aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/cavium-octeon
diff options
context:
space:
mode:
authorDavid Daney <ddaney@caviumnetworks.com>2009-06-29 20:18:51 -0400
committerRalf Baechle <ralf@linux-mips.org>2009-07-03 10:45:29 -0400
commit01a6221a6a51ec47b9ae3ed42c396f98dd488c7e (patch)
treef9917b072b3ee6be545bd56df37a4de2616ef0c1 /arch/mips/cavium-octeon
parentada8e9514b5880f81cdbbd212d121380ceef7acc (diff)
MIPS: Reorganize Cavium OCTEON PCI support.
Move the cavium PCI files to the arch/mips/pci directory. Also cleanup comment formatting and code layout. Code from pci-common.c, was moved into other files. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Diffstat (limited to 'arch/mips/cavium-octeon')
-rw-r--r--arch/mips/cavium-octeon/Makefile4
-rw-r--r--arch/mips/cavium-octeon/dma-octeon.c2
-rw-r--r--arch/mips/cavium-octeon/msi.c288
-rw-r--r--arch/mips/cavium-octeon/pci-common.c137
-rw-r--r--arch/mips/cavium-octeon/pci-common.h39
-rw-r--r--arch/mips/cavium-octeon/pci.c568
-rw-r--r--arch/mips/cavium-octeon/pcie.c1370
7 files changed, 1 insertions, 2407 deletions
diff --git a/arch/mips/cavium-octeon/Makefile b/arch/mips/cavium-octeon/Makefile
index 7c0528b0e34c..d6903c3f3d51 100644
--- a/arch/mips/cavium-octeon/Makefile
+++ b/arch/mips/cavium-octeon/Makefile
@@ -14,9 +14,5 @@ obj-y += dma-octeon.o flash_setup.o
14obj-y += octeon-memcpy.o 14obj-y += octeon-memcpy.o
15 15
16obj-$(CONFIG_SMP) += smp.o 16obj-$(CONFIG_SMP) += smp.o
17obj-$(CONFIG_PCI) += pci-common.o
18obj-$(CONFIG_PCI) += pci.o
19obj-$(CONFIG_PCI) += pcie.o
20obj-$(CONFIG_PCI_MSI) += msi.o
21 17
22EXTRA_CFLAGS += -Werror 18EXTRA_CFLAGS += -Werror
diff --git a/arch/mips/cavium-octeon/dma-octeon.c b/arch/mips/cavium-octeon/dma-octeon.c
index 627c162a6159..4b92bfc662db 100644
--- a/arch/mips/cavium-octeon/dma-octeon.c
+++ b/arch/mips/cavium-octeon/dma-octeon.c
@@ -29,7 +29,7 @@
29#include <dma-coherence.h> 29#include <dma-coherence.h>
30 30
31#ifdef CONFIG_PCI 31#ifdef CONFIG_PCI
32#include "pci-common.h" 32#include <asm/octeon/pci-octeon.h>
33#endif 33#endif
34 34
35#define BAR2_PCI_ADDRESS 0x8000000000ul 35#define BAR2_PCI_ADDRESS 0x8000000000ul
diff --git a/arch/mips/cavium-octeon/msi.c b/arch/mips/cavium-octeon/msi.c
deleted file mode 100644
index 964b03b75a8f..000000000000
--- a/arch/mips/cavium-octeon/msi.c
+++ /dev/null
@@ -1,288 +0,0 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2007 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/msi.h>
11#include <linux/spinlock.h>
12#include <linux/interrupt.h>
13
14#include <asm/octeon/octeon.h>
15#include <asm/octeon/cvmx-npi-defs.h>
16#include <asm/octeon/cvmx-pci-defs.h>
17#include <asm/octeon/cvmx-npei-defs.h>
18#include <asm/octeon/cvmx-pexp-defs.h>
19
20#include "pci-common.h"
21
22/*
23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
24 * in use.
25 */
26static uint64_t msi_free_irq_bitmask;
27
28/*
29 * Each bit in msi_multiple_irq_bitmask tells that the device using
30 * this bit in msi_free_irq_bitmask is also using the next bit. This
31 * is used so we can disable all of the MSI interrupts when a device
32 * uses multiple.
33 */
34static uint64_t msi_multiple_irq_bitmask;
35
36/*
37 * This lock controls updates to msi_free_irq_bitmask and
38 * msi_multiple_irq_bitmask.
39 */
40static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
41
42
43/**
44 * Called when a driver request MSI interrupts instead of the
45 * legacy INT A-D. This routine will allocate multiple interrupts
46 * for MSI devices that support them. A device can override this by
47 * programming the MSI control bits [6:4] before calling
48 * pci_enable_msi().
49 *
50 * @param dev Device requesting MSI interrupts
51 * @param desc MSI descriptor
52 *
53 * Returns 0 on success.
54 */
55int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
56{
57 struct msi_msg msg;
58 uint16_t control;
59 int configured_private_bits;
60 int request_private_bits;
61 int irq;
62 int irq_step;
63 uint64_t search_mask;
64
65 /*
66 * Read the MSI config to figure out how many IRQs this device
67 * wants. Most devices only want 1, which will give
68 * configured_private_bits and request_private_bits equal 0.
69 */
70 pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
71 &control);
72
73 /*
74 * If the number of private bits has been configured then use
75 * that value instead of the requested number. This gives the
76 * driver the chance to override the number of interrupts
77 * before calling pci_enable_msi().
78 */
79 configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
80 if (configured_private_bits == 0) {
81 /* Nothing is configured, so use the hardware requested size */
82 request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
83 } else {
84 /*
85 * Use the number of configured bits, assuming the
86 * driver wanted to override the hardware request
87 * value.
88 */
89 request_private_bits = configured_private_bits;
90 }
91
92 /*
93 * The PCI 2.3 spec mandates that there are at most 32
94 * interrupts. If this device asks for more, only give it one.
95 */
96 if (request_private_bits > 5)
97 request_private_bits = 0;
98
99try_only_one:
100 /*
101 * The IRQs have to be aligned on a power of two based on the
102 * number being requested.
103 */
104 irq_step = 1 << request_private_bits;
105
106 /* Mask with one bit for each IRQ */
107 search_mask = (1 << irq_step) - 1;
108
109 /*
110 * We're going to search msi_free_irq_bitmask_lock for zero
111 * bits. This represents an MSI interrupt number that isn't in
112 * use.
113 */
114 spin_lock(&msi_free_irq_bitmask_lock);
115 for (irq = 0; irq < 64; irq += irq_step) {
116 if ((msi_free_irq_bitmask & (search_mask << irq)) == 0) {
117 msi_free_irq_bitmask |= search_mask << irq;
118 msi_multiple_irq_bitmask |= (search_mask >> 1) << irq;
119 break;
120 }
121 }
122 spin_unlock(&msi_free_irq_bitmask_lock);
123
124 /* Make sure the search for available interrupts didn't fail */
125 if (irq >= 64) {
126 if (request_private_bits) {
127 pr_err("arch_setup_msi_irq: Unable to find %d free "
128 "interrupts, trying just one",
129 1 << request_private_bits);
130 request_private_bits = 0;
131 goto try_only_one;
132 } else
133 panic("arch_setup_msi_irq: Unable to find a free MSI "
134 "interrupt");
135 }
136
137 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
138 irq += OCTEON_IRQ_MSI_BIT0;
139
140 switch (octeon_dma_bar_type) {
141 case OCTEON_DMA_BAR_TYPE_SMALL:
142 /* When not using big bar, Bar 0 is based at 128MB */
143 msg.address_lo =
144 ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
145 msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
146 case OCTEON_DMA_BAR_TYPE_BIG:
147 /* When using big bar, Bar 0 is based at 0 */
148 msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
149 msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
150 break;
151 case OCTEON_DMA_BAR_TYPE_PCIE:
152 /* When using PCIe, Bar 0 is based at 0 */
153 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
154 msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
155 msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
156 break;
157 default:
158 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
159 }
160 msg.data = irq - OCTEON_IRQ_MSI_BIT0;
161
162 /* Update the number of IRQs the device has available to it */
163 control &= ~PCI_MSI_FLAGS_QSIZE;
164 control |= request_private_bits << 4;
165 pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
166 control);
167
168 set_irq_msi(irq, desc);
169 write_msi_msg(irq, &msg);
170 return 0;
171}
172
173
174/**
175 * Called when a device no longer needs its MSI interrupts. All
176 * MSI interrupts for the device are freed.
177 *
178 * @irq: The devices first irq number. There may be multple in sequence.
179 */
180void arch_teardown_msi_irq(unsigned int irq)
181{
182 int number_irqs;
183 uint64_t bitmask;
184
185 if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > OCTEON_IRQ_MSI_BIT63))
186 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
187 "MSI interrupt (%d)", irq);
188 irq -= OCTEON_IRQ_MSI_BIT0;
189
190 /*
191 * Count the number of IRQs we need to free by looking at the
192 * msi_multiple_irq_bitmask. Each bit set means that the next
193 * IRQ is also owned by this device.
194 */
195 number_irqs = 0;
196 while ((irq+number_irqs < 64) &&
197 (msi_multiple_irq_bitmask & (1ull << (irq + number_irqs))))
198 number_irqs++;
199 number_irqs++;
200 /* Mask with one bit for each IRQ */
201 bitmask = (1 << number_irqs) - 1;
202 /* Shift the mask to the correct bit location */
203 bitmask <<= irq;
204 if ((msi_free_irq_bitmask & bitmask) != bitmask)
205 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
206 "interrupt (%d) not in use", irq);
207
208 /* Checks are done, update the in use bitmask */
209 spin_lock(&msi_free_irq_bitmask_lock);
210 msi_free_irq_bitmask &= ~bitmask;
211 msi_multiple_irq_bitmask &= ~bitmask;
212 spin_unlock(&msi_free_irq_bitmask_lock);
213}
214
215
216/**
217 * Called by the interrupt handling code when an MSI interrupt
218 * occurs.
