diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ia64/mm |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ia64/mm')
-rw-r--r-- | arch/ia64/mm/Makefile | 12 | ||||
-rw-r--r-- | arch/ia64/mm/contig.c | 299 | ||||
-rw-r--r-- | arch/ia64/mm/discontig.c | 737 | ||||
-rw-r--r-- | arch/ia64/mm/extable.c | 90 | ||||
-rw-r--r-- | arch/ia64/mm/fault.c | 261 | ||||
-rw-r--r-- | arch/ia64/mm/hugetlbpage.c | 357 | ||||
-rw-r--r-- | arch/ia64/mm/init.c | 597 | ||||
-rw-r--r-- | arch/ia64/mm/numa.c | 49 | ||||
-rw-r--r-- | arch/ia64/mm/tlb.c | 190 |
9 files changed, 2592 insertions, 0 deletions
diff --git a/arch/ia64/mm/Makefile b/arch/ia64/mm/Makefile new file mode 100644 index 000000000000..7078f67887ec --- /dev/null +++ b/arch/ia64/mm/Makefile | |||
@@ -0,0 +1,12 @@ | |||
1 | # | ||
2 | # Makefile for the ia64-specific parts of the memory manager. | ||
3 | # | ||
4 | |||
5 | obj-y := init.o fault.o tlb.o extable.o | ||
6 | |||
7 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o | ||
8 | obj-$(CONFIG_NUMA) += numa.o | ||
9 | obj-$(CONFIG_DISCONTIGMEM) += discontig.o | ||
10 | ifndef CONFIG_DISCONTIGMEM | ||
11 | obj-y += contig.o | ||
12 | endif | ||
diff --git a/arch/ia64/mm/contig.c b/arch/ia64/mm/contig.c new file mode 100644 index 000000000000..6daf15ac8940 --- /dev/null +++ b/arch/ia64/mm/contig.c | |||
@@ -0,0 +1,299 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1998-2003 Hewlett-Packard Co | ||
7 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
8 | * Stephane Eranian <eranian@hpl.hp.com> | ||
9 | * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> | ||
10 | * Copyright (C) 1999 VA Linux Systems | ||
11 | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | ||
12 | * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. | ||
13 | * | ||
14 | * Routines used by ia64 machines with contiguous (or virtually contiguous) | ||
15 | * memory. | ||
16 | */ | ||
17 | #include <linux/config.h> | ||
18 | #include <linux/bootmem.h> | ||
19 | #include <linux/efi.h> | ||
20 | #include <linux/mm.h> | ||
21 | #include <linux/swap.h> | ||
22 | |||
23 | #include <asm/meminit.h> | ||
24 | #include <asm/pgalloc.h> | ||
25 | #include <asm/pgtable.h> | ||
26 | #include <asm/sections.h> | ||
27 | #include <asm/mca.h> | ||
28 | |||
29 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
30 | static unsigned long num_dma_physpages; | ||
31 | #endif | ||
32 | |||
33 | /** | ||
34 | * show_mem - display a memory statistics summary | ||
35 | * | ||
36 | * Just walks the pages in the system and describes where they're allocated. | ||
37 | */ | ||
38 | void | ||
39 | show_mem (void) | ||
40 | { | ||
41 | int i, total = 0, reserved = 0; | ||
42 | int shared = 0, cached = 0; | ||
43 | |||
44 | printk("Mem-info:\n"); | ||
45 | show_free_areas(); | ||
46 | |||
47 | printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | ||
48 | i = max_mapnr; | ||
49 | while (i-- > 0) { | ||
50 | if (!pfn_valid(i)) | ||
51 | continue; | ||
52 | total++; | ||
53 | if (PageReserved(mem_map+i)) | ||
54 | reserved++; | ||
55 | else if (PageSwapCache(mem_map+i)) | ||
56 | cached++; | ||
57 | else if (page_count(mem_map + i)) | ||
58 | shared += page_count(mem_map + i) - 1; | ||
59 | } | ||
60 | printk("%d pages of RAM\n", total); | ||
61 | printk("%d reserved pages\n", reserved); | ||
62 | printk("%d pages shared\n", shared); | ||
63 | printk("%d pages swap cached\n", cached); | ||
64 | printk("%ld pages in page table cache\n", pgtable_cache_size); | ||
65 | } | ||
66 | |||
67 | /* physical address where the bootmem map is located */ | ||
68 | unsigned long bootmap_start; | ||
69 | |||
70 | /** | ||
71 | * find_max_pfn - adjust the maximum page number callback | ||
72 | * @start: start of range | ||
73 | * @end: end of range | ||
74 | * @arg: address of pointer to global max_pfn variable | ||
75 | * | ||
76 | * Passed as a callback function to efi_memmap_walk() to determine the highest | ||
77 | * available page frame number in the system. | ||
78 | */ | ||
79 | int | ||
80 | find_max_pfn (unsigned long start, unsigned long end, void *arg) | ||
81 | { | ||
82 | unsigned long *max_pfnp = arg, pfn; | ||
83 | |||
84 | pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT; | ||
85 | if (pfn > *max_pfnp) | ||
86 | *max_pfnp = pfn; | ||
87 | return 0; | ||
88 | } | ||
89 | |||
90 | /** | ||
91 | * find_bootmap_location - callback to find a memory area for the bootmap | ||
92 | * @start: start of region | ||
93 | * @end: end of region | ||
94 | * @arg: unused callback data | ||
95 | * | ||
96 | * Find a place to put the bootmap and return its starting address in | ||
97 | * bootmap_start. This address must be page-aligned. | ||
98 | */ | ||
99 | int | ||
100 | find_bootmap_location (unsigned long start, unsigned long end, void *arg) | ||
101 | { | ||
102 | unsigned long needed = *(unsigned long *)arg; | ||
103 | unsigned long range_start, range_end, free_start; | ||
104 | int i; | ||
105 | |||
106 | #if IGNORE_PFN0 | ||
107 | if (start == PAGE_OFFSET) { | ||
108 | start += PAGE_SIZE; | ||
109 | if (start >= end) | ||
110 | return 0; | ||
111 | } | ||
112 | #endif | ||
113 | |||
114 | free_start = PAGE_OFFSET; | ||
115 | |||
116 | for (i = 0; i < num_rsvd_regions; i++) { | ||
117 | range_start = max(start, free_start); | ||
118 | range_end = min(end, rsvd_region[i].start & PAGE_MASK); | ||
119 | |||
120 | free_start = PAGE_ALIGN(rsvd_region[i].end); | ||
121 | |||
122 | if (range_end <= range_start) | ||
123 | continue; /* skip over empty range */ | ||
124 | |||
125 | if (range_end - range_start >= needed) { | ||
126 | bootmap_start = __pa(range_start); | ||
127 | return -1; /* done */ | ||
128 | } | ||
129 | |||
130 | /* nothing more available in this segment */ | ||
131 | if (range_end == end) | ||
132 | return 0; | ||
133 | } | ||
134 | return 0; | ||
135 | } | ||
136 | |||
137 | /** | ||
138 | * find_memory - setup memory map | ||
139 | * | ||
140 | * Walk the EFI memory map and find usable memory for the system, taking | ||
141 | * into account reserved areas. | ||
142 | */ | ||
143 | void | ||
144 | find_memory (void) | ||
145 | { | ||
146 | unsigned long bootmap_size; | ||
147 | |||
148 | reserve_memory(); | ||
149 | |||
150 | /* first find highest page frame number */ | ||
151 | max_pfn = 0; | ||
152 | efi_memmap_walk(find_max_pfn, &max_pfn); | ||
153 | |||
154 | /* how many bytes to cover all the pages */ | ||
155 | bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; | ||
156 | |||
157 | /* look for a location to hold the bootmap */ | ||
158 | bootmap_start = ~0UL; | ||
159 | efi_memmap_walk(find_bootmap_location, &bootmap_size); | ||
160 | if (bootmap_start == ~0UL) | ||
161 | panic("Cannot find %ld bytes for bootmap\n", bootmap_size); | ||
162 | |||
163 | bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn); | ||
164 | |||
165 | /* Free all available memory, then mark bootmem-map as being in use. */ | ||
166 | efi_memmap_walk(filter_rsvd_memory, free_bootmem); | ||
167 | reserve_bootmem(bootmap_start, bootmap_size); | ||
168 | |||
169 | find_initrd(); | ||
170 | } | ||
171 | |||
172 | #ifdef CONFIG_SMP | ||
173 | /** | ||
174 | * per_cpu_init - setup per-cpu variables | ||
175 | * | ||
176 | * Allocate and setup per-cpu data areas. | ||
177 | */ | ||
178 | void * | ||
179 | per_cpu_init (void) | ||
180 | { | ||
181 | void *cpu_data; | ||
182 | int cpu; | ||
183 | |||
184 | /* | ||
185 | * get_free_pages() cannot be used before cpu_init() done. BSP | ||
186 | * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls | ||
187 | * get_zeroed_page(). | ||
188 | */ | ||
189 | if (smp_processor_id() == 0) { | ||
190 | cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS, | ||
191 | PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | ||
192 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
193 | memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start); | ||
194 | __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start; | ||
195 | cpu_data += PERCPU_PAGE_SIZE; | ||
196 | per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; | ||
197 | } | ||
198 | } | ||
199 | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | ||
200 | } | ||
201 | #endif /* CONFIG_SMP */ | ||
202 | |||
203 | static int | ||
204 | count_pages (u64 start, u64 end, void *arg) | ||
205 | { | ||
206 | unsigned long *count = arg; | ||
207 | |||
208 | *count += (end - start) >> PAGE_SHIFT; | ||
209 | return 0; | ||
210 | } | ||
211 | |||
212 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
213 | static int | ||
214 | count_dma_pages (u64 start, u64 end, void *arg) | ||
215 | { | ||
216 | unsigned long *count = arg; | ||
217 | |||
218 | if (start < MAX_DMA_ADDRESS) | ||
219 | *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT; | ||
220 | return 0; | ||
221 | } | ||
222 | #endif | ||
223 | |||
224 | /* | ||
225 | * Set up the page tables. | ||
226 | */ | ||
227 | |||
228 | void | ||
229 | paging_init (void) | ||
230 | { | ||
231 | unsigned long max_dma; | ||
232 | unsigned long zones_size[MAX_NR_ZONES]; | ||
233 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
234 | unsigned long zholes_size[MAX_NR_ZONES]; | ||
235 | unsigned long max_gap; | ||
236 | #endif | ||
237 | |||
238 | /* initialize mem_map[] */ | ||
239 | |||
240 | memset(zones_size, 0, sizeof(zones_size)); | ||
241 | |||
242 | num_physpages = 0; | ||
243 | efi_memmap_walk(count_pages, &num_physpages); | ||
244 | |||
245 | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
246 | |||
247 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
248 | memset(zholes_size, 0, sizeof(zholes_size)); | ||
249 | |||
250 | num_dma_physpages = 0; | ||
251 | efi_memmap_walk(count_dma_pages, &num_dma_physpages); | ||
252 | |||
253 | if (max_low_pfn < max_dma) { | ||
254 | zones_size[ZONE_DMA] = max_low_pfn; | ||
255 | zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages; | ||
256 | } else { | ||
257 | zones_size[ZONE_DMA] = max_dma; | ||
258 | zholes_size[ZONE_DMA] = max_dma - num_dma_physpages; | ||
259 | if (num_physpages > num_dma_physpages) { | ||
260 | zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; | ||
261 | zholes_size[ZONE_NORMAL] = | ||
262 | ((max_low_pfn - max_dma) - | ||
263 | (num_physpages - num_dma_physpages)); | ||
264 | } | ||
265 | } | ||
266 | |||
267 | max_gap = 0; | ||
268 | efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); | ||
269 | if (max_gap < LARGE_GAP) { | ||
270 | vmem_map = (struct page *) 0; | ||
271 | free_area_init_node(0, &contig_page_data, zones_size, 0, | ||
272 | zholes_size); | ||
273 | } else { | ||
274 | unsigned long map_size; | ||
275 | |||
276 | /* allocate virtual_mem_map */ | ||
277 | |||
278 | map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page)); | ||
279 | vmalloc_end -= map_size; | ||
280 | vmem_map = (struct page *) vmalloc_end; | ||
281 | efi_memmap_walk(create_mem_map_page_table, NULL); | ||
282 | |||
283 | NODE_DATA(0)->node_mem_map = vmem_map; | ||
284 | free_area_init_node(0, &contig_page_data, zones_size, | ||
285 | 0, zholes_size); | ||
286 | |||
287 | printk("Virtual mem_map starts at 0x%p\n", mem_map); | ||
288 | } | ||
289 | #else /* !CONFIG_VIRTUAL_MEM_MAP */ | ||
290 | if (max_low_pfn < max_dma) | ||
291 | zones_size[ZONE_DMA] = max_low_pfn; | ||
292 | else { | ||
293 | zones_size[ZONE_DMA] = max_dma; | ||
294 | zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; | ||
295 | } | ||
296 | free_area_init(zones_size); | ||
297 | #endif /* !CONFIG_VIRTUAL_MEM_MAP */ | ||
298 | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | ||
299 | } | ||
diff --git a/arch/ia64/mm/discontig.c b/arch/ia64/mm/discontig.c new file mode 100644 index 000000000000..3456a9b6971e --- /dev/null +++ b/arch/ia64/mm/discontig.c | |||
