diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ia64/mm/init.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ia64/mm/init.c')
-rw-r--r-- | arch/ia64/mm/init.c | 597 |
1 files changed, 597 insertions, 0 deletions
diff --git a/arch/ia64/mm/init.c b/arch/ia64/mm/init.c new file mode 100644 index 000000000000..65cf839573ea --- /dev/null +++ b/arch/ia64/mm/init.c | |||
@@ -0,0 +1,597 @@ | |||
1 | /* | ||
2 | * Initialize MMU support. | ||
3 | * | ||
4 | * Copyright (C) 1998-2003 Hewlett-Packard Co | ||
5 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
6 | */ | ||
7 | #include <linux/config.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/init.h> | ||
10 | |||
11 | #include <linux/bootmem.h> | ||
12 | #include <linux/efi.h> | ||
13 | #include <linux/elf.h> | ||
14 | #include <linux/mm.h> | ||
15 | #include <linux/mmzone.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/personality.h> | ||
18 | #include <linux/reboot.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/proc_fs.h> | ||
22 | #include <linux/bitops.h> | ||
23 | |||
24 | #include <asm/a.out.h> | ||
25 | #include <asm/dma.h> | ||
26 | #include <asm/ia32.h> | ||
27 | #include <asm/io.h> | ||
28 | #include <asm/machvec.h> | ||
29 | #include <asm/numa.h> | ||
30 | #include <asm/patch.h> | ||
31 | #include <asm/pgalloc.h> | ||
32 | #include <asm/sal.h> | ||
33 | #include <asm/sections.h> | ||
34 | #include <asm/system.h> | ||
35 | #include <asm/tlb.h> | ||
36 | #include <asm/uaccess.h> | ||
37 | #include <asm/unistd.h> | ||
38 | #include <asm/mca.h> | ||
39 | |||
40 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | ||
41 | |||
42 | extern void ia64_tlb_init (void); | ||
43 | |||
44 | unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; | ||
45 | |||
46 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
47 | unsigned long vmalloc_end = VMALLOC_END_INIT; | ||
48 | EXPORT_SYMBOL(vmalloc_end); | ||
49 | struct page *vmem_map; | ||
50 | EXPORT_SYMBOL(vmem_map); | ||
51 | #endif | ||
52 | |||
53 | static int pgt_cache_water[2] = { 25, 50 }; | ||
54 | |||
55 | struct page *zero_page_memmap_ptr; /* map entry for zero page */ | ||
56 | EXPORT_SYMBOL(zero_page_memmap_ptr); | ||
57 | |||
58 | void | ||
59 | check_pgt_cache (void) | ||
60 | { | ||
61 | int low, high; | ||
62 | |||
63 | low = pgt_cache_water[0]; | ||
64 | high = pgt_cache_water[1]; | ||
65 | |||
66 | preempt_disable(); | ||
67 | if (pgtable_cache_size > (u64) high) { | ||
68 | do { | ||
69 | if (pgd_quicklist) | ||
70 | free_page((unsigned long)pgd_alloc_one_fast(NULL)); | ||
71 | if (pmd_quicklist) | ||
72 | free_page((unsigned long)pmd_alloc_one_fast(NULL, 0)); | ||
73 | } while (pgtable_cache_size > (u64) low); | ||
74 | } | ||
75 | preempt_enable(); | ||
76 | } | ||
77 | |||
78 | void | ||
79 | lazy_mmu_prot_update (pte_t pte) | ||
80 | { | ||
81 | unsigned long addr; | ||
82 | struct page *page; | ||
83 | |||
84 | if (!pte_exec(pte)) | ||
85 | return; /* not an executable page... */ | ||
86 | |||
87 | page = pte_page(pte); | ||
88 | addr = (unsigned long) page_address(page); | ||
89 | |||
90 | if (test_bit(PG_arch_1, &page->flags)) | ||
91 | return; /* i-cache is already coherent with d-cache */ | ||
92 | |||
93 | flush_icache_range(addr, addr + PAGE_SIZE); | ||
94 | set_bit(PG_arch_1, &page->flags); /* mark page as clean */ | ||
95 | } | ||
96 | |||
97 | inline void | ||
98 | ia64_set_rbs_bot (void) | ||
99 | { | ||
100 | unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; | ||
101 | |||
102 | if (stack_size > MAX_USER_STACK_SIZE) | ||
103 | stack_size = MAX_USER_STACK_SIZE; | ||
104 | current->thread.rbs_bot = STACK_TOP - stack_size; | ||
