aboutsummaryrefslogtreecommitdiffstats
path: root/arch/m68k/fpsp040/decbin.S
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/m68k/fpsp040/decbin.S
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/m68k/fpsp040/decbin.S')
-rw-r--r--arch/m68k/fpsp040/decbin.S506
1 files changed, 506 insertions, 0 deletions
diff --git a/arch/m68k/fpsp040/decbin.S b/arch/m68k/fpsp040/decbin.S
new file mode 100644
index 000000000000..2160609e328d
--- /dev/null
+++ b/arch/m68k/fpsp040/decbin.S
@@ -0,0 +1,506 @@
1|
2| decbin.sa 3.3 12/19/90
3|
4| Description: Converts normalized packed bcd value pointed to by
5| register A6 to extended-precision value in FP0.
6|
7| Input: Normalized packed bcd value in ETEMP(a6).
8|
9| Output: Exact floating-point representation of the packed bcd value.
10|
11| Saves and Modifies: D2-D5
12|
13| Speed: The program decbin takes ??? cycles to execute.
14|
15| Object Size:
16|
17| External Reference(s): None.
18|
19| Algorithm:
20| Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
21| and NaN operands are dispatched without entering this routine)
22| value in 68881/882 format at location ETEMP(A6).
23|
24| A1. Convert the bcd exponent to binary by successive adds and muls.
25| Set the sign according to SE. Subtract 16 to compensate
26| for the mantissa which is to be interpreted as 17 integer
27| digits, rather than 1 integer and 16 fraction digits.
28| Note: this operation can never overflow.
29|
30| A2. Convert the bcd mantissa to binary by successive
31| adds and muls in FP0. Set the sign according to SM.
32| The mantissa digits will be converted with the decimal point
33| assumed following the least-significant digit.
34| Note: this operation can never overflow.
35|
36| A3. Count the number of leading/trailing zeros in the
37| bcd string. If SE is positive, count the leading zeros;
38| if negative, count the trailing zeros. Set the adjusted
39| exponent equal to the exponent from A1 and the zero count
40| added if SM = 1 and subtracted if SM = 0. Scale the
41| mantissa the equivalent of forcing in the bcd value:
42|
43| SM = 0 a non-zero digit in the integer position
44| SM = 1 a non-zero digit in Mant0, lsd of the fraction
45|
46| this will insure that any value, regardless of its
47| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
48| consistently.
49|
50| A4. Calculate the factor 10^exp in FP1 using a table of
51| 10^(2^n) values. To reduce the error in forming factors
52| greater than 10^27, a directed rounding scheme is used with
53| tables rounded to RN, RM, and RP, according to the table
54| in the comments of the pwrten section.
55|
56| A5. Form the final binary number by scaling the mantissa by
57| the exponent factor. This is done by multiplying the
58| mantissa in FP0 by the factor in FP1 if the adjusted
59| exponent sign is positive, and dividing FP0 by FP1 if
60| it is negative.
61|
62| Clean up and return. Check if the final mul or div resulted
63| in an inex2 exception. If so, set inex1 in the fpsr and
64| check if the inex1 exception is enabled. If so, set d7 upper
65| word to $0100. This will signal unimp.sa that an enabled inex1
66| exception occurred. Unimp will fix the stack.
67|
68
69| Copyright (C) Motorola, Inc. 1990
70| All Rights Reserved
71|
72| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
73| The copyright notice above does not evidence any
74| actual or intended publication of such source code.
75
76|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package
77
78 |section 8
79
80#include "fpsp.h"
81
82|
83| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
84| to nearest, minus, and plus, respectively. The tables include
85| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
86| is required until the power is greater than 27, however, all
87| tables include the first 5 for ease of indexing.
