diff options
author | Ralf Baechle <ralf@linux-mips.org> | 2008-09-16 13:12:16 -0400 |
---|---|---|
committer | Ralf Baechle <ralf@linux-mips.org> | 2008-10-11 11:18:50 -0400 |
commit | e8c7c482347574ecdd45c43e32c332d5fc2ece61 (patch) | |
tree | c741aa6cdb4e897df9f9476d83a816a7a2b058dd /arch/mips/alchemy/common/dbdma.c | |
parent | 8d2d91e86b4153cc2305ec86fe908048f459ff7f (diff) |
MIPS: Alchemy: rename directory
It's more than the au1000 these days.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Diffstat (limited to 'arch/mips/alchemy/common/dbdma.c')
-rw-r--r-- | arch/mips/alchemy/common/dbdma.c | 978 |
1 files changed, 978 insertions, 0 deletions
diff --git a/arch/mips/alchemy/common/dbdma.c b/arch/mips/alchemy/common/dbdma.c new file mode 100644 index 000000000000..601ee9180ee4 --- /dev/null +++ b/arch/mips/alchemy/common/dbdma.c | |||
@@ -0,0 +1,978 @@ | |||
1 | /* | ||
2 | * | ||
3 | * BRIEF MODULE DESCRIPTION | ||
4 | * The Descriptor Based DMA channel manager that first appeared | ||
5 | * on the Au1550. I started with dma.c, but I think all that is | ||
6 | * left is this initial comment :-) | ||
7 | * | ||
8 | * Copyright 2004 Embedded Edge, LLC | ||
9 | * dan@embeddededge.com | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify it | ||
12 | * under the terms of the GNU General Public License as published by the | ||
13 | * Free Software Foundation; either version 2 of the License, or (at your | ||
14 | * option) any later version. | ||
15 | * | ||
16 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | ||
17 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | ||
18 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN | ||
19 | * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | ||
20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
21 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | ||
22 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | ||
23 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | ||
25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
26 | * | ||
27 | * You should have received a copy of the GNU General Public License along | ||
28 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
29 | * 675 Mass Ave, Cambridge, MA 02139, USA. | ||
30 | * | ||
31 | */ | ||
32 | |||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/spinlock.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | #include <linux/module.h> | ||
38 | #include <asm/mach-au1x00/au1000.h> | ||
39 | #include <asm/mach-au1x00/au1xxx_dbdma.h> | ||
40 | |||
41 | #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) | ||
42 | |||
43 | /* | ||
44 | * The Descriptor Based DMA supports up to 16 channels. | ||
45 | * | ||
46 | * There are 32 devices defined. We keep an internal structure | ||
47 | * of devices using these channels, along with additional | ||
48 | * information. | ||
49 | * | ||
50 | * We allocate the descriptors and allow access to them through various | ||
51 | * functions. The drivers allocate the data buffers and assign them | ||
52 | * to the descriptors. | ||
53 | */ | ||
54 | static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); | ||
55 | |||
56 | /* I couldn't find a macro that did this... */ | ||
57 | #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) | ||
58 | |||
59 | static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE; | ||
60 | static int dbdma_initialized; | ||
61 | static void au1xxx_dbdma_init(void); | ||
62 | |||
63 | static dbdev_tab_t dbdev_tab[] = { | ||
64 | #ifdef CONFIG_SOC_AU1550 | ||
65 | /* UARTS */ | ||
66 | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | ||
67 | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | ||
68 | { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, | ||
69 | { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, | ||
70 | |||
71 | /* EXT DMA */ | ||
72 | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | ||
73 | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | ||
74 | { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, | ||
75 | { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, | ||
76 | |||
77 | /* USB DEV */ | ||
78 | { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, | ||
79 | { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, | ||
80 | { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, | ||
81 | { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, | ||
82 | { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, | ||
83 | { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, | ||
84 | |||
85 | /* PSC 0 */ | ||
86 | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, | ||
