diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/m68k/math-emu/fp_util.S |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/m68k/math-emu/fp_util.S')
-rw-r--r-- | arch/m68k/math-emu/fp_util.S | 1455 |
1 files changed, 1455 insertions, 0 deletions
diff --git a/arch/m68k/math-emu/fp_util.S b/arch/m68k/math-emu/fp_util.S new file mode 100644 index 000000000000..a9f7f0129067 --- /dev/null +++ b/arch/m68k/math-emu/fp_util.S | |||
@@ -0,0 +1,1455 @@ | |||
1 | /* | ||
2 | * fp_util.S | ||
3 | * | ||
4 | * Copyright Roman Zippel, 1997. All rights reserved. | ||
5 | * | ||
6 | * Redistribution and use in source and binary forms, with or without | ||
7 | * modification, are permitted provided that the following conditions | ||
8 | * are met: | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, and the entire permission notice in its entirety, | ||
11 | * including the disclaimer of warranties. | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in the | ||
14 | * documentation and/or other materials provided with the distribution. | ||
15 | * 3. The name of the author may not be used to endorse or promote | ||
16 | * products derived from this software without specific prior | ||
17 | * written permission. | ||
18 | * | ||
19 | * ALTERNATIVELY, this product may be distributed under the terms of | ||
20 | * the GNU General Public License, in which case the provisions of the GPL are | ||
21 | * required INSTEAD OF the above restrictions. (This clause is | ||
22 | * necessary due to a potential bad interaction between the GPL and | ||
23 | * the restrictions contained in a BSD-style copyright.) | ||
24 | * | ||
25 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | ||
26 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | ||
27 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
28 | * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, | ||
29 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | ||
30 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
31 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
32 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
33 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
34 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
35 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
36 | */ | ||
37 | |||
38 | #include <linux/config.h> | ||
39 | #include "fp_emu.h" | ||
40 | |||
41 | /* | ||
42 | * Here are lots of conversion and normalization functions mainly | ||
43 | * used by fp_scan.S | ||
44 | * Note that these functions are optimized for "normal" numbers, | ||
45 | * these are handled first and exit as fast as possible, this is | ||
46 | * especially important for fp_normalize_ext/fp_conv_ext2ext, as | ||
47 | * it's called very often. | ||
48 | * The register usage is optimized for fp_scan.S and which register | ||
49 | * is currently at that time unused, be careful if you want change | ||
50 | * something here. %d0 and %d1 is always usable, sometimes %d2 (or | ||
51 | * only the lower half) most function have to return the %a0 | ||
52 | * unmodified, so that the caller can immediately reuse it. | ||
53 | */ | ||
54 | |||
55 | .globl fp_ill, fp_end | ||
56 | |||
57 | | exits from fp_scan: | ||
58 | | illegal instruction | ||
59 | fp_ill: | ||
60 | printf ,"fp_illegal\n" | ||
61 | rts | ||
62 | | completed instruction | ||
63 | fp_end: | ||
64 | tst.l (TASK_MM-8,%a2) | ||
65 | jmi 1f | ||
66 | tst.l (TASK_MM-4,%a2) | ||
67 | jmi 1f | ||
68 | tst.l (TASK_MM,%a2) | ||
69 | jpl 2f | ||
70 | 1: printf ,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM) | ||
71 | 2: clr.l %d0 | ||
72 | rts | ||
73 | |||
74 | .globl fp_conv_long2ext, fp_conv_single2ext | ||
75 | .globl fp_conv_double2ext, fp_conv_ext2ext | ||
76 | .globl fp_normalize_ext, fp_normalize_double | ||
77 | .globl fp_normalize_single, fp_normalize_single_fast | ||
78 | .globl fp_conv_ext2double, fp_conv_ext2single | ||
79 | .globl fp_conv_ext2long, fp_conv_ext2short | ||
80 | .globl fp_conv_ext2byte | ||
81 | .globl fp_finalrounding_single, fp_finalrounding_single_fast | ||
82 | .globl fp_finalrounding_double | ||
83 | .globl fp_finalrounding, fp_finaltest, fp_final | ||
84 | |||
85 | /* | ||
86 | * First several conversion functions from a source operand | ||
87 | * into the extended format. Note, that only fp_conv_ext2ext | ||
88 | * normalizes the number and is always called after the other | ||
89 | * conversion functions, which only move the information into | ||
90 | * fp_ext structure. | ||
91 | */ | ||
92 | |||
93 | | fp_conv_long2ext: | ||
94 | | | ||
95 | | args: %d0 = source (32-bit long) | ||
96 | | %a0 = destination (ptr to struct fp_ext) | ||
97 | |||
98 | fp_conv_long2ext: | ||
99 | printf PCONV,"l2e: %p -> %p(",2,%d0,%a0 | ||
100 | clr.l %d1 | sign defaults to zero | ||
101 | tst.l %d0 | ||
102 | jeq fp_l2e_zero | is source zero? | ||
103 | jpl 1f | positive? | ||
104 | moveq #1,%d1 | ||
105 | neg.l %d0 | ||
106 | 1: swap %d1 | ||
107 | move.w #0x3fff+31,%d1 | ||
108 | move.l %d1,(%a0)+ | set sign / exp | ||
109 | move.l %d0,(%a0)+ | set mantissa | ||
110 | clr.l (%a0) | ||
111 | subq.l #8,%a0 | restore %a0 | ||
112 | printx PCONV,%a0@ | ||
113 | printf PCONV,")\n" | ||
114 | rts | ||
115 | | source is zero | ||
116 | fp_l2e_zero: | ||
117 | clr.l (%a0)+ | ||
118 | clr.l (%a0)+ | ||
119 | clr.l (%a0) | ||
120 | subq.l #8,%a0 | ||
121 | printx PCONV,%a0@ | ||
122 | printf PCONV,")\n" | ||
123 | rts | ||
124 | |||
125 | | fp_conv_single2ext | ||
126 | | args: %d0 = source (single-precision fp value) | ||
127 | | %a0 = dest (struct fp_ext *) | ||
128 | |||
129 | fp_conv_single2ext: | ||
130 | printf PCONV,"s2e: %p -> %p(",2,%d0,%a0 | ||
131 | move.l %d0,%d1 | ||
132 | lsl.l #8,%d0 | shift mantissa | ||
133 | lsr.l #8,%d1 | exponent / sign | ||
134 | lsr.l #7,%d1 | ||
135 | lsr.w #8,%d1 | ||
136 | jeq fp_s2e_small | zero / denormal? | ||
137 | cmp.w #0xff,%d1 | NaN / Inf? | ||
138 | jeq fp_s2e_large | ||
139 | bset #31,%d0 | set explizit bit | ||
140 | add.w #0x3fff-0x7f,%d1 | re-bias the exponent. | ||
141 | 9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp | ||
142 | move.l %d0,(%a0)+ | high lword of fp_ext.mant | ||
143 | clr.l (%a0) | low lword = 0 | ||
144 | subq.l #8,%a0 | ||
145 | printx PCONV,%a0@ | ||
146 | printf PCONV,")\n" | ||
147 | rts | ||
148 | | zeros and denormalized | ||
149 | fp_s2e_small: | ||
150 | | exponent is zero, so explizit bit is already zero too | ||
