diff options
author | Tony Luck <tony.luck@intel.com> | 2005-09-08 17:27:13 -0400 |
---|---|---|
committer | Tony Luck <tony.luck@intel.com> | 2005-09-08 17:27:13 -0400 |
commit | 344a076110f4ecb16ea6d286b63be696604982ed (patch) | |
tree | def6e229efdb6ee91b631b6695bf7f9ace8e2719 /arch/ia64/kernel/domain.c | |
parent | 9b17e7e74e767d8a494a74c3c459aeecd1e08c5f (diff) | |
parent | 1b11d78cf87a7014f96e5b7fa2e1233cc8081a00 (diff) |
[IA64] Manual merge fix for 3 files
arch/ia64/Kconfig
arch/ia64/kernel/acpi.c
include/asm-ia64/irq.h
Signed-off-by: Tony Luck <tony.luck@intel.com>
Diffstat (limited to 'arch/ia64/kernel/domain.c')
-rw-r--r-- | arch/ia64/kernel/domain.c | 396 |
1 files changed, 0 insertions, 396 deletions
diff --git a/arch/ia64/kernel/domain.c b/arch/ia64/kernel/domain.c deleted file mode 100644 index bbb8efe126b7..000000000000 --- a/arch/ia64/kernel/domain.c +++ /dev/null | |||
@@ -1,396 +0,0 @@ | |||
1 | /* | ||
2 | * arch/ia64/kernel/domain.c | ||
3 | * Architecture specific sched-domains builder. | ||
4 | * | ||
5 | * Copyright (C) 2004 Jesse Barnes | ||
6 | * Copyright (C) 2004 Silicon Graphics, Inc. | ||
7 | */ | ||
8 | |||
9 | #include <linux/sched.h> | ||
10 | #include <linux/percpu.h> | ||
11 | #include <linux/slab.h> | ||
12 | #include <linux/cpumask.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/topology.h> | ||
15 | #include <linux/nodemask.h> | ||
16 | |||
17 | #define SD_NODES_PER_DOMAIN 16 | ||
18 | |||
19 | #ifdef CONFIG_NUMA | ||
20 | /** | ||
21 | * find_next_best_node - find the next node to include in a sched_domain | ||
22 | * @node: node whose sched_domain we're building | ||
23 | * @used_nodes: nodes already in the sched_domain | ||
24 | * | ||
25 | * Find the next node to include in a given scheduling domain. Simply | ||
26 | * finds the closest node not already in the @used_nodes map. | ||
27 | * | ||
28 | * Should use nodemask_t. | ||
29 | */ | ||
30 | static int find_next_best_node(int node, unsigned long *used_nodes) | ||
31 | { | ||
32 | int i, n, val, min_val, best_node = 0; | ||
33 | |||
34 | min_val = INT_MAX; | ||
35 | |||
36 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
37 | /* Start at @node */ | ||
38 | n = (node + i) % MAX_NUMNODES; | ||
39 | |||
40 | if (!nr_cpus_node(n)) | ||
41 | continue; | ||
42 | |||
43 | /* Skip already used nodes */ | ||
44 | if (test_bit(n, used_nodes)) | ||
45 | continue; | ||
46 | |||
47 | /* Simple min distance search */ | ||
48 | val = node_distance(node, n); | ||
49 | |||
50 | if (val < min_val) { | ||
51 | min_val = val; | ||
52 | best_node = n; | ||
53 | } | ||
54 | } | ||
55 | |||
56 | set_bit(best_node, used_nodes); | ||
57 | return best_node; | ||
58 | } | ||
59 | |||
60 | /** | ||
61 | * sched_domain_node_span - get a cpumask for a node's sched_domain | ||
62 | * @node: node whose cpumask we're constructing | ||
63 | * @size: number of nodes to include in this span | ||
64 | * | ||
65 | * Given a node, construct a good cpumask for its sched_domain to span. It | ||
66 | * should be one that prevents unnecessary balancing, but also spreads tasks | ||
67 | * out optimally. | ||
68 | */ | ||
69 | static cpumask_t sched_domain_node_span(int node) | ||
70 | { | ||
71 | int i; | ||
72 | cpumask_t span, nodemask; | ||
73 | DECLARE_BITMAP(used_nodes, MAX_NUMNODES); | ||
74 | |||
75 | cpus_clear(span); | ||
76 | bitmap_zero(used_nodes, MAX_NUMNODES); | ||
77 | |||
78 | nodemask = node_to_cpumask(node); | ||