@@ -0,0 +1,737 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. | ||
3 | * Copyright (c) 2001 Intel Corp. | ||
4 | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> | ||
5 | * Copyright (c) 2002 NEC Corp. | ||
6 | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> | ||
7 | * Copyright (c) 2004 Silicon Graphics, Inc | ||
8 | * Russ Anderson <rja@sgi.com> | ||
9 | * Jesse Barnes <jbarnes@sgi.com> | ||
10 | * Jack Steiner <steiner@sgi.com> | ||
11 | */ | ||
12 | |||
13 | /* | ||
14 | * Platform initialization for Discontig Memory | ||
15 | */ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/swap.h> | ||
20 | #include <linux/bootmem.h> | ||
21 | #include <linux/acpi.h> | ||
22 | #include <linux/efi.h> | ||
23 | #include <linux/nodemask.h> | ||
24 | #include <asm/pgalloc.h> | ||
25 | #include <asm/tlb.h> | ||
26 | #include <asm/meminit.h> | ||
27 | #include <asm/numa.h> | ||
28 | #include <asm/sections.h> | ||
29 | |||
30 | /* | ||
31 | * Track per-node information needed to setup the boot memory allocator, the | ||
32 | * per-node areas, and the real VM. | ||
33 | */ | ||
34 | struct early_node_data { | ||
35 | struct ia64_node_data *node_data; | ||
36 | pg_data_t *pgdat; | ||
37 | unsigned long pernode_addr; | ||
38 | unsigned long pernode_size; | ||
39 | struct bootmem_data bootmem_data; | ||
40 | unsigned long num_physpages; | ||
41 | unsigned long num_dma_physpages; | ||
42 | unsigned long min_pfn; | ||
43 | unsigned long max_pfn; | ||
44 | }; | ||
45 | |||
46 | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; | ||
47 | |||
48 | /** | ||
49 | * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node | ||
50 | * | ||
51 | * This function will move nodes with only CPUs (no memory) | ||
52 | * to a node with memory which is at the minimum numa_slit distance. | ||
53 | * Any reassigments will result in the compression of the nodes | ||
54 | * and renumbering the nid values where appropriate. | ||
55 | * The static declarations below are to avoid large stack size which | ||
56 | * makes the code not re-entrant. | ||
57 | */ | ||
58 | static void __init reassign_cpu_only_nodes(void) | ||
59 | { | ||
60 | struct node_memblk_s *p; | ||
61 | int i, j, k, nnode, nid, cpu, cpunid, pxm; | ||
62 | u8 cslit, slit; | ||
63 | static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; | ||
64 | static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; | ||
65 | static int node_flip[MAX_NUMNODES] __initdata; | ||
66 | static int old_nid_map[NR_CPUS] __initdata; | ||
67 | |||
68 | for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | ||
69 | if (!test_bit(p->nid, (void *) nodes_with_mem)) { | ||
70 | set_bit(p->nid, (void *) nodes_with_mem); | ||
71 | nnode++; | ||
72 | } | ||
73 | |||
74 | /* | ||
75 | * All nids with memory. | ||
76 | */ | ||
77 | if (nnode == num_online_nodes()) | ||
78 | return; | ||
79 | |||
80 | /* | ||
81 | * Change nids and attempt to migrate CPU-only nodes | ||
82 | * to the best numa_slit (closest neighbor) possible. | ||
83 | * For reassigned CPU nodes a nid can't be arrived at | ||
84 | * until after this loop because the target nid's new | ||
85 | * identity might not have been established yet. So | ||
86 | * new nid values are fabricated above num_online_nodes() and | ||
87 | * mapped back later to their true value. | ||
88 | */ | ||
89 | /* MCD - This code is a bit complicated, but may be unnecessary now. | ||
90 | * We can now handle much more interesting node-numbering. | ||
91 | * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES | ||
92 | * and that there be no holes in the numbering 0..numnodes | ||
93 | * has become simply 0 <= nid <= MAX_NUMNODES. | ||
94 | */ | ||
95 | nid = 0; | ||
96 | for_each_online_node(i) { | ||
97 | if (test_bit(i, (void *) nodes_with_mem)) { | ||
98 | /* | ||
99 | * Save original nid value for numa_slit | ||
100 | * fixup and node_cpuid reassignments. | ||
101 | */ | ||
102 | node_flip[nid] = i; | ||
103 | |||
104 | if (i == nid) { | ||
105 | nid++; | ||
106 | continue; | ||
107 | } | ||
108 | |||
109 | for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | ||
110 | if (p->nid == i) | ||
111 | p->nid = nid; | ||
112 | |||
113 | cpunid = nid; | ||
114 | nid++; | ||
115 | } else | ||
116 | cpunid = MAX_NUMNODES; | ||
117 | |||
118 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
119 | if (node_cpuid[cpu].nid == i) { | ||
120 | /* | ||
121 | * For nodes not being reassigned just | ||
122 | * fix the cpu's nid and reverse pxm map | ||
123 | */ | ||
124 | if (cpunid < MAX_NUMNODES) { | ||
125 | pxm = nid_to_pxm_map[i]; | ||
126 | pxm_to_nid_map[pxm] = | ||
127 | node_cpuid[cpu].nid = cpunid; | ||
128 | continue; | ||
129 | } | ||
130 | |||
131 | /* | ||
132 | * For nodes being reassigned, find best node by | ||
133 | * numa_slit information and then make a temporary | ||
134 | * nid value based on current nid and num_online_nodes(). | ||
135 | */ | ||
136 | slit = 0xff; | ||
137 | k = 2*num_online_nodes(); | ||
138 | for_each_online_node(j) { | ||
139 | if (i == j) | ||
140 | continue; | ||
141 | else if (test_bit(j, (void *) nodes_with_mem)) { | ||
142 | cslit = numa_slit[i * num_online_nodes() + j]; | ||
143 | if (cslit < slit) { | ||
144 | k = num_online_nodes() + j; | ||
145 | slit = cslit; | ||
146 | } | ||
147 | } | ||
148 | } | ||
149 | |||
150 | /* save old nid map so we can update the pxm */ | ||
151 | old_nid_map[cpu] = node_cpuid[cpu].nid; | ||
152 | node_cpuid[cpu].nid = k; | ||
153 | } | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * Fixup temporary nid values for CPU-only nodes. | ||
158 | */ | ||
159 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
160 | if (node_cpuid[cpu].nid == (2*num_online_nodes())) { | ||
161 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | ||
162 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; | ||
163 | } else { | ||
164 | for (i = 0; i < nnode; i++) { | ||
165 | if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) | ||
166 | continue; | ||
167 | |||
168 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | ||
169 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; | ||
170 | break; | ||
171 | } | ||
172 | } | ||
173 | |||
174 | /* | ||
175 | * Fix numa_slit by compressing from larger | ||
176 | * nid array to reduced nid array. | ||
177 | */ | ||
178 | for (i = 0; i < nnode; i++) | ||
179 | for (j = 0; j < nnode; j++) | ||
180 | numa_slit_fix[i * nnode + j] = | ||
181 | numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; | ||
182 | |||
183 | memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); | ||
184 | |||
185 | nodes_clear(node_online_map); | ||
186 | for (i = 0; i < nnode; i++) | ||
187 | node_set_online(i); | ||
188 | |||
189 | return; | ||
190 | } | ||
191 | |||
192 | /* | ||
193 | * To prevent cache aliasing effects, align per-node structures so that they | ||
194 | * start at addresses that are strided by node number. | ||
195 | */ | ||
196 | #define NODEDATA_ALIGN(addr, node) \ | ||
197 | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) | ||
198 | |||
199 | /** | ||
200 | * build_node_maps - callback to setup bootmem structs for each node | ||
201 | * @start: physical start of range | ||
202 | * @len: length of range | ||
203 | * @node: node where this range resides | ||
204 | * | ||
205 | * We allocate a struct bootmem_data for each piece of memory that we wish to | ||
206 | * treat as a virtually contiguous block (i.e. each node). Each such block | ||
207 | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down | ||
208 | * if necessary. Any non-existent pages will simply be part of the virtual | ||
209 | * memmap. We also update min_low_pfn and max_low_pfn here as we receive | ||
210 | * memory ranges from the caller. | ||
211 | */ | ||
212 | static int __init build_node_maps(unsigned long start, unsigned long len, | ||
213 | int node) | ||
214 | { | ||
215 | unsigned long cstart, epfn, end = start + len; | ||
216 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | ||
217 | |||
218 | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; | ||
219 | cstart = GRANULEROUNDDOWN(start); | ||
220 | |||
221 | if (!bdp->node_low_pfn) { | ||
222 | bdp->node_boot_start = cstart; | ||
223 | bdp->node_low_pfn = epfn; | ||
224 | } else { | ||
225 | bdp->node_boot_start = min(cstart, bdp->node_boot_start); | ||
226 | bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); | ||
227 | } | ||
228 | |||
229 | min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); | ||
230 | max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); | ||
231 | |||
232 | return 0; | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * early_nr_phys_cpus_node - return number of physical cpus on a given node | ||
237 | * @node: node to check | ||
238 | * | ||
239 | * Count the number of physical cpus on @node. These are cpus that actually | ||
240 | * exist. We can't use nr_cpus_node() yet because | ||
241 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | ||
242 | * called yet. | ||
243 | */ | ||
244 | static int early_nr_phys_cpus_node(int node) | ||
245 | { | ||
246 | int cpu, n = 0; | ||
247 | |||
248 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
249 | if (node == node_cpuid[cpu].nid) | ||
250 | if ((cpu == 0) || node_cpuid[cpu].phys_id) | ||
251 | n++; | ||
252 | |||
253 | return n; | ||
254 | } | ||
255 | |||
256 | |||
257 | /** | ||
258 | * early_nr_cpus_node - return number of cpus on a given node | ||
259 | * @node: node to check | ||
260 | * | ||
261 | * Count the number of cpus on @node. We can't use nr_cpus_node() yet because | ||
262 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | ||
263 | * called yet. Note that node 0 will also count all non-existent cpus. | ||
264 | */ | ||
265 | static int early_nr_cpus_node(int node) | ||
266 | { | ||
267 | int cpu, n = 0; | ||
268 | |||
269 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
270 | if (node == node_cpuid[cpu].nid) | ||
271 | n++; | ||
272 | |||
273 | return n; | ||
274 | } | ||
275 | |||
276 | /** | ||
277 | * find_pernode_space - allocate memory for memory map and per-node structures | ||
278 | * @start: physical start of range | ||
279 | * @len: length of range | ||
280 | * @node: node where this range resides | ||
281 | * | ||
282 | * This routine reserves space for the per-cpu data struct, the list of | ||
283 | * pg_data_ts and the per-node data struct. Each node will have something like | ||
284 | * the following in the first chunk of addr. space large enough to hold it. | ||
285 | * | ||
286 | * ________________________ | ||
287 | * | | | ||
288 | * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first | ||
289 | * | PERCPU_PAGE_SIZE * | start and length big enough | ||
290 | * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. | ||
291 | * |------------------------| | ||
292 | * | local pg_data_t * | | ||
293 | * |------------------------| | ||
294 | * | local ia64_node_data | | ||
295 | * |------------------------| | ||
296 | * | ??? | | ||
297 | * |________________________| | ||
298 | * | ||
299 | * Once this space has been set aside, the bootmem maps are initialized. We | ||
300 | * could probably move the allocation of the per-cpu and ia64_node_data space | ||
301 | * outside of this function and use alloc_bootmem_node(), but doing it here | ||
302 | * is straightforward and we get the alignments we want so... | ||
303 | */ | ||
304 | static int __init find_pernode_space(unsigned long start, unsigned long len, | ||
305 | int node) | ||
306 | { | ||
307 | unsigned long epfn, cpu, cpus, phys_cpus; | ||
308 | unsigned long pernodesize = 0, pernode, pages, mapsize; | ||
309 | void *cpu_data; | ||
310 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | ||
311 | |||