88|
89 |xref PTENRN
90 |xref PTENRM
91 |xref PTENRP
92
93RTABLE: .byte 0,0,0,0
94 .byte 2,3,2,3
95 .byte 2,3,3,2
96 .byte 3,2,2,3
97
98 .global decbin
99 .global calc_e
100 .global pwrten
101 .global calc_m
102 .global norm
103 .global ap_st_z
104 .global ap_st_n
105|
106 .set FNIBS,7
107 .set FSTRT,0
108|
109 .set ESTRT,4
110 .set EDIGITS,2 |
111|
112| Constants in single precision
113FZERO: .long 0x00000000
114FONE: .long 0x3F800000
115FTEN: .long 0x41200000
116
117 .set TEN,10
118
119|
120decbin:
121 | fmovel #0,FPCR ;clr real fpcr
122 moveml %d2-%d5,-(%a7)
123|
124| Calculate exponent:
125| 1. Copy bcd value in memory for use as a working copy.
126| 2. Calculate absolute value of exponent in d1 by mul and add.
127| 3. Correct for exponent sign.
128| 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
129| (i.e., all digits assumed left of the decimal point.)
130|
131| Register usage:
132|
133| calc_e:
134| (*) d0: temp digit storage
135| (*) d1: accumulator for binary exponent
136| (*) d2: digit count
137| (*) d3: offset pointer
138| ( ) d4: first word of bcd
139| ( ) a0: pointer to working bcd value
140| ( ) a6: pointer to original bcd value
141| (*) FP_SCR1: working copy of original bcd value
142| (*) L_SCR1: copy of original exponent word
143|
144calc_e:
145 movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part
146 moveql #ESTRT,%d3 |counter to pick up digits
147 leal FP_SCR1(%a6),%a0 |load tmp bcd storage address
148 movel ETEMP(%a6),(%a0) |save input bcd value
149 movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3
150 movel ETEMP_LO(%a6),8(%a0) |and work with these
151 movel (%a0),%d4 |get first word of bcd
152 clrl %d1 |zero d1 for accumulator
153e_gd:
154 mulul #TEN,%d1 |mul partial product by one digit place
155 bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0
156 addl %d0,%d1 |d1 = d1 + d0
157 addqb #4,%d3 |advance d3 to the next digit
158 dbf %d2,e_gd |if we have used all 3 digits, exit loop
159 btst #30,%d4 |get SE
160 beqs e_pos |don't negate if pos
161 negl %d1 |negate before subtracting
162e_pos:
163 subl #16,%d1 |sub to compensate for shift of mant
164 bges e_save |if still pos, do not neg
165 negl %d1 |now negative, make pos and set SE
166 orl #0x40000000,%d4 |set SE in d4,
167 orl #0x40000000,(%a0) |and in working bcd
168e_save:
169 movel %d1,L_SCR1(%a6) |save exp in memory
170|
171|
172| Calculate mantissa:
173| 1. Calculate absolute value of mantissa in fp0 by mul and add.
174| 2. Correct for mantissa sign.
175| (i.e., all digits assumed left of the decimal point.)
176|
177| Register usage:
178|
179| calc_m:
180| (*) d0: temp digit storage
181| (*) d1: lword counter
182| (*) d2: digit count
183| (*) d3: offset pointer
184| ( ) d4: words 2 and 3 of bcd
185| ( ) a0: pointer to working bcd value
186| ( ) a6: pointer to original bcd value
187| (*) fp0: mantissa accumulator
188| ( ) FP_SCR1: working copy of original bcd value
189| ( ) L_SCR1: copy of original exponent word
190|
191calc_m:
192 moveql #1,%d1 |word counter, init to 1
193 fmoves FZERO,%fp0 |accumulator
194|
195|
196| Since the packed number has a long word between the first & second parts,
197| get the integer digit then skip down & get the rest of the
198| mantissa. We will unroll the loop once.
199|
200 bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word
201 faddb %d0,%fp0 |add digit to sum in fp0
202|
203|
204| Get the rest of the mantissa.
