diff options
author | Wolfgang Wander <wwc@rentec.com> | 2005-06-21 20:14:49 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-06-21 21:46:16 -0400 |
commit | 1363c3cd8603a913a27e2995dccbd70d5312d8e6 (patch) | |
tree | 405e7fc1ef44678f3ca0a54c536d0457e6e80f45 /arch/i386/mm | |
parent | e7c8d5c9955a4d2e88e36b640563f5d6d5aba48a (diff) |
[PATCH] Avoiding mmap fragmentation
Ingo recently introduced a great speedup for allocating new mmaps using the
free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and
causes huge performance increases in thread creation.
The downside of this patch is that it does lead to fragmentation in the
mmap-ed areas (visible via /proc/self/maps), such that some applications
that work fine under 2.4 kernels quickly run out of memory on any 2.6
kernel.
The problem is twofold:
1) the free_area_cache is used to continue a search for memory where
the last search ended. Before the change new areas were always
searched from the base address on.
So now new small areas are cluttering holes of all sizes
throughout the whole mmap-able region whereas before small holes
tended to close holes near the base leaving holes far from the base
large and available for larger requests.
2) the free_area_cache also is set to the location of the last
munmap-ed area so in scenarios where we allocate e.g. five regions of
1K each, then free regions 4 2 3 in this order the next request for 1K
will be placed in the position of the old region 3, whereas before we
appended it to the still active region 1, placing it at the location
of the old region 2. Before we had 1 free region of 2K, now we only
get two free regions of 1K -> fragmentation.
The patch addresses thes issues by introducing yet another cache descriptor
cached_hole_size that contains the largest known hole size below the
current free_area_cache. If a new request comes in the size is compared
against the cached_hole_size and if the request can be filled with a hole
below free_area_cache the search is started from the base instead.
The results look promising: Whereas 2.6.12-rc4 fragments quickly and my
(earlier posted) leakme.c test program terminates after 50000+ iterations
with 96 distinct and fragmented maps in /proc/self/maps it performs nicely
(as expected) with thread creation, Ingo's test_str02 with 20000 threads
requires 0.7s system time.
Taking out Ingo's patch (un-patch available per request) by basically
deleting all mentions of free_area_cache from the kernel and starting the
search for new memory always at the respective bases we observe: leakme
terminates successfully with 11 distinctive hardly fragmented areas in
/proc/self/maps but thread creating is gringdingly slow: 30+s(!) system
time for Ingo's test_str02 with 20000 threads.
Now - drumroll ;-) the appended patch works fine with leakme: it ends with
only 7 distinct areas in /proc/self/maps and also thread creation seems
sufficiently fast with 0.71s for 20000 threads.
Signed-off-by: Wolfgang Wander <wwc@rentec.com>
Credit-to: "Richard Purdie" <rpurdie@rpsys.net>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu> (partly)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/i386/mm')
-rw-r--r-- | arch/i386/mm/hugetlbpage.c | 34 |
1 files changed, 29 insertions, 5 deletions
diff --git a/arch/i386/mm/hugetlbpage.c b/arch/i386/mm/hugetlbpage.c index 5aa06001a4bd..3b099f32b948 100644 --- a/arch/i386/mm/hugetlbpage.c +++ b/arch/i386/mm/hugetlbpage.c | |||
@@ -140,7 +140,12 @@ static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, | |||
140 | struct vm_area_struct *vma; | 140 | struct vm_area_struct *vma; |
141 | unsigned long start_addr; | 141 | unsigned long start_addr; |
142 | 142 | ||
143 | start_addr = mm->free_area_cache; | 143 | if (len > mm->cached_hole_size) { |
144 | start_addr = mm->free_area_cache; | ||
145 | } else { | ||
146 | start_addr = TASK_UNMAPPED_BASE; | ||
147 | mm->cached_hole_size = 0; | ||
148 | } | ||
144 | 149 | ||
145 | full_search: | 150 | full_search: |
146 | addr = ALIGN(start_addr, HPAGE_SIZE); | 151 | addr = ALIGN(start_addr, HPAGE_SIZE); |
@@ -154,6 +159,7 @@ full_search: | |||
154 | */ | 159 | */ |
155 | if (start_addr != TASK_UNMAPPED_BASE) { | 160 | if (start_addr != TASK_UNMAPPED_BASE) { |