312 | epfn = (start + len) >> PAGE_SHIFT; | ||
313 | |||
314 | pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); | ||
315 | mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | ||
316 | |||
317 | /* | ||
318 | * Make sure this memory falls within this node's usable memory | ||
319 | * since we may have thrown some away in build_maps(). | ||
320 | */ | ||
321 | if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) | ||
322 | return 0; | ||
323 | |||
324 | /* Don't setup this node's local space twice... */ | ||
325 | if (mem_data[node].pernode_addr) | ||
326 | return 0; | ||
327 | |||
328 | /* | ||
329 | * Calculate total size needed, incl. what's necessary | ||
330 | * for good alignment and alias prevention. | ||
331 | */ | ||
332 | cpus = early_nr_cpus_node(node); | ||
333 | phys_cpus = early_nr_phys_cpus_node(node); | ||
334 | pernodesize += PERCPU_PAGE_SIZE * cpus; | ||
335 | pernodesize += node * L1_CACHE_BYTES; | ||
336 | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); | ||
337 | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | ||
338 | pernodesize = PAGE_ALIGN(pernodesize); | ||
339 | pernode = NODEDATA_ALIGN(start, node); | ||
340 | |||
341 | /* Is this range big enough for what we want to store here? */ | ||
342 | if (start + len > (pernode + pernodesize + mapsize)) { | ||
343 | mem_data[node].pernode_addr = pernode; | ||
344 | mem_data[node].pernode_size = pernodesize; | ||
345 | memset(__va(pernode), 0, pernodesize); | ||
346 | |||
347 | cpu_data = (void *)pernode; | ||
348 | pernode += PERCPU_PAGE_SIZE * cpus; | ||
349 | pernode += node * L1_CACHE_BYTES; | ||
350 | |||
351 | mem_data[node].pgdat = __va(pernode); | ||
352 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | ||
353 | |||
354 | mem_data[node].node_data = __va(pernode); | ||
355 | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | ||
356 | |||
357 | mem_data[node].pgdat->bdata = bdp; | ||
358 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | ||
359 | |||
360 | /* | ||
361 | * Copy the static per-cpu data into the region we | ||
362 | * just set aside and then setup __per_cpu_offset | ||
363 | * for each CPU on this node. | ||
364 | */ | ||
365 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
366 | if (node == node_cpuid[cpu].nid) { | ||
367 | memcpy(__va(cpu_data), __phys_per_cpu_start, | ||
368 | __per_cpu_end - __per_cpu_start); | ||
369 | __per_cpu_offset[cpu] = (char*)__va(cpu_data) - | ||
370 | __per_cpu_start; | ||
371 | cpu_data += PERCPU_PAGE_SIZE; | ||
372 | } | ||
373 | } | ||
374 | } | ||
375 | |||
376 | return 0; | ||
377 | } | ||
378 | |||
379 | /** | ||
380 | * free_node_bootmem - free bootmem allocator memory for use | ||
381 | * @start: physical start of range | ||
382 | * @len: length of range | ||
383 | * @node: node where this range resides | ||
384 | * | ||
385 | * Simply calls the bootmem allocator to free the specified ranged from | ||
386 | * the given pg_data_t's bdata struct. After this function has been called | ||
387 | * for all the entries in the EFI memory map, the bootmem allocator will | ||
388 | * be ready to service allocation requests. | ||
389 | */ | ||
390 | static int __init free_node_bootmem(unsigned long start, unsigned long len, | ||
391 | int node) | ||
392 | { | ||
393 | free_bootmem_node(mem_data[node].pgdat, start, len); | ||
394 | |||
395 | return 0; | ||
396 | } | ||
397 | |||
398 | /** | ||
399 | * reserve_pernode_space - reserve memory for per-node space | ||
400 | * | ||
401 | * Reserve the space used by the bootmem maps & per-node space in the boot | ||
402 | * allocator so that when we actually create the real mem maps we don't | ||
403 | * use their memory. | ||
404 | */ | ||
405 | static void __init reserve_pernode_space(void) | ||
406 | { | ||
407 | unsigned long base, size, pages; | ||
408 | struct bootmem_data *bdp; | ||
409 | int node; | ||
410 | |||
411 | for_each_online_node(node) { | ||
412 | pg_data_t *pdp = mem_data[node].pgdat; | ||
413 | |||
414 | bdp = pdp->bdata; | ||
415 | |||
416 | /* First the bootmem_map itself */ | ||
417 | pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); | ||
418 | size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | ||
419 | base = __pa(bdp->node_bootmem_map); | ||
420 | reserve_bootmem_node(pdp, base, size); | ||
421 | |||
422 | /* Now the per-node space */ | ||
423 | size = mem_data[node].pernode_size; | ||
424 | base = __pa(mem_data[node].pernode_addr); | ||
425 | reserve_bootmem_node(pdp, base, size); | ||
426 | } | ||
427 | } | ||
428 | |||
429 | /** | ||
430 | * initialize_pernode_data - fixup per-cpu & per-node pointers | ||
431 | * | ||
432 | * Each node's per-node area has a copy of the global pg_data_t list, so | ||
433 | * we copy that to each node here, as well as setting the per-cpu pointer | ||
434 | * to the local node data structure. The active_cpus field of the per-node | ||
435 | * structure gets setup by the platform_cpu_init() function later. | ||
436 | */ | ||
437 | static void __init initialize_pernode_data(void) | ||
438 | { | ||
439 | int cpu, node; | ||
440 | pg_data_t *pgdat_list[MAX_NUMNODES]; | ||
441 | |||
442 | for_each_online_node(node) | ||
443 | pgdat_list[node] = mem_data[node].pgdat; | ||
444 | |||
445 | /* Copy the pg_data_t list to each node and init the node field */ | ||
446 | for_each_online_node(node) { | ||
447 | memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, | ||
448 | sizeof(pgdat_list)); | ||
449 | } | ||
450 | |||
451 | /* Set the node_data pointer for each per-cpu struct */ | ||
452 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
453 | node = node_cpuid[cpu].nid; | ||
454 | per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; | ||
455 | } | ||
456 | } | ||
457 | |||
458 | /** | ||
459 | * find_memory - walk the EFI memory map and setup the bootmem allocator | ||
460 | * | ||
461 | * Called early in boot to setup the bootmem allocator, and to | ||
462 | * allocate the per-cpu and per-node structures. | ||
463 | */ | ||
464 | void __init find_memory(void) | ||
465 | { | ||
466 | int node; | ||
467 | |||
468 | reserve_memory(); | ||
469 | |||
470 | if (num_online_nodes() == 0) { | ||
471 | printk(KERN_ERR "node info missing!\n"); | ||
472 | node_set_online(0); | ||
473 | } | ||
474 | |||
475 | min_low_pfn = -1; | ||
476 | max_low_pfn = 0; | ||
477 | |||
478 | if (num_online_nodes() > 1) | ||
479 | reassign_cpu_only_nodes(); | ||
480 | |||
481 | /* These actually end up getting called by call_pernode_memory() */ | ||
482 | efi_memmap_walk(filter_rsvd_memory, build_node_maps); | ||
483 | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); | ||
484 | |||
485 | /* | ||
486 | * Initialize the boot memory maps in reverse order since that's | ||
487 | * what the bootmem allocator expects | ||
488 | */ | ||
489 | for (node = MAX_NUMNODES - 1; node >= 0; node--) { | ||
490 | unsigned long pernode, pernodesize, map; | ||
491 | struct bootmem_data *bdp; | ||
492 | |||
493 | if (!node_online(node)) | ||
494 | continue; | ||
495 | |||
496 | bdp = &mem_data[node].bootmem_data; | ||
497 | pernode = mem_data[node].pernode_addr; | ||
498 | pernodesize = mem_data[node].pernode_size; | ||
499 | map = pernode + pernodesize; | ||
500 | |||
501 | /* Sanity check... */ | ||
502 | if (!pernode) | ||
503 | panic("pernode space for node %d " | ||
504 | "could not be allocated!", node); | ||
505 | |||
506 | init_bootmem_node(mem_data[node].pgdat, | ||
507 | map>>PAGE_SHIFT, | ||
508 | bdp->node_boot_start>>PAGE_SHIFT, | ||
509 | bdp->node_low_pfn); | ||
510 | } | ||
511 | |||
512 | efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); | ||
513 | |||
514 | reserve_pernode_space(); | ||
515 | initialize_pernode_data(); | ||
516 | |||
517 | max_pfn = max_low_pfn; | ||
518 | |||
519 | find_initrd(); | ||
520 | } | ||
521 | |||
522 | /** | ||
523 | * per_cpu_init - setup per-cpu variables | ||
524 | * | ||
525 | * find_pernode_space() does most of this already, we just need to set | ||
526 | * local_per_cpu_offset | ||
527 | */ | ||
528 | void *per_cpu_init(void) | ||
529 | { | ||
530 | int cpu; | ||
531 | |||
532 | if (smp_processor_id() == 0) { | ||
533 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
534 | per_cpu(local_per_cpu_offset, cpu) = | ||
535 | __per_cpu_offset[cpu]; | ||
536 | } | ||
537 | } | ||
538 | |||
539 | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | ||
540 | } | ||
541 | |||
542 | /** | ||
543 | * show_mem - give short summary of memory stats | ||
544 | * | ||
545 | * Shows a simple page count of reserved and used pages in the system. | ||
546 | * For discontig machines, it does this on a per-pgdat basis. | ||
547 | */ | ||
548 | void show_mem(void) | ||
549 | { | ||
550 | int i, total_reserved = 0; | ||
551 | int total_shared = 0, total_cached = 0; | ||
552 | unsigned long total_present = 0; | ||
553 | pg_data_t *pgdat; | ||
554 | |||
555 | printk("Mem-info:\n"); | ||
556 | show_free_areas(); | ||
557 | printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | ||
558 | for_each_pgdat(pgdat) { | ||
559 | unsigned long present = pgdat->node_present_pages; | ||
560 | int shared = 0, cached = 0, reserved = 0; | ||
561 | printk("Node ID: %d\n", pgdat->node_id); | ||
562 | for(i = 0; i < pgdat->node_spanned_pages; i++) { | ||
563 | if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) | ||
564 | continue; | ||
565 | if (PageReserved(pgdat->node_mem_map+i)) | ||
566 | reserved++; | ||
567 | else if (PageSwapCache(pgdat->node_mem_map+i)) | ||
568 | cached++; | ||
569 | else if (page_count(pgdat->node_mem_map+i)) | ||
570 | shared += page_count(pgdat->node_mem_map+i)-1; | ||
571 | } | ||
572 | total_present += present; | ||
573 | total_reserved += reserved; | ||
574 | total_cached += cached; | ||
575 | total_shared += shared; | ||
576 | printk("\t%ld pages of RAM\n", present); | ||
577 | printk("\t%d reserved pages\n", reserved); | ||
578 | printk("\t%d pages shared\n", shared); | ||
579 | printk("\t%d pages swap cached\n", cached); | ||
580 | } | ||
581 | printk("%ld pages of RAM\n", total_present); | ||
582 | printk("%d reserved pages\n", total_reserved); | ||
583 | printk("%d pages shared\n", total_shared); | ||
584 | printk("%d pages swap cached\n", total_cached); | ||
585 | printk("Total of %ld pages in page table cache\n", pgtable_cache_size); | ||
586 | printk("%d free buffer pages\n", nr_free_buffer_pages()); | ||
587 | } | ||
588 | |||
589 | /** | ||
590 | * call_pernode_memory - use SRAT to call callback functions with node info | ||
591 | * @start: physical start of range | ||
592 | * @len: length of range | ||
593 | * @arg: function to call for each range | ||
594 | * | ||
595 | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find | ||
596 | * out to which node a block of memory belongs. Ignore memory that we cannot | ||
597 | * identify, and split blocks that run across multiple nodes. | ||
598 | * | ||
599 | * Take this opportunity to round the start address up and the end address | ||
600 | * down to page boundaries. | ||
601 | */ | ||
602 | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) | ||
603 | { | ||
604 | unsigned long rs, re, end = start + len; | ||
605 | void (*func)(unsigned long, unsigned long, int); | ||
606 | int i; | ||
607 | |||
608 | start = PAGE_ALIGN(start); | ||
609 | end &= PAGE_MASK; | ||
610 | if (start >= end) | ||
611 | return; | ||
612 | |||
613 | func = arg; | ||
614 | |||
615 | if (!num_node_memblks) { | ||
616 | /* No SRAT table, so assume one node (node 0) */ | ||
617 | if (start < end) | ||
618 | (*func)(start, end - start, 0); | ||
619 | return; | ||
620 | } | ||
621 | |||
622 | for (i = 0; i < num_node_memblks; i++) { | ||
623 | rs = max(start, node_memblk[i].start_paddr); | ||
624 | re = min(end, node_memblk[i].start_paddr + | ||
