r':
907 machine_restart("kgdb restarts machine");
908 break;
909
910 /*
911 * Step to next instruction
912 */
913 case 's':
914 /*
915 * There is no single step insn in the MIPS ISA, so we
916 * use breakpoints and continue, instead.
917 */
918 single_step(regs);
919 goto exit_kgdb_exception;
920 /* NOTREACHED */
921 break;
922
923 /*
924 * Set baud rate (bBB)
925 * FIXME: Needs to be written
926 */
927 case 'b':
928 {
929#if 0
930 int baudrate;
931 extern void set_timer_3();
932
933 ptr = &input_buffer[1];
934 if (!hexToInt(&ptr, &baudrate))
935 {
936 strcpy(output_buffer,"B01");
937 break;
938 }
939
940 /* Convert baud rate to uart clock divider */
941
942 switch (baudrate)
943 {
944 case 38400:
945 baudrate = 16;
946 break;
947 case 19200:
948 baudrate = 33;
949 break;
950 case 9600:
951 baudrate = 65;
952 break;
953 default:
954 baudrate = 0;
955 strcpy(output_buffer,"B02");
956 goto x1;
957 }
958
959 if (baudrate) {
960 putpacket("OK"); /* Ack before changing speed */
961 set_timer_3(baudrate); /* Set it */
962 }
963#endif
964 }
965 break;
966
967 } /* switch */
968
969 /*
970 * reply to the request
971 */
972
973 putpacket(output_buffer);
974
975 } /* while */
976
977 return;
978
979finish_kgdb:
980 restore_debug_traps();
981
982exit_kgdb_exception:
983 /* release locks so other CPUs can go */
984 for (i = num_online_cpus()-1; i >= 0; i--)
985 spin_unlock(&kgdb_cpulock[i]);
986 spin_unlock(&kgdb_lock);
987
988 __flush_cache_all();
989 return;
990}
991
992/*
993 * This function will generate a breakpoint exception. It is used at the
994 * beginning of a program to sync up with a debugger and can be used
995 * otherwise as a quick means to stop program execution and "break" into
996 * the debugger.
997 */
998void breakpoint(void)
999{
1000 if (!initialized)
1001 return;
1002
1003 __asm__ __volatile__(
1004 ".globl breakinst\n\t"
1005 ".set\tnoreorder\n\t"
1006 "nop\n"
1007 "breakinst:\tbreak\n\t"
1008 "nop\n\t"
1009 ".set\treorder"
1010 );
1011}
1012
1013/* Nothing but the break; don't pollute any registers */
1014void async_breakpoint(void)
1015{
1016 __asm__ __volatile__(
1017 ".globl async_breakinst\n\t"
1018 ".set\tnoreorder\n\t"
1019 "nop\n"
1020 "async_breakinst:\tbreak\n\t"
1021 "nop\n\t"
1022 ".set\treorder"
1023 );
1024}
1025
1026void adel(void)
1027{
1028 __asm__ __volatile__(
1029 ".globl\tadel\n\t"
1030 "lui\t$8,0x8000\n\t"
1031 "lw\t$9,1($8)\n\t"
1032 );
1033}
1034
1035/*
1036 * malloc is needed by gdb client in "call func()", even a private one
1037 * will make gdb happy
1038 */
1039static void *malloc(size_t size)
1040{
1041 return kmalloc(size, GFP_ATOMIC);
1042}
1043
1044static void free(void *where)
1045{
1046 kfree(where);
1047}
1048
1049#ifdef CONFIG_GDB_CONSOLE
1050
1051void gdb_putsn(const char *str, int l)
1052{
1053 char outbuf[18];
1054
1055 if (!kgdb_started)
1056 return;
1057
1058 outbuf[0]='O';
1059
1060 while(l) {
1061 int i = (l>8)?8:l;
1062 mem2hex((char *)str, &outbuf[1], i, 0);
1063 outbuf[(i*2)+1]=0;
1064 putpacket(outbuf);
1065 str += i;
1066 l -= i;
1067 }
1068}
1069
1070static void gdb_console_write(struct console *con, const char *s, unsigned n)
1071{
1072 gdb_putsn(s, n);
1073}
1074
1075static struct console gdb_console = {
1076 .name = "gdb",
1077 .write = gdb_console_write,
1078 .flags = CON_PRINTBUFFER,
1079 .index = -1
1080};
1081
1082static int __init register_gdb_console(void)
1083{
1084 register_console(&gdb_console);
1085
1086 return 0;
1087}
1088
1089console_initcall(register_gdb_console);
1090
1091#endif