219 *
220 * @param cpl
221 * @param dev_id
222 *
223 * @return
224 */
225static irqreturn_t octeon_msi_interrupt(int cpl, void *dev_id)
226{
227 uint64_t msi_bits;
228 int irq;
229
230 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE)
231 msi_bits = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_RCV0);
232 else
233 msi_bits = cvmx_read_csr(CVMX_NPI_NPI_MSI_RCV);
234 irq = fls64(msi_bits);
235 if (irq) {
236 irq += OCTEON_IRQ_MSI_BIT0 - 1;
237 if (irq_desc[irq].action) {
238 do_IRQ(irq);
239 return IRQ_HANDLED;
240 } else {
241 pr_err("Spurious MSI interrupt %d\n", irq);
242 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
243 /* These chips have PCIe */
244 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
245 1ull << (irq -
246 OCTEON_IRQ_MSI_BIT0));
247 } else {
248 /* These chips have PCI */
249 cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
250 1ull << (irq -
251 OCTEON_IRQ_MSI_BIT0));
252 }
253 }
254 }
255 return IRQ_NONE;
256}
257
258
259/**
260 * Initializes the MSI interrupt handling code
261 *
262 * @return
263 */
264int octeon_msi_initialize(void)
265{
266 int r;
267 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
268 r = request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
269 IRQF_SHARED,
270 "MSI[0:63]", octeon_msi_interrupt);
271 } else if (octeon_is_pci_host()) {
272 r = request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
273 IRQF_SHARED,
274 "MSI[0:15]", octeon_msi_interrupt);
275 r += request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt,
276 IRQF_SHARED,
277 "MSI[16:31]", octeon_msi_interrupt);
278 r += request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt,
279 IRQF_SHARED,
280 "MSI[32:47]", octeon_msi_interrupt);
281 r += request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt,
282 IRQF_SHARED,
283 "MSI[48:63]", octeon_msi_interrupt);
284 }
285 return 0;
286}
287
288subsys_initcall(octeon_msi_initialize);
diff --git a/arch/mips/cavium-octeon/pci-common.c b/arch/mips/cavium-octeon/pci-common.c
deleted file mode 100644
index cd029f88da7f..000000000000
--- a/arch/mips/cavium-octeon/pci-common.c
+++ /dev/null
@@ -1,137 +0,0 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2007 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/interrupt.h>
12#include <linux/time.h>
13#include <linux/delay.h>
14#include "pci-common.h"
15
16typeof(pcibios_map_irq) *octeon_pcibios_map_irq;
17enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
18
19/**
20 * Map a PCI device to the appropriate interrupt line
21 *
22 * @param dev The Linux PCI device structure for the device to map
23 * @param slot The slot number for this device on __BUS 0__. Linux
24 * enumerates through all the bridges and figures out the
25 * slot on Bus 0 where this device eventually hooks to.
26 * @param pin The PCI interrupt pin read from the device, then swizzled
27 * as it goes through each bridge.
28 * @return Interrupt number for the device
29 */
30int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
31{
32 if (octeon_pcibios_map_irq)
33 return octeon_pcibios_map_irq(dev, slot, pin);
34 else
35 panic("octeon_pcibios_map_irq doesn't point to a "
36 "pcibios_map_irq() function");
37}
38
39
40/**
41 * Called to perform platform specific PCI setup
42 *
43 * @param dev
44 * @return
45 */
46int pcibios_plat_dev_init(struct pci_dev *dev)
47{
48 uint16_t config;
49 uint32_t dconfig;
50 int pos;
51 /*
52 * Force the Cache line setting to 64 bytes. The standard
53 * Linux bus scan doesn't seem to set it. Octeon really has
54 * 128 byte lines, but Intel bridges get really upset if you
55 * try and set values above 64 bytes. Value is specified in
56 * 32bit words.
57 */
58 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
59 /* Set latency timers for all devices */
60 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
61
62 /* Enable reporting System errors and parity errors on all devices */
63 /* Enable parity checking and error reporting */
64 pci_read_config_word(dev, PCI_COMMAND, &config);
65 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
66 pci_write_config_word(dev, PCI_COMMAND, config);
67
68 if (dev->subordinate) {
69 /* Set latency timers on sub bridges */
70 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
71 /* More bridge error detection */
72 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
73 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
74 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
75 }
76
77 /* Enable the PCIe normal error reporting */
78 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
79 if (pos) {
80 /* Update Device Control */
81 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
82 /* Correctable Error Reporting */
83 config |= PCI_EXP_DEVCTL_CERE;
84 /* Non-Fatal Error Reporting */
85 config |= PCI_EXP_DEVCTL_NFERE;
86 /* Fatal Error Reporting */
87 config |= PCI_EXP_DEVCTL_FERE;
88 /* Unsupported Request */
89 config |= PCI_EXP_DEVCTL_URRE;
90 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
91 }
92
93 /* Find the Advanced Error Reporting capability */
94 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
95 if (pos) {
96 /* Clear Uncorrectable Error Status */
97 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
98 &dconfig);
99 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
100 dconfig);
101 /* Enable reporting of all uncorrectable errors */
102 /* Uncorrectable Error Mask - turned on bits disable errors */
103 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
104 /*
105 * Leave severity at HW default. This only controls if
106 * errors are reported as uncorrectable or
107 * correctable, not if the error is reported.
108 */
109 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
110 /* Clear Correctable Error Status */
111 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
112 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
113 /* Enable reporting of all correctable errors */
114 /* Correctable Error Mask - turned on bits disable errors */
115 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
116 /* Advanced Error Capabilities */
117 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
118 /* ECRC Generation Enable */
119 if (config & PCI_ERR_CAP_ECRC_GENC)
120 config |= PCI_ERR_CAP_ECRC_GENE;
121 /* ECRC Check Enable */
122 if (config & PCI_ERR_CAP_ECRC_CHKC)
123 config |= PCI_ERR_CAP_ECRC_CHKE;
124 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
125 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
126 /* Report all errors to the root complex */
127 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
128 PCI_ERR_ROOT_CMD_COR_EN |
129 PCI_ERR_ROOT_CMD_NONFATAL_EN |
130 PCI_ERR_ROOT_CMD_FATAL_EN);
131 /* Clear the Root status register */
132 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
133 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
134 }
135
136 return 0;
137}
diff --git a/arch/mips/cavium-octeon/pci-common.h b/arch/mips/cavium-octeon/pci-common.h
deleted file mode 100644
index 74ae79991e45..000000000000
--- a/arch/mips/cavium-octeon/pci-common.h
+++ /dev/null
@@ -1,39 +0,0 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2007 Cavium Networks
7 */
8#ifndef __OCTEON_PCI_COMMON_H__
9#define __OCTEON_PCI_COMMON_H__
10
11#include <linux/pci.h>
12
13/* Some PCI cards require delays when accessing config space. */
14#define PCI_CONFIG_SPACE_DELAY 10000
15
16/* pcibios_map_irq() is defined inside pci-common.c. All it does is call the
17 Octeon specific version pointed to by this variable. This function needs to
18 change for PCI or PCIe based hosts */
19extern typeof(pcibios_map_irq) *octeon_pcibios_map_irq;
20
21/* The following defines are only used when octeon_dma_bar_type =
22 OCTEON_DMA_BAR_TYPE_BIG */
23#define OCTEON_PCI_BAR1_HOLE_BITS 5
24#define OCTEON_PCI_BAR1_HOLE_SIZE (1ul<<(OCTEON_PCI_BAR1_HOLE_BITS+3))
25
26enum octeon_dma_bar_type {
27 OCTEON_DMA_BAR_TYPE_INVALID,
28 OCTEON_DMA_BAR_TYPE_SMALL,
29 OCTEON_DMA_BAR_TYPE_BIG,
30 OCTEON_DMA_BAR_TYPE_PCIE
31};
32
33/**
34 * This is a variable to tell the DMA mapping system in dma-octeon.c
35 * how to map PCI DMA addresses.
36 */
37extern enum octeon_dma_bar_type octeon_dma_bar_type;
38
39#endif
diff --git a/arch/mips/cavium-octeon/pci.c b/arch/mips/cavium-octeon/pci.c
deleted file mode 100644
index 67c0ff5e92f1..000000000000
--- a/arch/mips/cavium-octeon/pci.c
+++ /dev/null
@@ -1,568 +0,0 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2007 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/interrupt.h>
12#include <linux/time.h>
13#include <linux/delay.h>
14
15#include <asm/time.h>
16
17#include <asm/octeon/octeon.h>
18#include <asm/octeon/cvmx-npi-defs.h>
19#include <asm/octeon/cvmx-pci-defs.h>
20
21#include "pci-common.h"
22
23#define USE_OCTEON_INTERNAL_ARBITER
24
25/*
26 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
27 * addresses. Use PCI endian swapping 1 so no address swapping is
28 * necessary. The Linux io routines will endian swap the data.
29 */
30#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
31#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
32
33/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
34#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
35
36/**
37 * This is the bit decoding used for the Octeon PCI controller addresses
38 */
39union octeon_pci_address {
40 uint64_t u64;
41 struct {
42 uint64_t upper:2;
43 uint64_t reserved:13;
44 uint64_t io:1;
45 uint64_t did:5;
46 uint64_t subdid:3;
47 uint64_t reserved2:4;
48 uint64_t endian_swap:2;
49 uint64_t reserved3:10;
50 uint64_t bus:8;
51 uint64_t dev:5;
52 uint64_t func:3;
53 uint64_t reg:8;
54 } s;
55};
56
57/**
58 * Return the mapping of PCI device number to IRQ line. Each
59 * character in the return string represents the interrupt
60 * line for the device at that position. Device 1 maps to the
61 * first character, etc. The characters A-D are used for PCI
62 * interrupts.
63 *
64 * Returns PCI interrupt mapping
65 */
66const char *octeon_get_pci_interrupts(void)
67{
68 /*
69 * Returning an empty string causes the interrupts to be
70 * routed based on the PCI specification. From the PCI spec:
71 *
72 * INTA# of Device Number 0 is connected to IRQW on the system
73 * board. (Device Number has no significance regarding being
74 * located on the system board or in a connector.) INTA# of
75 * Device Number 1 is connected to IRQX on the system
76 * board. INTA# of Device Number 2 is connected to IRQY on the
77 * system board. INTA# of Device Number 3 is connected to IRQZ
78 * on the system board. The table below describes how each
79 * agent's INTx# lines are connected to the system board
80 * interrupt lines. The following equation can be used to
81 * determine to which INTx# signal on the system board a given
82 * device's INTx# line(s) is connected.
83 *
84 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
85 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
86 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
87 * INTD# = 3)
88 */
89 switch (octeon_bootinfo->board_type) {
90 case CVMX_BOARD_TYPE_NAO38:
91 /* This is really the NAC38 */
92 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
93 case CVMX_BOARD_TYPE_THUNDER:
94 return "";
95 case CVMX_BOARD_TYPE_EBH3000:
96 return "";
97 case CVMX_BOARD_TYPE_EBH3100:
98 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
99 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
100 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
101 case CVMX_BOARD_TYPE_BBGW_REF:
102 return "AABCD";
103 default:
104 return "";
105 }
106}
107
108/**
109 * Map a PCI device to the appropriate interrupt line
110 *
111 * @dev: The Linux PCI device structure for the device to map
112 * @slot: The slot number for this device on __BUS 0__. Linux
113 * enumerates through all the bridges and figures out the
114 * slot on Bus 0 where this device eventually hooks to.
115 * @pin: The PCI interrupt pin read from the device, then swizzled
116 * as it goes through each bridge.