151 | tst.l %d0 | ||
152 | jeq 9b | ||
153 | move.w #0x4000-0x7f,%d1 | ||
154 | jra 9b | ||
155 | | infinities and NAN | ||
156 | fp_s2e_large: | ||
157 | bclr #31,%d0 | clear explizit bit | ||
158 | move.w #0x7fff,%d1 | ||
159 | jra 9b | ||
160 | |||
161 | fp_conv_double2ext: | ||
162 | #ifdef FPU_EMU_DEBUG | ||
163 | getuser.l %a1@(0),%d0,fp_err_ua2,%a1 | ||
164 | getuser.l %a1@(4),%d1,fp_err_ua2,%a1 | ||
165 | printf PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0 | ||
166 | #endif | ||
167 | getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | ||
168 | move.l %d0,%d1 | ||
169 | lsl.l #8,%d0 | shift high mantissa | ||
170 | lsl.l #3,%d0 | ||
171 | lsr.l #8,%d1 | exponent / sign | ||
172 | lsr.l #7,%d1 | ||
173 | lsr.w #5,%d1 | ||
174 | jeq fp_d2e_small | zero / denormal? | ||
175 | cmp.w #0x7ff,%d1 | NaN / Inf? | ||
176 | jeq fp_d2e_large | ||
177 | bset #31,%d0 | set explizit bit | ||
178 | add.w #0x3fff-0x3ff,%d1 | re-bias the exponent. | ||
179 | 9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp | ||
180 | move.l %d0,(%a0)+ | ||
181 | getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | ||
182 | move.l %d0,%d1 | ||
183 | lsl.l #8,%d0 | ||
184 | lsl.l #3,%d0 | ||
185 | move.l %d0,(%a0) | ||
186 | moveq #21,%d0 | ||
187 | lsr.l %d0,%d1 | ||
188 | or.l %d1,-(%a0) | ||
189 | subq.l #4,%a0 | ||
190 | printx PCONV,%a0@ | ||
191 | printf PCONV,")\n" | ||
192 | rts | ||
193 | | zeros and denormalized | ||
194 | fp_d2e_small: | ||
195 | | exponent is zero, so explizit bit is already zero too | ||
196 | tst.l %d0 | ||
197 | jeq 9b | ||
198 | move.w #0x4000-0x3ff,%d1 | ||
199 | jra 9b | ||
200 | | infinities and NAN | ||
201 | fp_d2e_large: | ||
202 | bclr #31,%d0 | clear explizit bit | ||
203 | move.w #0x7fff,%d1 | ||
204 | jra 9b | ||
205 | |||
206 | | fp_conv_ext2ext: | ||
207 | | originally used to get longdouble from userspace, now it's | ||
208 | | called before arithmetic operations to make sure the number | ||
209 | | is normalized [maybe rename it?]. | ||
210 | | args: %a0 = dest (struct fp_ext *) | ||
211 | | returns 0 in %d0 for a NaN, otherwise 1 | ||
212 | |||
213 | fp_conv_ext2ext: | ||
214 | printf PCONV,"e2e: %p(",1,%a0 | ||
215 | printx PCONV,%a0@ | ||
216 | printf PCONV,"), " | ||
217 | move.l (%a0)+,%d0 | ||
218 | cmp.w #0x7fff,%d0 | Inf / NaN? | ||
219 | jeq fp_e2e_large | ||
220 | move.l (%a0),%d0 | ||
221 | jpl fp_e2e_small | zero / denorm? | ||
222 | | The high bit is set, so normalization is irrelevant. | ||
223 | fp_e2e_checkround: | ||
224 | subq.l #4,%a0 | ||
225 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
226 | move.b (%a0),%d0 | ||
227 | jne fp_e2e_round | ||
228 | #endif | ||
229 | printf PCONV,"%p(",1,%a0 | ||
230 | printx PCONV,%a0@ | ||
231 | printf PCONV,")\n" | ||
232 | moveq #1,%d0 | ||
233 | rts | ||
234 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
235 | fp_e2e_round: | ||
236 | fp_set_sr FPSR_EXC_INEX2 | ||
237 | clr.b (%a0) | ||
238 | move.w (FPD_RND,FPDATA),%d2 | ||
239 | jne fp_e2e_roundother | %d2 == 0, round to nearest | ||
240 | tst.b %d0 | test guard bit | ||
241 | jpl 9f | zero is closer | ||
242 | btst #0,(11,%a0) | test lsb bit | ||
243 | jne fp_e2e_doroundup | round to infinity | ||
244 | lsl.b #1,%d0 | check low bits | ||
245 | jeq 9f | round to zero | ||
246 | fp_e2e_doroundup: | ||
247 | addq.l #1,(8,%a0) | ||
248 | jcc 9f | ||
249 | addq.l #1,(4,%a0) | ||
250 | jcc 9f | ||
251 | move.w #0x8000,(4,%a0) | ||
252 | addq.w #1,(2,%a0) | ||
253 | 9: printf PNORM,"%p(",1,%a0 | ||
254 | printx PNORM,%a0@ | ||
255 | printf PNORM,")\n" | ||
256 | rts | ||
257 | fp_e2e_roundother: | ||
258 | subq.w #2,%d2 | ||
259 | jcs 9b | %d2 < 2, round to zero | ||
260 | jhi 1f | %d2 > 2, round to +infinity | ||
261 | tst.b (1,%a0) | to -inf | ||
262 | jne fp_e2e_doroundup | negative, round to infinity | ||
263 | jra 9b | positive, round to zero | ||
264 | 1: tst.b (1,%a0) | to +inf | ||
265 | jeq fp_e2e_doroundup | positive, round to infinity | ||
266 | jra 9b | negative, round to zero | ||
267 | #endif | ||
268 | | zeros and subnormals: | ||
269 | | try to normalize these anyway. | ||
270 | fp_e2e_small: | ||
271 | jne fp_e2e_small1 | high lword zero? | ||
272 | move.l (4,%a0),%d0 | ||
273 | jne fp_e2e_small2 | ||
274 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
275 | clr.l %d0 | ||
276 | move.b (-4,%a0),%d0 | ||
277 | jne fp_e2e_small3 | ||
278 | #endif | ||
279 | | Genuine zero. | ||
280 | clr.w -(%a0) | ||
281 | subq.l #2,%a0 | ||
282 | printf PNORM,"%p(",1,%a0 | ||
283 | printx PNORM,%a0@ | ||
284 | printf PNORM,")\n" | ||
285 | moveq #1,%d0 | ||
286 | rts | ||
287 | | definitely subnormal, need to shift all 64 bits | ||
288 | fp_e2e_small1: | ||
289 | bfffo %d0{#0,#32},%d1 | ||
290 | move.w -(%a0),%d2 | ||
291 | sub.w %d1,%d2 | ||
292 | jcc 1f | ||
293 | | Pathologically small, denormalize. | ||
294 | add.w %d2,%d1 | ||
295 | clr.w %d2 | ||
296 | 1: move.w %d2,(%a0)+ | ||
297 | move.w %d1,%d2 | ||
298 | jeq fp_e2e_checkround | ||
299 | | fancy 64-bit double-shift begins here | ||
300 | lsl.l %d2,%d0 | ||
301 | move.l %d0,(%a0)+ | ||
302 | move.l (%a0),%d0 | ||
303 | move.l %d0,%d1 | ||
304 | lsl.l %d2,%d0 | ||
305 | move.l %d0,(%a0) | ||
306 | neg.w %d2 | ||
307 | and.w #0x1f,%d2 | ||
308 | lsr.l %d2,%d1 | ||
309 | or.l %d1,-(%a0) | ||
310 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
311 | fp_e2e_extra1: | ||
312 | clr.l %d0 | ||
313 | move.b (-4,%a0),%d0 | ||
314 | neg.w %d2 | ||
315 | add.w #24,%d2 | ||
316 | jcc 1f | ||
317 | clr.b (-4,%a0) | ||
318 | lsl.l %d2,%d0 | ||
319 | or.l %d0,(4,%a0) | ||
320 | jra fp_e2e_checkround | ||
321 | 1: addq.w #8,%d2 | ||
322 | lsl.l %d2,%d0 | ||
323 | move.b %d0,(-4,%a0) | ||
324 | lsr.l #8,%d0 | ||
325 | or.l %d0,(4,%a0) | ||
326 | #endif | ||
327 | jra fp_e2e_checkround | ||
328 | | pathologically small subnormal | ||
329 | fp_e2e_small2: | ||
330 | bfffo %d0{#0,#32},%d1 | ||
331 | add.w #32,%d1 | ||
332 | move.w -(%a0),%d2 | ||
333 | sub.w %d1,%d2 | ||
334 | jcc 1f | ||
335 | | Beyond pathologically small, denormalize. | ||
336 | add.w %d2,%d1 | ||
337 | clr.w %d2 | ||
338 | 1: move.w %d2,(%a0)+ | ||
339 | ext.l %d1 | ||
340 | jeq fp_e2e_checkround | ||
341 | clr.l (4,%a0) | ||
342 | sub.w #32,%d2 | ||
343 | jcs 1f | ||
344 | lsl.l %d1,%d0 | lower lword needs only to be shifted | ||
345 | move.l %d0,(%a0) | into the higher lword | ||
346 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