87 | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, | ||
88 | |||
89 | /* PSC 1 */ | ||
90 | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, | ||
91 | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, | ||
92 | |||
93 | /* PSC 2 */ | ||
94 | { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, | ||
95 | { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, | ||
96 | |||
97 | /* PSC 3 */ | ||
98 | { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, | ||
99 | { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, | ||
100 | |||
101 | { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ | ||
102 | { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ | ||
103 | |||
104 | /* MAC 0 */ | ||
105 | { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
106 | { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
107 | |||
108 | /* MAC 1 */ | ||
109 | { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
110 | { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, | ||
111 | |||
112 | #endif /* CONFIG_SOC_AU1550 */ | ||
113 | |||
114 | #ifdef CONFIG_SOC_AU1200 | ||
115 | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, | ||
116 | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, | ||
117 | { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, | ||
118 | { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, | ||
119 | |||
120 | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, | ||
121 | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, | ||
122 | |||
123 | { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
124 | { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
125 | { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
126 | { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
127 | |||
128 | { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, | ||
129 | { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, | ||
130 | { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, | ||
131 | { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, | ||
132 | |||
133 | { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, | ||
134 | { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, | ||
135 | |||
136 | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, | ||
137 | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, | ||
138 | { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
139 | |||
140 | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, | ||
141 | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, | ||
142 | { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
143 | |||
144 | { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, | ||
145 | { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, | ||
146 | { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, | ||
147 | { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
148 | |||
149 | { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, | ||
150 | |||
151 | #endif /* CONFIG_SOC_AU1200 */ | ||
152 | |||
153 | { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
154 | { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, | ||
155 | |||
156 | /* Provide 16 user definable device types */ | ||
157 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
158 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
159 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
160 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
161 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
162 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
163 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
164 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
165 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
166 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
167 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
168 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
169 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
170 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
171 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
172 | { ~0, 0, 0, 0, 0, 0, 0 }, | ||
173 | }; | ||
174 | |||
175 | #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab) | ||
176 | |||
177 | static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; | ||
178 | |||
179 | static dbdev_tab_t *find_dbdev_id(u32 id) | ||
180 | { | ||
181 | int i; | ||
182 | dbdev_tab_t *p; | ||
183 | for (i = 0; i < DBDEV_TAB_SIZE; ++i) { | ||
184 | p = &dbdev_tab[i]; | ||
185 | if (p->dev_id == id) | ||
186 | return p; | ||
187 | } | ||
188 | return NULL; | ||
189 | } | ||
190 | |||
191 | void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) | ||