79 | cpus_or(span, span, nodemask); | ||
80 | set_bit(node, used_nodes); | ||
81 | |||
82 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | ||
83 | int next_node = find_next_best_node(node, used_nodes); | ||
84 | nodemask = node_to_cpumask(next_node); | ||
85 | cpus_or(span, span, nodemask); | ||
86 | } | ||
87 | |||
88 | return span; | ||
89 | } | ||
90 | #endif | ||
91 | |||
92 | /* | ||
93 | * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we | ||
94 | * can switch it on easily if needed. | ||
95 | */ | ||
96 | #ifdef CONFIG_SCHED_SMT | ||
97 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | ||
98 | static struct sched_group sched_group_cpus[NR_CPUS]; | ||
99 | static int cpu_to_cpu_group(int cpu) | ||
100 | { | ||
101 | return cpu; | ||
102 | } | ||
103 | #endif | ||
104 | |||
105 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | ||
106 | static struct sched_group sched_group_phys[NR_CPUS]; | ||
107 | static int cpu_to_phys_group(int cpu) | ||
108 | { | ||
109 | #ifdef CONFIG_SCHED_SMT | ||
110 | return first_cpu(cpu_sibling_map[cpu]); | ||
111 | #else | ||
112 | return cpu; | ||
113 | #endif | ||
114 | } | ||
115 | |||
116 | #ifdef CONFIG_NUMA | ||
117 | /* | ||
118 | * The init_sched_build_groups can't handle what we want to do with node | ||
119 | * groups, so roll our own. Now each node has its own list of groups which | ||
120 | * gets dynamically allocated. | ||
121 | */ | ||
122 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | ||
123 | static struct sched_group *sched_group_nodes[MAX_NUMNODES]; | ||
124 | |||
125 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | ||
126 | static struct sched_group sched_group_allnodes[MAX_NUMNODES]; | ||
127 | |||
128 | static int cpu_to_allnodes_group(int cpu) | ||
129 | { | ||
130 | return cpu_to_node(cpu); | ||
131 | } | ||
132 | #endif | ||
133 | |||
134 | /* | ||
135 | * Build sched domains for a given set of cpus and attach the sched domains | ||
136 | * to the individual cpus | ||
137 | */ | ||
138 | void build_sched_domains(const cpumask_t *cpu_map) | ||
139 | { | ||
140 | int i; | ||
141 | |||
142 | /* | ||
143 | * Set up domains for cpus specified by the cpu_map. | ||
144 | */ | ||
145 | for_each_cpu_mask(i, *cpu_map) { | ||
146 | int group; | ||
147 | struct sched_domain *sd = NULL, *p; | ||
148 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | ||
149 | |||
150 | cpus_and(nodemask, nodemask, *cpu_map); | ||
151 | |||
152 | #ifdef CONFIG_NUMA | ||
153 | if (num_online_cpus() | ||
154 | > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { | ||
155 | sd = &per_cpu(allnodes_domains, i); | ||
156 | *sd = SD_ALLNODES_INIT; | ||
157 | sd->span = *cpu_map; | ||
158 | group = cpu_to_allnodes_group(i); | ||
159 | sd->groups = &sched_group_allnodes[group]; | ||
160 | p = sd; | ||
161 | } else | ||
162 | p = NULL; | ||
163 | |||
164 | sd = &per_cpu(node_domains, i); | ||
165 | *sd = SD_NODE_INIT; | ||
166 | sd->span = sched_domain_node_span(cpu_to_node(i)); | ||
167 | sd->parent = p; | ||
168 | cpus_and(sd->span, sd->span, *cpu_map); | ||
169 | #endif | ||
170 | |||
171 | p = sd; | ||
172 | sd = &per_cpu(phys_domains, i); | ||
173 | group = cpu_to_phys_group(i); | ||
174 | *sd = SD_CPU_INIT; | ||
175 | sd->span = nodemask; | ||
176 | sd->parent = p; | ||
177 | sd->groups = &sched_group_phys[group]; | ||
178 | |||
179 | #ifdef CONFIG_SCHED_SMT | ||
180 | p = sd; | ||
181 | sd = &per_cpu(cpu_domains, i); | ||
182 | group = cpu_to_cpu_group(i); | ||