347 | clr.l %d0 | ||
348 | move.b (-4,%a0),%d0 | ||
349 | clr.b (-4,%a0) | ||
350 | neg.w %d1 | ||
351 | add.w #32,%d1 | ||
352 | bfins %d0,(%a0){%d1,#8} | ||
353 | #endif | ||
354 | jra fp_e2e_checkround | ||
355 | 1: neg.w %d1 | lower lword is splitted between | ||
356 | bfins %d0,(%a0){%d1,#32} | higher and lower lword | ||
357 | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
358 | jra fp_e2e_checkround | ||
359 | #else | ||
360 | move.w %d1,%d2 | ||
361 | jra fp_e2e_extra1 | ||
362 | | These are extremely small numbers, that will mostly end up as zero | ||
363 | | anyway, so this is only important for correct rounding. | ||
364 | fp_e2e_small3: | ||
365 | bfffo %d0{#24,#8},%d1 | ||
366 | add.w #40,%d1 | ||
367 | move.w -(%a0),%d2 | ||
368 | sub.w %d1,%d2 | ||
369 | jcc 1f | ||
370 | | Pathologically small, denormalize. | ||
371 | add.w %d2,%d1 | ||
372 | clr.w %d2 | ||
373 | 1: move.w %d2,(%a0)+ | ||
374 | ext.l %d1 | ||
375 | jeq fp_e2e_checkround | ||
376 | cmp.w #8,%d1 | ||
377 | jcs 2f | ||
378 | 1: clr.b (-4,%a0) | ||
379 | sub.w #64,%d1 | ||
380 | jcs 1f | ||
381 | add.w #24,%d1 | ||
382 | lsl.l %d1,%d0 | ||
383 | move.l %d0,(%a0) | ||
384 | jra fp_e2e_checkround | ||
385 | 1: neg.w %d1 | ||
386 | bfins %d0,(%a0){%d1,#8} | ||
387 | jra fp_e2e_checkround | ||
388 | 2: lsl.l %d1,%d0 | ||
389 | move.b %d0,(-4,%a0) | ||
390 | lsr.l #8,%d0 | ||
391 | move.b %d0,(7,%a0) | ||
392 | jra fp_e2e_checkround | ||
393 | #endif | ||
394 | 1: move.l %d0,%d1 | lower lword is splitted between | ||
395 | lsl.l %d2,%d0 | higher and lower lword | ||
396 | move.l %d0,(%a0) | ||
397 | move.l %d1,%d0 | ||
398 | neg.w %d2 | ||
399 | add.w #32,%d2 | ||
400 | lsr.l %d2,%d0 | ||
401 | move.l %d0,-(%a0) | ||
402 | jra fp_e2e_checkround | ||
403 | | Infinities and NaNs | ||
404 | fp_e2e_large: | ||
405 | move.l (%a0)+,%d0 | ||
406 | jne 3f | ||
407 | 1: tst.l (%a0) | ||
408 | jne 4f | ||
409 | moveq #1,%d0 | ||
410 | 2: subq.l #8,%a0 | ||
411 | printf PCONV,"%p(",1,%a0 | ||
412 | printx PCONV,%a0@ | ||
413 | printf PCONV,")\n" | ||
414 | rts | ||
415 | | we have maybe a NaN, shift off the highest bit | ||
416 | 3: lsl.l #1,%d0 | ||
417 | jeq 1b | ||
418 | | we have a NaN, clear the return value | ||
419 | 4: clrl %d0 | ||
420 | jra 2b | ||
421 | |||
422 | |||
423 | /* | ||
424 | * Normalization functions. Call these on the output of general | ||
425 | * FP operators, and before any conversion into the destination | ||
426 | * formats. fp_normalize_ext has always to be called first, the | ||
427 | * following conversion functions expect an already normalized | ||
428 | * number. | ||
429 | */ | ||
430 | |||
431 | | fp_normalize_ext: | ||
432 | | normalize an extended in extended (unpacked) format, basically | ||
433 | | it does the same as fp_conv_ext2ext, additionally it also does | ||
434 | | the necessary postprocessing checks. | ||
435 | | args: %a0 (struct fp_ext *) | ||
436 | | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2 | ||
437 | |||
438 | fp_normalize_ext: | ||
439 | printf PNORM,"ne: %p(",1,%a0 | ||
440 | printx PNORM,%a0@ | ||
441 | printf PNORM,"), " | ||
442 | move.l (%a0)+,%d0 | ||
443 | cmp.w #0x7fff,%d0 | Inf / NaN? | ||
444 | jeq fp_ne_large | ||
445 | move.l (%a0),%d0 | ||
446 | jpl fp_ne_small | zero / denorm? | ||
447 | | The high bit is set, so normalization is irrelevant. | ||
448 | fp_ne_checkround: | ||
449 | subq.l #4,%a0 | ||
450 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
451 | move.b (%a0),%d0 | ||
452 | jne fp_ne_round | ||
453 | #endif | ||
454 | printf PNORM,"%p(",1,%a0 | ||
455 | printx PNORM,%a0@ | ||
456 | printf PNORM,")\n" | ||
457 | rts | ||
458 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
459 | fp_ne_round: | ||
460 | fp_set_sr FPSR_EXC_INEX2 | ||
461 | clr.b (%a0) | ||
462 | move.w (FPD_RND,FPDATA),%d2 | ||
463 | jne fp_ne_roundother | %d2 == 0, round to nearest | ||
464 | tst.b %d0 | test guard bit | ||
465 | jpl 9f | zero is closer | ||
466 | btst #0,(11,%a0) | test lsb bit | ||
467 | jne fp_ne_doroundup | round to infinity | ||
468 | lsl.b #1,%d0 | check low bits | ||
469 | jeq 9f | round to zero | ||
470 | fp_ne_doroundup: | ||
471 | addq.l #1,(8,%a0) | ||
472 | jcc 9f | ||
473 | addq.l #1,(4,%a0) | ||
474 | jcc 9f | ||
475 | addq.w #1,(2,%a0) | ||
476 | move.w #0x8000,(4,%a0) | ||
477 | 9: printf PNORM,"%p(",1,%a0 | ||
478 | printx PNORM,%a0@ | ||
479 | printf PNORM,")\n" | ||
480 | rts | ||
481 | fp_ne_roundother: | ||
482 | subq.w #2,%d2 | ||
483 | jcs 9b | %d2 < 2, round to zero | ||
484 | jhi 1f | %d2 > 2, round to +infinity | ||
485 | tst.b (1,%a0) | to -inf | ||
486 | jne fp_ne_doroundup | negative, round to infinity | ||
487 | jra 9b | positive, round to zero | ||
488 | 1: tst.b (1,%a0) | to +inf | ||
489 | jeq fp_ne_doroundup | positive, round to infinity | ||
490 | jra 9b | negative, round to zero | ||
491 | #endif | ||
492 | | Zeros and subnormal numbers | ||
493 | | These are probably merely subnormal, rather than "denormalized" | ||
494 | | numbers, so we will try to make them normal again. | ||
495 | fp_ne_small: | ||
496 | jne fp_ne_small1 | high lword zero? | ||
497 | move.l (4,%a0),%d0 | ||
498 | jne fp_ne_small2 | ||
499 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
500 | clr.l %d0 | ||
501 | move.b (-4,%a0),%d0 | ||
502 | jne fp_ne_small3 | ||
503 | #endif | ||
504 | | Genuine zero. | ||
505 | clr.w -(%a0) | ||
506 | subq.l #2,%a0 | ||
507 | printf PNORM,"%p(",1,%a0 | ||
508 | printx PNORM,%a0@ | ||
509 | printf PNORM,")\n" | ||
510 | rts | ||
511 | | Subnormal. | ||
512 | fp_ne_small1: | ||
513 | bfffo %d0{#0,#32},%d1 | ||
514 | move.w -(%a0),%d2 | ||
515 | sub.w %d1,%d2 | ||
516 | jcc 1f | ||
517 | | Pathologically small, denormalize. | ||
518 | add.w %d2,%d1 | ||
519 | clr.w %d2 | ||
520 | fp_set_sr FPSR_EXC_UNFL | ||
521 | 1: move.w %d2,(%a0)+ | ||
522 | move.w %d1,%d2 | ||
523 | jeq fp_ne_checkround | ||
524 | | This is exactly the same 64-bit double shift as seen above. | ||
525 | lsl.l %d2,%d0 | ||
526 | move.l %d0,(%a0)+ | ||
527 | move.l (%a0),%d0 | ||
528 | move.l %d0,%d1 | ||
529 | lsl.l %d2,%d0 | ||
530 | move.l %d0,(%a0) | ||
531 | neg.w %d2 | ||
532 | and.w #0x1f,%d2 | ||
533 | lsr.l %d2,%d1 | ||
534 | or.l %d1,-(%a0) | ||
535 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
536 | fp_ne_extra1: | ||
537 | clr.l %d0 | ||
538 | move.b (-4,%a0),%d0 | ||
539 | neg.w %d2 | ||
540 | add.w #24,%d2 | ||
541 | jcc 1f | ||