625 | node_memblk[i].size); | ||
626 | |||
627 | if (rs < re) | ||
628 | (*func)(rs, re - rs, node_memblk[i].nid); | ||
629 | |||
630 | if (re == end) | ||
631 | break; | ||
632 | } | ||
633 | } | ||
634 | |||
635 | /** | ||
636 | * count_node_pages - callback to build per-node memory info structures | ||
637 | * @start: physical start of range | ||
638 | * @len: length of range | ||
639 | * @node: node where this range resides | ||
640 | * | ||
641 | * Each node has it's own number of physical pages, DMAable pages, start, and | ||
642 | * end page frame number. This routine will be called by call_pernode_memory() | ||
643 | * for each piece of usable memory and will setup these values for each node. | ||
644 | * Very similar to build_maps(). | ||
645 | */ | ||
646 | static __init int count_node_pages(unsigned long start, unsigned long len, int node) | ||
647 | { | ||
648 | unsigned long end = start + len; | ||
649 | |||
650 | mem_data[node].num_physpages += len >> PAGE_SHIFT; | ||
651 | if (start <= __pa(MAX_DMA_ADDRESS)) | ||
652 | mem_data[node].num_dma_physpages += | ||
653 | (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; | ||
654 | start = GRANULEROUNDDOWN(start); | ||
655 | start = ORDERROUNDDOWN(start); | ||
656 | end = GRANULEROUNDUP(end); | ||
657 | mem_data[node].max_pfn = max(mem_data[node].max_pfn, | ||
658 | end >> PAGE_SHIFT); | ||
659 | mem_data[node].min_pfn = min(mem_data[node].min_pfn, | ||
660 | start >> PAGE_SHIFT); | ||
661 | |||
662 | return 0; | ||
663 | } | ||
664 | |||
665 | /** | ||
666 | * paging_init - setup page tables | ||
667 | * | ||
668 | * paging_init() sets up the page tables for each node of the system and frees | ||
669 | * the bootmem allocator memory for general use. | ||
670 | */ | ||
671 | void __init paging_init(void) | ||
672 | { | ||
673 | unsigned long max_dma; | ||
674 | unsigned long zones_size[MAX_NR_ZONES]; | ||
675 | unsigned long zholes_size[MAX_NR_ZONES]; | ||
676 | unsigned long pfn_offset = 0; | ||
677 | int node; | ||
678 | |||
679 | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
680 | |||
681 | /* so min() will work in count_node_pages */ | ||
682 | for_each_online_node(node) | ||
683 | mem_data[node].min_pfn = ~0UL; | ||
684 | |||
685 | efi_memmap_walk(filter_rsvd_memory, count_node_pages); | ||
686 | |||
687 | for_each_online_node(node) { | ||
688 | memset(zones_size, 0, sizeof(zones_size)); | ||
689 | memset(zholes_size, 0, sizeof(zholes_size)); | ||
690 | |||
691 | num_physpages += mem_data[node].num_physpages; | ||
692 | |||
693 | if (mem_data[node].min_pfn >= max_dma) { | ||
694 | /* All of this node's memory is above ZONE_DMA */ | ||
695 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | ||
696 | mem_data[node].min_pfn; | ||
697 | zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - | ||
698 | mem_data[node].min_pfn - | ||
699 | mem_data[node].num_physpages; | ||
700 | } else if (mem_data[node].max_pfn < max_dma) { | ||
701 | /* All of this node's memory is in ZONE_DMA */ | ||
702 | zones_size[ZONE_DMA] = mem_data[node].max_pfn - | ||
703 | mem_data[node].min_pfn; | ||
704 | zholes_size[ZONE_DMA] = mem_data[node].max_pfn - | ||
705 | mem_data[node].min_pfn - | ||
706 | mem_data[node].num_dma_physpages; | ||
707 | } else { | ||
708 | /* This node has memory in both zones */ | ||
709 | zones_size[ZONE_DMA] = max_dma - | ||
710 | mem_data[node].min_pfn; | ||
711 | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - | ||
712 | mem_data[node].num_dma_physpages; | ||
713 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | ||
714 | max_dma; | ||
715 | zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - | ||
716 | (mem_data[node].num_physpages - | ||
717 | mem_data[node].num_dma_physpages); | ||
718 | } | ||
719 | |||
720 | if (node == 0) { | ||
721 | vmalloc_end -= | ||
722 | PAGE_ALIGN(max_low_pfn * sizeof(struct page)); | ||
723 | vmem_map = (struct page *) vmalloc_end; | ||
724 | |||
725 | efi_memmap_walk(create_mem_map_page_table, NULL); | ||
726 | printk("Virtual mem_map starts at 0x%p\n", vmem_map); | ||
727 | } | ||
728 | |||
729 | pfn_offset = mem_data[node].min_pfn; | ||
730 | |||
731 | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; | ||
732 | free_area_init_node(node, NODE_DATA(node), zones_size, | ||
733 | pfn_offset, zholes_size); | ||
734 | } | ||
735 | |||
736 | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | ||
737 | } | ||
diff --git a/arch/ia64/mm/extable.c b/arch/ia64/mm/extable.c new file mode 100644 index 000000000000..6d259e34f359 --- /dev/null +++ b/arch/ia64/mm/extable.c | |||
@@ -0,0 +1,90 @@ | |||
1 | /* | ||
2 | * Kernel exception handling table support. Derived from arch/alpha/mm/extable.c. | ||
3 | * | ||
4 | * Copyright (C) 1998, 1999, 2001-2002, 2004 Hewlett-Packard Co | ||
5 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
6 | */ | ||
7 | |||
8 | #include <linux/config.h> | ||
9 | #include <linux/sort.h> | ||
10 | |||
11 | #include <asm/uaccess.h> | ||
12 | #include <asm/module.h> | ||
13 | |||
14 | static int cmp_ex(const void *a, const void *b) | ||
15 | { | ||
16 | const struct exception_table_entry *l = a, *r = b; | ||
17 | u64 lip = (u64) &l->addr + l->addr; | ||
18 | u64 rip = (u64) &r->addr + r->addr; | ||
19 | |||
20 | /* avoid overflow */ | ||
21 | if (lip > rip) | ||
22 | return 1; | ||
23 | if (lip < rip) | ||
24 | return -1; | ||
25 | return 0; | ||
26 | } | ||
27 | |||
28 | static void swap_ex(void *a, void *b, int size) | ||
29 | { | ||
30 | struct exception_table_entry *l = a, *r = b, tmp; | ||
31 | u64 delta = (u64) r - (u64) l; | ||
32 | |||
33 | tmp = *l; | ||
34 | l->addr = r->addr + delta; | ||
35 | l->cont = r->cont + delta; | ||
36 | r->addr = tmp.addr - delta; | ||
37 | r->cont = tmp.cont - delta; | ||
38 | } | ||
39 | |||
40 | /* | ||
41 | * Sort the exception table. It's usually already sorted, but there | ||
42 | * may be unordered entries due to multiple text sections (such as the | ||
43 | * .init text section). Note that the exception-table-entries contain | ||
44 | * location-relative addresses, which requires a bit of care during | ||
45 | * sorting to avoid overflows in the offset members (e.g., it would | ||
46 | * not be safe to make a temporary copy of an exception-table entry on | ||
47 | * the stack, because the stack may be more than 2GB away from the | ||
48 | * exception-table). | ||
49 | */ | ||
50 | void sort_extable (struct exception_table_entry *start, | ||
51 | struct exception_table_entry *finish) | ||
52 | { | ||
53 | sort(start, finish - start, sizeof(struct exception_table_entry), | ||
54 | cmp_ex, swap_ex); | ||
55 | } | ||
56 | |||
57 | const struct exception_table_entry * | ||
58 | search_extable (const struct exception_table_entry *first, | ||
59 | const struct exception_table_entry *last, | ||
60 | unsigned long ip) | ||
61 | { | ||
62 | const struct exception_table_entry *mid; | ||
63 | unsigned long mid_ip; | ||
64 | long diff; | ||
65 | |||
66 | while (first <= last) { | ||
67 | mid = &first[(last - first)/2]; | ||
68 | mid_ip = (u64) &mid->addr + mid->addr; | ||
69 | diff = mid_ip - ip; | ||
70 | if (diff == 0) | ||
71 | return mid; | ||
72 | else if (diff < 0) | ||
73 | first = mid + 1; | ||
74 | else | ||
75 | last = mid - 1; | ||
76 | } | ||
77 | return NULL; | ||
78 | } | ||
79 | |||
80 | void | ||
81 | ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e) | ||
82 | { | ||
83 | long fix = (u64) &e->cont + e->cont; | ||
84 | |||
85 | regs->r8 = -EFAULT; | ||
86 | if (fix & 4) | ||
87 | regs->r9 = 0; | ||
88 | regs->cr_iip = fix & ~0xf; | ||
89 | ia64_psr(regs)->ri = fix & 0x3; /* set continuation slot number */ | ||
90 | } | ||
diff --git a/arch/ia64/mm/fault.c b/arch/ia64/mm/fault.c new file mode 100644 index 000000000000..da859125aaef --- /dev/null +++ b/arch/ia64/mm/fault.c | |||
@@ -0,0 +1,261 @@ | |||
1 | /* | ||
2 | * MMU fault handling support. | ||
3 | * | ||
4 | * Copyright (C) 1998-2002 Hewlett-Packard Co | ||
5 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
6 | */ | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/mm.h> | ||
10 | #include <linux/smp_lock.h> | ||
11 | #include <linux/interrupt.h> | ||
12 | |||
13 | #include <asm/pgtable.h> | ||
14 | #include <asm/processor.h> | ||
15 | #include <asm/system.h> | ||
16 | #include <asm/uaccess.h> | ||
17 | |||
18 | extern void die (char *, struct pt_regs *, long); | ||
19 | |||
20 | /* | ||
21 | * This routine is analogous to expand_stack() but instead grows the | ||
22 | * register backing store (which grows towards higher addresses). | ||
23 | * Since the register backing store is access sequentially, we | ||
24 | * disallow growing the RBS by more than a page at a time. Note that | ||
25 | * the VM_GROWSUP flag can be set on any VM area but that's fine | ||
26 | * because the total process size is still limited by RLIMIT_STACK and | ||
27 | * RLIMIT_AS. | ||
28 | */ | ||
29 | static inline long | ||
30 | expand_backing_store (struct vm_area_struct *vma, unsigned long address) | ||
31 | { | ||
32 | unsigned long grow; | ||
33 | |||
34 | grow = PAGE_SIZE >> PAGE_SHIFT; | ||
35 | if (address - vma->vm_start > current->signal->rlim[RLIMIT_STACK].rlim_cur | ||
36 | || (((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->signal->rlim[RLIMIT_AS].rlim_cur)) | ||
37 | return -ENOMEM; | ||
38 | vma->vm_end += PAGE_SIZE; | ||
39 | vma->vm_mm->total_vm += grow; | ||
40 | if (vma->vm_flags & VM_LOCKED) | ||
41 | vma->vm_mm->locked_vm += grow; | ||
42 | __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, grow); | ||
43 | return 0; | ||
44 | } | ||
45 | |||
46 | /* | ||
47 | * Return TRUE if ADDRESS points at a page in the kernel's mapped segment | ||
48 | * (inside region 5, on ia64) and that page is present. | ||
49 | */ | ||
50 | static int | ||
51 | mapped_kernel_page_is_present (unsigned long address) | ||
52 | { | ||
53 | pgd_t *pgd; | ||
54 | pud_t *pud; | ||
55 | pmd_t *pmd; | ||
56 | pte_t *ptep, pte; | ||
57 | |||
58 | pgd = pgd_offset_k(address); | ||
59 | if (pgd_none(*pgd) || pgd_bad(*pgd)) | ||
60 | return 0; | ||
61 | |||
62 | pud = pud_offset(pgd, address); | ||
63 | if (pud_none(*pud) || pud_bad(*pud)) | ||
64 | return 0; | ||
65 | |||
66 | pmd = pmd_offset(pud, address); | ||
67 | if (pmd_none(*pmd) || pmd_bad(*pmd)) | ||
68 | return 0; | ||
69 | |||
70 | ptep = pte_offset_kernel(pmd, address); | ||
71 | if (!ptep) | ||
72 | return 0; | ||
73 | |||
74 | pte = *ptep; | ||
75 | return pte_present(pte); | ||
76 | } | ||
77 | |||
78 | void | ||
79 | ia64_do_page_fault (unsigned long address, unsigned long isr, struct pt_regs *regs) | ||
80 | { | ||
81 | int signal = SIGSEGV, code = SEGV_MAPERR; | ||
82 | struct vm_area_struct *vma, *prev_vma; | ||
83 | struct mm_struct *mm = current->mm; | ||
84 | struct siginfo si; | ||
85 | unsigned long mask; | ||
86 | |||
87 | /* | ||
88 | * If we're in an interrupt or have no user context, we must not take the fault.. | ||
89 | */ | ||
90 | if (in_atomic() || !mm) | ||
91 | goto no_context; | ||
92 | |||
93 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
94 | /* | ||
95 | * If fault is in region 5 and we are in the kernel, we may already | ||
96 | * have the mmap_sem (pfn_valid macro is called during mmap). There | ||
97 | * is no vma for region 5 addr's anyway, so skip getting the semaphore | ||
98 | * and go directly to the exception handling code. | ||
99 | */ | ||
100 | |||
101 | if ((REGION_NUMBER(address) == 5) && !user_mode(regs)) | ||
102 | goto bad_area_no_up; | ||
103 | #endif | ||
104 | |||
105 | down_read(&mm->mmap_sem); | ||
106 | |||
107 | vma = find_vma_prev(mm, address, &prev_vma); | ||
108 | if (!vma) | ||
109 | goto bad_area; | ||
110 | |||
111 | /* find_vma_prev() returns vma such that address < vma->vm_end or NULL */ | ||