205|
206loadlw:
207 movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4
208 moveql #FSTRT,%d3 |counter to pick up digits
209 moveql #FNIBS,%d2 |reset number of digits per a0 ptr
210md2b:
211 fmuls FTEN,%fp0 |fp0 = fp0 * 10
212 bfextu %d4{%d3:#4},%d0 |get the digit and zero extend
213 faddb %d0,%fp0 |fp0 = fp0 + digit
214|
215|
216| If all the digits (8) in that long word have been converted (d2=0),
217| then inc d1 (=2) to point to the next long word and reset d3 to 0
218| to initialize the digit offset, and set d2 to 7 for the digit count;
219| else continue with this long word.
220|
221 addqb #4,%d3 |advance d3 to the next digit
222 dbf %d2,md2b |check for last digit in this lw
223nextlw:
224 addql #1,%d1 |inc lw pointer in mantissa
225 cmpl #2,%d1 |test for last lw
226 ble loadlw |if not, get last one
227
228|
229| Check the sign of the mant and make the value in fp0 the same sign.
230|
231m_sign:
232 btst #31,(%a0) |test sign of the mantissa
233 beq ap_st_z |if clear, go to append/strip zeros
234 fnegx %fp0 |if set, negate fp0
235
236|
237| Append/strip zeros:
238|
239| For adjusted exponents which have an absolute value greater than 27*,
240| this routine calculates the amount needed to normalize the mantissa
241| for the adjusted exponent. That number is subtracted from the exp
242| if the exp was positive, and added if it was negative. The purpose
243| of this is to reduce the value of the exponent and the possibility
244| of error in calculation of pwrten.
245|
246| 1. Branch on the sign of the adjusted exponent.
247| 2p.(positive exp)
248| 2. Check M16 and the digits in lwords 2 and 3 in descending order.
249| 3. Add one for each zero encountered until a non-zero digit.
250| 4. Subtract the count from the exp.
251| 5. Check if the exp has crossed zero in #3 above; make the exp abs
252| and set SE.
253| 6. Multiply the mantissa by 10**count.
254| 2n.(negative exp)
255| 2. Check the digits in lwords 3 and 2 in descending order.
256| 3. Add one for each zero encountered until a non-zero digit.
257| 4. Add the count to the exp.
258| 5. Check if the exp has crossed zero in #3 above; clear SE.
259| 6. Divide the mantissa by 10**count.
260|
261| *Why 27? If the adjusted exponent is within -28 < expA < 28, than
262| any adjustment due to append/strip zeros will drive the resultant
263| exponent towards zero. Since all pwrten constants with a power
264| of 27 or less are exact, there is no need to use this routine to
265| attempt to lessen the resultant exponent.
266|
267| Register usage:
268|
269| ap_st_z:
270| (*) d0: temp digit storage
271| (*) d1: zero count
272| (*) d2: digit count
273| (*) d3: offset pointer
274| ( ) d4: first word of bcd
275| (*) d5: lword counter
276| ( ) a0: pointer to working bcd value
277| ( ) FP_SCR1: working copy of original bcd value
278| ( ) L_SCR1: copy of original exponent word
279|
280|
281| First check the absolute value of the exponent to see if this
282| routine is necessary. If so, then check the sign of the exponent
283| and do append (+) or strip (-) zeros accordingly.
284| This section handles a positive adjusted exponent.