183 | *sd = SD_SIBLING_INIT; | ||
184 | sd->span = cpu_sibling_map[i]; | ||
185 | cpus_and(sd->span, sd->span, *cpu_map); | ||
186 | sd->parent = p; | ||
187 | sd->groups = &sched_group_cpus[group]; | ||
188 | #endif | ||
189 | } | ||
190 | |||
191 | #ifdef CONFIG_SCHED_SMT | ||
192 | /* Set up CPU (sibling) groups */ | ||
193 | for_each_cpu_mask(i, *cpu_map) { | ||
194 | cpumask_t this_sibling_map = cpu_sibling_map[i]; | ||
195 | cpus_and(this_sibling_map, this_sibling_map, *cpu_map); | ||
196 | if (i != first_cpu(this_sibling_map)) | ||
197 | continue; | ||
198 | |||
199 | init_sched_build_groups(sched_group_cpus, this_sibling_map, | ||
200 | &cpu_to_cpu_group); | ||
201 | } | ||
202 | #endif | ||
203 | |||
204 | /* Set up physical groups */ | ||
205 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
206 | cpumask_t nodemask = node_to_cpumask(i); | ||
207 | |||
208 | cpus_and(nodemask, nodemask, *cpu_map); | ||
209 | if (cpus_empty(nodemask)) | ||
210 | continue; | ||
211 | |||
212 | init_sched_build_groups(sched_group_phys, nodemask, | ||
213 | &cpu_to_phys_group); | ||
214 | } | ||
215 | |||
216 | #ifdef CONFIG_NUMA | ||
217 | init_sched_build_groups(sched_group_allnodes, *cpu_map, | ||
218 | &cpu_to_allnodes_group); | ||
219 | |||
220 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
221 | /* Set up node groups */ | ||
222 | struct sched_group *sg, *prev; | ||
223 | cpumask_t nodemask = node_to_cpumask(i); | ||
224 | cpumask_t domainspan; | ||
225 | cpumask_t covered = CPU_MASK_NONE; | ||
226 | int j; | ||
227 | |||
228 | cpus_and(nodemask, nodemask, *cpu_map); | ||
229 | if (cpus_empty(nodemask)) | ||
230 | continue; | ||
231 | |||
232 | domainspan = sched_domain_node_span(i); | ||
233 | cpus_and(domainspan, domainspan, *cpu_map); | ||
234 | |||
235 | sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); | ||
236 | sched_group_nodes[i] = sg; | ||
237 | for_each_cpu_mask(j, nodemask) { | ||
238 | struct sched_domain *sd; | ||
239 | sd = &per_cpu(node_domains, j); | ||
240 | sd->groups = sg; | ||
241 | if (sd->groups == NULL) { | ||
242 | /* Turn off balancing if we have no groups */ | ||
243 | sd->flags = 0; | ||
244 | } | ||
245 | } | ||
246 | if (!sg) { | ||
247 | printk(KERN_WARNING | ||
248 | "Can not alloc domain group for node %d\n", i); | ||
249 | continue; | ||
250 | } | ||
251 | sg->cpu_power = 0; | ||
252 | sg->cpumask = nodemask; | ||
253 | cpus_or(covered, covered, nodemask); | ||
254 | prev = sg; | ||
255 | |||
256 | for (j = 0; j < MAX_NUMNODES; j++) { | ||
257 | cpumask_t tmp, notcovered; | ||
258 | int n = (i + j) % MAX_NUMNODES; | ||
259 | |||
260 | cpus_complement(notcovered, covered); | ||
261 | cpus_and(tmp, notcovered, *cpu_map); | ||
262 | cpus_and(tmp, tmp, domainspan); | ||
263 | if (cpus_empty(tmp)) | ||
264 | break; | ||
265 | |||
266 | nodemask = node_to_cpumask(n); | ||
267 | cpus_and(tmp, tmp, nodemask); | ||
268 | if (cpus_empty(tmp)) | ||
269 | continue; | ||
270 | |||
271 | sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); | ||
272 | if (!sg) { | ||
273 | printk(KERN_WARNING | ||
274 | "Can not alloc domain group for node %d\n", j); | ||
275 | break; | ||
276 | } | ||
277 | sg->cpu_power = 0; | ||
278 | sg->cpumask = tmp; | ||
279 | cpus_or(covered, covered, tmp); | ||
280 | prev->next = sg; | ||
281 | prev = sg; | ||
282 | } | ||
283 | prev->next = sched_group_nodes[i]; | ||
284 | } | ||
285 | #endif | ||
286 | |||