542 | clr.b (-4,%a0) | ||
543 | lsl.l %d2,%d0 | ||
544 | or.l %d0,(4,%a0) | ||
545 | jra fp_ne_checkround | ||
546 | 1: addq.w #8,%d2 | ||
547 | lsl.l %d2,%d0 | ||
548 | move.b %d0,(-4,%a0) | ||
549 | lsr.l #8,%d0 | ||
550 | or.l %d0,(4,%a0) | ||
551 | #endif | ||
552 | jra fp_ne_checkround | ||
553 | | May or may not be subnormal, if so, only 32 bits to shift. | ||
554 | fp_ne_small2: | ||
555 | bfffo %d0{#0,#32},%d1 | ||
556 | add.w #32,%d1 | ||
557 | move.w -(%a0),%d2 | ||
558 | sub.w %d1,%d2 | ||
559 | jcc 1f | ||
560 | | Beyond pathologically small, denormalize. | ||
561 | add.w %d2,%d1 | ||
562 | clr.w %d2 | ||
563 | fp_set_sr FPSR_EXC_UNFL | ||
564 | 1: move.w %d2,(%a0)+ | ||
565 | ext.l %d1 | ||
566 | jeq fp_ne_checkround | ||
567 | clr.l (4,%a0) | ||
568 | sub.w #32,%d1 | ||
569 | jcs 1f | ||
570 | lsl.l %d1,%d0 | lower lword needs only to be shifted | ||
571 | move.l %d0,(%a0) | into the higher lword | ||
572 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
573 | clr.l %d0 | ||
574 | move.b (-4,%a0),%d0 | ||
575 | clr.b (-4,%a0) | ||
576 | neg.w %d1 | ||
577 | add.w #32,%d1 | ||
578 | bfins %d0,(%a0){%d1,#8} | ||
579 | #endif | ||
580 | jra fp_ne_checkround | ||
581 | 1: neg.w %d1 | lower lword is splitted between | ||
582 | bfins %d0,(%a0){%d1,#32} | higher and lower lword | ||
583 | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | ||
584 | jra fp_ne_checkround | ||
585 | #else | ||
586 | move.w %d1,%d2 | ||
587 | jra fp_ne_extra1 | ||
588 | | These are extremely small numbers, that will mostly end up as zero | ||
589 | | anyway, so this is only important for correct rounding. | ||
590 | fp_ne_small3: | ||
591 | bfffo %d0{#24,#8},%d1 | ||
592 | add.w #40,%d1 | ||
593 | move.w -(%a0),%d2 | ||
594 | sub.w %d1,%d2 | ||
595 | jcc 1f | ||
596 | | Pathologically small, denormalize. | ||
597 | add.w %d2,%d1 | ||
598 | clr.w %d2 | ||
599 | 1: move.w %d2,(%a0)+ | ||
600 | ext.l %d1 | ||
601 | jeq fp_ne_checkround | ||
602 | cmp.w #8,%d1 | ||
603 | jcs 2f | ||
604 | 1: clr.b (-4,%a0) | ||
605 | sub.w #64,%d1 | ||
606 | jcs 1f | ||
607 | add.w #24,%d1 | ||
608 | lsl.l %d1,%d0 | ||
609 | move.l %d0,(%a0) | ||
610 | jra fp_ne_checkround | ||
611 | 1: neg.w %d1 | ||
612 | bfins %d0,(%a0){%d1,#8} | ||
613 | jra fp_ne_checkround | ||
614 | 2: lsl.l %d1,%d0 | ||
615 | move.b %d0,(-4,%a0) | ||
616 | lsr.l #8,%d0 | ||
617 | move.b %d0,(7,%a0) | ||
618 | jra fp_ne_checkround | ||
619 | #endif | ||
620 | | Infinities and NaNs, again, same as above. | ||
621 | fp_ne_large: | ||
622 | move.l (%a0)+,%d0 | ||
623 | jne 3f | ||
624 | 1: tst.l (%a0) | ||
625 | jne 4f | ||
626 | 2: subq.l #8,%a0 | ||
627 | printf PNORM,"%p(",1,%a0 | ||
628 | printx PNORM,%a0@ | ||
629 | printf PNORM,")\n" | ||
630 | rts | ||
631 | | we have maybe a NaN, shift off the highest bit | ||
632 | 3: move.l %d0,%d1 | ||
633 | lsl.l #1,%d1 | ||
634 | jne 4f | ||
635 | clr.l (-4,%a0) | ||
636 | jra 1b | ||
637 | | we have a NaN, test if it is signaling | ||
638 | 4: bset #30,%d0 | ||
639 | jne 2b | ||
640 | fp_set_sr FPSR_EXC_SNAN | ||
641 | move.l %d0,(-4,%a0) | ||
642 | jra 2b | ||
643 | |||
644 | | these next two do rounding as per the IEEE standard. | ||
645 | | values for the rounding modes appear to be: | ||
646 | | 0: Round to nearest | ||
647 | | 1: Round to zero | ||
648 | | 2: Round to -Infinity | ||
649 | | 3: Round to +Infinity | ||
650 | | both functions expect that fp_normalize was already | ||
651 | | called (and extended argument is already normalized | ||
652 | | as far as possible), these are used if there is different | ||
653 | | rounding precision is selected and before converting | ||
654 | | into single/double | ||
655 | |||
656 | | fp_normalize_double: | ||
657 | | normalize an extended with double (52-bit) precision | ||
658 | | args: %a0 (struct fp_ext *) | ||
659 | |||
660 | fp_normalize_double: | ||
661 | printf PNORM,"nd: %p(",1,%a0 | ||
662 | printx PNORM,%a0@ | ||
663 | printf PNORM,"), " | ||
664 | move.l (%a0)+,%d2 | ||
665 | tst.w %d2 | ||
666 | jeq fp_nd_zero | zero / denormalized | ||
667 | cmp.w #0x7fff,%d2 | ||
668 | jeq fp_nd_huge | NaN / infinitive. | ||
669 | sub.w #0x4000-0x3ff,%d2 | will the exponent fit? | ||
670 | jcs fp_nd_small | too small. | ||
671 | cmp.w #0x7fe,%d2 | ||
672 | jcc fp_nd_large | too big. | ||
673 | addq.l #4,%a0 | ||
674 | move.l (%a0),%d0 | low lword of mantissa | ||
675 | | now, round off the low 11 bits. | ||
676 | fp_nd_round: | ||
677 | moveq #21,%d1 | ||
678 | lsl.l %d1,%d0 | keep 11 low bits. | ||
679 | jne fp_nd_checkround | Are they non-zero? | ||
680 | | nothing to do here | ||
681 | 9: subq.l #8,%a0 | ||
682 | printf PNORM,"%p(",1,%a0 | ||
683 | printx PNORM,%a0@ | ||
684 | printf PNORM,")\n" | ||
685 | rts | ||
686 | | Be careful with the X bit! It contains the lsb | ||
687 | | from the shift above, it is needed for round to nearest. | ||
688 | fp_nd_checkround: | ||
689 | fp_set_sr FPSR_EXC_INEX2 | INEX2 bit | ||
690 | and.w #0xf800,(2,%a0) | clear bits 0-10 | ||
691 | move.w (FPD_RND,FPDATA),%d2 | rounding mode | ||
692 | jne 2f | %d2 == 0, round to nearest | ||
693 | tst.l %d0 | test guard bit | ||
694 | jpl 9b | zero is closer | ||
695 | | here we test the X bit by adding it to %d2 | ||
696 | clr.w %d2 | first set z bit, addx only clears it | ||
697 | addx.w %d2,%d2 | test lsb bit | ||
698 | | IEEE754-specified "round to even" behaviour. If the guard | ||
699 | | bit is set, then the number is odd, so rounding works like | ||
700 | | in grade-school arithmetic (i.e. 1.5 rounds to 2.0) | ||
701 | | Otherwise, an equal distance rounds towards zero, so as not | ||
702 | | to produce an odd number. This is strange, but it is what | ||
703 | | the standard says. | ||
704 | jne fp_nd_doroundup | round to infinity | ||
705 | lsl.l #1,%d0 | check low bits | ||
706 | jeq 9b | round to zero | ||
707 | fp_nd_doroundup: | ||
708 | | round (the mantissa, that is) towards infinity | ||
709 | add.l #0x800,(%a0) | ||
710 | jcc 9b | no overflow, good. | ||
711 | addq.l #1,-(%a0) | extend to high lword | ||
712 | jcc 1f | no overflow, good. | ||
713 | | Yow! we have managed to overflow the mantissa. Since this | ||
714 | | only happens when %d1 was 0xfffff800, it is now zero, so | ||
715 | | reset the high bit, and increment the exponent. | ||
716 | move.w #0x8000,(%a0) | ||
717 | addq.w #1,-(%a0) | ||
718 | cmp.w #0x43ff,(%a0)+ | exponent now overflown? | ||