192 | { | ||
193 | return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
194 | } | ||
195 | EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); | ||
196 | |||
197 | u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) | ||
198 | { | ||
199 | u32 ret = 0; | ||
200 | dbdev_tab_t *p; | ||
201 | static u16 new_id = 0x1000; | ||
202 | |||
203 | p = find_dbdev_id(~0); | ||
204 | if (NULL != p) { | ||
205 | memcpy(p, dev, sizeof(dbdev_tab_t)); | ||
206 | p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); | ||
207 | ret = p->dev_id; | ||
208 | new_id++; | ||
209 | #if 0 | ||
210 | printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", | ||
211 | p->dev_id, p->dev_flags, p->dev_physaddr); | ||
212 | #endif | ||
213 | } | ||
214 | |||
215 | return ret; | ||
216 | } | ||
217 | EXPORT_SYMBOL(au1xxx_ddma_add_device); | ||
218 | |||
219 | void au1xxx_ddma_del_device(u32 devid) | ||
220 | { | ||
221 | dbdev_tab_t *p = find_dbdev_id(devid); | ||
222 | |||
223 | if (p != NULL) { | ||
224 | memset(p, 0, sizeof(dbdev_tab_t)); | ||
225 | p->dev_id = ~0; | ||
226 | } | ||
227 | } | ||
228 | EXPORT_SYMBOL(au1xxx_ddma_del_device); | ||
229 | |||
230 | /* Allocate a channel and return a non-zero descriptor if successful. */ | ||
231 | u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, | ||
232 | void (*callback)(int, void *), void *callparam) | ||
233 | { | ||
234 | unsigned long flags; | ||
235 | u32 used, chan, rv; | ||
236 | u32 dcp; | ||
237 | int i; | ||
238 | dbdev_tab_t *stp, *dtp; | ||
239 | chan_tab_t *ctp; | ||
240 | au1x_dma_chan_t *cp; | ||
241 | |||
242 | /* | ||
243 | * We do the intialization on the first channel allocation. | ||
244 | * We have to wait because of the interrupt handler initialization | ||
245 | * which can't be done successfully during board set up. | ||
246 | */ | ||
247 | if (!dbdma_initialized) | ||
248 | au1xxx_dbdma_init(); | ||
249 | dbdma_initialized = 1; | ||
250 | |||
251 | stp = find_dbdev_id(srcid); | ||
252 | if (stp == NULL) | ||
253 | return 0; | ||
254 | dtp = find_dbdev_id(destid); | ||
255 | if (dtp == NULL) | ||
256 | return 0; | ||
257 | |||
258 | used = 0; | ||
259 | rv = 0; | ||
260 | |||
261 | /* Check to see if we can get both channels. */ | ||
262 | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | ||
263 | if (!(stp->dev_flags & DEV_FLAGS_INUSE) || | ||
264 | (stp->dev_flags & DEV_FLAGS_ANYUSE)) { | ||
265 | /* Got source */ | ||
266 | stp->dev_flags |= DEV_FLAGS_INUSE; | ||
267 | if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || | ||
268 | (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { | ||
269 | /* Got destination */ | ||
270 | dtp->dev_flags |= DEV_FLAGS_INUSE; | ||
271 | } else { | ||
272 | /* Can't get dest. Release src. */ | ||
273 | stp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
274 | used++; | ||
275 | } | ||
276 | } else | ||
277 | used++; | ||
278 | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | ||
279 | |||
280 | if (!used) { | ||
281 | /* Let's see if we can allocate a channel for it. */ | ||
282 | ctp = NULL; | ||
283 | chan = 0; | ||
284 | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); | ||
285 | for (i = 0; i < NUM_DBDMA_CHANS; i++) | ||
286 | if (chan_tab_ptr[i] == NULL) { | ||
287 | /* | ||
288 | * If kmalloc fails, it is caught below same | ||
289 | * as a channel not available. | ||
290 | */ | ||
291 | ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); | ||
292 | chan_tab_ptr[i] = ctp; | ||
293 | break; | ||
294 | } | ||
295 | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); | ||
296 | |||
297 | if (ctp != NULL) { | ||
298 | memset(ctp, 0, sizeof(chan_tab_t)); | ||
299 | ctp->chan_index = chan = i; | ||
300 | dcp = DDMA_CHANNEL_BASE; | ||
301 | dcp += (0x0100 * chan); | ||
302 | ctp->chan_ptr = (au1x_dma_chan_t *)dcp; | ||
303 | cp = (au1x_dma_chan_t *)dcp; | ||
304 | ctp->chan_src = stp; | ||
305 | ctp->chan_dest = dtp; | ||
306 | ctp->chan_callback = callback; | ||
307 | ctp->chan_callparam = callparam; | ||
308 | |||
309 | /* Initialize channel configuration. */ | ||
310 | i = 0; | ||
311 | if (stp->dev_intlevel) | ||
312 | i |= DDMA_CFG_SED; | ||
313 | if (stp->dev_intpolarity) | ||
314 | i |= DDMA_CFG_SP; | ||
315 | if (dtp->dev_intlevel) | ||
316 | i |= DDMA_CFG_DED; | ||
317 | if (dtp->dev_intpolarity) | ||
318 | i |= DDMA_CFG_DP; | ||
319 | if ((stp->dev_flags & DEV_FLAGS_SYNC) || | ||
320 | (dtp->dev_flags & DEV_FLAGS_SYNC)) | ||
321 | i |= DDMA_CFG_SYNC; | ||
322 | cp->ddma_cfg = i; | ||
323 | au_sync(); | ||
324 | |||
325 | /* Return a non-zero value that can be used to | ||
326 | * find the channel information in subsequent | ||