117 * Returns Interrupt number for the device
118 */
119int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
120 u8 slot, u8 pin)
121{
122 int irq_num;
123 const char *interrupts;
124 int dev_num;
125
126 /* Get the board specific interrupt mapping */
127 interrupts = octeon_get_pci_interrupts();
128
129 dev_num = dev->devfn >> 3;
130 if (dev_num < strlen(interrupts))
131 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
132 OCTEON_IRQ_PCI_INT0;
133 else
134 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
135 return irq_num;
136}
137
138
139/**
140 * Read a value from configuration space
141 *
142 */
143static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
144 int reg, int size, u32 *val)
145{
146 union octeon_pci_address pci_addr;
147
148 pci_addr.u64 = 0;
149 pci_addr.s.upper = 2;
150 pci_addr.s.io = 1;
151 pci_addr.s.did = 3;
152 pci_addr.s.subdid = 1;
153 pci_addr.s.endian_swap = 1;
154 pci_addr.s.bus = bus->number;
155 pci_addr.s.dev = devfn >> 3;
156 pci_addr.s.func = devfn & 0x7;
157 pci_addr.s.reg = reg;
158
159#if PCI_CONFIG_SPACE_DELAY
160 udelay(PCI_CONFIG_SPACE_DELAY);
161#endif
162 switch (size) {
163 case 4:
164 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
165 return PCIBIOS_SUCCESSFUL;
166 case 2:
167 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
168 return PCIBIOS_SUCCESSFUL;
169 case 1:
170 *val = cvmx_read64_uint8(pci_addr.u64);
171 return PCIBIOS_SUCCESSFUL;
172 }
173 return PCIBIOS_FUNC_NOT_SUPPORTED;
174}
175
176
177/**
178 * Write a value to PCI configuration space
179 *
180 * @bus:
181 * @devfn:
182 * @reg:
183 * @size:
184 * @val:
185 * Returns
186 */
187static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
188 int reg, int size, u32 val)
189{
190 union octeon_pci_address pci_addr;
191
192 pci_addr.u64 = 0;
193 pci_addr.s.upper = 2;
194 pci_addr.s.io = 1;
195 pci_addr.s.did = 3;
196 pci_addr.s.subdid = 1;
197 pci_addr.s.endian_swap = 1;
198 pci_addr.s.bus = bus->number;
199 pci_addr.s.dev = devfn >> 3;
200 pci_addr.s.func = devfn & 0x7;
201 pci_addr.s.reg = reg;
202
203#if PCI_CONFIG_SPACE_DELAY
204 udelay(PCI_CONFIG_SPACE_DELAY);
205#endif
206 switch (size) {
207 case 4:
208 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
209 return PCIBIOS_SUCCESSFUL;
210 case 2:
211 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
212 return PCIBIOS_SUCCESSFUL;
213 case 1:
214 cvmx_write64_uint8(pci_addr.u64, val);
215 return PCIBIOS_SUCCESSFUL;
216 }
217 return PCIBIOS_FUNC_NOT_SUPPORTED;
218}
219
220
221static struct pci_ops octeon_pci_ops = {
222 octeon_read_config,
223 octeon_write_config,
224};
225
226static struct resource octeon_pci_mem_resource = {
227 .start = 0,
228 .end = 0,
229 .name = "Octeon PCI MEM",
230 .flags = IORESOURCE_MEM,
231};
232
233/*
234 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
235 * bridge
236 */
237static struct resource octeon_pci_io_resource = {
238 .start = 0x4000,
239 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
240 .name = "Octeon PCI IO",
241 .flags = IORESOURCE_IO,
242};
243
244static struct pci_controller octeon_pci_controller = {
245 .pci_ops = &octeon_pci_ops,
246 .mem_resource = &octeon_pci_mem_resource,
247 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
248 .io_resource = &octeon_pci_io_resource,
249 .io_offset = 0,
250 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
251};
252
253
254/**
255 * Low level initialize the Octeon PCI controller
256 *
257 * Returns
258 */
259static void octeon_pci_initialize(void)
260{
261 union cvmx_pci_cfg01 cfg01;
262 union cvmx_npi_ctl_status ctl_status;
263 union cvmx_pci_ctl_status_2 ctl_status_2;
264 union cvmx_pci_cfg19 cfg19;
265 union cvmx_pci_cfg16 cfg16;
266 union cvmx_pci_cfg22 cfg22;
267 union cvmx_pci_cfg56 cfg56;
268
269 /* Reset the PCI Bus */
270 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
271 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
272
273 udelay(2000); /* Hold PCI reset for 2 ms */
274
275 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
276 ctl_status.s.max_word = 1;
277 ctl_status.s.timer = 1;
278 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
279
280 /* Deassert PCI reset and advertize PCX Host Mode Device Capability
281 (64b) */
282 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
283 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
284
285 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
286
287 ctl_status_2.u32 = 0;
288 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
289 before any PCI reads. */
290 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
291 ctl_status_2.s.bar2_enb = 1;
292 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
293 ctl_status_2.s.bar2_esx = 1;
294 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
295 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
296 /* BAR1 hole */
297 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
298 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
299 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
300 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
301 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
302 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
303 }
304
305 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
306 udelay(2000); /* Wait 2 ms before doing PCI reads */
307
308 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
309 pr_notice("PCI Status: %s %s-bit\n",
310 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
311 ctl_status_2.s.ap_64ad ? "64" : "32");
312
313 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
314 union cvmx_pci_cnt_reg cnt_reg_start;
315 union cvmx_pci_cnt_reg cnt_reg_end;
316 unsigned long cycles, pci_clock;
317
318 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
319 cycles = read_c0_cvmcount();
320 udelay(1000);
321 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
322 cycles = read_c0_cvmcount() - cycles;
323 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
324 (cycles / (mips_hpt_frequency / 1000000));
325 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
326 }
327
328 /*
329 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
330 * in PCI-X mode to allow four oustanding splits. Otherwise,
331 * should not change from its reset value. Don't write PCI_CFG19
332 * in PCI mode (0x82000001 reset value), write it to 0x82000004
333 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
334 * MRBCM -> must be one.
335 */
336 if (ctl_status_2.s.ap_pcix) {
337 cfg19.u32 = 0;
338 /*
339 * Target Delayed/Split request outstanding maximum
340 * count. [1..31] and 0=32. NOTE: If the user
341 * programs these bits beyond the Designed Maximum
342 * outstanding count, then the designed maximum table
343 * depth will be used instead. No additional
344 * Deferred/Split transactions will be accepted if
345 * this outstanding maximum count is
346 * reached. Furthermore, no additional deferred/split
347 * transactions will be accepted if the I/O delay/ I/O
348 * Split Request outstanding maximum is reached.
349 */
350 cfg19.s.tdomc = 4;
351 /*
352 * Master Deferred Read Request Outstanding Max Count
353 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
354 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
355 * 5 2 110 6 3 111 7 3 For example, if these bits are
356 * programmed to 100, the core can support 2 DAC
357 * cycles, 4 SAC cycles or a combination of 1 DAC and
358 * 2 SAC cycles. NOTE: For the PCI-X maximum
359 * outstanding split transactions, refer to
360 * CRE0[22:20].
361 */
362 cfg19.s.mdrrmc = 2;
363 /*
364 * Master Request (Memory Read) Byte Count/Byte Enable
365 * select. 0 = Byte Enables valid. In PCI mode, a
366 * burst transaction cannot be performed using Memory
367 * Read command=4?h6. 1 = DWORD Byte Count valid
368 * (default). In PCI Mode, the memory read byte
369 * enables are automatically generated by the
370 * core. Note: N3 Master Request transaction sizes are
371 * always determined through the
372 * am_attr[<35:32>|<7:0>] field.
373 */
374 cfg19.s.mrbcm = 1;
375 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
376 }
377
378
379 cfg01.u32 = 0;
380 cfg01.s.msae = 1; /* Memory Space Access Enable */
381 cfg01.s.me = 1; /* Master Enable */
382 cfg01.s.pee = 1; /* PERR# Enable */
383 cfg01.s.see = 1; /* System Error Enable */
384 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
385
386 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
387
388#ifdef USE_OCTEON_INTERNAL_ARBITER
389 /*
390 * When OCTEON is a PCI host, most systems will use OCTEON's
391 * internal arbiter, so must enable it before any PCI/PCI-X
392 * traffic can occur.
393 */
394 {
395 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
396
397 pci_int_arb_cfg.u64 = 0;
398 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
399 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
400 }
401#endif /* USE_OCTEON_INTERNAL_ARBITER */
402
403 /*
404 * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
405 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
406 * 1..7.
407 */
408 cfg16.u32 = 0;
409 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
410 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
411
412 /*
413 * Should be written to 0x4ff00. MTTV -> must be zero.
414 * FLUSH -> must be 1. MRV -> should be 0xFF.
415 */
416 cfg22.u32 = 0;
417 /* Master Retry Value [1..255] and 0=infinite */
418 cfg22.s.mrv = 0xff;
419 /*
420 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
421 * N3K operation.
422 */
423 cfg22.s.flush = 1;
424 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
425
426 /*
427 * MOST Indicates the maximum number of outstanding splits (in -1
428 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
429 * affected by the MOST selection. Should generally be written
430 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
431 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
432 */
433 cfg56.u32 = 0;
434 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
435 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
436 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
437 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
438 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
439 [0=512B,1=1024B,2=2048B,3=4096B] */
440 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
441 .. 7=32] */
442
443 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
444
445 /*
446 * Affects PCI performance when OCTEON services reads to its
447 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
448 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
449 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
450 * these values need to be changed so they won't possibly prefetch off
451 * of the end of memory if PCI is DMAing a buffer at the end of
452 * memory. Note that these values differ from their reset values.
453 */
454 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
455 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
456 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
457}
458
459
460/**
461 * Initialize the Octeon PCI controller
462 *
463 * Returns
464 */
465static int __init octeon_pci_setup(void)
466{
467 union cvmx_npi_mem_access_subidx mem_access;
468 int index;
469
470 /* Only these chips have PCI */
471 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
472 return 0;
473
474 /* Point pcibios_map_irq() to the PCI version of it */
475 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
476
477 /* Only use the big bars on chips that support it */
478 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
479 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
480 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
481 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
482 else
483 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
484
485 /* PCI I/O and PCI MEM values */
486 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
487 ioport_resource.start = 0;
488 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
489 if (!octeon_is_pci_host()) {
490 pr_notice("Not in host mode, PCI Controller not initialized\n");
491 return 0;
492 }
493
494 pr_notice("%s Octeon big bar support\n",
495 (octeon_dma_bar_type ==
496 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
497
498 octeon_pci_initialize();
499
500 mem_access.u64 = 0;
501 mem_access.s.esr = 1; /* Endian-Swap on read. */
502 mem_access.s.esw = 1; /* Endian-Swap on write. */
503 mem_access.s.nsr = 0; /* No-Snoop on read. */
504 mem_access.s.nsw = 0; /* No-Snoop on write. */
505 mem_access.s.ror = 0; /* Relax Read on read. */
506 mem_access.s.row = 0; /* Relax Order on write. */
507 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
508 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
509
510 /*
511 * Remap the Octeon BAR 2 above all 32 bit devices
512 * (0x8000000000ul). This is done here so it is remapped
513 * before the readl()'s below. We don't want BAR2 overlapping
514 * with BAR0/BAR1 during these reads.
515 */
516 octeon_npi_write32(CVMX_NPI_PCI_CFG08, 0);
517 octeon_npi_write32(CVMX_NPI_PCI_CFG09, 0x80);
518
519 /* Disable the BAR1 movable mappings */
520 for (index = 0; index < 32; index++)
521 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0);
522
523 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
524 /* Remap the Octeon BAR 0 to 0-2GB */
525 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
526 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
527
528 /*
529 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
530 * BAR 1 hole).