719 | jeq fp_nd_large | yes, so make it infinity. | ||
720 | 1: subq.l #4,%a0 | ||
721 | printf PNORM,"%p(",1,%a0 | ||
722 | printx PNORM,%a0@ | ||
723 | printf PNORM,")\n" | ||
724 | rts | ||
725 | 2: subq.w #2,%d2 | ||
726 | jcs 9b | %d2 < 2, round to zero | ||
727 | jhi 3f | %d2 > 2, round to +infinity | ||
728 | | Round to +Inf or -Inf. High word of %d2 contains the | ||
729 | | sign of the number, by the way. | ||
730 | swap %d2 | to -inf | ||
731 | tst.b %d2 | ||
732 | jne fp_nd_doroundup | negative, round to infinity | ||
733 | jra 9b | positive, round to zero | ||
734 | 3: swap %d2 | to +inf | ||
735 | tst.b %d2 | ||
736 | jeq fp_nd_doroundup | positive, round to infinity | ||
737 | jra 9b | negative, round to zero | ||
738 | | Exponent underflow. Try to make a denormal, and set it to | ||
739 | | the smallest possible fraction if this fails. | ||
740 | fp_nd_small: | ||
741 | fp_set_sr FPSR_EXC_UNFL | set UNFL bit | ||
742 | move.w #0x3c01,(-2,%a0) | 2**-1022 | ||
743 | neg.w %d2 | degree of underflow | ||
744 | cmp.w #32,%d2 | single or double shift? | ||
745 | jcc 1f | ||
746 | | Again, another 64-bit double shift. | ||
747 | move.l (%a0),%d0 | ||
748 | move.l %d0,%d1 | ||
749 | lsr.l %d2,%d0 | ||
750 | move.l %d0,(%a0)+ | ||
751 | move.l (%a0),%d0 | ||
752 | lsr.l %d2,%d0 | ||
753 | neg.w %d2 | ||
754 | add.w #32,%d2 | ||
755 | lsl.l %d2,%d1 | ||
756 | or.l %d1,%d0 | ||
757 | move.l (%a0),%d1 | ||
758 | move.l %d0,(%a0) | ||
759 | | Check to see if we shifted off any significant bits | ||
760 | lsl.l %d2,%d1 | ||
761 | jeq fp_nd_round | Nope, round. | ||
762 | bset #0,%d0 | Yes, so set the "sticky bit". | ||
763 | jra fp_nd_round | Now, round. | ||
764 | | Another 64-bit single shift and store | ||
765 | 1: sub.w #32,%d2 | ||
766 | cmp.w #32,%d2 | Do we really need to shift? | ||
767 | jcc 2f | No, the number is too small. | ||
768 | move.l (%a0),%d0 | ||
769 | clr.l (%a0)+ | ||
770 | move.l %d0,%d1 | ||
771 | lsr.l %d2,%d0 | ||
772 | neg.w %d2 | ||
773 | add.w #32,%d2 | ||
774 | | Again, check to see if we shifted off any significant bits. | ||
775 | tst.l (%a0) | ||
776 | jeq 1f | ||
777 | bset #0,%d0 | Sticky bit. | ||
778 | 1: move.l %d0,(%a0) | ||
779 | lsl.l %d2,%d1 | ||
780 | jeq fp_nd_round | ||
781 | bset #0,%d0 | ||
782 | jra fp_nd_round | ||
783 | | Sorry, the number is just too small. | ||
784 | 2: clr.l (%a0)+ | ||
785 | clr.l (%a0) | ||
786 | moveq #1,%d0 | Smallest possible fraction, | ||
787 | jra fp_nd_round | round as desired. | ||
788 | | zero and denormalized | ||
789 | fp_nd_zero: | ||
790 | tst.l (%a0)+ | ||
791 | jne 1f | ||
792 | tst.l (%a0) | ||
793 | jne 1f | ||
794 | subq.l #8,%a0 | ||
795 | printf PNORM,"%p(",1,%a0 | ||
796 | printx PNORM,%a0@ | ||
797 | printf PNORM,")\n" | ||
798 | rts | zero. nothing to do. | ||
799 | | These are not merely subnormal numbers, but true denormals, | ||
800 | | i.e. pathologically small (exponent is 2**-16383) numbers. | ||
801 | | It is clearly impossible for even a normal extended number | ||
802 | | with that exponent to fit into double precision, so just | ||
803 | | write these ones off as "too darn small". | ||
804 | 1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit | ||
805 | clr.l (%a0) | ||
806 | clr.l -(%a0) | ||
807 | move.w #0x3c01,-(%a0) | i.e. 2**-1022 | ||
808 | addq.l #6,%a0 | ||
809 | moveq #1,%d0 | ||
810 | jra fp_nd_round | round. | ||
811 | | Exponent overflow. Just call it infinity. | ||
812 | fp_nd_large: | ||
813 | move.w #0x7ff,%d0 | ||
814 | and.w (6,%a0),%d0 | ||
815 | jeq 1f | ||
816 | fp_set_sr FPSR_EXC_INEX2 | ||
817 | 1: fp_set_sr FPSR_EXC_OVFL | ||
818 | move.w (FPD_RND,FPDATA),%d2 | ||
819 | jne 3f | %d2 = 0 round to nearest | ||
820 | 1: move.w #0x7fff,(-2,%a0) | ||
821 | clr.l (%a0)+ | ||
822 | clr.l (%a0) | ||
823 | 2: subq.l #8,%a0 | ||
824 | printf PNORM,"%p(",1,%a0 | ||
825 | printx PNORM,%a0@ | ||
826 | printf PNORM,")\n" | ||
827 | rts | ||
828 | 3: subq.w #2,%d2 | ||
829 | jcs 5f | %d2 < 2, round to zero | ||
830 | jhi 4f | %d2 > 2, round to +infinity | ||
831 | tst.b (-3,%a0) | to -inf | ||
832 | jne 1b | ||
833 | jra 5f | ||
834 | 4: tst.b (-3,%a0) | to +inf | ||
835 | jeq 1b | ||
836 | 5: move.w #0x43fe,(-2,%a0) | ||
837 | moveq #-1,%d0 | ||
838 | move.l %d0,(%a0)+ | ||
839 | move.w #0xf800,%d0 | ||
840 | move.l %d0,(%a0) | ||
841 | jra 2b | ||
842 | | Infinities or NaNs | ||
843 | fp_nd_huge: | ||
844 | subq.l #4,%a0 | ||
845 | printf PNORM,"%p(",1,%a0 | ||
846 | printx PNORM,%a0@ | ||
847 | printf PNORM,")\n" | ||
848 | rts | ||
849 | |||
850 | | fp_normalize_single: | ||
851 | | normalize an extended with single (23-bit) precision | ||
852 | | args: %a0 (struct fp_ext *) | ||
853 | |||
854 | fp_normalize_single: | ||
855 | printf PNORM,"ns: %p(",1,%a0 | ||
856 | printx PNORM,%a0@ | ||
857 | printf PNORM,") " | ||
858 | addq.l #2,%a0 | ||
859 | move.w (%a0)+,%d2 | ||
860 | jeq fp_ns_zero | zero / denormalized | ||
861 | cmp.w #0x7fff,%d2 | ||
862 | jeq fp_ns_huge | NaN / infinitive. | ||
863 | sub.w #0x4000-0x7f,%d2 | will the exponent fit? | ||
864 | jcs fp_ns_small | too small. | ||
865 | cmp.w #0xfe,%d2 | ||
866 | jcc fp_ns_large | too big. | ||
867 | move.l (%a0)+,%d0 | get high lword of mantissa | ||
868 | fp_ns_round: | ||
869 | tst.l (%a0) | check the low lword | ||
870 | jeq 1f | ||
871 | | Set a sticky bit if it is non-zero. This should only | ||
872 | | affect the rounding in what would otherwise be equal- | ||
873 | | distance situations, which is what we want it to do. | ||
874 | bset #0,%d0 | ||
875 | 1: clr.l (%a0) | zap it from memory. | ||
876 | | now, round off the low 8 bits of the hi lword. | ||
877 | tst.b %d0 | 8 low bits. | ||
878 | jne fp_ns_checkround | Are they non-zero? | ||
879 | | nothing to do here | ||
880 | subq.l #8,%a0 | ||
881 | printf PNORM,"%p(",1,%a0 | ||
882 | printx PNORM,%a0@ | ||
883 | printf PNORM,")\n" | ||
884 | rts | ||
885 | fp_ns_checkround: | ||
886 | fp_set_sr FPSR_EXC_INEX2 | INEX2 bit | ||
887 | clr.b -(%a0) | clear low byte of high lword | ||
888 | subq.l #3,%a0 | ||
889 | move.w (FPD_RND,FPDATA),%d2 | rounding mode | ||
890 | jne 2f | %d2 == 0, round to nearest | ||
891 | tst.b %d0 | test guard bit | ||
892 | jpl 9f | zero is closer | ||
893 | btst #8,%d0 | test lsb bit | ||
894 | | round to even behaviour, see above. | ||
895 | jne fp_ns_doroundup | round to infinity | ||
896 | lsl.b #1,%d0 | check low bits | ||
897 | jeq 9f | round to zero | ||
898 | fp_ns_doroundup: | ||