105 | } | ||
106 | |||
107 | /* | ||
108 | * This performs some platform-dependent address space initialization. | ||
109 | * On IA-64, we want to setup the VM area for the register backing | ||
110 | * store (which grows upwards) and install the gateway page which is | ||
111 | * used for signal trampolines, etc. | ||
112 | */ | ||
113 | void | ||
114 | ia64_init_addr_space (void) | ||
115 | { | ||
116 | struct vm_area_struct *vma; | ||
117 | |||
118 | ia64_set_rbs_bot(); | ||
119 | |||
120 | /* | ||
121 | * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore | ||
122 | * the problem. When the process attempts to write to the register backing store | ||
123 | * for the first time, it will get a SEGFAULT in this case. | ||
124 | */ | ||
125 | vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); | ||
126 | if (vma) { | ||
127 | memset(vma, 0, sizeof(*vma)); | ||
128 | vma->vm_mm = current->mm; | ||
129 | vma->vm_start = current->thread.rbs_bot & PAGE_MASK; | ||
130 | vma->vm_end = vma->vm_start + PAGE_SIZE; | ||
131 | vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7]; | ||
132 | vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP; | ||
133 | down_write(¤t->mm->mmap_sem); | ||
134 | if (insert_vm_struct(current->mm, vma)) { | ||
135 | up_write(¤t->mm->mmap_sem); | ||
136 | kmem_cache_free(vm_area_cachep, vma); | ||
137 | return; | ||
138 | } | ||
139 | up_write(¤t->mm->mmap_sem); | ||
140 | } | ||
141 | |||
142 | /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ | ||
143 | if (!(current->personality & MMAP_PAGE_ZERO)) { | ||
144 | vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); | ||
145 | if (vma) { | ||
146 | memset(vma, 0, sizeof(*vma)); | ||
147 | vma->vm_mm = current->mm; | ||
148 | vma->vm_end = PAGE_SIZE; | ||
149 | vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); | ||
150 | vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; | ||
151 | down_write(¤t->mm->mmap_sem); | ||
152 | if (insert_vm_struct(current->mm, vma)) { | ||
153 | up_write(¤t->mm->mmap_sem); | ||
154 | kmem_cache_free(vm_area_cachep, vma); | ||
155 | return; | ||
156 | } | ||
157 | up_write(¤t->mm->mmap_sem); | ||
158 | } | ||
159 | } | ||
160 | } | ||
161 | |||
162 | void | ||
163 | free_initmem (void) | ||
164 | { | ||
165 | unsigned long addr, eaddr; | ||
166 | |||
167 | addr = (unsigned long) ia64_imva(__init_begin); | ||
168 | eaddr = (unsigned long) ia64_imva(__init_end); | ||
169 | while (addr < eaddr) { | ||
170 | ClearPageReserved(virt_to_page(addr)); | ||
171 | set_page_count(virt_to_page(addr), 1); | ||
172 | free_page(addr); | ||
173 | ++totalram_pages; | ||
174 | addr += PAGE_SIZE; | ||
175 | } | ||
176 | printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", | ||
177 | (__init_end - __init_begin) >> 10); | ||
178 | } | ||
179 | |||
180 | void | ||
181 | free_initrd_mem (unsigned long start, unsigned long end) | ||
182 | { | ||
183 | struct page *page; | ||
184 | /* | ||
185 | * EFI uses 4KB pages while the kernel can use 4KB or bigger. | ||
186 | * Thus EFI and the kernel may have different page sizes. It is | ||
187 | * therefore possible to have the initrd share the same page as | ||
188 | * the end of the kernel (given current setup). | ||
189 | * | ||
190 | * To avoid freeing/using the wrong page (kernel sized) we: | ||
191 | * - align up the beginning of initrd | ||
192 | * - align down the end of initrd | ||
193 | * | ||
194 | * | | | ||
195 | * |=============| a000 | ||
196 | * | | | ||
197 | * | | | ||
198 | * | | 9000 | ||
199 | * |/////////////| | ||
200 | * |/////////////| | ||
201 | * |=============| 8000 | ||
202 | * |///INITRD////| | ||