531 */
532 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
533 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
534
535 /* Devices go after BAR1 */
536 octeon_pci_mem_resource.start =
537 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
538 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
539 octeon_pci_mem_resource.end =
540 octeon_pci_mem_resource.start + (1ul << 30);
541 } else {
542 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
543 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
544 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
545
546 /* Remap the Octeon BAR 1 to map 0-128MB */
547 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
548 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
549
550 /* Devices go after BAR0 */
551 octeon_pci_mem_resource.start =
552 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
553 (4ul << 10);
554 octeon_pci_mem_resource.end =
555 octeon_pci_mem_resource.start + (1ul << 30);
556 }
557
558 register_pci_controller(&octeon_pci_controller);
559
560 /*
561 * Clear any errors that might be pending from before the bus
562 * was setup properly.
563 */
564 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
565 return 0;
566}
567
568arch_initcall(octeon_pci_setup);
diff --git a/arch/mips/cavium-octeon/pcie.c b/arch/mips/cavium-octeon/pcie.c
deleted file mode 100644
index 49d14081b3b5..000000000000
--- a/arch/mips/cavium-octeon/pcie.c
+++ /dev/null
@@ -1,1370 +0,0 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2007, 2008 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/interrupt.h>
12#include <linux/time.h>
13#include <linux/delay.h>
14
15#include <asm/octeon/octeon.h>
16#include <asm/octeon/cvmx-npei-defs.h>
17#include <asm/octeon/cvmx-pciercx-defs.h>
18#include <asm/octeon/cvmx-pescx-defs.h>
19#include <asm/octeon/cvmx-pexp-defs.h>
20#include <asm/octeon/cvmx-helper-errata.h>
21
22#include "pci-common.h"
23
24union cvmx_pcie_address {
25 uint64_t u64;
26 struct {
27 uint64_t upper:2; /* Normally 2 for XKPHYS */
28 uint64_t reserved_49_61:13; /* Must be zero */
29 uint64_t io:1; /* 1 for IO space access */
30 uint64_t did:5; /* PCIe DID = 3 */
31 uint64_t subdid:3; /* PCIe SubDID = 1 */
32 uint64_t reserved_36_39:4; /* Must be zero */
33 uint64_t es:2; /* Endian swap = 1 */
34 uint64_t port:2; /* PCIe port 0,1 */
35 uint64_t reserved_29_31:3; /* Must be zero */
36 /*
37 * Selects the type of the configuration request (0 = type 0,
38 * 1 = type 1).
39 */
40 uint64_t ty:1;
41 /* Target bus number sent in the ID in the request. */
42 uint64_t bus:8;
43 /*
44 * Target device number sent in the ID in the
45 * request. Note that Dev must be zero for type 0
46 * configuration requests.
47 */
48 uint64_t dev:5;
49 /* Target function number sent in the ID in the request. */
50 uint64_t func:3;
51 /*
52 * Selects a register in the configuration space of
53 * the target.
54 */
55 uint64_t reg:12;
56 } config;
57 struct {
58 uint64_t upper:2; /* Normally 2 for XKPHYS */
59 uint64_t reserved_49_61:13; /* Must be zero */
60 uint64_t io:1; /* 1 for IO space access */
61 uint64_t did:5; /* PCIe DID = 3 */
62 uint64_t subdid:3; /* PCIe SubDID = 2 */
63 uint64_t reserved_36_39:4; /* Must be zero */
64 uint64_t es:2; /* Endian swap = 1 */
65 uint64_t port:2; /* PCIe port 0,1 */
66 uint64_t address:32; /* PCIe IO address */
67 } io;
68 struct {
69 uint64_t upper:2; /* Normally 2 for XKPHYS */
70 uint64_t reserved_49_61:13; /* Must be zero */
71 uint64_t io:1; /* 1 for IO space access */
72 uint64_t did:5; /* PCIe DID = 3 */
73 uint64_t subdid:3; /* PCIe SubDID = 3-6 */
74 uint64_t reserved_36_39:4; /* Must be zero */
75 uint64_t address:36; /* PCIe Mem address */
76 } mem;
77};
78
79/**
80 * Return the Core virtual base address for PCIe IO access. IOs are
81 * read/written as an offset from this address.
82 *
83 * @pcie_port: PCIe port the IO is for
84 *
85 * Returns 64bit Octeon IO base address for read/write
86 */
87static inline uint64_t cvmx_pcie_get_io_base_address(int pcie_port)
88{
89 union cvmx_pcie_address pcie_addr;
90 pcie_addr.u64 = 0;
91 pcie_addr.io.upper = 0;
92 pcie_addr.io.io = 1;
93 pcie_addr.io.did = 3;
94 pcie_addr.io.subdid = 2;
95 pcie_addr.io.es = 1;
96 pcie_addr.io.port = pcie_port;
97 return pcie_addr.u64;
98}
99
100/**
101 * Size of the IO address region returned at address
102 * cvmx_pcie_get_io_base_address()
103 *
104 * @pcie_port: PCIe port the IO is for
105 *
106 * Returns Size of the IO window
107 */
108static inline uint64_t cvmx_pcie_get_io_size(int pcie_port)
109{
110 return 1ull << 32;
111}
112
113/**
114 * Return the Core virtual base address for PCIe MEM access. Memory is
115 * read/written as an offset from this address.
116 *
117 * @pcie_port: PCIe port the IO is for
118 *
119 * Returns 64bit Octeon IO base address for read/write
120 */
121static inline uint64_t cvmx_pcie_get_mem_base_address(int pcie_port)
122{
123 union cvmx_pcie_address pcie_addr;
124 pcie_addr.u64 = 0;
125 pcie_addr.mem.upper = 0;
126 pcie_addr.mem.io = 1;
127 pcie_addr.mem.did = 3;
128 pcie_addr.mem.subdid = 3 + pcie_port;
129 return pcie_addr.u64;
130}
131
132/**
133 * Size of the Mem address region returned at address
134 * cvmx_pcie_get_mem_base_address()
135 *
136 * @pcie_port: PCIe port the IO is for
137 *
138 * Returns Size of the Mem window
139 */
140static inline uint64_t cvmx_pcie_get_mem_size(int pcie_port)
141{
142 return 1ull << 36;
143}
144
145/**
146 * Read a PCIe config space register indirectly. This is used for
147 * registers of the form PCIEEP_CFG??? and PCIERC?_CFG???.
148 *
149 * @pcie_port: PCIe port to read from
150 * @cfg_offset: Address to read
151 *
152 * Returns Value read
153 */
154static uint32_t cvmx_pcie_cfgx_read(int pcie_port, uint32_t cfg_offset)
155{
156 union cvmx_pescx_cfg_rd pescx_cfg_rd;
157 pescx_cfg_rd.u64 = 0;
158 pescx_cfg_rd.s.addr = cfg_offset;
159 cvmx_write_csr(CVMX_PESCX_CFG_RD(pcie_port), pescx_cfg_rd.u64);
160 pescx_cfg_rd.u64 = cvmx_read_csr(CVMX_PESCX_CFG_RD(pcie_port));
161 return pescx_cfg_rd.s.data;
162}
163
164/**
165 * Write a PCIe config space register indirectly. This is used for
166 * registers of the form PCIEEP_CFG??? and PCIERC?_CFG???.
167 *
168 * @pcie_port: PCIe port to write to
169 * @cfg_offset: Address to write
170 * @val: Value to write
171 */
172static void cvmx_pcie_cfgx_write(int pcie_port, uint32_t cfg_offset,
173 uint32_t val)
174{
175 union cvmx_pescx_cfg_wr pescx_cfg_wr;
176 pescx_cfg_wr.u64 = 0;
177 pescx_cfg_wr.s.addr = cfg_offset;
178 pescx_cfg_wr.s.data = val;
179 cvmx_write_csr(CVMX_PESCX_CFG_WR(pcie_port), pescx_cfg_wr.u64);
180}
181
182/**
183 * Build a PCIe config space request address for a device
184 *
185 * @pcie_port: PCIe port to access
186 * @bus: Sub bus
187 * @dev: Device ID
188 * @fn: Device sub function
189 * @reg: Register to access
190 *
191 * Returns 64bit Octeon IO address
192 */
193static inline uint64_t __cvmx_pcie_build_config_addr(int pcie_port, int bus,
194 int dev, int fn, int reg)
195{
196 union cvmx_pcie_address pcie_addr;
197 union cvmx_pciercx_cfg006 pciercx_cfg006;
198
199 pciercx_cfg006.u32 =
200 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG006(pcie_port));
201 if ((bus <= pciercx_cfg006.s.pbnum) && (dev != 0))
202 return 0;
203
204 pcie_addr.u64 = 0;
205 pcie_addr.config.upper = 2;
206 pcie_addr.config.io = 1;
207 pcie_addr.config.did = 3;
208 pcie_addr.config.subdid = 1;
209 pcie_addr.config.es = 1;
210 pcie_addr.config.port = pcie_port;
211 pcie_addr.config.ty = (bus > pciercx_cfg006.s.pbnum);
212 pcie_addr.config.bus = bus;
213 pcie_addr.config.dev = dev;
214 pcie_addr.config.func = fn;
215 pcie_addr.config.reg = reg;
216 return pcie_addr.u64;
217}
218
219/**
220 * Read 8bits from a Device's config space
221 *
222 * @pcie_port: PCIe port the device is on
223 * @bus: Sub bus
224 * @dev: Device ID
225 * @fn: Device sub function
226 * @reg: Register to access
227 *
228 * Returns Result of the read
229 */
230static uint8_t cvmx_pcie_config_read8(int pcie_port, int bus, int dev,
231 int fn, int reg)
232{
233 uint64_t address =
234 __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
235 if (address)
236 return cvmx_read64_uint8(address);
237 else
238 return 0xff;
239}
240
241/**
242 * Read 16bits from a Device's config space
243 *
244 * @pcie_port: PCIe port the device is on
245 * @bus: Sub bus
246 * @dev: Device ID
247 * @fn: Device sub function
248 * @reg: Register to access
249 *
250 * Returns Result of the read
251 */
252static uint16_t cvmx_pcie_config_read16(int pcie_port, int bus, int dev,
253 int fn, int reg)
254{
255 uint64_t address =
256 __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
257 if (address)
258 return le16_to_cpu(cvmx_read64_uint16(address));
259 else
260 return 0xffff;
261}
262
263/**
264 * Read 32bits from a Device's config space
265 *
266 * @pcie_port: PCIe port the device is on
267 * @bus: Sub bus
268 * @dev: Device ID
269 * @fn: Device sub function
270 * @reg: Register to access
271 *
272 * Returns Result of the read
273 */
274static uint32_t cvmx_pcie_config_read32(int pcie_port, int bus, int dev,
275 int fn, int reg)
276{
277 uint64_t address =
278 __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
279 if (address)
280 return le32_to_cpu(cvmx_read64_uint32(address));
281 else
282 return 0xffffffff;
283}
284
285/**
286 * Write 8bits to a Device's config space
287 *
288 * @pcie_port: PCIe port the device is on
289 * @bus: Sub bus
290 * @dev: Device ID
291 * @fn: Device sub function
292 * @reg: Register to access
293 * @val: Value to write
294 */
295static void cvmx_pcie_config_write8(int pcie_port, int bus, int dev, int fn,
296 int reg, uint8_t val)
297{
298 uint64_t address =
299 __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
300 if (address)
301 cvmx_write64_uint8(address, val);
302}
303
304/**
305 * Write 16bits to a Device's config space
306 *
307 * @pcie_port: PCIe port the device is on
308 * @bus: Sub bus
309 * @dev: Device ID
310 * @fn: Device sub function
311 * @reg: Register to access
312 * @val: Value to write
313 */
314static void cvmx_pcie_config_write16(int pcie_port, int bus, int dev, int fn,
315 int reg, uint16_t val)
316{
317 uint64_t address =
318 __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
319 if (address)
320 cvmx_write64_uint16(address, cpu_to_le16(val));
321}
322
323/**
324 * Write 32bits to a Device's config space
325 *
326 * @pcie_port: PCIe port the device is on
327 * @bus: Sub bus
328 * @dev: Device ID
329 * @fn: Device sub function
330 * @reg: Register to access
331 * @val: Value to write
332 */
333static void cvmx_pcie_config_write32(int pcie_port, int bus, int dev, int fn,
334 int reg, uint32_t val)
335{
336 uint64_t address =
337 __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
338 if (address)
339 cvmx_write64_uint32(address, cpu_to_le32(val));
340}
341
342/**
343 * Initialize the RC config space CSRs
344 *
345 * @pcie_port: PCIe port to initialize
346 */
347static void __cvmx_pcie_rc_initialize_config_space(int pcie_port)
348{
349 union cvmx_pciercx_cfg030 pciercx_cfg030;
350 union cvmx_npei_ctl_status2 npei_ctl_status2;
351 union cvmx_pciercx_cfg070 pciercx_cfg070;
352 union cvmx_pciercx_cfg001 pciercx_cfg001;
353 union cvmx_pciercx_cfg032 pciercx_cfg032;
354 union cvmx_pciercx_cfg006 pciercx_cfg006;
355 union cvmx_pciercx_cfg008 pciercx_cfg008;
356 union cvmx_pciercx_cfg009 pciercx_cfg009;
357 union cvmx_pciercx_cfg010 pciercx_cfg010;
358 union cvmx_pciercx_cfg011 pciercx_cfg011;
359 union cvmx_pciercx_cfg035 pciercx_cfg035;
360 union cvmx_pciercx_cfg075 pciercx_cfg075;
361 union cvmx_pciercx_cfg034 pciercx_cfg034;
362
363 /* Max Payload Size (PCIE*_CFG030[MPS]) */
364 /* Max Read Request Size (PCIE*_CFG030[MRRS]) */
365 /* Relaxed-order, no-snoop enables (PCIE*_CFG030[RO_EN,NS_EN] */
366 /* Error Message Enables (PCIE*_CFG030[CE_EN,NFE_EN,FE_EN,UR_EN]) */
367 pciercx_cfg030.u32 =
368 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG030(pcie_port));
369 /*
370 * Max payload size = 128 bytes for best Octeon DMA
371 * performance.