112 | if (address < vma->vm_start) | ||
113 | goto check_expansion; | ||
114 | |||
115 | good_area: | ||
116 | code = SEGV_ACCERR; | ||
117 | |||
118 | /* OK, we've got a good vm_area for this memory area. Check the access permissions: */ | ||
119 | |||
120 | # define VM_READ_BIT 0 | ||
121 | # define VM_WRITE_BIT 1 | ||
122 | # define VM_EXEC_BIT 2 | ||
123 | |||
124 | # if (((1 << VM_READ_BIT) != VM_READ || (1 << VM_WRITE_BIT) != VM_WRITE) \ | ||
125 | || (1 << VM_EXEC_BIT) != VM_EXEC) | ||
126 | # error File is out of sync with <linux/mm.h>. Please update. | ||
127 | # endif | ||
128 | |||
129 | mask = ( (((isr >> IA64_ISR_X_BIT) & 1UL) << VM_EXEC_BIT) | ||
130 | | (((isr >> IA64_ISR_W_BIT) & 1UL) << VM_WRITE_BIT) | ||
131 | | (((isr >> IA64_ISR_R_BIT) & 1UL) << VM_READ_BIT)); | ||
132 | |||
133 | if ((vma->vm_flags & mask) != mask) | ||
134 | goto bad_area; | ||
135 | |||
136 | survive: | ||
137 | /* | ||
138 | * If for any reason at all we couldn't handle the fault, make | ||
139 | * sure we exit gracefully rather than endlessly redo the | ||
140 | * fault. | ||
141 | */ | ||
142 | switch (handle_mm_fault(mm, vma, address, (mask & VM_WRITE) != 0)) { | ||
143 | case VM_FAULT_MINOR: | ||
144 | ++current->min_flt; | ||
145 | break; | ||
146 | case VM_FAULT_MAJOR: | ||
147 | ++current->maj_flt; | ||
148 | break; | ||
149 | case VM_FAULT_SIGBUS: | ||
150 | /* | ||
151 | * We ran out of memory, or some other thing happened | ||
152 | * to us that made us unable to handle the page fault | ||
153 | * gracefully. | ||
154 | */ | ||
155 | signal = SIGBUS; | ||
156 | goto bad_area; | ||
157 | case VM_FAULT_OOM: | ||
158 | goto out_of_memory; | ||
159 | default: | ||
160 | BUG(); | ||
161 | } | ||
162 | up_read(&mm->mmap_sem); | ||
163 | return; | ||
164 | |||
165 | check_expansion: | ||
166 | if (!(prev_vma && (prev_vma->vm_flags & VM_GROWSUP) && (address == prev_vma->vm_end))) { | ||
167 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
168 | goto bad_area; | ||
169 | if (REGION_NUMBER(address) != REGION_NUMBER(vma->vm_start) | ||
170 | || REGION_OFFSET(address) >= RGN_MAP_LIMIT) | ||
171 | goto bad_area; | ||
172 | if (expand_stack(vma, address)) | ||
173 | goto bad_area; | ||
174 | } else { | ||
175 | vma = prev_vma; | ||
176 | if (REGION_NUMBER(address) != REGION_NUMBER(vma->vm_start) | ||
177 | || REGION_OFFSET(address) >= RGN_MAP_LIMIT) | ||
178 | goto bad_area; | ||
179 | if (expand_backing_store(vma, address)) | ||
180 | goto bad_area; | ||
181 | } | ||
182 | goto good_area; | ||
183 | |||
184 | bad_area: | ||
185 | up_read(&mm->mmap_sem); | ||
186 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
187 | bad_area_no_up: | ||
188 | #endif | ||
189 | if ((isr & IA64_ISR_SP) | ||
190 | || ((isr & IA64_ISR_NA) && (isr & IA64_ISR_CODE_MASK) == IA64_ISR_CODE_LFETCH)) | ||
191 | { | ||
192 | /* | ||
193 | * This fault was due to a speculative load or lfetch.fault, set the "ed" | ||
194 | * bit in the psr to ensure forward progress. (Target register will get a | ||
195 | * NaT for ld.s, lfetch will be canceled.) | ||
196 | */ | ||
197 | ia64_psr(regs)->ed = 1; | ||
198 | return; | ||
199 | } | ||
200 | if (user_mode(regs)) { | ||
201 | si.si_signo = signal; | ||
202 | si.si_errno = 0; | ||
203 | si.si_code = code; | ||
204 | si.si_addr = (void __user *) address; | ||
205 | si.si_isr = isr; | ||
206 | si.si_flags = __ISR_VALID; | ||
207 | force_sig_info(signal, &si, current); | ||
208 | return; | ||
209 | } | ||
210 | |||
211 | no_context: | ||
212 | if (isr & IA64_ISR_SP) { | ||
213 | /* | ||
214 | * This fault was due to a speculative load set the "ed" bit in the psr to | ||
215 | * ensure forward progress (target register will get a NaT). | ||
216 | */ | ||
217 | ia64_psr(regs)->ed = 1; | ||
218 | return; | ||
219 | } | ||
220 | |||
221 | if (ia64_done_with_exception(regs)) | ||
222 | return; | ||
223 | |||
224 | /* | ||
225 | * Since we have no vma's for region 5, we might get here even if the address is | ||
226 | * valid, due to the VHPT walker inserting a non present translation that becomes | ||
227 | * stale. If that happens, the non present fault handler already purged the stale | ||
228 | * translation, which fixed the problem. So, we check to see if the translation is | ||
229 | * valid, and return if it is. | ||
230 | */ | ||
231 | if (REGION_NUMBER(address) == 5 && mapped_kernel_page_is_present(address)) | ||
232 | return; | ||
233 | |||
234 | /* | ||
235 | * Oops. The kernel tried to access some bad page. We'll have to terminate things | ||
236 | * with extreme prejudice. | ||
237 | */ | ||
238 | bust_spinlocks(1); | ||
239 | |||
240 | if (address < PAGE_SIZE) | ||
241 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference (address %016lx)\n", address); | ||
242 | else | ||
243 | printk(KERN_ALERT "Unable to handle kernel paging request at " | ||
244 | "virtual address %016lx\n", address); | ||
245 | die("Oops", regs, isr); | ||
246 | bust_spinlocks(0); | ||
247 | do_exit(SIGKILL); | ||
248 | return; | ||
249 | |||
250 | out_of_memory: | ||
251 | up_read(&mm->mmap_sem); | ||
252 | if (current->pid == 1) { | ||
253 | yield(); | ||
254 | down_read(&mm->mmap_sem); | ||
255 | goto survive; | ||
256 | } | ||
257 | printk(KERN_CRIT "VM: killing process %s\n", current->comm); | ||
258 | if (user_mode(regs)) | ||
259 | do_exit(SIGKILL); | ||
260 | goto no_context; | ||
261 | } | ||
diff --git a/arch/ia64/mm/hugetlbpage.c b/arch/ia64/mm/hugetlbpage.c new file mode 100644 index 000000000000..40ad8328ffd5 --- /dev/null +++ b/arch/ia64/mm/hugetlbpage.c | |||
@@ -0,0 +1,357 @@ | |||
1 | /* | ||
2 | * IA-64 Huge TLB Page Support for Kernel. | ||
3 | * | ||
4 | * Copyright (C) 2002-2004 Rohit Seth <rohit.seth@intel.com> | ||
5 | * Copyright (C) 2003-2004 Ken Chen <kenneth.w.chen@intel.com> | ||
6 | * | ||
7 | * Sep, 2003: add numa support | ||
8 | * Feb, 2004: dynamic hugetlb page size via boot parameter | ||
9 | */ | ||
10 | |||
11 | #include <linux/config.h> | ||
12 | #include <linux/init.h> | ||
13 | #include <linux/fs.h> | ||
14 | #include <linux/mm.h> | ||
15 | #include <linux/hugetlb.h> | ||
16 | #include <linux/pagemap.h> | ||
17 | #include <linux/smp_lock.h> | ||
18 | #include <linux/slab.h> | ||
19 | #include <linux/sysctl.h> | ||
20 | #include <asm/mman.h> | ||
21 | #include <asm/pgalloc.h> | ||
22 | #include <asm/tlb.h> | ||
23 | #include <asm/tlbflush.h> | ||
24 | |||
25 | unsigned int hpage_shift=HPAGE_SHIFT_DEFAULT; | ||
26 | |||
27 | static pte_t * | ||
28 | huge_pte_alloc (struct mm_struct *mm, unsigned long addr) | ||
29 | { | ||
30 | unsigned long taddr = htlbpage_to_page(addr); | ||
31 | pgd_t *pgd; | ||
32 | pud_t *pud; | ||
33 | pmd_t *pmd; | ||
34 | pte_t *pte = NULL; | ||
35 | |||
36 | pgd = pgd_offset(mm, taddr); | ||
37 | pud = pud_alloc(mm, pgd, taddr); | ||
38 | if (pud) { | ||
39 | pmd = pmd_alloc(mm, pud, taddr); | ||
40 | if (pmd) | ||
41 | pte = pte_alloc_map(mm, pmd, taddr); | ||
42 | } | ||
43 | return pte; | ||
44 | } | ||
45 | |||
46 | static pte_t * | ||
47 | huge_pte_offset (struct mm_struct *mm, unsigned long addr) | ||
48 | { | ||
49 | unsigned long taddr = htlbpage_to_page(addr); | ||
50 | pgd_t *pgd; | ||
51 | pud_t *pud; | ||
52 | pmd_t *pmd; | ||
53 | pte_t *pte = NULL; | ||
54 | |||
55 | pgd = pgd_offset(mm, taddr); | ||
56 | if (pgd_present(*pgd)) { | ||
57 | pud = pud_offset(pgd, taddr); | ||
58 | if (pud_present(*pud)) { | ||
59 | pmd = pmd_offset(pud, taddr); | ||
60 | if (pmd_present(*pmd)) | ||
61 | pte = pte_offset_map(pmd, taddr); | ||
62 | } | ||
63 | } | ||
64 | |||
65 | return pte; | ||
66 | } | ||
67 | |||
68 | #define mk_pte_huge(entry) { pte_val(entry) |= _PAGE_P; } | ||
69 | |||
70 | static void | ||
71 | set_huge_pte (struct mm_struct *mm, struct vm_area_struct *vma, | ||
72 | struct page *page, pte_t * page_table, int write_access) | ||
73 | { | ||
74 | pte_t entry; | ||
75 | |||
76 | add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE); | ||
77 | if (write_access) { | ||
78 | entry = | ||
79 | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | ||
80 | } else | ||
81 | entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | ||
82 | entry = pte_mkyoung(entry); | ||
83 | mk_pte_huge(entry); | ||
84 | set_pte(page_table, entry); | ||
85 | return; | ||
86 | } | ||
87 | /* | ||
88 | * This function checks for proper alignment of input addr and len parameters. | ||
89 | */ | ||
90 | int is_aligned_hugepage_range(unsigned long addr, unsigned long len) | ||
91 | { | ||
92 | if (len & ~HPAGE_MASK) | ||
93 | return -EINVAL; | ||
94 | if (addr & ~HPAGE_MASK) | ||
95 | return -EINVAL; | ||
96 | if (REGION_NUMBER(addr) != REGION_HPAGE) | ||
97 | return -EINVAL; | ||
98 | |||
99 | return 0; | ||
100 | } | ||
101 | |||
102 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | ||
103 | struct vm_area_struct *vma) | ||
104 | { | ||
105 | pte_t *src_pte, *dst_pte, entry; | ||
106 | struct page *ptepage; | ||
107 | unsigned long addr = vma->vm_start; | ||
108 | unsigned long end = vma->vm_end; | ||
109 | |||
110 | while (addr < end) { | ||
111 | dst_pte = huge_pte_alloc(dst, addr); | ||
112 | if (!dst_pte) | ||
113 | goto nomem; | ||
114 | src_pte = huge_pte_offset(src, addr); | ||
115 | entry = *src_pte; | ||
116 | ptepage = pte_page(entry); | ||
117 | get_page(ptepage); | ||
118 | set_pte(dst_pte, entry); | ||
119 | add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE); | ||
120 | addr += HPAGE_SIZE; | ||
121 | } | ||
122 | return 0; | ||
123 | nomem: | ||
124 | return -ENOMEM; | ||
125 | } | ||
126 | |||
127 | int | ||
128 | follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | ||
129 | struct page **pages, struct vm_area_struct **vmas, | ||
130 | unsigned long *st, int *length, int i) | ||
131 | { | ||
132 | pte_t *ptep, pte; | ||
133 | unsigned long start = *st; | ||
134 | unsigned long pstart; | ||
135 | int len = *length; | ||
136 | struct page *page; | ||
137 | |||
138 | do { | ||
139 | pstart = start & HPAGE_MASK; | ||
140 | ptep = huge_pte_offset(mm, start); | ||
141 | pte = *ptep; | ||
142 | |||
143 | back1: | ||
144 | page = pte_page(pte); | ||
145 | if (pages) { | ||
146 | page += ((start & ~HPAGE_MASK) >> PAGE_SHIFT); | ||
147 | get_page(page); | ||
148 | pages[i] = page; | ||
149 | } | ||
150 | if (vmas) | ||
151 | vmas[i] = vma; | ||
152 | i++; | ||
153 | len--; | ||
154 | start += PAGE_SIZE; | ||
155 | if (((start & HPAGE_MASK) == pstart) && len && | ||
156 | (start < vma->vm_end)) | ||
157 | goto back1; | ||
158 | } while (len && start < vma->vm_end); | ||
159 | *length = len; | ||
160 | *st = start; | ||
161 | return i; | ||
162 | } | ||
163 | |||
164 | struct page *follow_huge_addr(struct mm_struct *mm, unsigned long addr, int write) | ||
165 | { | ||
166 | struct page *page; | ||
167 | pte_t *ptep; | ||
168 | |||
169 | if (REGION_NUMBER(addr) != REGION_HPAGE) | ||
170 | return ERR_PTR(-EINVAL); | ||
171 | |||
172 | ptep = huge_pte_offset(mm, addr); | ||
173 | if (!ptep || pte_none(*ptep)) | ||
174 | return NULL; | ||
175 | page = pte_page(*ptep); | ||
176 | page += ((addr & ~HPAGE_MASK) >> PAGE_SHIFT); | ||
177 | return page; | ||
178 | } | ||
179 | int pmd_huge(pmd_t pmd) | ||
180 | { | ||
181 | return 0; | ||
182 | } | ||
183 | struct page * | ||
184 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) | ||
185 | { | ||
186 | return NULL; | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * Same as generic free_pgtables(), except constant PGDIR_* and pgd_offset | ||
191 | * are hugetlb region specific. | ||
192 | */ | ||
193 | void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev, | ||
194 | unsigned long start, unsigned long end) | ||
195 | { | ||
196 | unsigned long first = start & HUGETLB_PGDIR_MASK; | ||