327 | * operations. | ||
328 | */ | ||
329 | rv = (u32)(&chan_tab_ptr[chan]); | ||
330 | } else { | ||
331 | /* Release devices */ | ||
332 | stp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
333 | dtp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
334 | } | ||
335 | } | ||
336 | return rv; | ||
337 | } | ||
338 | EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); | ||
339 | |||
340 | /* | ||
341 | * Set the device width if source or destination is a FIFO. | ||
342 | * Should be 8, 16, or 32 bits. | ||
343 | */ | ||
344 | u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) | ||
345 | { | ||
346 | u32 rv; | ||
347 | chan_tab_t *ctp; | ||
348 | dbdev_tab_t *stp, *dtp; | ||
349 | |||
350 | ctp = *((chan_tab_t **)chanid); | ||
351 | stp = ctp->chan_src; | ||
352 | dtp = ctp->chan_dest; | ||
353 | rv = 0; | ||
354 | |||
355 | if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ | ||
356 | rv = stp->dev_devwidth; | ||
357 | stp->dev_devwidth = bits; | ||
358 | } | ||
359 | if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ | ||
360 | rv = dtp->dev_devwidth; | ||
361 | dtp->dev_devwidth = bits; | ||
362 | } | ||
363 | |||
364 | return rv; | ||
365 | } | ||
366 | EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); | ||
367 | |||
368 | /* Allocate a descriptor ring, initializing as much as possible. */ | ||
369 | u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) | ||
370 | { | ||
371 | int i; | ||
372 | u32 desc_base, srcid, destid; | ||
373 | u32 cmd0, cmd1, src1, dest1; | ||
374 | u32 src0, dest0; | ||
375 | chan_tab_t *ctp; | ||
376 | dbdev_tab_t *stp, *dtp; | ||
377 | au1x_ddma_desc_t *dp; | ||
378 | |||
379 | /* | ||
380 | * I guess we could check this to be within the | ||
381 | * range of the table...... | ||
382 | */ | ||
383 | ctp = *((chan_tab_t **)chanid); | ||
384 | stp = ctp->chan_src; | ||
385 | dtp = ctp->chan_dest; | ||
386 | |||
387 | /* | ||
388 | * The descriptors must be 32-byte aligned. There is a | ||
389 | * possibility the allocation will give us such an address, | ||
390 | * and if we try that first we are likely to not waste larger | ||
391 | * slabs of memory. | ||
392 | */ | ||
393 | desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), | ||
394 | GFP_KERNEL|GFP_DMA); | ||
395 | if (desc_base == 0) | ||
396 | return 0; | ||
397 | |||
398 | if (desc_base & 0x1f) { | ||
399 | /* | ||
400 | * Lost....do it again, allocate extra, and round | ||
401 | * the address base. | ||
402 | */ | ||
403 | kfree((const void *)desc_base); | ||
404 | i = entries * sizeof(au1x_ddma_desc_t); | ||
405 | i += (sizeof(au1x_ddma_desc_t) - 1); | ||
406 | desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); | ||
407 | if (desc_base == 0) | ||
408 | return 0; | ||
409 | |||
410 | desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); | ||
411 | } | ||
412 | dp = (au1x_ddma_desc_t *)desc_base; | ||
413 | |||
414 | /* Keep track of the base descriptor. */ | ||
415 | ctp->chan_desc_base = dp; | ||
416 | |||
417 | /* Initialize the rings with as much information as we know. */ | ||
418 | srcid = stp->dev_id; | ||
419 | destid = dtp->dev_id; | ||
420 | |||
421 | cmd0 = cmd1 = src1 = dest1 = 0; | ||
422 | src0 = dest0 = 0; | ||
423 | |||
424 | cmd0 |= DSCR_CMD0_SID(srcid); | ||
425 | cmd0 |= DSCR_CMD0_DID(destid); | ||
426 | cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; | ||
427 | cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); | ||
428 | |||
429 | /* Is it mem to mem transfer? */ | ||
430 | if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || | ||
431 | (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && | ||
432 | ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || | ||
433 | (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) | ||
434 | cmd0 |= DSCR_CMD0_MEM; | ||
435 | |||
436 | switch (stp->dev_devwidth) { | ||
437 | case 8: | ||
438 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); | ||
439 | break; | ||
440 | case 16: | ||
441 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); | ||
442 | break; | ||
443 | case 32: | ||
444 | default: | ||
445 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); | ||
446 | break; | ||
447 | } | ||
448 | |||
449 | switch (dtp->dev_devwidth) { | ||
450 | case 8: | ||
451 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); | ||
452 | break; | ||
453 | case 16: | ||
454 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); | ||
455 | break; | ||
456 | case 32: | ||
457 | default: | ||
458 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); | ||
