diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/m68k/fpsp040/slog2.S |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/m68k/fpsp040/slog2.S')
-rw-r--r-- | arch/m68k/fpsp040/slog2.S | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/arch/m68k/fpsp040/slog2.S b/arch/m68k/fpsp040/slog2.S new file mode 100644 index 000000000000..517fa4563246 --- /dev/null +++ b/arch/m68k/fpsp040/slog2.S | |||
@@ -0,0 +1,188 @@ | |||
1 | | | ||
2 | | slog2.sa 3.1 12/10/90 | ||
3 | | | ||
4 | | The entry point slog10 computes the base-10 | ||
5 | | logarithm of an input argument X. | ||
6 | | slog10d does the same except the input value is a | ||
7 | | denormalized number. | ||
8 | | sLog2 and sLog2d are the base-2 analogues. | ||
9 | | | ||
10 | | INPUT: Double-extended value in memory location pointed to | ||
11 | | by address register a0. | ||
12 | | | ||
13 | | OUTPUT: log_10(X) or log_2(X) returned in floating-point | ||
14 | | register fp0. | ||
15 | | | ||
16 | | ACCURACY and MONOTONICITY: The returned result is within 1.7 | ||
17 | | ulps in 64 significant bit, i.e. within 0.5003 ulp | ||
18 | | to 53 bits if the result is subsequently rounded | ||
19 | | to double precision. The result is provably monotonic | ||
20 | | in double precision. | ||
21 | | | ||
22 | | SPEED: Two timings are measured, both in the copy-back mode. | ||
23 | | The first one is measured when the function is invoked | ||
24 | | the first time (so the instructions and data are not | ||
25 | | in cache), and the second one is measured when the | ||
26 | | function is reinvoked at the same input argument. | ||
27 | | | ||
28 | | ALGORITHM and IMPLEMENTATION NOTES: | ||
29 | | | ||
30 | | slog10d: | ||
31 | | | ||
32 | | Step 0. If X < 0, create a NaN and raise the invalid operation | ||
33 | | flag. Otherwise, save FPCR in D1; set FpCR to default. | ||
34 | | Notes: Default means round-to-nearest mode, no floating-point | ||
35 | | traps, and precision control = double extended. | ||
36 | | | ||
37 | | Step 1. Call slognd to obtain Y = log(X), the natural log of X. | ||
38 | | Notes: Even if X is denormalized, log(X) is always normalized. | ||
39 | | | ||
40 | | Step 2. Compute log_10(X) = log(X) * (1/log(10)). | ||
41 | | 2.1 Restore the user FPCR | ||
42 | | 2.2 Return ans := Y * INV_L10. | ||
43 | | | ||
44 | | | ||
45 | | slog10: | ||
46 | | | ||
47 | | Step 0. If X < 0, create a NaN and raise the invalid operation | ||
48 | | flag. Otherwise, save FPCR in D1; set FpCR to default. | ||
49 | | Notes: Default means round-to-nearest mode, no floating-point | ||
50 | | traps, and precision control = double extended. | ||
51 | | | ||
52 | | Step 1. Call sLogN to obtain Y = log(X), the natural log of X. | ||
53 | | | ||
54 | | Step 2. Compute log_10(X) = log(X) * (1/log(10)). | ||
55 | | 2.1 Restore the user FPCR | ||
56 | | 2.2 Return ans := Y * INV_L10. | ||
57 | | | ||
58 | | | ||
59 | | sLog2d: | ||
60 | | | ||
61 | | Step 0. If X < 0, create a NaN and raise the invalid operation | ||
62 | | flag. Otherwise, save FPCR in D1; set FpCR to default. | ||
63 | | Notes: Default means round-to-nearest mode, no floating-point | ||
64 | | traps, and precision control = double extended. | ||
65 | | | ||
66 | | Step 1. Call slognd to obtain Y = log(X), the natural log of X. | ||
67 | | Notes: Even if X is denormalized, log(X) is always normalized. | ||
68 | | | ||
69 | | Step 2. Compute log_10(X) = log(X) * (1/log(2)). | ||
70 | | 2.1 Restore the user FPCR | ||