287 | /* Calculate CPU power for physical packages and nodes */ | ||
288 | for_each_cpu_mask(i, *cpu_map) { | ||
289 | int power; | ||
290 | struct sched_domain *sd; | ||
291 | #ifdef CONFIG_SCHED_SMT | ||
292 | sd = &per_cpu(cpu_domains, i); | ||
293 | power = SCHED_LOAD_SCALE; | ||
294 | sd->groups->cpu_power = power; | ||
295 | #endif | ||
296 | |||
297 | sd = &per_cpu(phys_domains, i); | ||
298 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | ||
299 | (cpus_weight(sd->groups->cpumask)-1) / 10; | ||
300 | sd->groups->cpu_power = power; | ||
301 | |||
302 | #ifdef CONFIG_NUMA | ||
303 | sd = &per_cpu(allnodes_domains, i); | ||
304 | if (sd->groups) { | ||
305 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | ||
306 | (cpus_weight(sd->groups->cpumask)-1) / 10; | ||
307 | sd->groups->cpu_power = power; | ||
308 | } | ||
309 | #endif | ||
310 | } | ||
311 | |||
312 | #ifdef CONFIG_NUMA | ||
313 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
314 | struct sched_group *sg = sched_group_nodes[i]; | ||
315 | int j; | ||
316 | |||
317 | if (sg == NULL) | ||
318 | continue; | ||
319 | next_sg: | ||
320 | for_each_cpu_mask(j, sg->cpumask) { | ||
321 | struct sched_domain *sd; | ||
322 | int power; | ||
323 | |||
324 | sd = &per_cpu(phys_domains, j); | ||
325 | if (j != first_cpu(sd->groups->cpumask)) { | ||
326 | /* | ||
327 | * Only add "power" once for each | ||
328 | * physical package. | ||
329 | */ | ||
330 | continue; | ||
331 | } | ||
332 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | ||
333 | (cpus_weight(sd->groups->cpumask)-1) / 10; | ||
334 | |||
335 | sg->cpu_power += power; | ||
336 | } | ||
337 | sg = sg->next; | ||
338 | if (sg != sched_group_nodes[i]) | ||
339 | goto next_sg; | ||
340 | } | ||
341 | #endif | ||
342 | |||
343 | /* Attach the domains */ | ||
344 | for_each_cpu_mask(i, *cpu_map) { | ||
345 | struct sched_domain *sd; | ||
346 | #ifdef CONFIG_SCHED_SMT | ||
347 | sd = &per_cpu(cpu_domains, i); | ||
348 | #else | ||
349 | sd = &per_cpu(phys_domains, i); | ||
350 | #endif | ||
351 | cpu_attach_domain(sd, i); | ||
352 | } | ||
353 | } | ||
354 | /* | ||
355 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | ||
356 | */ | ||
357 | void arch_init_sched_domains(const cpumask_t *cpu_map) | ||
358 | { | ||
359 | cpumask_t cpu_default_map; | ||
360 | |||
361 | /* | ||
362 | * Setup mask for cpus without special case scheduling requirements. | ||
363 | * For now this just excludes isolated cpus, but could be used to | ||
364 | * exclude other special cases in the future. | ||
365 | */ | ||
366 | cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | ||
367 | |||
368 | build_sched_domains(&cpu_default_map); | ||
369 | } | ||
370 | |||
371 | void arch_destroy_sched_domains(const cpumask_t *cpu_map) | ||
372 | { | ||
373 | #ifdef CONFIG_NUMA | ||
374 | int i; | ||
375 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
376 | cpumask_t nodemask = node_to_cpumask(i); | ||
377 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | ||
378 | |||
379 | cpus_and(nodemask, nodemask, *cpu_map); | ||
380 | if (cpus_empty(nodemask)) | ||
381 | continue; | ||
382 | |||
383 | if (sg == NULL) | ||
384 | continue; | ||
385 | sg = sg->next; | ||
386 | next_sg: | ||
387 | oldsg = sg; | ||
388 | sg = sg->next; | ||
389 | kfree(oldsg); | ||
390 | if (oldsg != sched_group_nodes[i]) | ||
391 | goto next_sg; | ||
392 | sched_group_nodes[i] = NULL; | ||
393 | } | ||
394 | #endif | ||
395 | } | ||
396 | |||