372 */
373 pciercx_cfg030.s.mps = 0;
374 /*
375 * Max read request size = 128 bytes for best Octeon DMA
376 * performance.
377 */
378 pciercx_cfg030.s.mrrs = 0;
379 /* Enable relaxed ordering. */
380 pciercx_cfg030.s.ro_en = 1;
381 /* Enable no snoop. */
382 pciercx_cfg030.s.ns_en = 1;
383 /* Correctable error reporting enable. */
384 pciercx_cfg030.s.ce_en = 1;
385 /* Non-fatal error reporting enable. */
386 pciercx_cfg030.s.nfe_en = 1;
387 /* Fatal error reporting enable. */
388 pciercx_cfg030.s.fe_en = 1;
389 /* Unsupported request reporting enable. */
390 pciercx_cfg030.s.ur_en = 1;
391 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG030(pcie_port),
392 pciercx_cfg030.u32);
393
394 /*
395 * Max Payload Size (NPEI_CTL_STATUS2[MPS]) must match
396 * PCIE*_CFG030[MPS]
397 *
398 * Max Read Request Size (NPEI_CTL_STATUS2[MRRS]) must not
399 * exceed PCIE*_CFG030[MRRS].
400 */
401 npei_ctl_status2.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS2);
402 /* Max payload size = 128 bytes for best Octeon DMA performance */
403 npei_ctl_status2.s.mps = 0;
404 /* Max read request size = 128 bytes for best Octeon DMA performance */
405 npei_ctl_status2.s.mrrs = 0;
406 cvmx_write_csr(CVMX_PEXP_NPEI_CTL_STATUS2, npei_ctl_status2.u64);
407
408 /* ECRC Generation (PCIE*_CFG070[GE,CE]) */
409 pciercx_cfg070.u32 =
410 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG070(pcie_port));
411 pciercx_cfg070.s.ge = 1; /* ECRC generation enable. */
412 pciercx_cfg070.s.ce = 1; /* ECRC check enable. */
413 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG070(pcie_port),
414 pciercx_cfg070.u32);
415
416 /*
417 * Access Enables (PCIE*_CFG001[MSAE,ME]) ME and MSAE should
418 * always be set.
419 *
420 * Interrupt Disable (PCIE*_CFG001[I_DIS]) System Error
421 * Message Enable (PCIE*_CFG001[SEE])
422 */
423 pciercx_cfg001.u32 =
424 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG001(pcie_port));
425 pciercx_cfg001.s.msae = 1; /* Memory space enable. */
426 pciercx_cfg001.s.me = 1; /* Bus master enable. */
427 pciercx_cfg001.s.i_dis = 1; /* INTx assertion disable. */
428 pciercx_cfg001.s.see = 1; /* SERR# enable */
429 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG001(pcie_port),
430 pciercx_cfg001.u32);
431
432 /* Advanced Error Recovery Message Enables */
433 /* (PCIE*_CFG066,PCIE*_CFG067,PCIE*_CFG069) */
434 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG066(pcie_port), 0);
435 /* Use CVMX_PCIERCX_CFG067 hardware default */
436 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG069(pcie_port), 0);
437
438 /* Active State Power Management (PCIE*_CFG032[ASLPC]) */
439 pciercx_cfg032.u32 =
440 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port));
441 pciercx_cfg032.s.aslpc = 0; /* Active state Link PM control. */
442 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG032(pcie_port),
443 pciercx_cfg032.u32);
444
445 /* Entrance Latencies (PCIE*_CFG451[L0EL,L1EL]) */
446
447 /*
448 * Link Width Mode (PCIERCn_CFG452[LME]) - Set during
449 * cvmx_pcie_rc_initialize_link()
450 *
451 * Primary Bus Number (PCIERCn_CFG006[PBNUM])
452 *
453 * We set the primary bus number to 1 so IDT bridges are
454 * happy. They don't like zero.
455 */
456 pciercx_cfg006.u32 = 0;
457 pciercx_cfg006.s.pbnum = 1;
458 pciercx_cfg006.s.sbnum = 1;
459 pciercx_cfg006.s.subbnum = 1;
460 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG006(pcie_port),
461 pciercx_cfg006.u32);
462
463 /*
464 * Memory-mapped I/O BAR (PCIERCn_CFG008)
465 * Most applications should disable the memory-mapped I/O BAR by
466 * setting PCIERCn_CFG008[ML_ADDR] < PCIERCn_CFG008[MB_ADDR]
467 */
468 pciercx_cfg008.u32 = 0;
469 pciercx_cfg008.s.mb_addr = 0x100;
470 pciercx_cfg008.s.ml_addr = 0;
471 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG008(pcie_port),
472 pciercx_cfg008.u32);
473
474 /*
475 * Prefetchable BAR (PCIERCn_CFG009,PCIERCn_CFG010,PCIERCn_CFG011)
476 * Most applications should disable the prefetchable BAR by setting
477 * PCIERCn_CFG011[UMEM_LIMIT],PCIERCn_CFG009[LMEM_LIMIT] <
478 * PCIERCn_CFG010[UMEM_BASE],PCIERCn_CFG009[LMEM_BASE]
479 */
480 pciercx_cfg009.u32 =
481 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG009(pcie_port));
482 pciercx_cfg010.u32 =
483 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG010(pcie_port));
484 pciercx_cfg011.u32 =
485 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG011(pcie_port));
486 pciercx_cfg009.s.lmem_base = 0x100;
487 pciercx_cfg009.s.lmem_limit = 0;
488 pciercx_cfg010.s.umem_base = 0x100;
489 pciercx_cfg011.s.umem_limit = 0;
490 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG009(pcie_port),
491 pciercx_cfg009.u32);
492 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG010(pcie_port),
493 pciercx_cfg010.u32);
494 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG011(pcie_port),
495 pciercx_cfg011.u32);
496
497 /*
498 * System Error Interrupt Enables (PCIERCn_CFG035[SECEE,SEFEE,SENFEE])
499 * PME Interrupt Enables (PCIERCn_CFG035[PMEIE])
500 */
501 pciercx_cfg035.u32 =
502 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG035(pcie_port));
503 /* System error on correctable error enable. */
504 pciercx_cfg035.s.secee = 1;
505 /* System error on fatal error enable. */
506 pciercx_cfg035.s.sefee = 1;
507 /* System error on non-fatal error enable. */
508 pciercx_cfg035.s.senfee = 1;
509 /* PME interrupt enable. */
510 pciercx_cfg035.s.pmeie = 1;
511 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG035(pcie_port),
512 pciercx_cfg035.u32);
513
514 /*
515 * Advanced Error Recovery Interrupt Enables
516 * (PCIERCn_CFG075[CERE,NFERE,FERE])
517 */
518 pciercx_cfg075.u32 =
519 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG075(pcie_port));
520 /* Correctable error reporting enable. */
521 pciercx_cfg075.s.cere = 1;
522 /* Non-fatal error reporting enable. */
523 pciercx_cfg075.s.nfere = 1;
524 /* Fatal error reporting enable. */
525 pciercx_cfg075.s.fere = 1;
526 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG075(pcie_port),
527 pciercx_cfg075.u32);
528
529 /* HP Interrupt Enables (PCIERCn_CFG034[HPINT_EN],
530 * PCIERCn_CFG034[DLLS_EN,CCINT_EN])
531 */
532 pciercx_cfg034.u32 =
533 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG034(pcie_port));
534 /* Hot-plug interrupt enable. */
535 pciercx_cfg034.s.hpint_en = 1;
536 /* Data Link Layer state changed enable */
537 pciercx_cfg034.s.dlls_en = 1;
538 /* Command completed interrupt enable. */
539 pciercx_cfg034.s.ccint_en = 1;
540 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG034(pcie_port),
541 pciercx_cfg034.u32);
542}
543
544/**
545 * Initialize a host mode PCIe link. This function takes a PCIe
546 * port from reset to a link up state. Software can then begin
547 * configuring the rest of the link.