203 | * |/////////////| | ||
204 | * |/////////////| 7000 | ||
205 | * | | | ||
206 | * |KKKKKKKKKKKKK| | ||
207 | * |=============| 6000 | ||
208 | * |KKKKKKKKKKKKK| | ||
209 | * |KKKKKKKKKKKKK| | ||
210 | * K=kernel using 8KB pages | ||
211 | * | ||
212 | * In this example, we must free page 8000 ONLY. So we must align up | ||
213 | * initrd_start and keep initrd_end as is. | ||
214 | */ | ||
215 | start = PAGE_ALIGN(start); | ||
216 | end = end & PAGE_MASK; | ||
217 | |||
218 | if (start < end) | ||
219 | printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); | ||
220 | |||
221 | for (; start < end; start += PAGE_SIZE) { | ||
222 | if (!virt_addr_valid(start)) | ||
223 | continue; | ||
224 | page = virt_to_page(start); | ||
225 | ClearPageReserved(page); | ||
226 | set_page_count(page, 1); | ||
227 | free_page(start); | ||
228 | ++totalram_pages; | ||
229 | } | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * This installs a clean page in the kernel's page table. | ||
234 | */ | ||
235 | struct page * | ||
236 | put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) | ||
237 | { | ||
238 | pgd_t *pgd; | ||
239 | pud_t *pud; | ||
240 | pmd_t *pmd; | ||
241 | pte_t *pte; | ||
242 | |||
243 | if (!PageReserved(page)) | ||
244 | printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", | ||
245 | page_address(page)); | ||
246 | |||
247 | pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ | ||
248 | |||
249 | spin_lock(&init_mm.page_table_lock); | ||
250 | { | ||
251 | pud = pud_alloc(&init_mm, pgd, address); | ||
252 | if (!pud) | ||
253 | goto out; | ||
254 | |||
255 | pmd = pmd_alloc(&init_mm, pud, address); | ||
256 | if (!pmd) | ||
257 | goto out; | ||
258 | pte = pte_alloc_map(&init_mm, pmd, address); | ||
259 | if (!pte) | ||
260 | goto out; | ||
261 | if (!pte_none(*pte)) { | ||
262 | pte_unmap(pte); | ||
263 | goto out; | ||
264 | } | ||
265 | set_pte(pte, mk_pte(page, pgprot)); | ||
266 | pte_unmap(pte); | ||
267 | } | ||
268 | out: spin_unlock(&init_mm.page_table_lock); | ||
269 | /* no need for flush_tlb */ | ||
270 | return page; | ||
271 | } | ||
272 | |||
273 | static void | ||
274 | setup_gate (void) | ||
275 | { | ||
276 | struct page *page; | ||
277 | |||
278 | /* | ||
279 | * Map the gate page twice: once read-only to export the ELF headers etc. and once | ||
280 | * execute-only page to enable privilege-promotion via "epc": | ||
281 | */ | ||
282 | page = virt_to_page(ia64_imva(__start_gate_section)); | ||
283 | put_kernel_page(page, GATE_ADDR, PAGE_READONLY); | ||
284 | #ifdef HAVE_BUGGY_SEGREL | ||
285 | page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); | ||
286 | put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); | ||
287 | #else | ||
288 | put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); | ||
289 | #endif | ||
290 | ia64_patch_gate(); | ||
291 | } | ||
292 | |||
293 | void __devinit | ||
294 | ia64_mmu_init (void *my_cpu_data) | ||
295 | { | ||
296 | unsigned long psr, pta, impl_va_bits; | ||
297 | extern void __devinit tlb_init (void); | ||
298 | |||
299 | #ifdef CONFIG_DISABLE_VHPT | ||
300 | # define VHPT_ENABLE_BIT 0 | ||
301 | #else | ||
302 | # define VHPT_ENABLE_BIT 1 | ||
303 | #endif | ||
304 | |||
305 | /* Pin mapping for percpu area into TLB */ | ||
306 | psr = ia64_clear_ic(); | ||
307 | ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR, | ||
308 | pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)), | ||
309 | PERCPU_PAGE_SHIFT); | ||
310 | |||
311 | ia64_set_psr(psr); | ||
312 | ia64_srlz_i(); | ||
313 | |||
314 | /* | ||
315 | * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped | ||