459 | break; | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | * If the device is marked as an in/out FIFO, ensure it is | ||
464 | * set non-coherent. | ||
465 | */ | ||
466 | if (stp->dev_flags & DEV_FLAGS_IN) | ||
467 | cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */ | ||
468 | if (dtp->dev_flags & DEV_FLAGS_OUT) | ||
469 | cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */ | ||
470 | |||
471 | /* | ||
472 | * Set up source1. For now, assume no stride and increment. | ||
473 | * A channel attribute update can change this later. | ||
474 | */ | ||
475 | switch (stp->dev_tsize) { | ||
476 | case 1: | ||
477 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); | ||
478 | break; | ||
479 | case 2: | ||
480 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); | ||
481 | break; | ||
482 | case 4: | ||
483 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); | ||
484 | break; | ||
485 | case 8: | ||
486 | default: | ||
487 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); | ||
488 | break; | ||
489 | } | ||
490 | |||
491 | /* If source input is FIFO, set static address. */ | ||
492 | if (stp->dev_flags & DEV_FLAGS_IN) { | ||
493 | if (stp->dev_flags & DEV_FLAGS_BURSTABLE) | ||
494 | src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); | ||
495 | else | ||
496 | src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); | ||
497 | } | ||
498 | |||
499 | if (stp->dev_physaddr) | ||
500 | src0 = stp->dev_physaddr; | ||
501 | |||
502 | /* | ||
503 | * Set up dest1. For now, assume no stride and increment. | ||
504 | * A channel attribute update can change this later. | ||
505 | */ | ||
506 | switch (dtp->dev_tsize) { | ||
507 | case 1: | ||
508 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); | ||
509 | break; | ||
510 | case 2: | ||
511 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); | ||
512 | break; | ||
513 | case 4: | ||
514 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); | ||
515 | break; | ||
516 | case 8: | ||
517 | default: | ||
518 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); | ||
519 | break; | ||
520 | } | ||
521 | |||
522 | /* If destination output is FIFO, set static address. */ | ||
523 | if (dtp->dev_flags & DEV_FLAGS_OUT) { | ||
524 | if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) | ||
525 | dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); | ||
526 | else | ||
527 | dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); | ||
528 | } | ||
529 | |||
530 | if (dtp->dev_physaddr) | ||
531 | dest0 = dtp->dev_physaddr; | ||
532 | |||
533 | #if 0 | ||
534 | printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " | ||
535 | "source1:%x dest0:%x dest1:%x\n", | ||
536 | dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, | ||
537 | src1, dest0, dest1); | ||
538 | #endif | ||
539 | for (i = 0; i < entries; i++) { | ||
540 | dp->dscr_cmd0 = cmd0; | ||
541 | dp->dscr_cmd1 = cmd1; | ||
542 | dp->dscr_source0 = src0; | ||
543 | dp->dscr_source1 = src1; | ||
544 | dp->dscr_dest0 = dest0; | ||
545 | dp->dscr_dest1 = dest1; | ||
546 | dp->dscr_stat = 0; | ||
547 | dp->sw_context = 0; | ||
548 | dp->sw_status = 0; | ||
549 | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); | ||
550 | dp++; | ||
551 | } | ||
552 | |||
553 | /* Make last descrptor point to the first. */ | ||
554 | dp--; | ||
555 | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); | ||
556 | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | ||
557 | |||
558 | return (u32)ctp->chan_desc_base; | ||
559 | } | ||
560 | EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); | ||
561 | |||
562 | /* | ||
563 | * Put a source buffer into the DMA ring. | ||
564 | * This updates the source pointer and byte count. Normally used | ||
565 | * for memory to fifo transfers. | ||
566 | */ | ||
567 | u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags) | ||
568 | { | ||
569 | chan_tab_t *ctp; | ||
570 | au1x_ddma_desc_t *dp; | ||
571 | |||
572 | /* | ||
573 | * I guess we could check this to be within the | ||
574 | * range of the table...... | ||
575 | */ | ||
576 | ctp = *(chan_tab_t **)chanid; | ||
577 | |||
578 | /* | ||
579 | * We should have multiple callers for a particular channel, | ||
580 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
581 | * so no locking should be needed. | ||
582 | */ | ||
583 | dp = ctp->put_ptr; | ||
584 | |||
585 | /* | ||
586 | * If the descriptor is valid, we are way ahead of the DMA | ||
587 | * engine, so just return an error condition. | ||
588 | */ | ||
589 | if (dp->dscr_cmd0 & DSCR_CMD0_V) | ||
590 | return 0; | ||
591 | |||
592 | /* Load up buffer address and byte count. */ | ||
593 | dp->dscr_source0 = virt_to_phys(buf); | ||