548 *
549 * @pcie_port: PCIe port to initialize
550 *
551 * Returns Zero on success
552 */
553static int __cvmx_pcie_rc_initialize_link(int pcie_port)
554{
555 uint64_t start_cycle;
556 union cvmx_pescx_ctl_status pescx_ctl_status;
557 union cvmx_pciercx_cfg452 pciercx_cfg452;
558 union cvmx_pciercx_cfg032 pciercx_cfg032;
559 union cvmx_pciercx_cfg448 pciercx_cfg448;
560
561 /* Set the lane width */
562 pciercx_cfg452.u32 =
563 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG452(pcie_port));
564 pescx_ctl_status.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS(pcie_port));
565 if (pescx_ctl_status.s.qlm_cfg == 0) {
566 /* We're in 8 lane (56XX) or 4 lane (54XX) mode */
567 pciercx_cfg452.s.lme = 0xf;
568 } else {
569 /* We're in 4 lane (56XX) or 2 lane (52XX) mode */
570 pciercx_cfg452.s.lme = 0x7;
571 }
572 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG452(pcie_port),
573 pciercx_cfg452.u32);
574
575 /*
576 * CN52XX pass 1.x has an errata where length mismatches on UR
577 * responses can cause bus errors on 64bit memory
578 * reads. Turning off length error checking fixes this.
579 */
580 if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
581 union cvmx_pciercx_cfg455 pciercx_cfg455;
582 pciercx_cfg455.u32 =
583 cvmx_pcie_cfgx_read(pcie_port,
584 CVMX_PCIERCX_CFG455(pcie_port));
585 pciercx_cfg455.s.m_cpl_len_err = 1;
586 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG455(pcie_port),
587 pciercx_cfg455.u32);
588 }
589
590 /* Lane swap needs to be manually enabled for CN52XX */
591 if (OCTEON_IS_MODEL(OCTEON_CN52XX) && (pcie_port == 1)) {
592 pescx_ctl_status.s.lane_swp = 1;
593 cvmx_write_csr(CVMX_PESCX_CTL_STATUS(pcie_port),
594 pescx_ctl_status.u64);
595 }
596
597 /* Bring up the link */
598 pescx_ctl_status.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS(pcie_port));
599 pescx_ctl_status.s.lnk_enb = 1;
600 cvmx_write_csr(CVMX_PESCX_CTL_STATUS(pcie_port), pescx_ctl_status.u64);
601
602 /*
603 * CN52XX pass 1.0: Due to a bug in 2nd order CDR, it needs to
604 * be disabled.
605 */
606 if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_0))
607 __cvmx_helper_errata_qlm_disable_2nd_order_cdr(0);
608
609 /* Wait for the link to come up */
610 cvmx_dprintf("PCIe: Waiting for port %d link\n", pcie_port);
611 start_cycle = cvmx_get_cycle();
612 do {
613 if (cvmx_get_cycle() - start_cycle >
614 2 * cvmx_sysinfo_get()->cpu_clock_hz) {
615 cvmx_dprintf("PCIe: Port %d link timeout\n",
616 pcie_port);
617 return -1;
618 }
619 cvmx_wait(10000);
620 pciercx_cfg032.u32 =
621 cvmx_pcie_cfgx_read(pcie_port,
622 CVMX_PCIERCX_CFG032(pcie_port));
623 } while (pciercx_cfg032.s.dlla == 0);
624
625 /* Display the link status */
626 cvmx_dprintf("PCIe: Port %d link active, %d lanes\n", pcie_port,
627 pciercx_cfg032.s.nlw);
628
629 /*
630 * Update the Replay Time Limit. Empirically, some PCIe
631 * devices take a little longer to respond than expected under
632 * load. As a workaround for this we configure the Replay Time
633 * Limit to the value expected for a 512 byte MPS instead of
634 * our actual 256 byte MPS. The numbers below are directly
635 * from the PCIe spec table 3-4.
636 */
637 pciercx_cfg448.u32 =
638 cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG448(pcie_port));
639 switch (pciercx_cfg032.s.nlw) {
640 case 1: /* 1 lane */
641 pciercx_cfg448.s.rtl = 1677;
642 break;
643 case 2: /* 2 lanes */
644 pciercx_cfg448.s.rtl = 867;
645 break;
646 case 4: /* 4 lanes */
647 pciercx_cfg448.s.rtl = 462;
648 break;
649 case 8: /* 8 lanes */
650 pciercx_cfg448.s.rtl = 258;
651 break;
652 }
653 cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG448(pcie_port),
654 pciercx_cfg448.u32);
655
656 return 0;
657}
658
659/**
660 * Initialize a PCIe port for use in host(RC) mode. It doesn't
661 * enumerate the bus.
662 *
663 * @pcie_port: PCIe port to initialize
664 *
665 * Returns Zero on success
666 */
667static int cvmx_pcie_rc_initialize(int pcie_port)
668{
669 int i;
670 union cvmx_ciu_soft_prst ciu_soft_prst;
671 union cvmx_pescx_bist_status pescx_bist_status;
672 union cvmx_pescx_bist_status2 pescx_bist_status2;
673 union cvmx_npei_ctl_status npei_ctl_status;
674 union cvmx_npei_mem_access_ctl npei_mem_access_ctl;
675 union cvmx_npei_mem_access_subidx mem_access_subid;
676 union cvmx_npei_dbg_data npei_dbg_data;
677 union cvmx_pescx_ctl_status2 pescx_ctl_status2;
678
679 /*
680 * Make sure we aren't trying to setup a target mode interface
681 * in host mode.
682 */
683 npei_ctl_status.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS);
684 if ((pcie_port == 0) && !npei_ctl_status.s.host_mode) {
685 cvmx_dprintf("PCIe: ERROR: cvmx_pcie_rc_initialize() called "
686 "on port0, but port0 is not in host mode\n");
687 return -1;
688 }
689
690 /*
691 * Make sure a CN52XX isn't trying to bring up port 1 when it
692 * is disabled.
693 */
694 if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
695 npei_dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA);
696 if ((pcie_port == 1) && npei_dbg_data.cn52xx.qlm0_link_width) {
697 cvmx_dprintf("PCIe: ERROR: cvmx_pcie_rc_initialize() "
698 "called on port1, but port1 is "
699 "disabled\n");
700 return -1;
701 }
702 }
703
704 /*
705 * PCIe switch arbitration mode. '0' == fixed priority NPEI,
706 * PCIe0, then PCIe1. '1' == round robin.
707 */
708 npei_ctl_status.s.arb = 1;
709 /* Allow up to 0x20 config retries */
710 npei_ctl_status.s.cfg_rtry = 0x20;
711 /*
712 * CN52XX pass1.x has an errata where P0_NTAGS and P1_NTAGS
713 * don't reset.
714 */
715 if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
716 npei_ctl_status.s.p0_ntags = 0x20;
717 npei_ctl_status.s.p1_ntags = 0x20;
718 }
719 cvmx_write_csr(CVMX_PEXP_NPEI_CTL_STATUS, npei_ctl_status.u64);
720
721 /* Bring the PCIe out of reset */
722 if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_EBH5200) {
723 /*
724 * The EBH5200 board swapped the PCIe reset lines on
725 * the board. As a workaround for this bug, we bring
726 * both PCIe ports out of reset at the same time
727 * instead of on separate calls. So for port 0, we
728 * bring both out of reset and do nothing on port 1.
729 */
730 if (pcie_port == 0) {
731 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
732 /*
733 * After a chip reset the PCIe will also be in
734 * reset. If it isn't, most likely someone is
735 * trying to init it again without a proper
736 * PCIe reset.
737 */
738 if (ciu_soft_prst.s.soft_prst == 0) {
739 /* Reset the ports */
740 ciu_soft_prst.s.soft_prst = 1;
741 cvmx_write_csr(CVMX_CIU_SOFT_PRST,
742 ciu_soft_prst.u64);
743 ciu_soft_prst.u64 =
744 cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
745 ciu_soft_prst.s.soft_prst = 1;
746 cvmx_write_csr(CVMX_CIU_SOFT_PRST1,
747 ciu_soft_prst.u64);
748 /* Wait until pcie resets the ports. */
749 udelay(2000);
750 }
751 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
752 ciu_soft_prst.s.soft_prst = 0;
753 cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64);
754 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
755 ciu_soft_prst.s.soft_prst = 0;
756 cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64);
757 }
758 } else {
759 /*
760 * The normal case: The PCIe ports are completely
761 * separate and can be brought out of reset
762 * independently.
763 */
764 if (pcie_port)
765 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
766 else
767 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
768 /*
769 * After a chip reset the PCIe will also be in
770 * reset. If it isn't, most likely someone is trying
771 * to init it again without a proper PCIe reset.
772 */
773 if (ciu_soft_prst.s.soft_prst == 0) {
774 /* Reset the port */
775 ciu_soft_prst.s.soft_prst = 1;
776 if (pcie_port)
777 cvmx_write_csr(CVMX_CIU_SOFT_PRST1,
778 ciu_soft_prst.u64);
779 else
780 cvmx_write_csr(CVMX_CIU_SOFT_PRST,
781 ciu_soft_prst.u64);
782 /* Wait until pcie resets the ports. */
783 udelay(2000);
784 }
785 if (pcie_port) {
786 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
787 ciu_soft_prst.s.soft_prst = 0;
788 cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64);
789 } else {
790 ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
791 ciu_soft_prst.s.soft_prst = 0;
792 cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64);
793 }
794 }
795
796 /*
797 * Wait for PCIe reset to complete. Due to errata PCIE-700, we
798 * don't poll PESCX_CTL_STATUS2[PCIERST], but simply wait a
799 * fixed number of cycles.
800 */
801 cvmx_wait(400000);
802
803 /* PESCX_BIST_STATUS2[PCLK_RUN] was missing on pass 1 of CN56XX and
804 CN52XX, so we only probe it on newer chips */
805 if (!OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
806 && !OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
807 /* Clear PCLK_RUN so we can check if the clock is running */
808 pescx_ctl_status2.u64 =
809 cvmx_read_csr(CVMX_PESCX_CTL_STATUS2(pcie_port));
810 pescx_ctl_status2.s.pclk_run = 1;
811 cvmx_write_csr(CVMX_PESCX_CTL_STATUS2(pcie_port),
812 pescx_ctl_status2.u64);
813 /*
814 * Now that we cleared PCLK_RUN, wait for it to be set
815 * again telling us the clock is running.
816 */
817 if (CVMX_WAIT_FOR_FIELD64(CVMX_PESCX_CTL_STATUS2(pcie_port),
818 union cvmx_pescx_ctl_status2,
819 pclk_run, ==, 1, 10000)) {
820 cvmx_dprintf("PCIe: Port %d isn't clocked, skipping.\n",
821 pcie_port);
822 return -1;
823 }
824 }
825
826 /*
827 * Check and make sure PCIe came out of reset. If it doesn't
828 * the board probably hasn't wired the clocks up and the
829 * interface should be skipped.
