diff options
| author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
|---|---|---|
| committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
| commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
| tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/mm/fault.c | |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/mm/fault.c')
| -rw-r--r-- | arch/i386/mm/fault.c | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/arch/i386/mm/fault.c b/arch/i386/mm/fault.c new file mode 100644 index 000000000000..a509237c4815 --- /dev/null +++ b/arch/i386/mm/fault.c | |||
| @@ -0,0 +1,552 @@ | |||
| 1 | /* | ||
| 2 | * linux/arch/i386/mm/fault.c | ||
| 3 | * | ||
| 4 | * Copyright (C) 1995 Linus Torvalds | ||
| 5 | */ | ||
| 6 | |||
| 7 | #include <linux/signal.h> | ||
| 8 | #include <linux/sched.h> | ||
| 9 | #include <linux/kernel.h> | ||
| 10 | #include <linux/errno.h> | ||
| 11 | #include <linux/string.h> | ||
| 12 | #include <linux/types.h> | ||
| 13 | #include <linux/ptrace.h> | ||
| 14 | #include <linux/mman.h> | ||
| 15 | #include <linux/mm.h> | ||
| 16 | #include <linux/smp.h> | ||
| 17 | #include <linux/smp_lock.h> | ||
| 18 | #include <linux/interrupt.h> | ||
| 19 | #include <linux/init.h> | ||
| 20 | #include <linux/tty.h> | ||
| 21 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
| 22 | #include <linux/highmem.h> | ||
| 23 | #include <linux/module.h> | ||
| 24 | |||
| 25 | #include <asm/system.h> | ||
| 26 | #include <asm/uaccess.h> | ||
| 27 | #include <asm/desc.h> | ||
| 28 | #include <asm/kdebug.h> | ||
| 29 | |||
| 30 | extern void die(const char *,struct pt_regs *,long); | ||
| 31 | |||
| 32 | /* | ||
| 33 | * Unlock any spinlocks which will prevent us from getting the | ||
| 34 | * message out | ||
| 35 | */ | ||
| 36 | void bust_spinlocks(int yes) | ||
| 37 | { | ||
| 38 | int loglevel_save = console_loglevel; | ||
| 39 | |||
| 40 | if (yes) { | ||
| 41 | oops_in_progress = 1; | ||
| 42 | return; | ||
| 43 | } | ||
| 44 | #ifdef CONFIG_VT | ||
| 45 | unblank_screen(); | ||
| 46 | #endif | ||
| 47 | oops_in_progress = 0; | ||
| 48 | /* | ||
| 49 | * OK, the message is on the console. Now we call printk() | ||
| 50 | * without oops_in_progress set so that printk will give klogd | ||
| 51 | * a poke. Hold onto your hats... | ||
| 52 | */ | ||
| 53 | console_loglevel = 15; /* NMI oopser may have shut the console up */ | ||
| 54 | printk(" "); | ||
| 55 | console_loglevel = loglevel_save; | ||
| 56 | } | ||
| 57 | |||
| 58 | /* | ||
| 59 | * Return EIP plus the CS segment base. The segment limit is also | ||
| 60 | * adjusted, clamped to the kernel/user address space (whichever is | ||
| 61 | * appropriate), and returned in *eip_limit. | ||
| 62 | * | ||
| 63 | * The segment is checked, because it might have been changed by another | ||
| 64 | * task between the original faulting instruction and here. | ||
| 65 | * | ||
| 66 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
| 67 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
| 68 | * then the returned value will be greater than *eip_limit. | ||
| 69 | * | ||
| 70 | * This is slow, but is very rarely executed. | ||
| 71 | */ | ||
| 72 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | ||
| 73 | unsigned long *eip_limit) | ||
| 74 | { | ||
| 75 | unsigned long eip = regs->eip; | ||
| 76 | unsigned seg = regs->xcs & 0xffff; | ||
| 77 | u32 seg_ar, seg_limit, base, *desc; | ||
| 78 | |||
| 79 | /* The standard kernel/user address space limit. */ | ||
| 80 | *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg; | ||
| 81 | |||
| 82 | /* Unlikely, but must come before segment checks. */ | ||
| 83 | if (unlikely((regs->eflags & VM_MASK) != 0)) | ||
| 84 | return eip + (seg << 4); | ||
| 85 | |||
| 86 | /* By far the most common cases. */ | ||