594 | dp->dscr_cmd1 = nbytes; | ||
595 | /* Check flags */ | ||
596 | if (flags & DDMA_FLAGS_IE) | ||
597 | dp->dscr_cmd0 |= DSCR_CMD0_IE; | ||
598 | if (flags & DDMA_FLAGS_NOIE) | ||
599 | dp->dscr_cmd0 &= ~DSCR_CMD0_IE; | ||
600 | |||
601 | /* | ||
602 | * There is an errata on the Au1200/Au1550 parts that could result | ||
603 | * in "stale" data being DMA'ed. It has to do with the snoop logic on | ||
604 | * the cache eviction buffer. DMA_NONCOHERENT is on by default for | ||
605 | * these parts. If it is fixed in the future, these dma_cache_inv will | ||
606 | * just be nothing more than empty macros. See io.h. | ||
607 | */ | ||
608 | dma_cache_wback_inv((unsigned long)buf, nbytes); | ||
609 | dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ | ||
610 | au_sync(); | ||
611 | dma_cache_wback_inv((unsigned long)dp, sizeof(dp)); | ||
612 | ctp->chan_ptr->ddma_dbell = 0; | ||
613 | |||
614 | /* Get next descriptor pointer. */ | ||
615 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
616 | |||
617 | /* Return something non-zero. */ | ||
618 | return nbytes; | ||
619 | } | ||
620 | EXPORT_SYMBOL(_au1xxx_dbdma_put_source); | ||
621 | |||
622 | /* Put a destination buffer into the DMA ring. | ||
623 | * This updates the destination pointer and byte count. Normally used | ||
624 | * to place an empty buffer into the ring for fifo to memory transfers. | ||
625 | */ | ||
626 | u32 | ||
627 | _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags) | ||
628 | { | ||
629 | chan_tab_t *ctp; | ||
630 | au1x_ddma_desc_t *dp; | ||
631 | |||
632 | /* I guess we could check this to be within the | ||
633 | * range of the table...... | ||
634 | */ | ||
635 | ctp = *((chan_tab_t **)chanid); | ||
636 | |||
637 | /* We should have multiple callers for a particular channel, | ||
638 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
639 | * so no locking should be needed. | ||
640 | */ | ||
641 | dp = ctp->put_ptr; | ||
642 | |||
643 | /* If the descriptor is valid, we are way ahead of the DMA | ||
644 | * engine, so just return an error condition. | ||
645 | */ | ||
646 | if (dp->dscr_cmd0 & DSCR_CMD0_V) | ||
647 | return 0; | ||
648 | |||
649 | /* Load up buffer address and byte count */ | ||
650 | |||
651 | /* Check flags */ | ||
652 | if (flags & DDMA_FLAGS_IE) | ||
653 | dp->dscr_cmd0 |= DSCR_CMD0_IE; | ||
654 | if (flags & DDMA_FLAGS_NOIE) | ||
655 | dp->dscr_cmd0 &= ~DSCR_CMD0_IE; | ||
656 | |||
657 | dp->dscr_dest0 = virt_to_phys(buf); | ||
658 | dp->dscr_cmd1 = nbytes; | ||
659 | #if 0 | ||
660 | printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", | ||
661 | dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, | ||
662 | dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); | ||
663 | #endif | ||
664 | /* | ||
665 | * There is an errata on the Au1200/Au1550 parts that could result in | ||
666 | * "stale" data being DMA'ed. It has to do with the snoop logic on the | ||
667 | * cache eviction buffer. DMA_NONCOHERENT is on by default for these | ||
668 | * parts. If it is fixed in the future, these dma_cache_inv will just | ||
669 | * be nothing more than empty macros. See io.h. | ||
670 | */ | ||
671 | dma_cache_inv((unsigned long)buf, nbytes); | ||
672 | dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ | ||
673 | au_sync(); | ||
674 | dma_cache_wback_inv((unsigned long)dp, sizeof(dp)); | ||
675 | ctp->chan_ptr->ddma_dbell = 0; | ||
676 | |||
677 | /* Get next descriptor pointer. */ | ||
678 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
679 | |||
680 | /* Return something non-zero. */ | ||
681 | return nbytes; | ||
682 | } | ||
683 | EXPORT_SYMBOL(_au1xxx_dbdma_put_dest); | ||
684 | |||
685 | /* | ||
686 | * Get a destination buffer into the DMA ring. | ||
687 | * Normally used to get a full buffer from the ring during fifo | ||
688 | * to memory transfers. This does not set the valid bit, you will | ||
689 | * have to put another destination buffer to keep the DMA going. | ||
690 | */ | ||
691 | u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) | ||
692 | { | ||
693 | chan_tab_t *ctp; | ||
694 | au1x_ddma_desc_t *dp; | ||
695 | u32 rv; | ||
696 | |||
697 | /* | ||
698 | * I guess we could check this to be within the | ||
699 | * range of the table...... | ||
700 | */ | ||
701 | ctp = *((chan_tab_t **)chanid); | ||
702 | |||
703 | /* | ||
704 | * We should have multiple callers for a particular channel, | ||
705 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
706 | * so no locking should be needed. | ||
707 | */ | ||
708 | dp = ctp->get_ptr; | ||
709 | |||
710 | /* | ||