830 */
831 pescx_ctl_status2.u64 =
832 cvmx_read_csr(CVMX_PESCX_CTL_STATUS2(pcie_port));
833 if (pescx_ctl_status2.s.pcierst) {
834 cvmx_dprintf("PCIe: Port %d stuck in reset, skipping.\n",
835 pcie_port);
836 return -1;
837 }
838
839 /*
840 * Check BIST2 status. If any bits are set skip this interface. This
841 * is an attempt to catch PCIE-813 on pass 1 parts.
842 */
843 pescx_bist_status2.u64 =
844 cvmx_read_csr(CVMX_PESCX_BIST_STATUS2(pcie_port));
845 if (pescx_bist_status2.u64) {
846 cvmx_dprintf("PCIe: Port %d BIST2 failed. Most likely this "
847 "port isn't hooked up, skipping.\n",
848 pcie_port);
849 return -1;
850 }
851
852 /* Check BIST status */
853 pescx_bist_status.u64 =
854 cvmx_read_csr(CVMX_PESCX_BIST_STATUS(pcie_port));
855 if (pescx_bist_status.u64)
856 cvmx_dprintf("PCIe: BIST FAILED for port %d (0x%016llx)\n",
857 pcie_port, CAST64(pescx_bist_status.u64));
858
859 /* Initialize the config space CSRs */
860 __cvmx_pcie_rc_initialize_config_space(pcie_port);
861
862 /* Bring the link up */
863 if (__cvmx_pcie_rc_initialize_link(pcie_port)) {
864 cvmx_dprintf
865 ("PCIe: ERROR: cvmx_pcie_rc_initialize_link() failed\n");
866 return -1;
867 }
868
869 /* Store merge control (NPEI_MEM_ACCESS_CTL[TIMER,MAX_WORD]) */
870 npei_mem_access_ctl.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_MEM_ACCESS_CTL);
871 /* Allow 16 words to combine */
872 npei_mem_access_ctl.s.max_word = 0;
873 /* Wait up to 127 cycles for more data */
874 npei_mem_access_ctl.s.timer = 127;
875 cvmx_write_csr(CVMX_PEXP_NPEI_MEM_ACCESS_CTL, npei_mem_access_ctl.u64);
876
877 /* Setup Mem access SubDIDs */
878 mem_access_subid.u64 = 0;
879 /* Port the request is sent to. */
880 mem_access_subid.s.port = pcie_port;
881 /* Due to an errata on pass 1 chips, no merging is allowed. */
882 mem_access_subid.s.nmerge = 1;
883 /* Endian-swap for Reads. */
884 mem_access_subid.s.esr = 1;
885 /* Endian-swap for Writes. */
886 mem_access_subid.s.esw = 1;
887 /* No Snoop for Reads. */
888 mem_access_subid.s.nsr = 1;
889 /* No Snoop for Writes. */
890 mem_access_subid.s.nsw = 1;
891 /* Disable Relaxed Ordering for Reads. */
892 mem_access_subid.s.ror = 0;
893 /* Disable Relaxed Ordering for Writes. */
894 mem_access_subid.s.row = 0;
895 /* PCIe Adddress Bits <63:34>. */
896 mem_access_subid.s.ba = 0;
897
898 /*
899 * Setup mem access 12-15 for port 0, 16-19 for port 1,
900 * supplying 36 bits of address space.
901 */
902 for (i = 12 + pcie_port * 4; i < 16 + pcie_port * 4; i++) {
903 cvmx_write_csr(CVMX_PEXP_NPEI_MEM_ACCESS_SUBIDX(i),
904 mem_access_subid.u64);
905 /* Set each SUBID to extend the addressable range */
906 mem_access_subid.s.ba += 1;
907 }
908
909 /*
910 * Disable the peer to peer forwarding register. This must be
911 * setup by the OS after it enumerates the bus and assigns
912 * addresses to the PCIe busses.
913 */
914 for (i = 0; i < 4; i++) {
915 cvmx_write_csr(CVMX_PESCX_P2P_BARX_START(i, pcie_port), -1);
916 cvmx_write_csr(CVMX_PESCX_P2P_BARX_END(i, pcie_port), -1);
917 }
918
919 /* Set Octeon's BAR0 to decode 0-16KB. It overlaps with Bar2 */
920 cvmx_write_csr(CVMX_PESCX_P2N_BAR0_START(pcie_port), 0);
921
922 /*
923 * Disable Octeon's BAR1. It isn't needed in RC mode since
924 * BAR2 maps all of memory. BAR2 also maps 256MB-512MB into
925 * the 2nd 256MB of memory.
926 */
927 cvmx_write_csr(CVMX_PESCX_P2N_BAR1_START(pcie_port), -1);
928
929 /*
930 * Set Octeon's BAR2 to decode 0-2^39. Bar0 and Bar1 take
931 * precedence where they overlap. It also overlaps with the
932 * device addresses, so make sure the peer to peer forwarding
933 * is set right.
934 */
935 cvmx_write_csr(CVMX_PESCX_P2N_BAR2_START(pcie_port), 0);
936
937 /*
938 * Setup BAR2 attributes
939 *
940 * Relaxed Ordering (NPEI_CTL_PORTn[PTLP_RO,CTLP_RO, WAIT_COM])
941 * - PTLP_RO,CTLP_RO should normally be set (except for debug).
942 * - WAIT_COM=0 will likely work for all applications.
943 *
944 * Load completion relaxed ordering (NPEI_CTL_PORTn[WAITL_COM]).
945 */
946 if (pcie_port) {
947 union cvmx_npei_ctl_port1 npei_ctl_port;
948 npei_ctl_port.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_PORT1);
949 npei_ctl_port.s.bar2_enb = 1;
950 npei_ctl_port.s.bar2_esx = 1;
951 npei_ctl_port.s.bar2_cax = 0;
952 npei_ctl_port.s.ptlp_ro = 1;
953 npei_ctl_port.s.ctlp_ro = 1;
954 npei_ctl_port.s.wait_com = 0;
955 npei_ctl_port.s.waitl_com = 0;
956 cvmx_write_csr(CVMX_PEXP_NPEI_CTL_PORT1, npei_ctl_port.u64);
957 } else {
958 union cvmx_npei_ctl_port0 npei_ctl_port;
959 npei_ctl_port.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_PORT0);
960 npei_ctl_port.s.bar2_enb = 1;
961 npei_ctl_port.s.bar2_esx = 1;
962 npei_ctl_port.s.bar2_cax = 0;
963 npei_ctl_port.s.ptlp_ro = 1;
964 npei_ctl_port.s.ctlp_ro = 1;
965 npei_ctl_port.s.wait_com = 0;
966 npei_ctl_port.s.waitl_com = 0;
967 cvmx_write_csr(CVMX_PEXP_NPEI_CTL_PORT0, npei_ctl_port.u64);
968 }
969 return 0;
970}
971
972
973/* Above was cvmx-pcie.c, below original pcie.c */
974
975
976/**
977 * Map a PCI device to the appropriate interrupt line
978 *
979 * @param dev The Linux PCI device structure for the device to map
980 * @param slot The slot number for this device on __BUS 0__. Linux
981 * enumerates through all the bridges and figures out the
982 * slot on Bus 0 where this device eventually hooks to.
983 * @param pin The PCI interrupt pin read from the device, then swizzled
984 * as it goes through each bridge.
985 * @return Interrupt number for the device
986 */
987int __init octeon_pcie_pcibios_map_irq(const struct pci_dev *dev,
988 u8 slot, u8 pin)
989{
990 /*
991 * The EBH5600 board with the PCI to PCIe bridge mistakenly
992 * wires the first slot for both device id 2 and interrupt
993 * A. According to the PCI spec, device id 2 should be C. The
994 * following kludge attempts to fix this.
995 */
996 if (strstr(octeon_board_type_string(), "EBH5600") &&
997 dev->bus && dev->bus->parent) {
998 /*
999 * Iterate all the way up the device chain and find
1000 * the root bus.
1001 */
1002 while (dev->bus && dev->bus->parent)
1003 dev = to_pci_dev(dev->bus->bridge);
1004 /* If the root bus is number 0 and the PEX 8114 is the
1005 * root, assume we are behind the miswired bus. We
1006 * need to correct the swizzle level by two. Yuck.
1007 */
1008 if ((dev->bus->number == 0) &&
1009 (dev->vendor == 0x10b5) && (dev->device == 0x8114)) {
1010 /*
1011 * The pin field is one based, not zero. We
1012 * need to swizzle it by minus two.
1013 */
1014 pin = ((pin - 3) & 3) + 1;
1015 }
1016 }
1017 /*
1018 * The -1 is because pin starts with one, not zero. It might
1019 * be that this equation needs to include the slot number, but
1020 * I don't have hardware to check that against.
1021 */
1022 return pin - 1 + OCTEON_IRQ_PCI_INT0;
1023}
1024
1025/**
1026 * Read a value from configuration space
1027 *
1028 * @param bus
1029 * @param devfn
1030 * @param reg
1031 * @param size
1032 * @param val
1033 * @return
1034 */
1035static inline int octeon_pcie_read_config(int pcie_port, struct pci_bus *bus,
1036 unsigned int devfn, int reg, int size,
1037 u32 *val)
1038{
1039 union octeon_cvmemctl cvmmemctl;
1040 union octeon_cvmemctl cvmmemctl_save;
1041 int bus_number = bus->number;
1042
1043 /*
1044 * We need to force the bus number to be zero on the root
1045 * bus. Linux numbers the 2nd root bus to start after all
1046 * buses on root 0.
1047 */
1048 if (bus->parent == NULL)
1049 bus_number = 0;
1050
1051 /*
1052 * PCIe only has a single device connected to Octeon. It is
1053 * always device ID 0. Don't bother doing reads for other
1054 * device IDs on the first segment.
1055 */
1056 if ((bus_number == 0) && (devfn >> 3 != 0))
1057 return PCIBIOS_FUNC_NOT_SUPPORTED;
1058
1059 /*
1060 * The following is a workaround for the CN57XX, CN56XX,
1061 * CN55XX, and CN54XX errata with PCIe config reads from non
1062 * existent devices. These chips will hang the PCIe link if a
1063 * config read is performed that causes a UR response.
1064 */
1065 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1) ||
1066 OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_1)) {
1067 /*
1068 * For our EBH5600 board, port 0 has a bridge with two
1069 * PCI-X slots. We need a new special checks to make
1070 * sure we only probe valid stuff. The PCIe->PCI-X
1071 * bridge only respondes to device ID 0, function
1072 * 0-1
1073 */
1074 if ((bus_number == 0) && (devfn >= 2))
1075 return PCIBIOS_FUNC_NOT_SUPPORTED;
1076 /*
1077 * The PCI-X slots are device ID 2,3. Choose one of
1078 * the below "if" blocks based on what is plugged into
1079 * the board.
1080 */
1081#if 1
1082 /* Use this option if you aren't using either slot */
1083 if (bus_number == 1)
1084 return PCIBIOS_FUNC_NOT_SUPPORTED;
1085#elif 0
1086 /*
1087 * Use this option if you are using the first slot but
1088 * not the second.