71 | | 2.2 Return ans := Y * INV_L2. | ||
72 | | | ||
73 | | | ||
74 | | sLog2: | ||
75 | | | ||
76 | | Step 0. If X < 0, create a NaN and raise the invalid operation | ||
77 | | flag. Otherwise, save FPCR in D1; set FpCR to default. | ||
78 | | Notes: Default means round-to-nearest mode, no floating-point | ||
79 | | traps, and precision control = double extended. | ||
80 | | | ||
81 | | Step 1. If X is not an integer power of two, i.e., X != 2^k, | ||
82 | | go to Step 3. | ||
83 | | | ||
84 | | Step 2. Return k. | ||
85 | | 2.1 Get integer k, X = 2^k. | ||
86 | | 2.2 Restore the user FPCR. | ||
87 | | 2.3 Return ans := convert-to-double-extended(k). | ||
88 | | | ||
89 | | Step 3. Call sLogN to obtain Y = log(X), the natural log of X. | ||
90 | | | ||
91 | | Step 4. Compute log_2(X) = log(X) * (1/log(2)). | ||
92 | | 4.1 Restore the user FPCR | ||
93 | | 4.2 Return ans := Y * INV_L2. | ||
94 | | | ||
95 | |||
96 | | Copyright (C) Motorola, Inc. 1990 | ||
97 | | All Rights Reserved | ||
98 | | | ||
99 | | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | ||
100 | | The copyright notice above does not evidence any | ||
101 | | actual or intended publication of such source code. | ||
102 | |||
103 | |SLOG2 idnt 2,1 | Motorola 040 Floating Point Software Package | ||
104 | |||
105 | |section 8 | ||
106 | |||
107 | |xref t_frcinx | ||
108 | |xref t_operr | ||
109 | |xref slogn | ||
110 | |xref slognd | ||
111 | |||
112 | INV_L10: .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 | ||
113 | |||
114 | INV_L2: .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 | ||
115 | |||
116 | .global slog10d | ||
117 | slog10d: | ||
118 | |--entry point for Log10(X), X is denormalized | ||
119 | movel (%a0),%d0 | ||
120 | blt invalid | ||
121 | movel %d1,-(%sp) | ||
122 | clrl %d1 | ||
123 | bsr slognd | ...log(X), X denorm. | ||
124 | fmovel (%sp)+,%fpcr | ||
125 | fmulx INV_L10,%fp0 | ||
126 | bra t_frcinx | ||
127 | |||
128 | .global slog10 | ||
129 | slog10: | ||
130 | |--entry point for Log10(X), X is normalized | ||
131 | |||
132 | movel (%a0),%d0 | ||
133 | blt invalid | ||
134 | movel %d1,-(%sp) | ||
135 | clrl %d1 | ||
136 | bsr slogn | ...log(X), X normal. | ||
137 | fmovel (%sp)+,%fpcr | ||
138 | fmulx INV_L10,%fp0 | ||
139 | bra t_frcinx | ||
140 | |||
141 | |||
142 | .global slog2d | ||
143 | slog2d: | ||
144 | |--entry point for Log2(X), X is denormalized | ||
145 | |||
146 | movel (%a0),%d0 | ||
147 | blt invalid | ||
148 | movel %d1,-(%sp) | ||
149 | clrl %d1 | ||
150 | bsr slognd | ...log(X), X denorm. | ||
151 | fmovel (%sp)+,%fpcr | ||
152 | fmulx INV_L2,%fp0 | ||
153 | bra t_frcinx | ||
154 | |||
155 | .global slog2 | ||
156 | slog2: | ||
157 | |--entry point for Log2(X), X is normalized | ||
158 | movel (%a0),%d0 | ||
159 | blt invalid | ||
160 | |||
161 | movel 8(%a0),%d0 | ||
162 | bnes continue | ...X is not 2^k | ||
163 | |||
164 | movel 4(%a0),%d0 | ||
165 | andl #0x7FFFFFFF,%d0 | ||
166 | tstl %d0 | ||
167 | bnes continue | ||
168 | |||
169 | |--X = 2^k. | ||
170 | movew (%a0),%d0 | ||
171 | andl #0x00007FFF,%d0 | ||
172 | subl #0x3FFF,%d0 | ||
173 | fmovel %d1,%fpcr | ||
174 | fmovel %d0,%fp0 | ||
175 | bra t_frcinx | ||
176 | |||
177 | continue: | ||
178 | movel %d1,-(%sp) | ||
179 | clrl %d1 | ||
180 | bsr slogn | ...log(X), X normal. | ||
181 | fmovel (%sp)+,%fpcr | ||
182 | fmulx INV_L2,%fp0 | ||
183 | bra t_frcinx | ||
184 | |||
185 | invalid: | ||
186 | bra t_operr | ||
187 | |||
188 | |end | ||