285|
286ap_st_z:
287 movel L_SCR1(%a6),%d1 |load expA for range test
288 cmpl #27,%d1 |test is with 27
289 ble pwrten |if abs(expA) <28, skip ap/st zeros
290 btst #30,(%a0) |check sign of exp
291 bne ap_st_n |if neg, go to neg side
292 clrl %d1 |zero count reg
293 movel (%a0),%d4 |load lword 1 to d4
294 bfextu %d4{#28:#4},%d0 |get M16 in d0
295 bnes ap_p_fx |if M16 is non-zero, go fix exp
296 addql #1,%d1 |inc zero count
297 moveql #1,%d5 |init lword counter
298 movel (%a0,%d5.L*4),%d4 |get lword 2 to d4
299 bnes ap_p_cl |if lw 2 is zero, skip it
300 addql #8,%d1 |and inc count by 8
301 addql #1,%d5 |inc lword counter
302 movel (%a0,%d5.L*4),%d4 |get lword 3 to d4
303ap_p_cl:
304 clrl %d3 |init offset reg
305 moveql #7,%d2 |init digit counter
306ap_p_gd:
307 bfextu %d4{%d3:#4},%d0 |get digit
308 bnes ap_p_fx |if non-zero, go to fix exp
309 addql #4,%d3 |point to next digit
310 addql #1,%d1 |inc digit counter
311 dbf %d2,ap_p_gd |get next digit
312ap_p_fx:
313 movel %d1,%d0 |copy counter to d2
314 movel L_SCR1(%a6),%d1 |get adjusted exp from memory
315 subl %d0,%d1 |subtract count from exp
316 bges ap_p_fm |if still pos, go to pwrten
317 negl %d1 |now its neg; get abs
318 movel (%a0),%d4 |load lword 1 to d4
319 orl #0x40000000,%d4 | and set SE in d4
320 orl #0x40000000,(%a0) | and in memory
321|
322| Calculate the mantissa multiplier to compensate for the striping of
323| zeros from the mantissa.
324|
325ap_p_fm:
326 movel #PTENRN,%a1 |get address of power-of-ten table
327 clrl %d3 |init table index
328 fmoves FONE,%fp1 |init fp1 to 1
329 moveql #3,%d2 |init d2 to count bits in counter
330ap_p_el:
331 asrl #1,%d0 |shift lsb into carry
332 bccs ap_p_en |if 1, mul fp1 by pwrten factor
333 fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
334ap_p_en:
335 addl #12,%d3 |inc d3 to next rtable entry
336 tstl %d0 |check if d0 is zero
337 bnes ap_p_el |if not, get next bit
338 fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted)
339 bra pwrten |go calc pwrten
340|
341| This section handles a negative adjusted exponent.
342|
343ap_st_n:
344 clrl %d1 |clr counter
345 moveql #2,%d5 |set up d5 to point to lword 3
346 movel (%a0,%d5.L*4),%d4 |get lword 3
347 bnes ap_n_cl |if not zero, check digits
348 subl #1,%d5 |dec d5 to point to lword 2
349 addql #8,%d1 |inc counter by 8
350 movel (%a0,%d5.L*4),%d4 |get lword 2
351ap_n_cl:
352 movel #28,%d3 |point to last digit
353 moveql #7,%d2 |init digit counter
354ap_n_gd:
355 bfextu %d4{%d3:#4},%d0 |get digit
356 bnes ap_n_fx |if non-zero, go to exp fix
357 subql #4,%d3 |point to previous digit
358 addql #1,%d1 |inc digit counter
359 dbf %d2,ap_n_gd |get next digit
360ap_n_fx:
361 movel %d1,%d0 |copy counter to d0
362 movel L_SCR1(%a6),%d1 |get adjusted exp from memory
363 subl %d0,%d1 |subtract count from exp
364 bgts ap_n_fm |if still pos, go fix mantissa
365 negl %d1 |take abs of exp and clr SE
366 movel (%a0),%d4 |load lword 1 to d4
367 andl #0xbfffffff,%d4 | and clr SE in d4
368 andl #0xbfffffff,(%a0) | and in memory
369|
370| Calculate the mantissa multiplier to compensate for the appending of
371| zeros to the mantissa.
372|
373ap_n_fm:
374 movel #PTENRN,%a1 |get address of power-of-ten table
375 clrl %d3 |init table index
376 fmoves FONE,%fp1 |init fp1 to 1
377 moveql #3,%d2 |init d2 to count bits in counter
378ap_n_el:
379 asrl #1,%d0 |shift lsb into carry
380 bccs ap_n_en |if 1, mul fp1 by pwrten factor
381 fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
382ap_n_en:
383 addl #12,%d3 |inc d3 to next rtable entry
384 tstl %d0 |check if d0 is zero
385 bnes ap_n_el |if not, get next bit
386 fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted)
387|
388|
389| Calculate power-of-ten factor from adjusted and shifted exponent.