1089 */
1090 if ((bus_number == 1) && (devfn >> 3 != 2))
1091 return PCIBIOS_FUNC_NOT_SUPPORTED;
1092#elif 0
1093 /*
1094 * Use this option if you are using the second slot
1095 * but not the first.
1096 */
1097 if ((bus_number == 1) && (devfn >> 3 != 3))
1098 return PCIBIOS_FUNC_NOT_SUPPORTED;
1099#elif 0
1100 /* Use this opion if you are using both slots */
1101 if ((bus_number == 1) &&
1102 !((devfn == (2 << 3)) || (devfn == (3 << 3))))
1103 return PCIBIOS_FUNC_NOT_SUPPORTED;
1104#endif
1105
1106 /*
1107 * Shorten the DID timeout so bus errors for PCIe
1108 * config reads from non existent devices happen
1109 * faster. This allows us to continue booting even if
1110 * the above "if" checks are wrong. Once one of these
1111 * errors happens, the PCIe port is dead.
1112 */
1113 cvmmemctl_save.u64 = __read_64bit_c0_register($11, 7);
1114 cvmmemctl.u64 = cvmmemctl_save.u64;
1115 cvmmemctl.s.didtto = 2;
1116 __write_64bit_c0_register($11, 7, cvmmemctl.u64);
1117 }
1118
1119 switch (size) {
1120 case 4:
1121 *val = cvmx_pcie_config_read32(pcie_port, bus_number,
1122 devfn >> 3, devfn & 0x7, reg);
1123 break;
1124 case 2:
1125 *val = cvmx_pcie_config_read16(pcie_port, bus_number,
1126 devfn >> 3, devfn & 0x7, reg);
1127 break;
1128 case 1:
1129 *val = cvmx_pcie_config_read8(pcie_port, bus_number, devfn >> 3,
1130 devfn & 0x7, reg);
1131 break;
1132 default:
1133 return PCIBIOS_FUNC_NOT_SUPPORTED;
1134 }
1135
1136 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1) ||
1137 OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_1))
1138 __write_64bit_c0_register($11, 7, cvmmemctl_save.u64);
1139 return PCIBIOS_SUCCESSFUL;
1140}
1141
1142static int octeon_pcie0_read_config(struct pci_bus *bus, unsigned int devfn,
1143 int reg, int size, u32 *val)
1144{
1145 return octeon_pcie_read_config(0, bus, devfn, reg, size, val);
1146}
1147
1148static int octeon_pcie1_read_config(struct pci_bus *bus, unsigned int devfn,
1149 int reg, int size, u32 *val)
1150{
1151 return octeon_pcie_read_config(1, bus, devfn, reg, size, val);
1152}
1153
1154
1155
1156/**
1157 * Write a value to PCI configuration space
1158 *
1159 * @param bus
1160 * @param devfn
1161 * @param reg
1162 * @param size
1163 * @param val
1164 * @return
1165 */
1166static inline int octeon_pcie_write_config(int pcie_port, struct pci_bus *bus,
1167 unsigned int devfn, int reg,
1168 int size, u32 val)
1169{
1170 int bus_number = bus->number;
1171 /*
1172 * We need to force the bus number to be zero on the root
1173 * bus. Linux numbers the 2nd root bus to start after all
1174 * busses on root 0.
1175 */
1176 if (bus->parent == NULL)
1177 bus_number = 0;
1178
1179 switch (size) {
1180 case 4:
1181 cvmx_pcie_config_write32(pcie_port, bus_number, devfn >> 3,
1182 devfn & 0x7, reg, val);
1183 return PCIBIOS_SUCCESSFUL;
1184 case 2:
1185 cvmx_pcie_config_write16(pcie_port, bus_number, devfn >> 3,
1186 devfn & 0x7, reg, val);
1187 return PCIBIOS_SUCCESSFUL;
1188 case 1:
1189 cvmx_pcie_config_write8(pcie_port, bus_number, devfn >> 3,
1190 devfn & 0x7, reg, val);
1191 return PCIBIOS_SUCCESSFUL;
1192 }
1193#if PCI_CONFIG_SPACE_DELAY
1194 udelay(PCI_CONFIG_SPACE_DELAY);
1195#endif
1196 return PCIBIOS_FUNC_NOT_SUPPORTED;
1197}
1198
1199static int octeon_pcie0_write_config(struct pci_bus *bus, unsigned int devfn,
1200 int reg, int size, u32 val)
1201{
1202 return octeon_pcie_write_config(0, bus, devfn, reg, size, val);
1203}
1204
1205static int octeon_pcie1_write_config(struct pci_bus *bus, unsigned int devfn,
1206 int reg, int size, u32 val)
1207{
1208 return octeon_pcie_write_config(1, bus, devfn, reg, size, val);
1209}
1210
1211static struct pci_ops octeon_pcie0_ops = {
1212 octeon_pcie0_read_config,
1213 octeon_pcie0_write_config,
1214};
1215
1216static struct resource octeon_pcie0_mem_resource = {
1217 .name = "Octeon PCIe0 MEM",
1218 .flags = IORESOURCE_MEM,
1219};
1220
1221static struct resource octeon_pcie0_io_resource = {
1222 .name = "Octeon PCIe0 IO",
1223 .flags = IORESOURCE_IO,
1224};
1225
1226static struct pci_controller octeon_pcie0_controller = {
1227 .pci_ops = &octeon_pcie0_ops,
1228 .mem_resource = &octeon_pcie0_mem_resource,
1229 .io_resource = &octeon_pcie0_io_resource,
1230};
1231
1232static struct pci_ops octeon_pcie1_ops = {
1233 octeon_pcie1_read_config,
1234 octeon_pcie1_write_config,
1235};
1236
1237static struct resource octeon_pcie1_mem_resource = {
1238 .name = "Octeon PCIe1 MEM",
1239 .flags = IORESOURCE_MEM,
1240};
1241
1242static struct resource octeon_pcie1_io_resource = {
1243 .name = "Octeon PCIe1 IO",
1244 .flags = IORESOURCE_IO,
1245};
1246
1247static struct pci_controller octeon_pcie1_controller = {
1248 .pci_ops = &octeon_pcie1_ops,
1249 .mem_resource = &octeon_pcie1_mem_resource,
1250 .io_resource = &octeon_pcie1_io_resource,
1251};
1252
1253
1254/**
1255 * Initialize the Octeon PCIe controllers
1256 *
1257 * @return
1258 */
1259static int __init octeon_pcie_setup(void)
1260{
1261 union cvmx_npei_ctl_status npei_ctl_status;
1262 int result;
1263
1264 /* These chips don't have PCIe */
1265 if (!octeon_has_feature(OCTEON_FEATURE_PCIE))
1266 return 0;
1267
1268 /* Point pcibios_map_irq() to the PCIe version of it */
1269 octeon_pcibios_map_irq = octeon_pcie_pcibios_map_irq;
1270
1271 /* Use the PCIe based DMA mappings */
1272 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_PCIE;
1273
1274 /*
1275 * PCIe I/O range. It is based on port 0 but includes up until
1276 * port 1's end.
1277 */
1278 set_io_port_base(CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(0)));
1279 ioport_resource.start = 0;
1280 ioport_resource.end =
1281 cvmx_pcie_get_io_base_address(1) -
1282 cvmx_pcie_get_io_base_address(0) + cvmx_pcie_get_io_size(1) - 1;
1283
1284 npei_ctl_status.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS);
1285 if (npei_ctl_status.s.host_mode) {
1286 pr_notice("PCIe: Initializing port 0\n");
1287 result = cvmx_pcie_rc_initialize(0);
1288 if (result == 0) {
1289 /* Memory offsets are physical addresses */
1290 octeon_pcie0_controller.mem_offset =
1291 cvmx_pcie_get_mem_base_address(0);
1292 /* IO offsets are Mips virtual addresses */
1293 octeon_pcie0_controller.io_map_base =
1294 CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address
1295 (0));
1296 octeon_pcie0_controller.io_offset = 0;
1297 /*
1298 * To keep things similar to PCI, we start
1299 * device addresses at the same place as PCI
1300 * uisng big bar support. This normally
1301 * translates to 4GB-256MB, which is the same
1302 * as most x86 PCs.
1303 */
1304 octeon_pcie0_controller.mem_resource->start =
1305 cvmx_pcie_get_mem_base_address(0) +
1306 (4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
1307 octeon_pcie0_controller.mem_resource->end =
1308 cvmx_pcie_get_mem_base_address(0) +
1309 cvmx_pcie_get_mem_size(0) - 1;
1310 /*
1311 * Ports must be above 16KB for the ISA bus
1312 * filtering in the PCI-X to PCI bridge.
1313 */
1314 octeon_pcie0_controller.io_resource->start = 4 << 10;
1315 octeon_pcie0_controller.io_resource->end =
1316 cvmx_pcie_get_io_size(0) - 1;
1317 register_pci_controller(&octeon_pcie0_controller);
1318 }
1319 } else {
1320 pr_notice("PCIe: Port 0 in endpoint mode, skipping.\n");
1321 }
1322
1323 /* Skip the 2nd port on CN52XX if port 0 is in 4 lane mode */
1324 if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
1325 union cvmx_npei_dbg_data npei_dbg_data;
1326 npei_dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA);
1327 if (npei_dbg_data.cn52xx.qlm0_link_width)
1328 return 0;
1329 }
1330
1331 pr_notice("PCIe: Initializing port 1\n");
1332 result = cvmx_pcie_rc_initialize(1);
1333 if (result == 0) {
1334 /* Memory offsets are physical addresses */
1335 octeon_pcie1_controller.mem_offset =
1336 cvmx_pcie_get_mem_base_address(1);
1337 /* IO offsets are Mips virtual addresses */
1338 octeon_pcie1_controller.io_map_base =
1339 CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(1));
1340 octeon_pcie1_controller.io_offset =
1341 cvmx_pcie_get_io_base_address(1) -
1342 cvmx_pcie_get_io_base_address(0);
1343 /*
1344 * To keep things similar to PCI, we start device
1345 * addresses at the same place as PCI uisng big bar
1346 * support. This normally translates to 4GB-256MB,
1347 * which is the same as most x86 PCs.
1348 */
1349 octeon_pcie1_controller.mem_resource->start =
1350 cvmx_pcie_get_mem_base_address(1) + (4ul << 30) -
1351 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
1352 octeon_pcie1_controller.mem_resource->end =
1353 cvmx_pcie_get_mem_base_address(1) +
1354 cvmx_pcie_get_mem_size(1) - 1;
1355 /*
1356 * Ports must be above 16KB for the ISA bus filtering
1357 * in the PCI-X to PCI bridge.
1358 */
1359 octeon_pcie1_controller.io_resource->start =
1360 cvmx_pcie_get_io_base_address(1) -
1361 cvmx_pcie_get_io_base_address(0);
1362 octeon_pcie1_controller.io_resource->end =
1363 octeon_pcie1_controller.io_resource->start +
1364 cvmx_pcie_get_io_size(1) - 1;
1365 register_pci_controller(&octeon_pcie1_controller);
1366 }
1367 return 0;
1368}
1369
1370arch_initcall(octeon_pcie_setup);