| 87 | if (likely(seg == __USER_CS || seg == __KERNEL_CS)) | ||
| 88 | return eip; | ||
| 89 | |||
| 90 | /* Check the segment exists, is within the current LDT/GDT size, | ||
| 91 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
| 92 | that it's a code segment, and get the limit. */ | ||
| 93 | __asm__ ("larl %3,%0; lsll %3,%1" | ||
| 94 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
| 95 | if ((~seg_ar & 0x9800) || eip > seg_limit) { | ||
| 96 | *eip_limit = 0; | ||
| 97 | return 1; /* So that returned eip > *eip_limit. */ | ||
| 98 | } | ||
| 99 | |||
| 100 | /* Get the GDT/LDT descriptor base. | ||
| 101 | When you look for races in this code remember that | ||
| 102 | LDT and other horrors are only used in user space. */ | ||
| 103 | if (seg & (1<<2)) { | ||
| 104 | /* Must lock the LDT while reading it. */ | ||
| 105 | down(¤t->mm->context.sem); | ||
| 106 | desc = current->mm->context.ldt; | ||
| 107 | desc = (void *)desc + (seg & ~7); | ||
| 108 | } else { | ||
| 109 | /* Must disable preemption while reading the GDT. */ | ||
| 110 | desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu()); | ||
| 111 | desc = (void *)desc + (seg & ~7); | ||
| 112 | } | ||
| 113 | |||
| 114 | /* Decode the code segment base from the descriptor */ | ||
| 115 | base = get_desc_base((unsigned long *)desc); | ||
| 116 | |||
| 117 | if (seg & (1<<2)) { | ||
| 118 | up(¤t->mm->context.sem); | ||
| 119 | } else | ||
| 120 | put_cpu(); | ||
| 121 | |||
| 122 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
| 123 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
| 124 | seg_limit += base; | ||
| 125 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
| 126 | *eip_limit = seg_limit; | ||
| 127 | return eip + base; | ||
| 128 | } | ||
| 129 | |||
| 130 | /* | ||
| 131 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
| 132 | * Check that here and ignore it. | ||
| 133 | */ | ||
| 134 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | ||
| 135 | { | ||
| 136 | unsigned long limit; | ||
| 137 | unsigned long instr = get_segment_eip (regs, &limit); | ||
| 138 | int scan_more = 1; | ||
| 139 | int prefetch = 0; | ||
| 140 | int i; | ||
| 141 | |||
| 142 | for (i = 0; scan_more && i < 15; i++) { | ||
| 143 | unsigned char opcode; | ||
| 144 | unsigned char instr_hi; | ||
| 145 | unsigned char instr_lo; | ||
| 146 | |||
| 147 | if (instr > limit) | ||
| 148 | break; | ||
| 149 | if (__get_user(opcode, (unsigned char *) instr)) | ||
| 150 | break; | ||
| 151 | |||
| 152 | instr_hi = opcode & 0xf0; | ||
| 153 | instr_lo = opcode & 0x0f; | ||
| 154 | instr++; | ||
| 155 | |||
| 156 | switch (instr_hi) { | ||
| 157 | case 0x20: | ||
| 158 | case 0x30: | ||
| 159 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | ||
| 160 | scan_more = ((instr_lo & 7) == 0x6); | ||
| 161 | break; | ||
| 162 | |||
| 163 | case 0x60: | ||
| 164 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
| 165 | scan_more = (instr_lo & 0xC) == 0x4; | ||
| 166 | break; | ||
| 167 | case 0xF0: | ||
| 168 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | ||
| 169 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
| 170 | break; | ||
| 171 | case 0x00: | ||
| 172 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
| 173 | scan_more = 0; | ||
| 174 | if (instr > limit) | ||
| 175 | break; | ||
| 176 | if (__get_user(opcode, (unsigned char *) instr)) | ||
| 177 | break; | ||
| 178 | prefetch = (instr_lo == 0xF) && | ||
| 179 | (opcode == 0x0D || opcode == 0x18); | ||
| 180 | break; | ||
| 181 | default: | ||
| 182 | scan_more = 0; | ||
| 183 | break; | ||
| 184 | } | ||
| 185 | } | ||
| 186 | return prefetch; | ||
| 187 | } | ||
| 188 | |||
| 189 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
| 190 | unsigned long error_code) | ||