711 | * If the descriptor is valid, we are way ahead of the DMA | ||
712 | * engine, so just return an error condition. | ||
713 | */ | ||
714 | if (dp->dscr_cmd0 & DSCR_CMD0_V) | ||
715 | return 0; | ||
716 | |||
717 | /* Return buffer address and byte count. */ | ||
718 | *buf = (void *)(phys_to_virt(dp->dscr_dest0)); | ||
719 | *nbytes = dp->dscr_cmd1; | ||
720 | rv = dp->dscr_stat; | ||
721 | |||
722 | /* Get next descriptor pointer. */ | ||
723 | ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
724 | |||
725 | /* Return something non-zero. */ | ||
726 | return rv; | ||
727 | } | ||
728 | EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); | ||
729 | |||
730 | void au1xxx_dbdma_stop(u32 chanid) | ||
731 | { | ||
732 | chan_tab_t *ctp; | ||
733 | au1x_dma_chan_t *cp; | ||
734 | int halt_timeout = 0; | ||
735 | |||
736 | ctp = *((chan_tab_t **)chanid); | ||
737 | |||
738 | cp = ctp->chan_ptr; | ||
739 | cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ | ||
740 | au_sync(); | ||
741 | while (!(cp->ddma_stat & DDMA_STAT_H)) { | ||
742 | udelay(1); | ||
743 | halt_timeout++; | ||
744 | if (halt_timeout > 100) { | ||
745 | printk(KERN_WARNING "warning: DMA channel won't halt\n"); | ||
746 | break; | ||
747 | } | ||
748 | } | ||
749 | /* clear current desc valid and doorbell */ | ||
750 | cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); | ||
751 | au_sync(); | ||
752 | } | ||
753 | EXPORT_SYMBOL(au1xxx_dbdma_stop); | ||
754 | |||
755 | /* | ||
756 | * Start using the current descriptor pointer. If the DBDMA encounters | ||
757 | * a non-valid descriptor, it will stop. In this case, we can just | ||
758 | * continue by adding a buffer to the list and starting again. | ||
759 | */ | ||
760 | void au1xxx_dbdma_start(u32 chanid) | ||
761 | { | ||
762 | chan_tab_t *ctp; | ||
763 | au1x_dma_chan_t *cp; | ||
764 | |||
765 | ctp = *((chan_tab_t **)chanid); | ||
766 | cp = ctp->chan_ptr; | ||
767 | cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); | ||
768 | cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ | ||
769 | au_sync(); | ||
770 | cp->ddma_dbell = 0; | ||
771 | au_sync(); | ||
772 | } | ||
773 | EXPORT_SYMBOL(au1xxx_dbdma_start); | ||
774 | |||
775 | void au1xxx_dbdma_reset(u32 chanid) | ||
776 | { | ||
777 | chan_tab_t *ctp; | ||
778 | au1x_ddma_desc_t *dp; | ||
779 | |||
780 | au1xxx_dbdma_stop(chanid); | ||
781 | |||
782 | ctp = *((chan_tab_t **)chanid); | ||
783 | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; | ||
784 | |||
785 | /* Run through the descriptors and reset the valid indicator. */ | ||
786 | dp = ctp->chan_desc_base; | ||
787 | |||
788 | do { | ||
789 | dp->dscr_cmd0 &= ~DSCR_CMD0_V; | ||
790 | /* | ||
791 | * Reset our software status -- this is used to determine | ||
792 | * if a descriptor is in use by upper level software. Since | ||
793 | * posting can reset 'V' bit. | ||
794 | */ | ||
795 | dp->sw_status = 0; | ||
796 | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
797 | } while (dp != ctp->chan_desc_base); | ||
798 | } | ||
799 | EXPORT_SYMBOL(au1xxx_dbdma_reset); | ||
800 | |||
801 | u32 au1xxx_get_dma_residue(u32 chanid) | ||
802 | { | ||
803 | chan_tab_t *ctp; | ||
804 | au1x_dma_chan_t *cp; | ||
805 | u32 rv; | ||
806 | |||
807 | ctp = *((chan_tab_t **)chanid); | ||
808 | cp = ctp->chan_ptr; | ||
809 | |||
810 | /* This is only valid if the channel is stopped. */ | ||
811 | rv = cp->ddma_bytecnt; | ||
812 | au_sync(); | ||
813 | |||
814 | return rv; | ||
815 | } | ||
816 | EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); | ||
817 | |||
818 | void au1xxx_dbdma_chan_free(u32 chanid) | ||
819 | { | ||
820 | chan_tab_t *ctp; | ||
821 | dbdev_tab_t *stp, *dtp; | ||
822 | |||
823 | ctp = *((chan_tab_t **)chanid); | ||
824 | stp = ctp->chan_src; | ||
825 | dtp = ctp->chan_dest; | ||
826 | |||
827 | au1xxx_dbdma_stop(chanid); | ||
828 | |||
829 | kfree((void *)ctp->chan_desc_base); | ||
830 | |||
831 | stp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
832 | dtp->dev_flags &= ~DEV_FLAGS_INUSE; | ||
833 | chan_tab_ptr[ctp->chan_index] = NULL; | ||
834 | |||
835 | kfree(ctp); | ||
836 | } | ||
837 | EXPORT_SYMBOL(au1xxx_dbdma_chan_free); | ||
838 | |||
839 | static irqreturn_t dbdma_interrupt(int irq, void *dev_id) | ||
840 | { | ||
841 | u32 intstat; | ||
842 | u32 chan_index; | ||
843 | chan_tab_t *ctp; | ||
844 | au1x_ddma_desc_t *dp; | ||
845 | au1x_dma_chan_t *cp; | ||
846 | |||
847 | intstat = dbdma_gptr->ddma_intstat; | ||
848 | au_sync(); | ||
849 | chan_index = __ffs(intstat); | ||
850 | |||
851 | ctp = chan_tab_ptr[chan_index]; | ||
852 | cp = ctp->chan_ptr; | ||
853 | dp = ctp->cur_ptr; | ||