197 | unsigned long last = end + HUGETLB_PGDIR_SIZE - 1; | ||
198 | struct mm_struct *mm = tlb->mm; | ||
199 | |||
200 | if (!prev) { | ||
201 | prev = mm->mmap; | ||
202 | if (!prev) | ||
203 | goto no_mmaps; | ||
204 | if (prev->vm_end > start) { | ||
205 | if (last > prev->vm_start) | ||
206 | last = prev->vm_start; | ||
207 | goto no_mmaps; | ||
208 | } | ||
209 | } | ||
210 | for (;;) { | ||
211 | struct vm_area_struct *next = prev->vm_next; | ||
212 | |||
213 | if (next) { | ||
214 | if (next->vm_start < start) { | ||
215 | prev = next; | ||
216 | continue; | ||
217 | } | ||
218 | if (last > next->vm_start) | ||
219 | last = next->vm_start; | ||
220 | } | ||
221 | if (prev->vm_end > first) | ||
222 | first = prev->vm_end; | ||
223 | break; | ||
224 | } | ||
225 | no_mmaps: | ||
226 | if (last < first) /* for arches with discontiguous pgd indices */ | ||
227 | return; | ||
228 | clear_page_range(tlb, first, last); | ||
229 | } | ||
230 | |||
231 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | ||
232 | { | ||
233 | struct mm_struct *mm = vma->vm_mm; | ||
234 | unsigned long address; | ||
235 | pte_t *pte; | ||
236 | struct page *page; | ||
237 | |||
238 | BUG_ON(start & (HPAGE_SIZE - 1)); | ||
239 | BUG_ON(end & (HPAGE_SIZE - 1)); | ||
240 | |||
241 | for (address = start; address < end; address += HPAGE_SIZE) { | ||
242 | pte = huge_pte_offset(mm, address); | ||
243 | if (pte_none(*pte)) | ||
244 | continue; | ||
245 | page = pte_page(*pte); | ||
246 | put_page(page); | ||
247 | pte_clear(mm, address, pte); | ||
248 | } | ||
249 | add_mm_counter(mm, rss, - ((end - start) >> PAGE_SHIFT)); | ||
250 | flush_tlb_range(vma, start, end); | ||
251 | } | ||
252 | |||
253 | int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma) | ||
254 | { | ||
255 | struct mm_struct *mm = current->mm; | ||
256 | unsigned long addr; | ||
257 | int ret = 0; | ||
258 | |||
259 | BUG_ON(vma->vm_start & ~HPAGE_MASK); | ||
260 | BUG_ON(vma->vm_end & ~HPAGE_MASK); | ||
261 | |||
262 | spin_lock(&mm->page_table_lock); | ||
263 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | ||
264 | unsigned long idx; | ||
265 | pte_t *pte = huge_pte_alloc(mm, addr); | ||
266 | struct page *page; | ||
267 | |||
268 | if (!pte) { | ||
269 | ret = -ENOMEM; | ||
270 | goto out; | ||
271 | } | ||
272 | if (!pte_none(*pte)) | ||
273 | continue; | ||
274 | |||
275 | idx = ((addr - vma->vm_start) >> HPAGE_SHIFT) | ||
276 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | ||
277 | page = find_get_page(mapping, idx); | ||
278 | if (!page) { | ||
279 | /* charge the fs quota first */ | ||
280 | if (hugetlb_get_quota(mapping)) { | ||
281 | ret = -ENOMEM; | ||
282 | goto out; | ||
283 | } | ||
284 | page = alloc_huge_page(); | ||
285 | if (!page) { | ||
286 | hugetlb_put_quota(mapping); | ||
287 | ret = -ENOMEM; | ||
288 | goto out; | ||
289 | } | ||
290 | ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC); | ||
291 | if (! ret) { | ||
292 | unlock_page(page); | ||
293 | } else { | ||
294 | hugetlb_put_quota(mapping); | ||
295 | page_cache_release(page); | ||
296 | goto out; | ||
297 | } | ||
298 | } | ||
299 | set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE); | ||
300 | } | ||
301 | out: | ||
302 | spin_unlock(&mm->page_table_lock); | ||
303 | return ret; | ||
304 | } | ||
305 | |||
306 | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, | ||
307 | unsigned long pgoff, unsigned long flags) | ||
308 | { | ||
309 | struct vm_area_struct *vmm; | ||
310 | |||
311 | if (len > RGN_MAP_LIMIT) | ||
312 | return -ENOMEM; | ||
313 | if (len & ~HPAGE_MASK) | ||
314 | return -EINVAL; | ||
315 | /* This code assumes that REGION_HPAGE != 0. */ | ||
316 | if ((REGION_NUMBER(addr) != REGION_HPAGE) || (addr & (HPAGE_SIZE - 1))) | ||
317 | addr = HPAGE_REGION_BASE; | ||
318 | else | ||
319 | addr = ALIGN(addr, HPAGE_SIZE); | ||
320 | for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) { | ||
321 | /* At this point: (!vmm || addr < vmm->vm_end). */ | ||
322 | if (REGION_OFFSET(addr) + len > RGN_MAP_LIMIT) | ||
323 | return -ENOMEM; | ||
324 | if (!vmm || (addr + len) <= vmm->vm_start) | ||
325 | return addr; | ||
326 | addr = ALIGN(vmm->vm_end, HPAGE_SIZE); | ||
327 | } | ||
328 | } | ||
329 | |||
330 | static int __init hugetlb_setup_sz(char *str) | ||
331 | { | ||
332 | u64 tr_pages; | ||
333 | unsigned long long size; | ||
334 | |||
335 | if (ia64_pal_vm_page_size(&tr_pages, NULL) != 0) | ||
336 | /* | ||
337 | * shouldn't happen, but just in case. | ||
338 | */ | ||
339 | tr_pages = 0x15557000UL; | ||
340 | |||
341 | size = memparse(str, &str); | ||
342 | if (*str || (size & (size-1)) || !(tr_pages & size) || | ||
343 | size <= PAGE_SIZE || | ||
344 | size >= (1UL << PAGE_SHIFT << MAX_ORDER)) { | ||
345 | printk(KERN_WARNING "Invalid huge page size specified\n"); | ||
346 | return 1; | ||
347 | } | ||
348 | |||
349 | hpage_shift = __ffs(size); | ||
350 | /* | ||
351 | * boot cpu already executed ia64_mmu_init, and has HPAGE_SHIFT_DEFAULT | ||
352 | * override here with new page shift. | ||
353 | */ | ||
354 | ia64_set_rr(HPAGE_REGION_BASE, hpage_shift << 2); | ||
355 | return 1; | ||
356 | } | ||
357 | __setup("hugepagesz=", hugetlb_setup_sz); | ||
diff --git a/arch/ia64/mm/init.c b/arch/ia64/mm/init.c new file mode 100644 index 000000000000..65cf839573ea --- /dev/null +++ b/arch/ia64/mm/init.c | |||
@@ -0,0 +1,597 @@ | |||
1 | /* | ||
2 | * Initialize MMU support. | ||
3 | * | ||
4 | * Copyright (C) 1998-2003 Hewlett-Packard Co | ||
5 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
6 | */ | ||
7 | #include <linux/config.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/init.h> | ||
10 | |||
11 | #include <linux/bootmem.h> | ||
12 | #include <linux/efi.h> | ||
13 | #include <linux/elf.h> | ||
14 | #include <linux/mm.h> | ||
15 | #include <linux/mmzone.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/personality.h> | ||
18 | #include <linux/reboot.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/proc_fs.h> | ||
22 | #include <linux/bitops.h> | ||
23 | |||
24 | #include <asm/a.out.h> | ||
25 | #include <asm/dma.h> | ||
26 | #include <asm/ia32.h> | ||
27 | #include <asm/io.h> | ||
28 | #include <asm/machvec.h> | ||
29 | #include <asm/numa.h> | ||
30 | #include <asm/patch.h> | ||
31 | #include <asm/pgalloc.h> | ||
32 | #include <asm/sal.h> | ||
33 | #include <asm/sections.h> | ||
34 | #include <asm/system.h> | ||
35 | #include <asm/tlb.h> | ||
36 | #include <asm/uaccess.h> | ||
37 | #include <asm/unistd.h> | ||
38 | #include <asm/mca.h> | ||
39 | |||
40 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | ||
41 | |||
42 | extern void ia64_tlb_init (void); | ||
43 | |||
44 | unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; | ||
45 | |||
46 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
47 | unsigned long vmalloc_end = VMALLOC_END_INIT; | ||
48 | EXPORT_SYMBOL(vmalloc_end); | ||
49 | struct page *vmem_map; | ||
50 | EXPORT_SYMBOL(vmem_map); | ||
51 | #endif | ||
52 | |||
53 | static int pgt_cache_water[2] = { 25, 50 }; | ||
54 | |||
55 | struct page *zero_page_memmap_ptr; /* map entry for zero page */ | ||
56 | EXPORT_SYMBOL(zero_page_memmap_ptr); | ||
57 | |||
58 | void | ||
59 | check_pgt_cache (void) | ||
60 | { | ||
61 | int low, high; | ||
62 | |||
63 | low = pgt_cache_water[0]; | ||
64 | high = pgt_cache_water[1]; | ||
65 | |||
66 | preempt_disable(); | ||
67 | if (pgtable_cache_size > (u64) high) { | ||
68 | do { | ||
69 | if (pgd_quicklist) | ||
70 | free_page((unsigned long)pgd_alloc_one_fast(NULL)); | ||
71 | if (pmd_quicklist) | ||
72 | free_page((unsigned long)pmd_alloc_one_fast(NULL, 0)); | ||
73 | } while (pgtable_cache_size > (u64) low); | ||
74 | } | ||
75 | preempt_enable(); | ||
76 | } | ||
77 | |||
78 | void | ||
79 | lazy_mmu_prot_update (pte_t pte) | ||
80 | { | ||
81 | unsigned long addr; | ||
82 | struct page *page; | ||
83 | |||
84 | if (!pte_exec(pte)) | ||
85 | return; /* not an executable page... */ | ||
86 | |||
87 | page = pte_page(pte); | ||
88 | addr = (unsigned long) page_address(page); | ||
89 | |||
90 | if (test_bit(PG_arch_1, &page->flags)) | ||
91 | return; /* i-cache is already coherent with d-cache */ | ||
92 | |||
93 | flush_icache_range(addr, addr + PAGE_SIZE); | ||
94 | set_bit(PG_arch_1, &page->flags); /* mark page as clean */ | ||
95 | } | ||
96 | |||
97 | inline void | ||
98 | ia64_set_rbs_bot (void) | ||
99 | { | ||
100 | unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; | ||
101 | |||
102 | if (stack_size > MAX_USER_STACK_SIZE) | ||
103 | stack_size = MAX_USER_STACK_SIZE; | ||
104 | current->thread.rbs_bot = STACK_TOP - stack_size; | ||
105 | } | ||
106 | |||
107 | /* | ||
108 | * This performs some platform-dependent address space initialization. | ||
109 | * On IA-64, we want to setup the VM area for the register backing | ||
110 | * store (which grows upwards) and install the gateway page which is | ||
111 | * used for signal trampolines, etc. | ||
112 | */ | ||
113 | void | ||
114 | ia64_init_addr_space (void) | ||
115 | { | ||
116 | struct vm_area_struct *vma; | ||
117 | |||
118 | ia64_set_rbs_bot(); | ||
119 | |||
120 | /* | ||
121 | * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore | ||
122 | * the problem. When the process attempts to write to the register backing store | ||
123 | * for the first time, it will get a SEGFAULT in this case. | ||
124 | */ | ||
125 | vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); | ||
126 | if (vma) { | ||
127 | memset(vma, 0, sizeof(*vma)); | ||
128 | vma->vm_mm = current->mm; | ||
129 | vma->vm_start = current->thread.rbs_bot & PAGE_MASK; | ||
130 | vma->vm_end = vma->vm_start + PAGE_SIZE; | ||
131 | vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7]; | ||
132 | vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP; | ||
133 | down_write(¤t->mm->mmap_sem); | ||
134 | if (insert_vm_struct(current->mm, vma)) { | ||
135 | up_write(¤t->mm->mmap_sem); | ||
136 | kmem_cache_free(vm_area_cachep, vma); | ||
137 | return; | ||
138 | } | ||
139 | up_write(¤t->mm->mmap_sem); | ||
140 | } | ||
141 | |||
142 | /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ | ||
143 | if (!(current->personality & MMAP_PAGE_ZERO)) { | ||
144 | vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); | ||
145 | if (vma) { | ||
146 | memset(vma, 0, sizeof(*vma)); | ||
147 | vma->vm_mm = current->mm; | ||
148 | vma->vm_end = PAGE_SIZE; | ||
149 | vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); | ||
150 | vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; | ||
151 | down_write(¤t->mm->mmap_sem); | ||
152 | if (insert_vm_struct(current->mm, vma)) { | ||
153 | up_write(¤t->mm->mmap_sem); | ||
154 | kmem_cache_free(vm_area_cachep, vma); | ||
155 | return; | ||
156 | } | ||
157 | up_write(¤t->mm->mmap_sem); | ||
158 | } | ||
159 | } | ||
160 | } | ||
161 | |||
162 | void | ||
163 | free_initmem (void) | ||
164 | { | ||
165 | unsigned long addr, eaddr; | ||
166 | |||
167 | addr = (unsigned long) ia64_imva(__init_begin); | ||
168 | eaddr = (unsigned long) ia64_imva(__init_end); | ||
169 | while (addr < eaddr) { | ||
170 | ClearPageReserved(virt_to_page(addr)); | ||
171 | set_page_count(virt_to_page(addr), 1); | ||
172 | free_page(addr); | ||
173 | ++totalram_pages; | ||
174 | addr += PAGE_SIZE; | ||
175 | } | ||
176 | printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", | ||
177 | (__init_end - __init_begin) >> 10); | ||
178 | } | ||
179 | |||
180 | void | ||
181 | free_initrd_mem (unsigned long start, unsigned long end) | ||
182 | { | ||
183 | struct page *page; | ||
184 | /* | ||
185 | * EFI uses 4KB pages while the kernel can use 4KB or bigger. | ||
186 | * Thus EFI and the kernel may have different page sizes. It is | ||