| 191 | { | ||
| 192 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | ||
| 193 | boot_cpu_data.x86 >= 6)) { | ||
| 194 | /* Catch an obscure case of prefetch inside an NX page. */ | ||
| 195 | if (nx_enabled && (error_code & 16)) | ||
| 196 | return 0; | ||
| 197 | return __is_prefetch(regs, addr); | ||
| 198 | } | ||
| 199 | return 0; | ||
| 200 | } | ||
| 201 | |||
| 202 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | ||
| 203 | |||
| 204 | /* | ||
| 205 | * This routine handles page faults. It determines the address, | ||
| 206 | * and the problem, and then passes it off to one of the appropriate | ||
| 207 | * routines. | ||
| 208 | * | ||
| 209 | * error_code: | ||
| 210 | * bit 0 == 0 means no page found, 1 means protection fault | ||
| 211 | * bit 1 == 0 means read, 1 means write | ||
| 212 | * bit 2 == 0 means kernel, 1 means user-mode | ||
| 213 | */ | ||
| 214 | fastcall void do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
| 215 | { | ||
| 216 | struct task_struct *tsk; | ||
| 217 | struct mm_struct *mm; | ||
| 218 | struct vm_area_struct * vma; | ||
| 219 | unsigned long address; | ||
| 220 | unsigned long page; | ||
| 221 | int write; | ||
| 222 | siginfo_t info; | ||
| 223 | |||
| 224 | /* get the address */ | ||
| 225 | __asm__("movl %%cr2,%0":"=r" (address)); | ||
| 226 | |||
| 227 | if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, | ||
| 228 | SIGSEGV) == NOTIFY_STOP) | ||
| 229 | return; | ||
| 230 | /* It's safe to allow irq's after cr2 has been saved */ | ||
| 231 | if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | ||
| 232 | local_irq_enable(); | ||
| 233 | |||
| 234 | tsk = current; | ||
| 235 | |||
| 236 | info.si_code = SEGV_MAPERR; | ||
| 237 | |||
| 238 | /* | ||
| 239 | * We fault-in kernel-space virtual memory on-demand. The | ||
| 240 | * 'reference' page table is init_mm.pgd. | ||
| 241 | * | ||
| 242 | * NOTE! We MUST NOT take any locks for this case. We may | ||
| 243 | * be in an interrupt or a critical region, and should | ||
| 244 | * only copy the information from the master page table, | ||
| 245 | * nothing more. | ||
| 246 | * | ||
| 247 | * This verifies that the fault happens in kernel space | ||
| 248 | * (error_code & 4) == 0, and that the fault was not a | ||
| 249 | * protection error (error_code & 1) == 0. | ||
| 250 | */ | ||
| 251 | if (unlikely(address >= TASK_SIZE)) { | ||
| 252 | if (!(error_code & 5)) | ||
| 253 | goto vmalloc_fault; | ||
| 254 | /* | ||
| 255 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
| 256 | * fault we could otherwise deadlock. | ||
| 257 | */ | ||
| 258 | goto bad_area_nosemaphore; | ||
| 259 | } | ||
| 260 | |||
| 261 | mm = tsk->mm; | ||
| 262 | |||
| 263 | /* | ||
| 264 | * If we're in an interrupt, have no user context or are running in an | ||
| 265 | * atomic region then we must not take the fault.. | ||
| 266 | */ | ||
| 267 | if (in_atomic() || !mm) | ||
| 268 | goto bad_area_nosemaphore; | ||
| 269 | |||
| 270 | /* When running in the kernel we expect faults to occur only to | ||
| 271 | * addresses in user space. All other faults represent errors in the | ||
| 272 | * kernel and should generate an OOPS. Unfortunatly, in the case of an | ||
| 273 | * erroneous fault occuring in a code path which already holds mmap_sem | ||
| 274 | * we will deadlock attempting to validate the fault against the | ||
| 275 | * address space. Luckily the kernel only validly references user | ||
| 276 | * space from well defined areas of code, which are listed in the | ||
| 277 | * exceptions table. | ||
| 278 | * | ||
| 279 | * As the vast majority of faults will be valid we will only perform | ||
| 280 | * the source reference check when there is a possibilty of a deadlock. | ||
| 281 | * Attempt to lock the address space, if we cannot we then validate the | ||