854 | |||
855 | /* Reset interrupt. */ | ||
856 | cp->ddma_irq = 0; | ||
857 | au_sync(); | ||
858 | |||
859 | if (ctp->chan_callback) | ||
860 | ctp->chan_callback(irq, ctp->chan_callparam); | ||
861 | |||
862 | ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
863 | return IRQ_RETVAL(1); | ||
864 | } | ||
865 | |||
866 | static void au1xxx_dbdma_init(void) | ||
867 | { | ||
868 | int irq_nr; | ||
869 | |||
870 | dbdma_gptr->ddma_config = 0; | ||
871 | dbdma_gptr->ddma_throttle = 0; | ||
872 | dbdma_gptr->ddma_inten = 0xffff; | ||
873 | au_sync(); | ||
874 | |||
875 | #if defined(CONFIG_SOC_AU1550) | ||
876 | irq_nr = AU1550_DDMA_INT; | ||
877 | #elif defined(CONFIG_SOC_AU1200) | ||
878 | irq_nr = AU1200_DDMA_INT; | ||
879 | #else | ||
880 | #error Unknown Au1x00 SOC | ||
881 | #endif | ||
882 | |||
883 | if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED, | ||
884 | "Au1xxx dbdma", (void *)dbdma_gptr)) | ||
885 | printk(KERN_ERR "Can't get 1550 dbdma irq"); | ||
886 | } | ||
887 | |||
888 | void au1xxx_dbdma_dump(u32 chanid) | ||
889 | { | ||
890 | chan_tab_t *ctp; | ||
891 | au1x_ddma_desc_t *dp; | ||
892 | dbdev_tab_t *stp, *dtp; | ||
893 | au1x_dma_chan_t *cp; | ||
894 | u32 i = 0; | ||
895 | |||
896 | ctp = *((chan_tab_t **)chanid); | ||
897 | stp = ctp->chan_src; | ||
898 | dtp = ctp->chan_dest; | ||
899 | cp = ctp->chan_ptr; | ||
900 | |||
901 | printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d) \n", | ||
902 | (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, | ||
903 | dtp - dbdev_tab); | ||
904 | printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", | ||
905 | (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), | ||
906 | (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); | ||
907 | |||
908 | printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); | ||
909 | printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", | ||
910 | cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); | ||
911 | printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", | ||
912 | cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, | ||
913 | cp->ddma_bytecnt); | ||
914 | |||
915 | /* Run through the descriptors */ | ||
916 | dp = ctp->chan_desc_base; | ||
917 | |||
918 | do { | ||
919 | printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", | ||
920 | i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); | ||
921 | printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", | ||
922 | dp->dscr_source0, dp->dscr_source1, | ||
923 | dp->dscr_dest0, dp->dscr_dest1); | ||
924 | printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", | ||
925 | dp->dscr_stat, dp->dscr_nxtptr); | ||
926 | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
927 | } while (dp != ctp->chan_desc_base); | ||
928 | } | ||
929 | |||
930 | /* Put a descriptor into the DMA ring. | ||
931 | * This updates the source/destination pointers and byte count. | ||
932 | */ | ||
933 | u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) | ||
934 | { | ||
935 | chan_tab_t *ctp; | ||
936 | au1x_ddma_desc_t *dp; | ||
937 | u32 nbytes = 0; | ||
938 | |||
939 | /* | ||
940 | * I guess we could check this to be within the | ||
941 | * range of the table...... | ||
942 | */ | ||
943 | ctp = *((chan_tab_t **)chanid); | ||
944 | |||
945 | /* | ||
946 | * We should have multiple callers for a particular channel, | ||
947 | * an interrupt doesn't affect this pointer nor the descriptor, | ||
948 | * so no locking should be needed. | ||
949 | */ | ||
950 | dp = ctp->put_ptr; | ||
951 | |||
952 | /* | ||
953 | * If the descriptor is valid, we are way ahead of the DMA | ||
954 | * engine, so just return an error condition. | ||
955 | */ | ||
956 | if (dp->dscr_cmd0 & DSCR_CMD0_V) | ||
957 | return 0; | ||
958 | |||
959 | /* Load up buffer addresses and byte count. */ | ||
960 | dp->dscr_dest0 = dscr->dscr_dest0; | ||
961 | dp->dscr_source0 = dscr->dscr_source0; | ||
962 | dp->dscr_dest1 = dscr->dscr_dest1; | ||
963 | dp->dscr_source1 = dscr->dscr_source1; | ||
964 | dp->dscr_cmd1 = dscr->dscr_cmd1; | ||
965 | nbytes = dscr->dscr_cmd1; | ||
966 | /* Allow the caller to specifiy if an interrupt is generated */ | ||
967 | dp->dscr_cmd0 &= ~DSCR_CMD0_IE; | ||
968 | dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; | ||
969 | ctp->chan_ptr->ddma_dbell = 0; | ||
970 | |||
971 | /* Get next descriptor pointer. */ | ||
972 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); | ||
973 | |||
974 | /* Return something non-zero. */ | ||
975 | return nbytes; | ||
976 | } | ||
977 | |||
978 | #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ | ||