aboutsummaryrefslogtreecommitdiffstats
path: root/arch/i386
diff options
context:
space:
mode:
authorJeremy Fitzhardinge <jeremy@xensource.com>2007-07-17 21:37:07 -0400
committerJeremy Fitzhardinge <jeremy@goop.org>2007-07-18 11:47:46 -0400
commit9ec2b804e099e8a326369e6cccab10dee1d172ee (patch)
tree2626129bc8c8ce0be42290bb216517939be98f96 /arch/i386
parent600b2fc242992e552e0b4e24c8c1f084b341f39b (diff)
xen: use iret directly when possible
Most of the time we can simply use the iret instruction to exit the kernel, rather than having to use the iret hypercall - the only exception is if we're returning into vm86 mode, or from delivering an NMI (which we don't support yet). When running native, iret has the behaviour of testing for a pending interrupt atomically with re-enabling interrupts. Unfortunately there's no way to do this with Xen, so there's a window in which we could get a recursive exception after enabling events but before actually returning to userspace. This causes a problem: if the nested interrupt causes one of the task's TIF_WORK_MASK flags to be set, they will not be checked again before returning to userspace. This means that pending work may be left pending indefinitely, until the process enters and leaves the kernel again. The net effect is that a pending signal or reschedule event could be delayed for an unbounded amount of time. To deal with this, the xen event upcall handler checks to see if the EIP is within the critical section of the iret code, after events are (potentially) enabled up to the iret itself. If its within this range, it calls the iret critical section fixup, which adjusts the stack to deal with any unrestored registers, and then shifts the stack frame up to replace the previous invocation. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Diffstat (limited to 'arch/i386')
-rw-r--r--arch/i386/kernel/asm-offsets.c1
-rw-r--r--arch/i386/kernel/entry.S16
-rw-r--r--arch/i386/xen/enlighten.c1
-rw-r--r--arch/i386/xen/xen-asm.S185
-rw-r--r--arch/i386/xen/xen-ops.h1
5 files changed, 199 insertions, 5 deletions
diff --git a/arch/i386/kernel/asm-offsets.c b/arch/i386/kernel/asm-offsets.c
index a7c2947b3966..25f7eb513928 100644
--- a/arch/i386/kernel/asm-offsets.c
+++ b/arch/i386/kernel/asm-offsets.c
@@ -61,6 +61,7 @@ void foo(void)
61 OFFSET(TI_addr_limit, thread_info, addr_limit); 61 OFFSET(TI_addr_limit, thread_info, addr_limit);
62 OFFSET(TI_restart_block, thread_info, restart_block); 62 OFFSET(TI_restart_block, thread_info, restart_block);
63 OFFSET(TI_sysenter_return, thread_info, sysenter_return); 63 OFFSET(TI_sysenter_return, thread_info, sysenter_return);
64 OFFSET(TI_cpu, thread_info, cpu);
64 BLANK(); 65 BLANK();
65 66
66 OFFSET(GDS_size, Xgt_desc_struct, size); 67 OFFSET(GDS_size, Xgt_desc_struct, size);
diff --git a/arch/i386/kernel/entry.S b/arch/i386/kernel/entry.S
index ffb236544270..32980b834935 100644
--- a/arch/i386/kernel/entry.S
+++ b/arch/i386/kernel/entry.S
@@ -1030,7 +1030,21 @@ ENTRY(xen_hypervisor_callback)
1030 CFI_ADJUST_CFA_OFFSET 4 1030 CFI_ADJUST_CFA_OFFSET 4
1031 SAVE_ALL 1031 SAVE_ALL
1032 TRACE_IRQS_OFF 1032 TRACE_IRQS_OFF
1033 mov %esp, %eax 1033
1034 /* Check to see if we got the event in the critical
1035 region in xen_iret_direct, after we've reenabled
1036 events and checked for pending events. This simulates
1037 iret instruction's behaviour where it delivers a
1038 pending interrupt when enabling interrupts. */
1039 movl PT_EIP(%esp),%eax
1040 cmpl $xen_iret_start_crit,%eax
1041 jb 1f
1042 cmpl $xen_iret_end_crit,%eax
1043 jae 1f
1044
1045 call xen_iret_crit_fixup
1046
10471: mov %esp, %eax
1034 call xen_evtchn_do_upcall 1048 call xen_evtchn_do_upcall
1035 jmp ret_from_intr 1049 jmp ret_from_intr
1036 CFI_ENDPROC 1050 CFI_ENDPROC
diff --git a/arch/i386/xen/enlighten.c b/arch/i386/xen/enlighten.c
index 4fa62a4cb7cc..9a8c1181c001 100644
--- a/arch/i386/xen/enlighten.c
+++ b/arch/i386/xen/enlighten.c
@@ -838,6 +838,7 @@ void __init xen_setup_vcpu_info_placement(void)
838 paravirt_ops.irq_disable = xen_irq_disable_direct; 838 paravirt_ops.irq_disable = xen_irq_disable_direct;
839 paravirt_ops.irq_enable = xen_irq_enable_direct; 839 paravirt_ops.irq_enable = xen_irq_enable_direct;
840 paravirt_ops.read_cr2 = xen_read_cr2_direct; 840 paravirt_ops.read_cr2 = xen_read_cr2_direct;
841 paravirt_ops.iret = xen_iret_direct;
841 } 842 }
842} 843}
843 844
diff --git a/arch/i386/xen/xen-asm.S b/arch/i386/xen/xen-asm.S
index dc4d36d51bc1..1a43b60c0c62 100644
--- a/arch/i386/xen/xen-asm.S
+++ b/arch/i386/xen/xen-asm.S
@@ -12,15 +12,21 @@
12 */ 12 */
13 13
14#include <linux/linkage.h> 14#include <linux/linkage.h>
15
15#include <asm/asm-offsets.h> 16#include <asm/asm-offsets.h>
16#include <asm/thread_info.h> 17#include <asm/thread_info.h>
17#include <asm/percpu.h> 18#include <asm/percpu.h>
18#include <asm/asm-offsets.h>
19#include <asm/processor-flags.h> 19#include <asm/processor-flags.h>
20#include <asm/segment.h>
21
22#include <xen/interface/xen.h>
20 23
21#define RELOC(x, v) .globl x##_reloc; x##_reloc=v 24#define RELOC(x, v) .globl x##_reloc; x##_reloc=v
22#define ENDPATCH(x) .globl x##_end; x##_end=. 25#define ENDPATCH(x) .globl x##_end; x##_end=.
23 26
27/* Pseudo-flag used for virtual NMI, which we don't implement yet */
28#define XEN_EFLAGS_NMI 0x80000000
29
24/* 30/*
25 Enable events. This clears the event mask and tests the pending 31 Enable events. This clears the event mask and tests the pending
26 event status with one and operation. If there are pending 32 event status with one and operation. If there are pending
@@ -81,13 +87,12 @@ ENDPATCH(xen_save_fl_direct)
81 */ 87 */
82ENTRY(xen_restore_fl_direct) 88ENTRY(xen_restore_fl_direct)
83 testb $X86_EFLAGS_IF>>8, %ah 89 testb $X86_EFLAGS_IF>>8, %ah
84 setz %al 90 setz PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask
85 movb %al, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask
86 /* Preempt here doesn't matter because that will deal with 91 /* Preempt here doesn't matter because that will deal with
87 any pending interrupts. The pending check may end up being 92 any pending interrupts. The pending check may end up being
88 run on the wrong CPU, but that doesn't hurt. */ 93 run on the wrong CPU, but that doesn't hurt. */
89 94
90 /* check for pending but unmasked */ 95 /* check for unmasked and pending */
91 cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending 96 cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending
92 jz 1f 97 jz 1f
932: call check_events 982: call check_events
@@ -97,6 +102,178 @@ ENDPATCH(xen_restore_fl_direct)
97 ENDPROC(xen_restore_fl_direct) 102 ENDPROC(xen_restore_fl_direct)
98 RELOC(xen_restore_fl_direct, 2b+1) 103 RELOC(xen_restore_fl_direct, 2b+1)
99 104
105/*
106 This is run where a normal iret would be run, with the same stack setup:
107 8: eflags
108 4: cs
109 esp-> 0: eip
110
111 This attempts to make sure that any pending events are dealt
112 with on return to usermode, but there is a small window in
113 which an event can happen just before entering usermode. If
114 the nested interrupt ends up setting one of the TIF_WORK_MASK
115 pending work flags, they will not be tested again before
116 returning to usermode. This means that a process can end up
117 with pending work, which will be unprocessed until the process
118 enters and leaves the kernel again, which could be an
119 unbounded amount of time. This means that a pending signal or
120 reschedule event could be indefinitely delayed.
121
122 The fix is to notice a nested interrupt in the critical
123 window, and if one occurs, then fold the nested interrupt into
124 the current interrupt stack frame, and re-process it
125 iteratively rather than recursively. This means that it will
126 exit via the normal path, and all pending work will be dealt
127 with appropriately.
128
129 Because the nested interrupt handler needs to deal with the
130 current stack state in whatever form its in, we keep things
131 simple by only using a single register which is pushed/popped
132 on the stack.
133
134 Non-direct iret could be done in the same way, but it would
135 require an annoying amount of code duplication. We'll assume
136 that direct mode will be the common case once the hypervisor
137 support becomes commonplace.
138 */
139ENTRY(xen_iret_direct)
140 /* test eflags for special cases */
141 testl $(X86_EFLAGS_VM | XEN_EFLAGS_NMI), 8(%esp)
142 jnz hyper_iret
143
144 push %eax
145 ESP_OFFSET=4 # bytes pushed onto stack
146
147 /* Store vcpu_info pointer for easy access. Do it this
148 way to avoid having to reload %fs */
149#ifdef CONFIG_SMP
150 GET_THREAD_INFO(%eax)
151 movl TI_cpu(%eax),%eax
152 movl __per_cpu_offset(,%eax,4),%eax
153 lea per_cpu__xen_vcpu_info(%eax),%eax
154#else
155 movl $per_cpu__xen_vcpu_info, %eax
156#endif
157
158 /* check IF state we're restoring */
159 testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp)
160
161 /* Maybe enable events. Once this happens we could get a
162 recursive event, so the critical region starts immediately
163 afterwards. However, if that happens we don't end up
164 resuming the code, so we don't have to be worried about
165 being preempted to another CPU. */
166 setz XEN_vcpu_info_mask(%eax)
167xen_iret_start_crit:
168
169 /* check for unmasked and pending */
170 cmpw $0x0001, XEN_vcpu_info_pending(%eax)
171
172 /* If there's something pending, mask events again so we
173 can jump back into xen_hypervisor_callback */
174 sete XEN_vcpu_info_mask(%eax)
175
176 popl %eax
177
178 /* From this point on the registers are restored and the stack
179 updated, so we don't need to worry about it if we're preempted */
180iret_restore_end:
181
182 /* Jump to hypervisor_callback after fixing up the stack.
183 Events are masked, so jumping out of the critical
184 region is OK. */
185 je xen_hypervisor_callback
186
187 iret
188xen_iret_end_crit:
189
190hyper_iret:
191 /* put this out of line since its very rarely used */
192 jmp hypercall_page + __HYPERVISOR_iret * 32
193
194 .globl xen_iret_start_crit, xen_iret_end_crit
195
196/*
197 This is called by xen_hypervisor_callback in entry.S when it sees
198 that the EIP at the time of interrupt was between xen_iret_start_crit
199 and xen_iret_end_crit. We're passed the EIP in %eax so we can do
200 a more refined determination of what to do.
201
202 The stack format at this point is:
203 ----------------
204 ss : (ss/esp may be present if we came from usermode)
205 esp :
206 eflags } outer exception info
207 cs }
208 eip }
209 ---------------- <- edi (copy dest)
210 eax : outer eax if it hasn't been restored
211 ----------------
212 eflags } nested exception info
213 cs } (no ss/esp because we're nested
214 eip } from the same ring)
215 orig_eax }<- esi (copy src)
216 - - - - - - - -
217 fs }
218 es }
219 ds } SAVE_ALL state
220 eax }
221 : :
222 ebx }
223 ----------------
224 return addr <- esp
225 ----------------
226
227 In order to deliver the nested exception properly, we need to shift
228 everything from the return addr up to the error code so it
229 sits just under the outer exception info. This means that when we
230 handle the exception, we do it in the context of the outer exception
231 rather than starting a new one.
232
233 The only caveat is that if the outer eax hasn't been
234 restored yet (ie, it's still on stack), we need to insert
235 its value into the SAVE_ALL state before going on, since
236 it's usermode state which we eventually need to restore.
237 */
238ENTRY(xen_iret_crit_fixup)
239 /* offsets +4 for return address */
240
241 /*
242 Paranoia: Make sure we're really coming from userspace.
243 One could imagine a case where userspace jumps into the
244 critical range address, but just before the CPU delivers a GP,
245 it decides to deliver an interrupt instead. Unlikely?
246 Definitely. Easy to avoid? Yes. The Intel documents
247 explicitly say that the reported EIP for a bad jump is the
248 jump instruction itself, not the destination, but some virtual
249 environments get this wrong.
250 */
251 movl PT_CS+4(%esp), %ecx
252 andl $SEGMENT_RPL_MASK, %ecx
253 cmpl $USER_RPL, %ecx
254 je 2f
255
256 lea PT_ORIG_EAX+4(%esp), %esi
257 lea PT_EFLAGS+4(%esp), %edi
258
259 /* If eip is before iret_restore_end then stack
260 hasn't been restored yet. */
261 cmp $iret_restore_end, %eax
262 jae 1f
263
264 movl 0+4(%edi),%eax /* copy EAX */
265 movl %eax, PT_EAX+4(%esp)
266
267 lea ESP_OFFSET(%edi),%edi /* move dest up over saved regs */
268
269 /* set up the copy */
2701: std
271 mov $(PT_EIP+4) / 4, %ecx /* copy ret+saved regs up to orig_eax */
272 rep movsl
273 cld
274
275 lea 4(%edi),%esp /* point esp to new frame */
2762: ret
100 277
101 278
102/* 279/*
diff --git a/arch/i386/xen/xen-ops.h b/arch/i386/xen/xen-ops.h
index 33e4c8a16289..b9aaea45f07f 100644
--- a/arch/i386/xen/xen-ops.h
+++ b/arch/i386/xen/xen-ops.h
@@ -67,4 +67,5 @@ DECL_ASM(void, xen_irq_disable_direct, void);
67DECL_ASM(unsigned long, xen_save_fl_direct, void); 67DECL_ASM(unsigned long, xen_save_fl_direct, void);
68DECL_ASM(void, xen_restore_fl_direct, unsigned long); 68DECL_ASM(void, xen_restore_fl_direct, unsigned long);
69 69
70void xen_iret_direct(void);
70#endif /* XEN_OPS_H */ 71#endif /* XEN_OPS_H */