899 | | round (the mantissa, that is) towards infinity | ||
900 | add.l #0x100,(%a0) | ||
901 | jcc 9f | no overflow, good. | ||
902 | | Overflow. This means that the %d1 was 0xffffff00, so it | ||
903 | | is now zero. We will set the mantissa to reflect this, and | ||
904 | | increment the exponent (checking for overflow there too) | ||
905 | move.w #0x8000,(%a0) | ||
906 | addq.w #1,-(%a0) | ||
907 | cmp.w #0x407f,(%a0)+ | exponent now overflown? | ||
908 | jeq fp_ns_large | yes, so make it infinity. | ||
909 | 9: subq.l #4,%a0 | ||
910 | printf PNORM,"%p(",1,%a0 | ||
911 | printx PNORM,%a0@ | ||
912 | printf PNORM,")\n" | ||
913 | rts | ||
914 | | check nondefault rounding modes | ||
915 | 2: subq.w #2,%d2 | ||
916 | jcs 9b | %d2 < 2, round to zero | ||
917 | jhi 3f | %d2 > 2, round to +infinity | ||
918 | tst.b (-3,%a0) | to -inf | ||
919 | jne fp_ns_doroundup | negative, round to infinity | ||
920 | jra 9b | positive, round to zero | ||
921 | 3: tst.b (-3,%a0) | to +inf | ||
922 | jeq fp_ns_doroundup | positive, round to infinity | ||
923 | jra 9b | negative, round to zero | ||
924 | | Exponent underflow. Try to make a denormal, and set it to | ||
925 | | the smallest possible fraction if this fails. | ||
926 | fp_ns_small: | ||
927 | fp_set_sr FPSR_EXC_UNFL | set UNFL bit | ||
928 | move.w #0x3f81,(-2,%a0) | 2**-126 | ||
929 | neg.w %d2 | degree of underflow | ||
930 | cmp.w #32,%d2 | single or double shift? | ||
931 | jcc 2f | ||
932 | | a 32-bit shift. | ||
933 | move.l (%a0),%d0 | ||
934 | move.l %d0,%d1 | ||
935 | lsr.l %d2,%d0 | ||
936 | move.l %d0,(%a0)+ | ||
937 | | Check to see if we shifted off any significant bits. | ||
938 | neg.w %d2 | ||
939 | add.w #32,%d2 | ||
940 | lsl.l %d2,%d1 | ||
941 | jeq 1f | ||
942 | bset #0,%d0 | Sticky bit. | ||
943 | | Check the lower lword | ||
944 | 1: tst.l (%a0) | ||
945 | jeq fp_ns_round | ||
946 | clr (%a0) | ||
947 | bset #0,%d0 | Sticky bit. | ||
948 | jra fp_ns_round | ||
949 | | Sorry, the number is just too small. | ||
950 | 2: clr.l (%a0)+ | ||
951 | clr.l (%a0) | ||
952 | moveq #1,%d0 | Smallest possible fraction, | ||
953 | jra fp_ns_round | round as desired. | ||
954 | | Exponent overflow. Just call it infinity. | ||
955 | fp_ns_large: | ||
956 | tst.b (3,%a0) | ||
957 | jeq 1f | ||
958 | fp_set_sr FPSR_EXC_INEX2 | ||
959 | 1: fp_set_sr FPSR_EXC_OVFL | ||
960 | move.w (FPD_RND,FPDATA),%d2 | ||
961 | jne 3f | %d2 = 0 round to nearest | ||
962 | 1: move.w #0x7fff,(-2,%a0) | ||
963 | clr.l (%a0)+ | ||
964 | clr.l (%a0) | ||
965 | 2: subq.l #8,%a0 | ||
966 | printf PNORM,"%p(",1,%a0 | ||
967 | printx PNORM,%a0@ | ||
968 | printf PNORM,")\n" | ||
969 | rts | ||
970 | 3: subq.w #2,%d2 | ||
971 | jcs 5f | %d2 < 2, round to zero | ||
972 | jhi 4f | %d2 > 2, round to +infinity | ||
973 | tst.b (-3,%a0) | to -inf | ||
974 | jne 1b | ||
975 | jra 5f | ||
976 | 4: tst.b (-3,%a0) | to +inf | ||
977 | jeq 1b | ||
978 | 5: move.w #0x407e,(-2,%a0) | ||
979 | move.l #0xffffff00,(%a0)+ | ||
980 | clr.l (%a0) | ||
981 | jra 2b | ||
982 | | zero and denormalized | ||
983 | fp_ns_zero: | ||
984 | tst.l (%a0)+ | ||
985 | jne 1f | ||
986 | tst.l (%a0) | ||
987 | jne 1f | ||
988 | subq.l #8,%a0 | ||
989 | printf PNORM,"%p(",1,%a0 | ||
990 | printx PNORM,%a0@ | ||
991 | printf PNORM,")\n" | ||
992 | rts | zero. nothing to do. | ||
993 | | These are not merely subnormal numbers, but true denormals, | ||
994 | | i.e. pathologically small (exponent is 2**-16383) numbers. | ||
995 | | It is clearly impossible for even a normal extended number | ||
996 | | with that exponent to fit into single precision, so just | ||
997 | | write these ones off as "too darn small". | ||
998 | 1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit | ||
999 | clr.l (%a0) | ||
1000 | clr.l -(%a0) | ||
1001 | move.w #0x3f81,-(%a0) | i.e. 2**-126 | ||
1002 | addq.l #6,%a0 | ||
1003 | moveq #1,%d0 | ||
1004 | jra fp_ns_round | round. | ||
1005 | | Infinities or NaNs | ||
1006 | fp_ns_huge: | ||
1007 | subq.l #4,%a0 | ||
1008 | printf PNORM,"%p(",1,%a0 | ||
1009 | printx PNORM,%a0@ | ||
1010 | printf PNORM,")\n" | ||
1011 | rts | ||
1012 | |||
1013 | | fp_normalize_single_fast: | ||
1014 | | normalize an extended with single (23-bit) precision | ||
1015 | | this is only used by fsgldiv/fsgdlmul, where the | ||
1016 | | operand is not completly normalized. | ||
1017 | | args: %a0 (struct fp_ext *) | ||
1018 | |||
1019 | fp_normalize_single_fast: | ||
1020 | printf PNORM,"nsf: %p(",1,%a0 | ||
1021 | printx PNORM,%a0@ | ||
1022 | printf PNORM,") " | ||
1023 | addq.l #2,%a0 | ||
1024 | move.w (%a0)+,%d2 | ||
1025 | cmp.w #0x7fff,%d2 | ||
1026 | jeq fp_nsf_huge | NaN / infinitive. | ||
1027 | move.l (%a0)+,%d0 | get high lword of mantissa | ||
1028 | fp_nsf_round: | ||
1029 | tst.l (%a0) | check the low lword | ||
1030 | jeq 1f | ||
1031 | | Set a sticky bit if it is non-zero. This should only | ||
1032 | | affect the rounding in what would otherwise be equal- | ||
1033 | | distance situations, which is what we want it to do. | ||
1034 | bset #0,%d0 | ||
1035 | 1: clr.l (%a0) | zap it from memory. | ||
1036 | | now, round off the low 8 bits of the hi lword. | ||
1037 | tst.b %d0 | 8 low bits. | ||
1038 | jne fp_nsf_checkround | Are they non-zero? | ||
1039 | | nothing to do here | ||
1040 | subq.l #8,%a0 | ||
1041 | printf PNORM,"%p(",1,%a0 | ||
1042 | printx PNORM,%a0@ | ||
1043 | printf PNORM,")\n" | ||
1044 | rts | ||
1045 | fp_nsf_checkround: | ||
1046 | fp_set_sr FPSR_EXC_INEX2 | INEX2 bit | ||
1047 | clr.b -(%a0) | clear low byte of high lword | ||
1048 | subq.l #3,%a0 | ||
1049 | move.w (FPD_RND,FPDATA),%d2 | rounding mode | ||
1050 | jne 2f | %d2 == 0, round to nearest | ||
1051 | tst.b %d0 | test guard bit | ||
1052 | jpl 9f | zero is closer | ||
1053 | btst #8,%d0 | test lsb bit | ||
1054 | | round to even behaviour, see above. | ||
1055 | jne fp_nsf_doroundup | round to infinity | ||
1056 | lsl.b #1,%d0 | check low bits | ||
1057 | jeq 9f | round to zero | ||
1058 | fp_nsf_doroundup: | ||
1059 | | round (the mantissa, that is) towards infinity | ||
1060 | add.l #0x100,(%a0) | ||
1061 | jcc 9f | no overflow, good. | ||
1062 | | Overflow. This means that the %d1 was 0xffffff00, so it | ||
1063 | | is now zero. We will set the mantissa to reflect this, and | ||
1064 | | increment the exponent (checking for overflow there too) | ||
1065 | move.w #0x8000,(%a0) | ||
1066 | addq.w #1,-(%a0) | ||