| 282 | * source. If this is invalid we can skip the address space check, | ||
| 283 | * thus avoiding the deadlock. | ||
| 284 | */ | ||
| 285 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
| 286 | if ((error_code & 4) == 0 && | ||
| 287 | !search_exception_tables(regs->eip)) | ||
| 288 | goto bad_area_nosemaphore; | ||
| 289 | down_read(&mm->mmap_sem); | ||
| 290 | } | ||
| 291 | |||
| 292 | vma = find_vma(mm, address); | ||
| 293 | if (!vma) | ||
| 294 | goto bad_area; | ||
| 295 | if (vma->vm_start <= address) | ||
| 296 | goto good_area; | ||
| 297 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
| 298 | goto bad_area; | ||
| 299 | if (error_code & 4) { | ||
| 300 | /* | ||
| 301 | * accessing the stack below %esp is always a bug. | ||
| 302 | * The "+ 32" is there due to some instructions (like | ||
| 303 | * pusha) doing post-decrement on the stack and that | ||
| 304 | * doesn't show up until later.. | ||
| 305 | */ | ||
| 306 | if (address + 32 < regs->esp) | ||
| 307 | goto bad_area; | ||
| 308 | } | ||
| 309 | if (expand_stack(vma, address)) | ||
| 310 | goto bad_area; | ||
| 311 | /* | ||
| 312 | * Ok, we have a good vm_area for this memory access, so | ||
| 313 | * we can handle it.. | ||
| 314 | */ | ||
| 315 | good_area: | ||
| 316 | info.si_code = SEGV_ACCERR; | ||
| 317 | write = 0; | ||
| 318 | switch (error_code & 3) { | ||
| 319 | default: /* 3: write, present */ | ||
| 320 | #ifdef TEST_VERIFY_AREA | ||
| 321 | if (regs->cs == KERNEL_CS) | ||
| 322 | printk("WP fault at %08lx\n", regs->eip); | ||
| 323 | #endif | ||
| 324 | /* fall through */ | ||
| 325 | case 2: /* write, not present */ | ||
| 326 | if (!(vma->vm_flags & VM_WRITE)) | ||
| 327 | goto bad_area; | ||
| 328 | write++; | ||
| 329 | break; | ||
| 330 | case 1: /* read, present */ | ||
| 331 | goto bad_area; | ||
| 332 | case 0: /* read, not present */ | ||
| 333 | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | ||
| 334 | goto bad_area; | ||
| 335 | } | ||
| 336 | |||
| 337 | survive: | ||
| 338 | /* | ||
| 339 | * If for any reason at all we couldn't handle the fault, | ||
| 340 | * make sure we exit gracefully rather than endlessly redo | ||
| 341 | * the fault. | ||
| 342 | */ | ||
| 343 | switch (handle_mm_fault(mm, vma, address, write)) { | ||
| 344 | case VM_FAULT_MINOR: | ||
| 345 | tsk->min_flt++; | ||
| 346 | break; | ||
| 347 | case VM_FAULT_MAJOR: | ||
| 348 | tsk->maj_flt++; | ||
| 349 | break; | ||
| 350 | case VM_FAULT_SIGBUS: | ||
| 351 | goto do_sigbus; | ||
| 352 | case VM_FAULT_OOM: | ||
| 353 | goto out_of_memory; | ||
| 354 | default: | ||
| 355 | BUG(); | ||
| 356 | } | ||
| 357 | |||
| 358 | /* | ||
| 359 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
| 360 | */ | ||
| 361 | if (regs->eflags & VM_MASK) { | ||
| 362 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
| 363 | if (bit < 32) | ||
| 364 | tsk->thread.screen_bitmap |= 1 << bit; | ||
| 365 | } | ||
| 366 | up_read(&mm->mmap_sem); | ||
| 367 | return; | ||
| 368 | |||
| 369 | /* | ||
| 370 | * Something tried to access memory that isn't in our memory map.. | ||
| 371 | * Fix it, but check if it's kernel or user first.. | ||
| 372 | */ | ||
| 373 | bad_area: | ||
| 374 | up_read(&mm->mmap_sem); | ||
| 375 | |||
| 376 | bad_area_nosemaphore: | ||
| 377 | /* User mode accesses just cause a SIGSEGV */ | ||
| 378 | if (error_code & 4) { | ||
| 379 | /* | ||
| 380 | * Valid to do another page fault here because this one came | ||
| 381 | * from user space. | ||
| 382 | */ | ||
| 383 | if (is_prefetch(regs, address, error_code)) | ||
| 384 | return; | ||
| 385 | |||
| 386 | tsk->thread.cr2 = address; | ||
| 387 | /* Kernel addresses are always protection faults */ | ||
| 388 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