187 | * therefore possible to have the initrd share the same page as | ||
188 | * the end of the kernel (given current setup). | ||
189 | * | ||
190 | * To avoid freeing/using the wrong page (kernel sized) we: | ||
191 | * - align up the beginning of initrd | ||
192 | * - align down the end of initrd | ||
193 | * | ||
194 | * | | | ||
195 | * |=============| a000 | ||
196 | * | | | ||
197 | * | | | ||
198 | * | | 9000 | ||
199 | * |/////////////| | ||
200 | * |/////////////| | ||
201 | * |=============| 8000 | ||
202 | * |///INITRD////| | ||
203 | * |/////////////| | ||
204 | * |/////////////| 7000 | ||
205 | * | | | ||
206 | * |KKKKKKKKKKKKK| | ||
207 | * |=============| 6000 | ||
208 | * |KKKKKKKKKKKKK| | ||
209 | * |KKKKKKKKKKKKK| | ||
210 | * K=kernel using 8KB pages | ||
211 | * | ||
212 | * In this example, we must free page 8000 ONLY. So we must align up | ||
213 | * initrd_start and keep initrd_end as is. | ||
214 | */ | ||
215 | start = PAGE_ALIGN(start); | ||
216 | end = end & PAGE_MASK; | ||
217 | |||
218 | if (start < end) | ||
219 | printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); | ||
220 | |||
221 | for (; start < end; start += PAGE_SIZE) { | ||
222 | if (!virt_addr_valid(start)) | ||
223 | continue; | ||
224 | page = virt_to_page(start); | ||
225 | ClearPageReserved(page); | ||
226 | set_page_count(page, 1); | ||
227 | free_page(start); | ||
228 | ++totalram_pages; | ||
229 | } | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * This installs a clean page in the kernel's page table. | ||
234 | */ | ||
235 | struct page * | ||
236 | put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) | ||
237 | { | ||
238 | pgd_t *pgd; | ||
239 | pud_t *pud; | ||
240 | pmd_t *pmd; | ||
241 | pte_t *pte; | ||
242 | |||
243 | if (!PageReserved(page)) | ||
244 | printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", | ||
245 | page_address(page)); | ||
246 | |||
247 | pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ | ||
248 | |||
249 | spin_lock(&init_mm.page_table_lock); | ||
250 | { | ||
251 | pud = pud_alloc(&init_mm, pgd, address); | ||
252 | if (!pud) | ||
253 | goto out; | ||
254 | |||
255 | pmd = pmd_alloc(&init_mm, pud, address); | ||
256 | if (!pmd) | ||
257 | goto out; | ||
258 | pte = pte_alloc_map(&init_mm, pmd, address); | ||
259 | if (!pte) | ||
260 | goto out; | ||
261 | if (!pte_none(*pte)) { | ||
262 | pte_unmap(pte); | ||
263 | goto out; | ||
264 | } | ||
265 | set_pte(pte, mk_pte(page, pgprot)); | ||
266 | pte_unmap(pte); | ||
267 | } | ||
268 | out: spin_unlock(&init_mm.page_table_lock); | ||
269 | /* no need for flush_tlb */ | ||
270 | return page; | ||
271 | } | ||
272 | |||
273 | static void | ||
274 | setup_gate (void) | ||
275 | { | ||
276 | struct page *page; | ||
277 | |||
278 | /* | ||
279 | * Map the gate page twice: once read-only to export the ELF headers etc. and once | ||
280 | * execute-only page to enable privilege-promotion via "epc": | ||
281 | */ | ||
282 | page = virt_to_page(ia64_imva(__start_gate_section)); | ||
283 | put_kernel_page(page, GATE_ADDR, PAGE_READONLY); | ||
284 | #ifdef HAVE_BUGGY_SEGREL | ||
285 | page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); | ||
286 | put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); | ||
287 | #else | ||
288 | put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); | ||
289 | #endif | ||
290 | ia64_patch_gate(); | ||
291 | } | ||
292 | |||
293 | void __devinit | ||
294 | ia64_mmu_init (void *my_cpu_data) | ||
295 | { | ||
296 | unsigned long psr, pta, impl_va_bits; | ||
297 | extern void __devinit tlb_init (void); | ||
298 | |||
299 | #ifdef CONFIG_DISABLE_VHPT | ||
300 | # define VHPT_ENABLE_BIT 0 | ||
301 | #else | ||
302 | # define VHPT_ENABLE_BIT 1 | ||
303 | #endif | ||
304 | |||
305 | /* Pin mapping for percpu area into TLB */ | ||
306 | psr = ia64_clear_ic(); | ||
307 | ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR, | ||
308 | pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)), | ||
309 | PERCPU_PAGE_SHIFT); | ||
310 | |||
311 | ia64_set_psr(psr); | ||
312 | ia64_srlz_i(); | ||
313 | |||
314 | /* | ||
315 | * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped | ||
316 | * address space. The IA-64 architecture guarantees that at least 50 bits of | ||
317 | * virtual address space are implemented but if we pick a large enough page size | ||
318 | * (e.g., 64KB), the mapped address space is big enough that it will overlap with | ||
319 | * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, | ||
320 | * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a | ||
321 | * problem in practice. Alternatively, we could truncate the top of the mapped | ||
322 | * address space to not permit mappings that would overlap with the VMLPT. | ||
323 | * --davidm 00/12/06 | ||
324 | */ | ||
325 | # define pte_bits 3 | ||
326 | # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) | ||
327 | /* | ||
328 | * The virtual page table has to cover the entire implemented address space within | ||
329 | * a region even though not all of this space may be mappable. The reason for | ||
330 | * this is that the Access bit and Dirty bit fault handlers perform | ||
331 | * non-speculative accesses to the virtual page table, so the address range of the | ||
332 | * virtual page table itself needs to be covered by virtual page table. | ||
333 | */ | ||
334 | # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) | ||
335 | # define POW2(n) (1ULL << (n)) | ||
336 | |||
337 | impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); | ||
338 | |||
339 | if (impl_va_bits < 51 || impl_va_bits > 61) | ||
340 | panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); | ||
341 | |||
342 | /* place the VMLPT at the end of each page-table mapped region: */ | ||
343 | pta = POW2(61) - POW2(vmlpt_bits); | ||
344 | |||
345 | if (POW2(mapped_space_bits) >= pta) | ||
346 | panic("mm/init: overlap between virtually mapped linear page table and " | ||
347 | "mapped kernel space!"); | ||
348 | /* | ||
349 | * Set the (virtually mapped linear) page table address. Bit | ||
350 | * 8 selects between the short and long format, bits 2-7 the | ||
351 | * size of the table, and bit 0 whether the VHPT walker is | ||
352 | * enabled. | ||
353 | */ | ||
354 | ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); | ||
355 | |||
356 | ia64_tlb_init(); | ||
357 | |||
358 | #ifdef CONFIG_HUGETLB_PAGE | ||
359 | ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); | ||
360 | ia64_srlz_d(); | ||
361 | #endif | ||
362 | } | ||
363 | |||
364 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
365 | |||
366 | int | ||
367 | create_mem_map_page_table (u64 start, u64 end, void *arg) | ||
368 | { | ||
369 | unsigned long address, start_page, end_page; | ||
370 | struct page *map_start, *map_end; | ||
371 | int node; | ||
372 | pgd_t *pgd; | ||
373 | pud_t *pud; | ||
374 | pmd_t *pmd; | ||
375 | pte_t *pte; | ||
376 | |||
377 | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | ||
378 | map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); | ||
379 | |||
380 | start_page = (unsigned long) map_start & PAGE_MASK; | ||
381 | end_page = PAGE_ALIGN((unsigned long) map_end); | ||
382 | node = paddr_to_nid(__pa(start)); | ||
383 | |||
384 | for (address = start_page; address < end_page; address += PAGE_SIZE) { | ||
385 | pgd = pgd_offset_k(address); | ||
386 | if (pgd_none(*pgd)) | ||
387 | pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | ||
388 | pud = pud_offset(pgd, address); | ||
389 | |||
390 | if (pud_none(*pud)) | ||
391 | pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | ||
392 | pmd = pmd_offset(pud, address); | ||
393 | |||
394 | if (pmd_none(*pmd)) | ||
395 | pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | ||
396 | pte = pte_offset_kernel(pmd, address); | ||
397 | |||
398 | if (pte_none(*pte)) | ||
399 | set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, | ||
400 | PAGE_KERNEL)); | ||
401 | } | ||
402 | return 0; | ||
403 | } | ||
404 | |||
405 | struct memmap_init_callback_data { | ||
406 | struct page *start; | ||
407 | struct page *end; | ||
408 | int nid; | ||
409 | unsigned long zone; | ||
410 | }; | ||
411 | |||
412 | static int | ||
413 | virtual_memmap_init (u64 start, u64 end, void *arg) | ||
414 | { | ||
415 | struct memmap_init_callback_data *args; | ||
416 | struct page *map_start, *map_end; | ||
417 | |||
418 | args = (struct memmap_init_callback_data *) arg; | ||
419 | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | ||
420 | map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); | ||
421 | |||
422 | if (map_start < args->start) | ||
423 | map_start = args->start; | ||
424 | if (map_end > args->end) | ||
425 | map_end = args->end; | ||
426 | |||
427 | /* | ||
428 | * We have to initialize "out of bounds" struct page elements that fit completely | ||
429 | * on the same pages that were allocated for the "in bounds" elements because they | ||
430 | * may be referenced later (and found to be "reserved"). | ||
431 | */ | ||
432 | map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); | ||
433 | map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) | ||
434 | / sizeof(struct page)); | ||
435 | |||
436 | if (map_start < map_end) | ||
437 | memmap_init_zone((unsigned long)(map_end - map_start), | ||
438 | args->nid, args->zone, page_to_pfn(map_start)); | ||
439 | return 0; | ||
440 | } | ||
441 | |||
442 | void | ||
443 | memmap_init (unsigned long size, int nid, unsigned long zone, | ||
444 | unsigned long start_pfn) | ||
445 | { | ||
446 | if (!vmem_map) | ||
447 | memmap_init_zone(size, nid, zone, start_pfn); | ||
448 | else { | ||
449 | struct page *start; | ||
450 | struct memmap_init_callback_data args; | ||
451 | |||
452 | start = pfn_to_page(start_pfn); | ||
453 | args.start = start; | ||
454 | args.end = start + size; | ||
455 | args.nid = nid; | ||
456 | args.zone = zone; | ||
457 | |||
458 | efi_memmap_walk(virtual_memmap_init, &args); | ||
459 | } | ||
460 | } | ||
461 | |||
462 | int | ||
463 | ia64_pfn_valid (unsigned long pfn) | ||
464 | { | ||
465 | char byte; | ||
466 | struct page *pg = pfn_to_page(pfn); | ||
467 | |||
468 | return (__get_user(byte, (char __user *) pg) == 0) | ||
469 | && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) | ||
470 | || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); | ||
471 | } | ||
472 | EXPORT_SYMBOL(ia64_pfn_valid); | ||
473 | |||
474 | int | ||
475 | find_largest_hole (u64 start, u64 end, void *arg) | ||
476 | { | ||
477 | u64 *max_gap = arg; | ||
478 | |||
479 | static u64 last_end = PAGE_OFFSET; | ||
480 | |||
481 | /* NOTE: this algorithm assumes efi memmap table is ordered */ | ||
482 | |||
483 | if (*max_gap < (start - last_end)) | ||
484 | *max_gap = start - last_end; | ||
485 | last_end = end; | ||
486 | return 0; | ||
487 | } | ||
488 | #endif /* CONFIG_VIRTUAL_MEM_MAP */ | ||
489 | |||
490 | static int | ||
491 | count_reserved_pages (u64 start, u64 end, void *arg) | ||
492 | { | ||
493 | unsigned long num_reserved = 0; | ||
494 | unsigned long *count = arg; | ||
495 | |||
496 | for (; start < end; start += PAGE_SIZE) | ||
497 | if (PageReserved(virt_to_page(start))) | ||
498 | ++num_reserved; | ||
499 | *count += num_reserved; | ||
500 | return 0; | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Boot command-line option "nolwsys" can be used to disable the use of any light-weight | ||
505 | * system call handler. When this option is in effect, all fsyscalls will end up bubbling | ||
506 | * down into the kernel and calling the normal (heavy-weight) syscall handler. This is | ||
507 | * useful for performance testing, but conceivably could also come in handy for debugging | ||