1067 | cmp.w #0x407f,(%a0)+ | exponent now overflown? | ||
1068 | jeq fp_nsf_large | yes, so make it infinity. | ||
1069 | 9: subq.l #4,%a0 | ||
1070 | printf PNORM,"%p(",1,%a0 | ||
1071 | printx PNORM,%a0@ | ||
1072 | printf PNORM,")\n" | ||
1073 | rts | ||
1074 | | check nondefault rounding modes | ||
1075 | 2: subq.w #2,%d2 | ||
1076 | jcs 9b | %d2 < 2, round to zero | ||
1077 | jhi 3f | %d2 > 2, round to +infinity | ||
1078 | tst.b (-3,%a0) | to -inf | ||
1079 | jne fp_nsf_doroundup | negative, round to infinity | ||
1080 | jra 9b | positive, round to zero | ||
1081 | 3: tst.b (-3,%a0) | to +inf | ||
1082 | jeq fp_nsf_doroundup | positive, round to infinity | ||
1083 | jra 9b | negative, round to zero | ||
1084 | | Exponent overflow. Just call it infinity. | ||
1085 | fp_nsf_large: | ||
1086 | tst.b (3,%a0) | ||
1087 | jeq 1f | ||
1088 | fp_set_sr FPSR_EXC_INEX2 | ||
1089 | 1: fp_set_sr FPSR_EXC_OVFL | ||
1090 | move.w (FPD_RND,FPDATA),%d2 | ||
1091 | jne 3f | %d2 = 0 round to nearest | ||
1092 | 1: move.w #0x7fff,(-2,%a0) | ||
1093 | clr.l (%a0)+ | ||
1094 | clr.l (%a0) | ||
1095 | 2: subq.l #8,%a0 | ||
1096 | printf PNORM,"%p(",1,%a0 | ||
1097 | printx PNORM,%a0@ | ||
1098 | printf PNORM,")\n" | ||
1099 | rts | ||
1100 | 3: subq.w #2,%d2 | ||
1101 | jcs 5f | %d2 < 2, round to zero | ||
1102 | jhi 4f | %d2 > 2, round to +infinity | ||
1103 | tst.b (-3,%a0) | to -inf | ||
1104 | jne 1b | ||
1105 | jra 5f | ||
1106 | 4: tst.b (-3,%a0) | to +inf | ||
1107 | jeq 1b | ||
1108 | 5: move.w #0x407e,(-2,%a0) | ||
1109 | move.l #0xffffff00,(%a0)+ | ||
1110 | clr.l (%a0) | ||
1111 | jra 2b | ||
1112 | | Infinities or NaNs | ||
1113 | fp_nsf_huge: | ||
1114 | subq.l #4,%a0 | ||
1115 | printf PNORM,"%p(",1,%a0 | ||
1116 | printx PNORM,%a0@ | ||
1117 | printf PNORM,")\n" | ||
1118 | rts | ||
1119 | |||
1120 | | conv_ext2int (macro): | ||
1121 | | Generates a subroutine that converts an extended value to an | ||
1122 | | integer of a given size, again, with the appropriate type of | ||
1123 | | rounding. | ||
1124 | |||
1125 | | Macro arguments: | ||
1126 | | s: size, as given in an assembly instruction. | ||
1127 | | b: number of bits in that size. | ||
1128 | |||
1129 | | Subroutine arguments: | ||
1130 | | %a0: source (struct fp_ext *) | ||
1131 | |||
1132 | | Returns the integer in %d0 (like it should) | ||
1133 | |||
1134 | .macro conv_ext2int s,b | ||
1135 | .set inf,(1<<(\b-1))-1 | i.e. MAXINT | ||
1136 | printf PCONV,"e2i%d: %p(",2,#\b,%a0 | ||
1137 | printx PCONV,%a0@ | ||
1138 | printf PCONV,") " | ||
1139 | addq.l #2,%a0 | ||
1140 | move.w (%a0)+,%d2 | exponent | ||
1141 | jeq fp_e2i_zero\b | zero / denorm (== 0, here) | ||
1142 | cmp.w #0x7fff,%d2 | ||
1143 | jeq fp_e2i_huge\b | Inf / NaN | ||
1144 | sub.w #0x3ffe,%d2 | ||
1145 | jcs fp_e2i_small\b | ||
1146 | cmp.w #\b,%d2 | ||
1147 | jhi fp_e2i_large\b | ||
1148 | move.l (%a0),%d0 | ||
1149 | move.l %d0,%d1 | ||
1150 | lsl.l %d2,%d1 | ||
1151 | jne fp_e2i_round\b | ||
1152 | tst.l (4,%a0) | ||
1153 | jne fp_e2i_round\b | ||
1154 | neg.w %d2 | ||
1155 | add.w #32,%d2 | ||
1156 | lsr.l %d2,%d0 | ||
1157 | 9: tst.w (-4,%a0) | ||
1158 | jne 1f | ||
1159 | tst.\s %d0 | ||
1160 | jmi fp_e2i_large\b | ||
1161 | printf PCONV,"-> %p\n",1,%d0 | ||
1162 | rts | ||
1163 | 1: neg.\s %d0 | ||
1164 | jeq 1f | ||
1165 | jpl fp_e2i_large\b | ||
1166 | 1: printf PCONV,"-> %p\n",1,%d0 | ||
1167 | rts | ||
1168 | fp_e2i_round\b: | ||
1169 | fp_set_sr FPSR_EXC_INEX2 | INEX2 bit | ||
1170 | neg.w %d2 | ||
1171 | add.w #32,%d2 | ||
1172 | .if \b>16 | ||
1173 | jeq 5f | ||
1174 | .endif | ||
1175 | lsr.l %d2,%d0 | ||
1176 | move.w (FPD_RND,FPDATA),%d2 | rounding mode | ||
1177 | jne 2f | %d2 == 0, round to nearest | ||
1178 | tst.l %d1 | test guard bit | ||
1179 | jpl 9b | zero is closer | ||
1180 | btst %d2,%d0 | test lsb bit (%d2 still 0) | ||
1181 | jne fp_e2i_doroundup\b | ||
1182 | lsl.l #1,%d1 | check low bits | ||
1183 | jne fp_e2i_doroundup\b | ||
1184 | tst.l (4,%a0) | ||
1185 | jeq 9b | ||
1186 | fp_e2i_doroundup\b: | ||
1187 | addq.l #1,%d0 | ||
1188 | jra 9b | ||
1189 | | check nondefault rounding modes | ||
1190 | 2: subq.w #2,%d2 | ||
1191 | jcs 9b | %d2 < 2, round to zero | ||
1192 | jhi 3f | %d2 > 2, round to +infinity | ||
1193 | tst.w (-4,%a0) | to -inf | ||
1194 | jne fp_e2i_doroundup\b | negative, round to infinity | ||
1195 | jra 9b | positive, round to zero | ||
1196 | 3: tst.w (-4,%a0) | to +inf | ||
1197 | jeq fp_e2i_doroundup\b | positive, round to infinity | ||
1198 | jra 9b | negative, round to zero | ||
1199 | | we are only want -2**127 get correctly rounded here, | ||
1200 | | since the guard bit is in the lower lword. | ||
1201 | | everything else ends up anyway as overflow. | ||
1202 | .if \b>16 | ||
1203 | 5: move.w (FPD_RND,FPDATA),%d2 | rounding mode | ||
1204 | jne 2b | %d2 == 0, round to nearest | ||
1205 | move.l (4,%a0),%d1 | test guard bit | ||
1206 | jpl 9b | zero is closer | ||
1207 | lsl.l #1,%d1 | check low bits | ||
1208 | jne fp_e2i_doroundup\b | ||
1209 | jra 9b | ||
1210 | .endif | ||
1211 | fp_e2i_zero\b: | ||
1212 | clr.l %d0 | ||
1213 | tst.l (%a0)+ | ||
1214 | jne 1f | ||
1215 | tst.l (%a0) | ||
1216 | jeq 3f | ||
1217 | 1: subq.l #4,%a0 | ||
1218 | fp_clr_sr FPSR_EXC_UNFL | fp_normalize_ext has set this bit | ||
1219 | fp_e2i_small\b: | ||
1220 | fp_set_sr FPSR_EXC_INEX2 | ||
1221 | clr.l %d0 | ||
1222 | move.w (FPD_RND,FPDATA),%d2 | rounding mode | ||
1223 | subq.w #2,%d2 | ||
1224 | jcs 3f | %d2 < 2, round to nearest/zero | ||
1225 | jhi 2f | %d2 > 2, round to +infinity | ||
1226 | tst.w (-4,%a0) | to -inf | ||
1227 | jeq 3f | ||
1228 | subq.\s #1,%d0 | ||
1229 | jra 3f | ||
1230 | 2: tst.w (-4,%a0) | to +inf | ||
1231 | jne 3f | ||
1232 | addq.\s #1,%d0 | ||
1233 | 3: printf PCONV,"-> %p\n",1,%d0 | ||
1234 | rts | ||
1235 | fp_e2i_large\b: | ||
1236 | fp_set_sr FPSR_EXC_OPERR | ||
1237 | move.\s #inf,%d0 | ||
1238 | tst.w (-4,%a0) | ||
1239 | jeq 1f | ||
1240 | addq.\s #1,%d0 | ||
1241 | 1: printf PCONV,"-> %p\n",1,%d0 | ||
1242 | rts | ||
1243 | fp_e2i_huge\b: | ||
1244 | move.\s (%a0),%d0 | ||
1245 | tst.l (%a0) | ||
1246 | jne 1f | ||
1247 | tst.l (%a0) | ||
1248 | jeq fp_e2i_large\b | ||
1249 | | fp_normalize_ext has set this bit already | ||
1250 | | and made the number nonsignaling | ||
1251 | 1: fp_tst_sr FPSR_EXC_SNAN | ||
1252 | jne 1f | ||
1253 | fp_set_sr FPSR_EXC_OPERR | ||
1254 | 1: printf PCONV,"-> %p\n",1,%d0 | ||
1255 | rts | ||