156 | start_addr = TASK_UNMAPPED_BASE; | 161 | start_addr = TASK_UNMAPPED_BASE; |
162 | mm->cached_hole_size = 0; | ||
157 | goto full_search; | 163 | goto full_search; |
158 | } | 164 | } |
159 | return -ENOMEM; | 165 | return -ENOMEM; |
@@ -162,6 +168,8 @@ full_search: | |||
162 | mm->free_area_cache = addr + len; | 168 | mm->free_area_cache = addr + len; |
163 | return addr; | 169 | return addr; |
164 | } | 170 | } |
171 | if (addr + mm->cached_hole_size < vma->vm_start) | ||
172 | mm->cached_hole_size = vma->vm_start - addr; | ||
165 | addr = ALIGN(vma->vm_end, HPAGE_SIZE); | 173 | addr = ALIGN(vma->vm_end, HPAGE_SIZE); |
166 | } | 174 | } |
167 | } | 175 | } |
@@ -173,12 +181,17 @@ static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, | |||
173 | struct mm_struct *mm = current->mm; | 181 | struct mm_struct *mm = current->mm; |
174 | struct vm_area_struct *vma, *prev_vma; | 182 | struct vm_area_struct *vma, *prev_vma; |
175 | unsigned long base = mm->mmap_base, addr = addr0; | 183 | unsigned long base = mm->mmap_base, addr = addr0; |
184 | unsigned long largest_hole = mm->cached_hole_size; | ||
176 | int first_time = 1; | 185 | int first_time = 1; |
177 | 186 | ||
178 | /* don't allow allocations above current base */ | 187 | /* don't allow allocations above current base */ |
179 | if (mm->free_area_cache > base) | 188 | if (mm->free_area_cache > base) |
180 | mm->free_area_cache = base; | 189 | mm->free_area_cache = base; |
181 | 190 | ||
191 | if (len <= largest_hole) { | ||
192 | largest_hole = 0; | ||
193 | mm->free_area_cache = base; | ||
194 | } | ||
182 | try_again: | 195 | try_again: |
183 | /* make sure it can fit in the remaining address space */ | 196 | /* make sure it can fit in the remaining address space */ |
184 | if (mm->free_area_cache < len) | 197 | if (mm->free_area_cache < len) |
@@ -199,13 +212,21 @@ try_again: | |||
199 | * vma->vm_start, use it: | 212 | * vma->vm_start, use it: |
200 | */ | 213 | */ |
201 | if (addr + len <= vma->vm_start && | 214 | if (addr + len <= vma->vm_start && |
202 | (!prev_vma || (addr >= prev_vma->vm_end))) | 215 | (!prev_vma || (addr >= prev_vma->vm_end))) { |
203 | /* remember the address as a hint for next time */ | 216 | /* remember the address as a hint for next time */ |
204 | return (mm->free_area_cache = addr); | 217 | mm->cached_hole_size = largest_hole; |
205 | else | 218 | return (mm->free_area_cache = addr); |
219 | } else { | ||
206 | /* pull free_area_cache down to the first hole */ | 220 | /* pull free_area_cache down to the first hole */ |
207 | if (mm->free_area_cache == vma->vm_end) | 221 | if (mm->free_area_cache == vma->vm_end) { |
208 | mm->free_area_cache = vma->vm_start; | 222 | mm->free_area_cache = vma->vm_start; |
223 | mm->cached_hole_size = largest_hole; | ||
224 | } | ||
225 | } | ||
226 | |||
227 | /* remember the largest hole we saw so far */ | ||
228 | if (addr + largest_hole < vma->vm_start) | ||
229 | largest_hole = vma->vm_start - addr; | ||
209 | 230 | ||
210 | /* try just below the current vma->vm_start */ | 231 | /* try just below the current vma->vm_start */ |
211 | addr = (vma->vm_start - len) & HPAGE_MASK; | 232 | addr = (vma->vm_start - len) & HPAGE_MASK; |
@@ -218,6 +239,7 @@ fail: | |||
218 | */ | 239 | */ |
219 | if (first_time) { | 240 | if (first_time) { |
220 | mm->free_area_cache = base; | 241 | mm->free_area_cache = base; |
242 | largest_hole = 0; | ||
221 | first_time = 0; | 243 | first_time = 0; |
222 | goto try_again; | 244 | goto try_again; |
223 | } | 245 | } |
@@ -228,6 +250,7 @@ fail: | |||
228 | * allocations. | 250 | * allocations. |
229 | */ | 251 | */ |
230 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 252 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
253 | mm->cached_hole_size = ~0UL; | ||
231 | addr = hugetlb_get_unmapped_area_bottomup(file, addr0, | 254 | addr = hugetlb_get_unmapped_area_bottomup(file, addr0, |
232 | len, pgoff, flags); | 255 | len, pgoff, flags); |
233 | 256 | ||
@@ -235,6 +258,7 @@ fail: | |||
235 | * Restore the topdown base: | 258 | * Restore the topdown base: |
236 | */ | 259 | */ |
237 | mm->free_area_cache = base; | 260 | mm->free_area_cache = base; |
261 | mm->cached_hole_size = ~0UL; | ||
238 | 262 | ||
239 | return addr; | 263 | return addr; |
240 | } | 264 | } |