390|
391| Register usage:
392|
393| pwrten:
394| (*) d0: temp
395| ( ) d1: exponent
396| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
397| (*) d3: FPCR work copy
398| ( ) d4: first word of bcd
399| (*) a1: RTABLE pointer
400| calc_p:
401| (*) d0: temp
402| ( ) d1: exponent
403| (*) d3: PWRTxx table index
404| ( ) a0: pointer to working copy of bcd
405| (*) a1: PWRTxx pointer
406| (*) fp1: power-of-ten accumulator
407|
408| Pwrten calculates the exponent factor in the selected rounding mode
409| according to the following table:
410|
411| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
412|
413| ANY ANY RN RN
414|
415| + + RP RP
416| - + RP RM
417| + - RP RM
418| - - RP RP
419|
420| + + RM RM
421| - + RM RP
422| + - RM RP
423| - - RM RM
424|
425| + + RZ RM
426| - + RZ RM
427| + - RZ RP
428| - - RZ RP
429|
430|
431pwrten:
432 movel USER_FPCR(%a6),%d3 |get user's FPCR
433 bfextu %d3{#26:#2},%d2 |isolate rounding mode bits
434 movel (%a0),%d4 |reload 1st bcd word to d4
435 asll #2,%d2 |format d2 to be
436 bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE}
437 addl %d0,%d2 |in d2 as index into RTABLE
438 leal RTABLE,%a1 |load rtable base
439 moveb (%a1,%d2),%d0 |load new rounding bits from table
440 clrl %d3 |clear d3 to force no exc and extended
441 bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR
442 fmovel %d3,%FPCR |write new FPCR
443 asrl #1,%d0 |write correct PTENxx table
444 bccs not_rp |to a1
445 leal PTENRP,%a1 |it is RP
446 bras calc_p |go to init section
447not_rp:
448 asrl #1,%d0 |keep checking
449 bccs not_rm
450 leal PTENRM,%a1 |it is RM
451 bras calc_p |go to init section
452not_rm:
453 leal PTENRN,%a1 |it is RN
454calc_p:
455 movel %d1,%d0 |copy exp to d0;use d0
456 bpls no_neg |if exp is negative,
457 negl %d0 |invert it
458 orl #0x40000000,(%a0) |and set SE bit
459no_neg:
460 clrl %d3 |table index
461 fmoves FONE,%fp1 |init fp1 to 1
462e_loop:
463 asrl #1,%d0 |shift next bit into carry
464 bccs e_next |if zero, skip the mul
465 fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
466e_next:
467 addl #12,%d3 |inc d3 to next rtable entry
468 tstl %d0 |check if d0 is zero
469 bnes e_loop |not zero, continue shifting
470|
471|
472| Check the sign of the adjusted exp and make the value in fp0 the
473| same sign. If the exp was pos then multiply fp1*fp0;
474| else divide fp0/fp1.
475|
476| Register Usage:
477| norm:
478| ( ) a0: pointer to working bcd value
479| (*) fp0: mantissa accumulator
480| ( ) fp1: scaling factor - 10**(abs(exp))
481|
482norm:
483 btst #30,(%a0) |test the sign of the exponent
484 beqs mul |if clear, go to multiply
485div:
486 fdivx %fp1,%fp0 |exp is negative, so divide mant by exp
487 bras end_dec
488mul:
489 fmulx %fp1,%fp0 |exp is positive, so multiply by exp
490|
491|
492| Clean up and return with result in fp0.
493|
494| If the final mul/div in decbin incurred an inex exception,
495| it will be inex2, but will be reported as inex1 by get_op.
496|
497end_dec:
498 fmovel %FPSR,%d0 |get status register
499 bclrl #inex2_bit+8,%d0 |test for inex2 and clear it
500 fmovel %d0,%FPSR |return status reg w/o inex2
501 beqs no_exc |skip this if no exc
502 orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
503no_exc:
504 moveml (%a7)+,%d2-%d5
505 rts
506 |end