1256 | .endm | ||
1257 | |||
1258 | fp_conv_ext2long: | ||
1259 | conv_ext2int l,32 | ||
1260 | |||
1261 | fp_conv_ext2short: | ||
1262 | conv_ext2int w,16 | ||
1263 | |||
1264 | fp_conv_ext2byte: | ||
1265 | conv_ext2int b,8 | ||
1266 | |||
1267 | fp_conv_ext2double: | ||
1268 | jsr fp_normalize_double | ||
1269 | printf PCONV,"e2d: %p(",1,%a0 | ||
1270 | printx PCONV,%a0@ | ||
1271 | printf PCONV,"), " | ||
1272 | move.l (%a0)+,%d2 | ||
1273 | cmp.w #0x7fff,%d2 | ||
1274 | jne 1f | ||
1275 | move.w #0x7ff,%d2 | ||
1276 | move.l (%a0)+,%d0 | ||
1277 | jra 2f | ||
1278 | 1: sub.w #0x3fff-0x3ff,%d2 | ||
1279 | move.l (%a0)+,%d0 | ||
1280 | jmi 2f | ||
1281 | clr.w %d2 | ||
1282 | 2: lsl.w #5,%d2 | ||
1283 | lsl.l #7,%d2 | ||
1284 | lsl.l #8,%d2 | ||
1285 | move.l %d0,%d1 | ||
1286 | lsl.l #1,%d0 | ||
1287 | lsr.l #4,%d0 | ||
1288 | lsr.l #8,%d0 | ||
1289 | or.l %d2,%d0 | ||
1290 | putuser.l %d0,(%a1)+,fp_err_ua2,%a1 | ||
1291 | moveq #21,%d0 | ||
1292 | lsl.l %d0,%d1 | ||
1293 | move.l (%a0),%d0 | ||
1294 | lsr.l #4,%d0 | ||
1295 | lsr.l #7,%d0 | ||
1296 | or.l %d1,%d0 | ||
1297 | putuser.l %d0,(%a1),fp_err_ua2,%a1 | ||
1298 | #ifdef FPU_EMU_DEBUG | ||
1299 | getuser.l %a1@(-4),%d0,fp_err_ua2,%a1 | ||
1300 | getuser.l %a1@(0),%d1,fp_err_ua2,%a1 | ||
1301 | printf PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1 | ||
1302 | #endif | ||
1303 | rts | ||
1304 | |||
1305 | fp_conv_ext2single: | ||
1306 | jsr fp_normalize_single | ||
1307 | printf PCONV,"e2s: %p(",1,%a0 | ||
1308 | printx PCONV,%a0@ | ||
1309 | printf PCONV,"), " | ||
1310 | move.l (%a0)+,%d1 | ||
1311 | cmp.w #0x7fff,%d1 | ||
1312 | jne 1f | ||
1313 | move.w #0xff,%d1 | ||
1314 | move.l (%a0)+,%d0 | ||
1315 | jra 2f | ||
1316 | 1: sub.w #0x3fff-0x7f,%d1 | ||
1317 | move.l (%a0)+,%d0 | ||
1318 | jmi 2f | ||
1319 | clr.w %d1 | ||
1320 | 2: lsl.w #8,%d1 | ||
1321 | lsl.l #7,%d1 | ||
1322 | lsl.l #8,%d1 | ||
1323 | bclr #31,%d0 | ||
1324 | lsr.l #8,%d0 | ||
1325 | or.l %d1,%d0 | ||
1326 | printf PCONV,"%08x\n",1,%d0 | ||
1327 | rts | ||
1328 | |||
1329 | | special return addresses for instr that | ||
1330 | | encode the rounding precision in the opcode | ||
1331 | | (e.g. fsmove,fdmove) | ||
1332 | |||
1333 | fp_finalrounding_single: | ||
1334 | addq.l #8,%sp | ||
1335 | jsr fp_normalize_ext | ||
1336 | jsr fp_normalize_single | ||
1337 | jra fp_finaltest | ||
1338 | |||
1339 | fp_finalrounding_single_fast: | ||
1340 | addq.l #8,%sp | ||
1341 | jsr fp_normalize_ext | ||
1342 | jsr fp_normalize_single_fast | ||
1343 | jra fp_finaltest | ||
1344 | |||
1345 | fp_finalrounding_double: | ||
1346 | addq.l #8,%sp | ||
1347 | jsr fp_normalize_ext | ||
1348 | jsr fp_normalize_double | ||
1349 | jra fp_finaltest | ||
1350 | |||
1351 | | fp_finaltest: | ||
1352 | | set the emulated status register based on the outcome of an | ||
1353 | | emulated instruction. | ||
1354 | |||
1355 | fp_finalrounding: | ||
1356 | addq.l #8,%sp | ||
1357 | | printf ,"f: %p\n",1,%a0 | ||
1358 | jsr fp_normalize_ext | ||
1359 | move.w (FPD_PREC,FPDATA),%d0 | ||
1360 | subq.w #1,%d0 | ||
1361 | jcs fp_finaltest | ||
1362 | jne 1f | ||
1363 | jsr fp_normalize_single | ||
1364 | jra 2f | ||
1365 | 1: jsr fp_normalize_double | ||
1366 | 2:| printf ,"f: %p\n",1,%a0 | ||
1367 | fp_finaltest: | ||
1368 | | First, we do some of the obvious tests for the exception | ||
1369 | | status byte and condition code bytes of fp_sr here, so that | ||
1370 | | they do not have to be handled individually by every | ||
1371 | | emulated instruction. | ||
1372 | clr.l %d0 | ||
1373 | addq.l #1,%a0 | ||
1374 | tst.b (%a0)+ | sign | ||
1375 | jeq 1f | ||
1376 | bset #FPSR_CC_NEG-24,%d0 | N bit | ||
1377 | 1: cmp.w #0x7fff,(%a0)+ | exponent | ||
1378 | jeq 2f | ||
1379 | | test for zero | ||
1380 | moveq #FPSR_CC_Z-24,%d1 | ||
1381 | tst.l (%a0)+ | ||
1382 | jne 9f | ||
1383 | tst.l (%a0) | ||
1384 | jne 9f | ||
1385 | jra 8f | ||
1386 | | infinitiv and NAN | ||
1387 | 2: moveq #FPSR_CC_NAN-24,%d1 | ||
1388 | move.l (%a0)+,%d2 | ||
1389 | lsl.l #1,%d2 | ignore high bit | ||
1390 | jne 8f | ||
1391 | tst.l (%a0) | ||
1392 | jne 8f | ||
1393 | moveq #FPSR_CC_INF-24,%d1 | ||
1394 | 8: bset %d1,%d0 | ||
1395 | 9: move.b %d0,(FPD_FPSR+0,FPDATA) | set condition test result | ||
1396 | | move instructions enter here | ||
1397 | | Here, we test things in the exception status byte, and set | ||
1398 | | other things in the accrued exception byte accordingly. | ||
1399 | | Emulated instructions can set various things in the former, | ||
1400 | | as defined in fp_emu.h. | ||
1401 | fp_final: | ||
1402 | move.l (FPD_FPSR,FPDATA),%d0 | ||
1403 | #if 0 | ||
1404 | btst #FPSR_EXC_SNAN,%d0 | EXC_SNAN | ||
1405 | jne 1f | ||
1406 | btst #FPSR_EXC_OPERR,%d0 | EXC_OPERR | ||
1407 | jeq 2f | ||
1408 | 1: bset #FPSR_AEXC_IOP,%d0 | set IOP bit | ||
1409 | 2: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL | ||
1410 | jeq 1f | ||
1411 | bset #FPSR_AEXC_OVFL,%d0 | set OVFL bit | ||
1412 | 1: btst #FPSR_EXC_UNFL,%d0 | EXC_UNFL | ||
1413 | jeq 1f | ||
1414 | btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2 | ||
1415 | jeq 1f | ||
1416 | bset #FPSR_AEXC_UNFL,%d0 | set UNFL bit | ||
1417 | 1: btst #FPSR_EXC_DZ,%d0 | EXC_INEX1 | ||
1418 | jeq 1f | ||
1419 | bset #FPSR_AEXC_DZ,%d0 | set DZ bit | ||
1420 | 1: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL | ||
1421 | jne 1f | ||
1422 | btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2 | ||
1423 | jne 1f | ||
1424 | btst #FPSR_EXC_INEX1,%d0 | EXC_INEX1 | ||
1425 | jeq 2f | ||
1426 | 1: bset #FPSR_AEXC_INEX,%d0 | set INEX bit | ||
1427 | 2: move.l %d0,(FPD_FPSR,FPDATA) | ||
1428 | #else | ||
1429 | | same as above, greatly optimized, but untested (yet) | ||
1430 | move.l %d0,%d2 | ||
1431 | lsr.l #5,%d0 | ||
1432 | move.l %d0,%d1 | ||
1433 | lsr.l #4,%d1 | ||
1434 | or.l %d0,%d1 | ||
1435 | and.b #0x08,%d1 | ||
1436 | move.l %d2,%d0 | ||
1437 | lsr.l #6,%d0 | ||
1438 | or.l %d1,%d0 | ||
1439 | move.l %d2,%d1 | ||
1440 | lsr.l #4,%d1 | ||
1441 | or.b #0xdf,%d1 | ||
1442 | and.b %d1,%d0 | ||
1443 | move.l %d2,%d1 | ||
1444 | lsr.l #7,%d1 | ||
1445 | and.b #0x80,%d1 | ||
1446 | or.b %d1,%d0 | ||
1447 | and.b #0xf8,%d0 | ||
1448 | or.b %d0,%d2 | ||
1449 | move.l %d2,(FPD_FPSR,FPDATA) | ||
1450 | #endif | ||
1451 | move.b (FPD_FPSR+2,FPDATA),%d0 | ||
1452 | and.b (FPD_FPCR+2,FPDATA),%d0 | ||
1453 | jeq 1f | ||
1454 | printf ,"send signal!!!\n" | ||
1455 | 1: jra fp_end | ||