316 | * address space. The IA-64 architecture guarantees that at least 50 bits of | ||
317 | * virtual address space are implemented but if we pick a large enough page size | ||
318 | * (e.g., 64KB), the mapped address space is big enough that it will overlap with | ||
319 | * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, | ||
320 | * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a | ||
321 | * problem in practice. Alternatively, we could truncate the top of the mapped | ||
322 | * address space to not permit mappings that would overlap with the VMLPT. | ||
323 | * --davidm 00/12/06 | ||
324 | */ | ||
325 | # define pte_bits 3 | ||
326 | # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) | ||
327 | /* | ||
328 | * The virtual page table has to cover the entire implemented address space within | ||
329 | * a region even though not all of this space may be mappable. The reason for | ||
330 | * this is that the Access bit and Dirty bit fault handlers perform | ||
331 | * non-speculative accesses to the virtual page table, so the address range of the | ||
332 | * virtual page table itself needs to be covered by virtual page table. | ||
333 | */ | ||
334 | # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) | ||
335 | # define POW2(n) (1ULL << (n)) | ||
336 | |||
337 | impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); | ||
338 | |||
339 | if (impl_va_bits < 51 || impl_va_bits > 61) | ||
340 | panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); | ||
341 | |||
342 | /* place the VMLPT at the end of each page-table mapped region: */ | ||
343 | pta = POW2(61) - POW2(vmlpt_bits); | ||
344 | |||
345 | if (POW2(mapped_space_bits) >= pta) | ||
346 | panic("mm/init: overlap between virtually mapped linear page table and " | ||
347 | "mapped kernel space!"); | ||
348 | /* | ||
349 | * Set the (virtually mapped linear) page table address. Bit | ||
350 | * 8 selects between the short and long format, bits 2-7 the | ||
351 | * size of the table, and bit 0 whether the VHPT walker is | ||
352 | * enabled. | ||
353 | */ | ||
354 | ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); | ||
355 | |||
356 | ia64_tlb_init(); | ||
357 | |||
358 | #ifdef CONFIG_HUGETLB_PAGE | ||
359 | ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); | ||
360 | ia64_srlz_d(); | ||
361 | #endif | ||
362 | } | ||
363 | |||
364 | #ifdef CONFIG_VIRTUAL_MEM_MAP | ||
365 | |||
366 | int | ||
367 | create_mem_map_page_table (u64 start, u64 end, void *arg) | ||
368 | { | ||
369 | unsigned long address, start_page, end_page; | ||
370 | struct page *map_start, *map_end; | ||
371 | int node; | ||
372 | pgd_t *pgd; | ||
373 | pud_t *pud; | ||
374 | pmd_t *pmd; | ||
375 | pte_t *pte; | ||
376 | |||
377 | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | ||
378 | map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); | ||
379 | |||
380 | start_page = (unsigned long) map_start & PAGE_MASK; | ||
381 | end_page = PAGE_ALIGN((unsigned long) map_end); | ||
382 | node = paddr_to_nid(__pa(start)); | ||
383 | |||
384 | for (address = start_page; address < end_page; address += PAGE_SIZE) { | ||
385 | pgd = pgd_offset_k(address); | ||
386 | if (pgd_none(*pgd)) | ||
387 | pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | ||
388 | pud = pud_offset(pgd, address); | ||
389 | |||
390 | if (pud_none(*pud)) | ||
391 | pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | ||
392 | pmd = pmd_offset(pud, address); | ||
393 | |||
394 | if (pmd_none(*pmd)) | ||
395 | pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); | ||
396 | pte = pte_offset_kernel(pmd, address); | ||
397 | |||