508 | * purposes. | ||
509 | */ | ||
510 | |||
511 | static int nolwsys; | ||
512 | |||
513 | static int __init | ||
514 | nolwsys_setup (char *s) | ||
515 | { | ||
516 | nolwsys = 1; | ||
517 | return 1; | ||
518 | } | ||
519 | |||
520 | __setup("nolwsys", nolwsys_setup); | ||
521 | |||
522 | void | ||
523 | mem_init (void) | ||
524 | { | ||
525 | long reserved_pages, codesize, datasize, initsize; | ||
526 | unsigned long num_pgt_pages; | ||
527 | pg_data_t *pgdat; | ||
528 | int i; | ||
529 | static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; | ||
530 | |||
531 | #ifdef CONFIG_PCI | ||
532 | /* | ||
533 | * This needs to be called _after_ the command line has been parsed but _before_ | ||
534 | * any drivers that may need the PCI DMA interface are initialized or bootmem has | ||
535 | * been freed. | ||
536 | */ | ||
537 | platform_dma_init(); | ||
538 | #endif | ||
539 | |||
540 | #ifndef CONFIG_DISCONTIGMEM | ||
541 | if (!mem_map) | ||
542 | BUG(); | ||
543 | max_mapnr = max_low_pfn; | ||
544 | #endif | ||
545 | |||
546 | high_memory = __va(max_low_pfn * PAGE_SIZE); | ||
547 | |||
548 | kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); | ||
549 | kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); | ||
550 | kclist_add(&kcore_kernel, _stext, _end - _stext); | ||
551 | |||
552 | for_each_pgdat(pgdat) | ||
553 | totalram_pages += free_all_bootmem_node(pgdat); | ||
554 | |||
555 | reserved_pages = 0; | ||
556 | efi_memmap_walk(count_reserved_pages, &reserved_pages); | ||
557 | |||
558 | codesize = (unsigned long) _etext - (unsigned long) _stext; | ||
559 | datasize = (unsigned long) _edata - (unsigned long) _etext; | ||
560 | initsize = (unsigned long) __init_end - (unsigned long) __init_begin; | ||
561 | |||
562 | printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " | ||
563 | "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), | ||
564 | num_physpages << (PAGE_SHIFT - 10), codesize >> 10, | ||
565 | reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); | ||
566 | |||
567 | /* | ||
568 | * Allow for enough (cached) page table pages so that we can map the entire memory | ||
569 | * at least once. Each task also needs a couple of page tables pages, so add in a | ||
570 | * fudge factor for that (don't use "threads-max" here; that would be wrong!). | ||
571 | * Don't allow the cache to be more than 10% of total memory, though. | ||
572 | */ | ||
573 | # define NUM_TASKS 500 /* typical number of tasks */ | ||
574 | num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS; | ||
575 | if (num_pgt_pages > nr_free_pages() / 10) | ||
576 | num_pgt_pages = nr_free_pages() / 10; | ||
577 | if (num_pgt_pages > (u64) pgt_cache_water[1]) | ||
578 | pgt_cache_water[1] = num_pgt_pages; | ||
579 | |||
580 | /* | ||
581 | * For fsyscall entrpoints with no light-weight handler, use the ordinary | ||
582 | * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry | ||
583 | * code can tell them apart. | ||
584 | */ | ||
585 | for (i = 0; i < NR_syscalls; ++i) { | ||
586 | extern unsigned long fsyscall_table[NR_syscalls]; | ||
587 | extern unsigned long sys_call_table[NR_syscalls]; | ||
588 | |||
589 | if (!fsyscall_table[i] || nolwsys) | ||
590 | fsyscall_table[i] = sys_call_table[i] | 1; | ||
591 | } | ||
592 | setup_gate(); | ||
593 | |||
594 | #ifdef CONFIG_IA32_SUPPORT | ||
595 | ia32_mem_init(); | ||
596 | #endif | ||
597 | } | ||
diff --git a/arch/ia64/mm/numa.c b/arch/ia64/mm/numa.c new file mode 100644 index 000000000000..77118bbf3d8b --- /dev/null +++ b/arch/ia64/mm/numa.c | |||
@@ -0,0 +1,49 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * This file contains NUMA specific variables and functions which can | ||
7 | * be split away from DISCONTIGMEM and are used on NUMA machines with | ||
8 | * contiguous memory. | ||
9 | * | ||
10 | * 2002/08/07 Erich Focht <efocht@ess.nec.de> | ||
11 | */ | ||
12 | |||
13 | #include <linux/config.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/mm.h> | ||
17 | #include <linux/node.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/bootmem.h> | ||
20 | #include <asm/mmzone.h> | ||
21 | #include <asm/numa.h> | ||
22 | |||
23 | |||
24 | /* | ||
25 | * The following structures are usually initialized by ACPI or | ||
26 | * similar mechanisms and describe the NUMA characteristics of the machine. | ||
27 | */ | ||
28 | int num_node_memblks; | ||
29 | struct node_memblk_s node_memblk[NR_NODE_MEMBLKS]; | ||
30 | struct node_cpuid_s node_cpuid[NR_CPUS]; | ||
31 | /* | ||
32 | * This is a matrix with "distances" between nodes, they should be | ||
33 | * proportional to the memory access latency ratios. | ||
34 | */ | ||
35 | u8 numa_slit[MAX_NUMNODES * MAX_NUMNODES]; | ||
36 | |||
37 | /* Identify which cnode a physical address resides on */ | ||
38 | int | ||
39 | paddr_to_nid(unsigned long paddr) | ||
40 | { | ||
41 | int i; | ||
42 | |||
43 | for (i = 0; i < num_node_memblks; i++) | ||
44 | if (paddr >= node_memblk[i].start_paddr && | ||
45 | paddr < node_memblk[i].start_paddr + node_memblk[i].size) | ||
46 | break; | ||
47 | |||
48 | return (i < num_node_memblks) ? node_memblk[i].nid : (num_node_memblks ? -1 : 0); | ||
49 | } | ||
diff --git a/arch/ia64/mm/tlb.c b/arch/ia64/mm/tlb.c new file mode 100644 index 000000000000..464557e4ed82 --- /dev/null +++ b/arch/ia64/mm/tlb.c | |||
@@ -0,0 +1,190 @@ | |||
1 | /* | ||
2 | * TLB support routines. | ||
3 | * | ||
4 | * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co | ||
5 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
6 | * | ||
7 | * 08/02/00 A. Mallick <asit.k.mallick@intel.com> | ||
8 | * Modified RID allocation for SMP | ||
9 | * Goutham Rao <goutham.rao@intel.com> | ||
10 | * IPI based ptc implementation and A-step IPI implementation. | ||
11 | */ | ||
12 | #include <linux/config.h> | ||
13 | #include <linux/module.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/sched.h> | ||
17 | #include <linux/smp.h> | ||
18 | #include <linux/mm.h> | ||
19 | |||
20 | #include <asm/delay.h> | ||
21 | #include <asm/mmu_context.h> | ||
22 | #include <asm/pgalloc.h> | ||
23 | #include <asm/pal.h> | ||
24 | #include <asm/tlbflush.h> | ||
25 | |||
26 | static struct { | ||
27 | unsigned long mask; /* mask of supported purge page-sizes */ | ||
28 | unsigned long max_bits; /* log2() of largest supported purge page-size */ | ||
29 | } purge; | ||
30 | |||
31 | struct ia64_ctx ia64_ctx = { | ||
32 | .lock = SPIN_LOCK_UNLOCKED, | ||
33 | .next = 1, | ||
34 | .limit = (1 << 15) - 1, /* start out with the safe (architected) limit */ | ||
35 | .max_ctx = ~0U | ||
36 | }; | ||
37 | |||
38 | DEFINE_PER_CPU(u8, ia64_need_tlb_flush); | ||
39 | |||
40 | /* | ||
41 | * Acquire the ia64_ctx.lock before calling this function! | ||
42 | */ | ||
43 | void | ||
44 | wrap_mmu_context (struct mm_struct *mm) | ||
45 | { | ||
46 | unsigned long tsk_context, max_ctx = ia64_ctx.max_ctx; | ||
47 | struct task_struct *tsk; | ||
48 | int i; | ||
49 | |||
50 | if (ia64_ctx.next > max_ctx) | ||
51 | ia64_ctx.next = 300; /* skip daemons */ | ||
52 | ia64_ctx.limit = max_ctx + 1; | ||
53 | |||
54 | /* | ||
55 | * Scan all the task's mm->context and set proper safe range | ||
56 | */ | ||
57 | |||
58 | read_lock(&tasklist_lock); | ||
59 | repeat: | ||
60 | for_each_process(tsk) { | ||
61 | if (!tsk->mm) | ||
62 | continue; | ||
63 | tsk_context = tsk->mm->context; | ||
64 | if (tsk_context == ia64_ctx.next) { | ||
65 | if (++ia64_ctx.next >= ia64_ctx.limit) { | ||
66 | /* empty range: reset the range limit and start over */ | ||
67 | if (ia64_ctx.next > max_ctx) | ||
68 | ia64_ctx.next = 300; | ||
69 | ia64_ctx.limit = max_ctx + 1; | ||
70 | goto repeat; | ||
71 | } | ||
72 | } | ||
73 | if ((tsk_context > ia64_ctx.next) && (tsk_context < ia64_ctx.limit)) | ||
74 | ia64_ctx.limit = tsk_context; | ||
75 | } | ||
76 | read_unlock(&tasklist_lock); | ||
77 | /* can't call flush_tlb_all() here because of race condition with O(1) scheduler [EF] */ | ||
78 | { | ||
79 | int cpu = get_cpu(); /* prevent preemption/migration */ | ||
80 | for (i = 0; i < NR_CPUS; ++i) | ||
81 | if (cpu_online(i) && (i != cpu)) | ||
82 | per_cpu(ia64_need_tlb_flush, i) = 1; | ||
83 | put_cpu(); | ||
84 | } | ||
85 | local_flush_tlb_all(); | ||
86 | } | ||
87 | |||
88 | void | ||
89 | ia64_global_tlb_purge (unsigned long start, unsigned long end, unsigned long nbits) | ||
90 | { | ||
91 | static DEFINE_SPINLOCK(ptcg_lock); | ||
92 | |||
93 | /* HW requires global serialization of ptc.ga. */ | ||
94 | spin_lock(&ptcg_lock); | ||
95 | { | ||
96 | do { | ||
97 | /* | ||
98 | * Flush ALAT entries also. | ||
99 | */ | ||
100 | ia64_ptcga(start, (nbits<<2)); | ||
101 | ia64_srlz_i(); | ||
102 | start += (1UL << nbits); | ||
103 | } while (start < end); | ||
104 | } | ||
105 | spin_unlock(&ptcg_lock); | ||
106 | } | ||
107 | |||
108 | void | ||
109 | local_flush_tlb_all (void) | ||
110 | { | ||
111 | unsigned long i, j, flags, count0, count1, stride0, stride1, addr; | ||
112 | |||
113 | addr = local_cpu_data->ptce_base; | ||
114 | count0 = local_cpu_data->ptce_count[0]; | ||
115 | count1 = local_cpu_data->ptce_count[1]; | ||
116 | stride0 = local_cpu_data->ptce_stride[0]; | ||
117 | stride1 = local_cpu_data->ptce_stride[1]; | ||
118 | |||
119 | local_irq_save(flags); | ||
120 | for (i = 0; i < count0; ++i) { | ||
121 | for (j = 0; j < count1; ++j) { | ||
122 | ia64_ptce(addr); | ||
123 | addr += stride1; | ||
124 | } | ||
125 | addr += stride0; | ||
126 | } | ||
127 | local_irq_restore(flags); | ||
128 | ia64_srlz_i(); /* srlz.i implies srlz.d */ | ||
129 | } | ||
130 | |||
131 | void | ||
132 | flush_tlb_range (struct vm_area_struct *vma, unsigned long start, unsigned long end) | ||
133 | { | ||
134 | struct mm_struct *mm = vma->vm_mm; | ||
135 | unsigned long size = end - start; | ||
136 | unsigned long nbits; | ||
137 | |||
138 | if (mm != current->active_mm) { | ||
139 | /* this does happen, but perhaps it's not worth optimizing for? */ | ||
140 | #ifdef CONFIG_SMP | ||
141 | flush_tlb_all(); | ||
142 | #else | ||
143 | mm->context = 0; | ||
144 | #endif | ||
145 | return; | ||
146 | } | ||
147 | |||
148 | nbits = ia64_fls(size + 0xfff); | ||
149 | while (unlikely (((1UL << nbits) & purge.mask) == 0) && (nbits < purge.max_bits)) | ||
150 | ++nbits; | ||
151 | if (nbits > purge.max_bits) | ||
152 | nbits = purge.max_bits; | ||
153 | start &= ~((1UL << nbits) - 1); | ||
154 | |||
155 | # ifdef CONFIG_SMP | ||
156 | platform_global_tlb_purge(start, end, nbits); | ||
157 | # else | ||
158 | do { | ||
159 | ia64_ptcl(start, (nbits<<2)); | ||
160 | start += (1UL << nbits); | ||
161 | } while (start < end); | ||
162 | # endif | ||
163 | |||
164 | ia64_srlz_i(); /* srlz.i implies srlz.d */ | ||
165 | } | ||
166 | EXPORT_SYMBOL(flush_tlb_range); | ||
167 | |||
168 | void __devinit | ||
169 | ia64_tlb_init (void) | ||
170 | { | ||
171 | ia64_ptce_info_t ptce_info; | ||
172 | unsigned long tr_pgbits; | ||
173 | long status; | ||
174 | |||
175 | if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { | ||
176 | printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld;" | ||
177 | "defaulting to architected purge page-sizes.\n", status); | ||
178 | purge.mask = 0x115557000UL; | ||
179 | } | ||
180 | purge.max_bits = ia64_fls(purge.mask); | ||
181 | |||
182 | ia64_get_ptce(&ptce_info); | ||
183 | local_cpu_data->ptce_base = ptce_info.base; | ||
184 | local_cpu_data->ptce_count[0] = ptce_info.count[0]; | ||
185 | local_cpu_data->ptce_count[1] = ptce_info.count[1]; | ||
186 | local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; | ||
187 | local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; | ||
188 | |||
189 | local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ | ||
190 | } | ||