398 | if (pte_none(*pte)) | ||
399 | set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, | ||
400 | PAGE_KERNEL)); | ||
401 | } | ||
402 | return 0; | ||
403 | } | ||
404 | |||
405 | struct memmap_init_callback_data { | ||
406 | struct page *start; | ||
407 | struct page *end; | ||
408 | int nid; | ||
409 | unsigned long zone; | ||
410 | }; | ||
411 | |||
412 | static int | ||
413 | virtual_memmap_init (u64 start, u64 end, void *arg) | ||
414 | { | ||
415 | struct memmap_init_callback_data *args; | ||
416 | struct page *map_start, *map_end; | ||
417 | |||
418 | args = (struct memmap_init_callback_data *) arg; | ||
419 | map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); | ||
420 | map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); | ||
421 | |||
422 | if (map_start < args->start) | ||
423 | map_start = args->start; | ||
424 | if (map_end > args->end) | ||
425 | map_end = args->end; | ||
426 | |||
427 | /* | ||
428 | * We have to initialize "out of bounds" struct page elements that fit completely | ||
429 | * on the same pages that were allocated for the "in bounds" elements because they | ||
430 | * may be referenced later (and found to be "reserved"). | ||
431 | */ | ||
432 | map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); | ||
433 | map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) | ||
434 | / sizeof(struct page)); | ||
435 | |||
436 | if (map_start < map_end) | ||
437 | memmap_init_zone((unsigned long)(map_end - map_start), | ||
438 | args->nid, args->zone, page_to_pfn(map_start)); | ||
439 | return 0; | ||
440 | } | ||
441 | |||
442 | void | ||
443 | memmap_init (unsigned long size, int nid, unsigned long zone, | ||
444 | unsigned long start_pfn) | ||
445 | { | ||
446 | if (!vmem_map) | ||
447 | memmap_init_zone(size, nid, zone, start_pfn); | ||
448 | else { | ||
449 | struct page *start; | ||
450 | struct memmap_init_callback_data args; | ||
451 | |||
452 | start = pfn_to_page(start_pfn); | ||
453 | args.start = start; | ||
454 | args.end = start + size; | ||
455 | args.nid = nid; | ||
456 | args.zone = zone; | ||
457 | |||
458 | efi_memmap_walk(virtual_memmap_init, &args); | ||
459 | } | ||
460 | } | ||
461 | |||
462 | int | ||
463 | ia64_pfn_valid (unsigned long pfn) | ||
464 | { | ||
465 | char byte; | ||
466 | struct page *pg = pfn_to_page(pfn); | ||
467 | |||
468 | return (__get_user(byte, (char __user *) pg) == 0) | ||
469 | && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) | ||
470 | || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); | ||
471 | } | ||
472 | EXPORT_SYMBOL(ia64_pfn_valid); | ||
473 | |||
474 | int | ||
475 | find_largest_hole (u64 start, u64 end, void *arg) | ||
476 | { | ||
477 | u64 *max_gap = arg; | ||
478 | |||
479 | static u64 last_end = PAGE_OFFSET; | ||
480 | |||
481 | /* NOTE: this algorithm assumes efi memmap table is ordered */ | ||
482 | |||
483 | if (*max_gap < (start - last_end)) | ||
484 | *max_gap = start - last_end; | ||
485 | last_end = end; | ||
486 | return 0; | ||
487 | } | ||
488 | #endif /* CONFIG_VIRTUAL_MEM_MAP */ | ||
489 | |||
490 | static int | ||
491 | count_reserved_pages (u64 start, u64 end, void *arg) | ||
492 | { | ||
493 | unsigned long num_reserved = 0; | ||
494 | unsigned long *count = arg; | ||
495 | |||
496 | for (; start < end; start += PAGE_SIZE) | ||
497 | if (PageReserved(virt_to_page(start))) | ||
498 | ++num_reserved; | ||
499 | *count += num_reserved; | ||
500 | return 0; | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Boot command-line option "nolwsys" can be used to disable the use of any light-weight | ||
505 | * system call handler. When this option is in effect, all fsyscalls will end up bubbling | ||
506 | * down into the kernel and calling the normal (heavy-weight) syscall handler. This is | ||
507 | * useful for performance testing, but conceivably could also come in handy for debugging | ||
508 | * purposes. | ||
509 | */ | ||
510 | |||
511 | static int nolwsys; | ||
512 | |||
513 | static int __init | ||
514 | nolwsys_setup (char *s) | ||
515 | { | ||
516 | nolwsys = 1; | ||
517 | return 1; | ||
518 | } | ||
519 | |||
520 | __setup("nolwsys", nolwsys_setup); | ||
521 | |||
522 | void | ||
523 | mem_init (void) | ||
524 | { | ||
525 | long reserved_pages, codesize, datasize, initsize; | ||
526 | unsigned long num_pgt_pages; | ||
527 | pg_data_t *pgdat; | ||
528 | int i; | ||
529 | static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; | ||
530 | |||
531 | #ifdef CONFIG_PCI | ||
532 | /* | ||
533 | * This needs to be called _after_ the command line has been parsed but _before_ | ||
534 | * any drivers that may need the PCI DMA interface are initialized or bootmem has | ||
535 | * been freed. | ||
536 | */ | ||
537 | platform_dma_init(); | ||
538 | #endif | ||
539 | |||
540 | #ifndef CONFIG_DISCONTIGMEM | ||
541 | if (!mem_map) | ||
542 | BUG(); | ||
543 | max_mapnr = max_low_pfn; | ||
544 | #endif | ||
545 | |||
546 | high_memory = __va(max_low_pfn * PAGE_SIZE); | ||
547 | |||
548 | kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); | ||
549 | kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); | ||
550 | kclist_add(&kcore_kernel, _stext, _end - _stext); | ||
551 | |||
552 | for_each_pgdat(pgdat) | ||
553 | totalram_pages += free_all_bootmem_node(pgdat); | ||
554 | |||
555 | reserved_pages = 0; | ||
556 | efi_memmap_walk(count_reserved_pages, &reserved_pages); | ||
557 | |||
558 | codesize = (unsigned long) _etext - (unsigned long) _stext; | ||
559 | datasize = (unsigned long) _edata - (unsigned long) _etext; | ||
560 | initsize = (unsigned long) __init_end - (unsigned long) __init_begin; | ||
561 | |||
562 | printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " | ||
563 | "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), | ||
564 | num_physpages << (PAGE_SHIFT - 10), codesize >> 10, | ||
565 | reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); | ||
566 | |||
567 | /* | ||
568 | * Allow for enough (cached) page table pages so that we can map the entire memory | ||
569 | * at least once. Each task also needs a couple of page tables pages, so add in a | ||
570 | * fudge factor for that (don't use "threads-max" here; that would be wrong!). | ||
571 | * Don't allow the cache to be more than 10% of total memory, though. | ||
572 | */ | ||
573 | # define NUM_TASKS 500 /* typical number of tasks */ | ||
574 | num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS; | ||
575 | if (num_pgt_pages > nr_free_pages() / 10) | ||
576 | num_pgt_pages = nr_free_pages() / 10; | ||
577 | if (num_pgt_pages > (u64) pgt_cache_water[1]) | ||
578 | pgt_cache_water[1] = num_pgt_pages; | ||
579 | |||
580 | /* | ||
581 | * For fsyscall entrpoints with no light-weight handler, use the ordinary | ||
582 | * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry | ||
583 | * code can tell them apart. | ||
584 | */ | ||
585 | for (i = 0; i < NR_syscalls; ++i) { | ||
586 | extern unsigned long fsyscall_table[NR_syscalls]; | ||
587 | extern unsigned long sys_call_table[NR_syscalls]; | ||
588 | |||
589 | if (!fsyscall_table[i] || nolwsys) | ||
590 | fsyscall_table[i] = sys_call_table[i] | 1; | ||
591 | } | ||
592 | setup_gate(); | ||
593 | |||
594 | #ifdef CONFIG_IA32_SUPPORT | ||
595 | ia32_mem_init(); | ||
596 | #endif | ||
597 | } | ||