| 389 | tsk->thread.trap_no = 14; | ||
| 390 | info.si_signo = SIGSEGV; | ||
| 391 | info.si_errno = 0; | ||
| 392 | /* info.si_code has been set above */ | ||
| 393 | info.si_addr = (void __user *)address; | ||
| 394 | force_sig_info(SIGSEGV, &info, tsk); | ||
| 395 | return; | ||
| 396 | } | ||
| 397 | |||
| 398 | #ifdef CONFIG_X86_F00F_BUG | ||
| 399 | /* | ||
| 400 | * Pentium F0 0F C7 C8 bug workaround. | ||
| 401 | */ | ||
| 402 | if (boot_cpu_data.f00f_bug) { | ||
| 403 | unsigned long nr; | ||
| 404 | |||
| 405 | nr = (address - idt_descr.address) >> 3; | ||
| 406 | |||
| 407 | if (nr == 6) { | ||
| 408 | do_invalid_op(regs, 0); | ||
| 409 | return; | ||
| 410 | } | ||
| 411 | } | ||
| 412 | #endif | ||
| 413 | |||
| 414 | no_context: | ||
| 415 | /* Are we prepared to handle this kernel fault? */ | ||
| 416 | if (fixup_exception(regs)) | ||
| 417 | return; | ||
| 418 | |||
| 419 | /* | ||
| 420 | * Valid to do another page fault here, because if this fault | ||
| 421 | * had been triggered by is_prefetch fixup_exception would have | ||
| 422 | * handled it. | ||
| 423 | */ | ||
| 424 | if (is_prefetch(regs, address, error_code)) | ||
| 425 | return; | ||
| 426 | |||
| 427 | /* | ||
| 428 | * Oops. The kernel tried to access some bad page. We'll have to | ||
| 429 | * terminate things with extreme prejudice. | ||
| 430 | */ | ||
| 431 | |||
| 432 | bust_spinlocks(1); | ||
| 433 | |||
| 434 | #ifdef CONFIG_X86_PAE | ||
| 435 | if (error_code & 16) { | ||
| 436 | pte_t *pte = lookup_address(address); | ||
| 437 | |||
| 438 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | ||
| 439 | printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid); | ||
| 440 | } | ||
| 441 | #endif | ||
| 442 | if (address < PAGE_SIZE) | ||
| 443 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | ||
| 444 | else | ||
| 445 | printk(KERN_ALERT "Unable to handle kernel paging request"); | ||
| 446 | printk(" at virtual address %08lx\n",address); | ||
| 447 | printk(KERN_ALERT " printing eip:\n"); | ||
| 448 | printk("%08lx\n", regs->eip); | ||
| 449 | asm("movl %%cr3,%0":"=r" (page)); | ||
| 450 | page = ((unsigned long *) __va(page))[address >> 22]; | ||
| 451 | printk(KERN_ALERT "*pde = %08lx\n", page); | ||
| 452 | /* | ||
| 453 | * We must not directly access the pte in the highpte | ||
| 454 | * case, the page table might be allocated in highmem. | ||
| 455 | * And lets rather not kmap-atomic the pte, just in case | ||
| 456 | * it's allocated already. | ||
| 457 | */ | ||
| 458 | #ifndef CONFIG_HIGHPTE | ||
| 459 | if (page & 1) { | ||
| 460 | page &= PAGE_MASK; | ||
| 461 | address &= 0x003ff000; | ||
| 462 | page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; | ||
| 463 | printk(KERN_ALERT "*pte = %08lx\n", page); | ||
| 464 | } | ||
| 465 | #endif | ||
| 466 | die("Oops", regs, error_code); | ||
| 467 | bust_spinlocks(0); | ||
| 468 | do_exit(SIGKILL); | ||
| 469 | |||
| 470 | /* | ||
| 471 | * We ran out of memory, or some other thing happened to us that made | ||
| 472 | * us unable to handle the page fault gracefully. | ||
| 473 | */ | ||
| 474 | out_of_memory: | ||
| 475 | up_read(&mm->mmap_sem); | ||
| 476 | if (tsk->pid == 1) { | ||
| 477 | yield(); | ||
| 478 | down_read(&mm->mmap_sem); | ||
| 479 | goto survive; | ||
| 480 | } | ||
| 481 | printk("VM: killing process %s\n", tsk->comm); | ||
| 482 | if (error_code & 4) | ||
| 483 | do_exit(SIGKILL); | ||
| 484 | goto no_context; | ||
| 485 | |||
| 486 | do_sigbus: | ||
| 487 | up_read(&mm->mmap_sem); | ||
| 488 | |||
| 489 | /* Kernel mode? Handle exceptions or die */ | ||
| 490 | if (!(error_code & 4)) | ||
| 491 | goto no_context; | ||
| 492 | |||
| 493 | /* User space => ok to do another page fault */ | ||
| 494 | if (is_prefetch(regs, address, error_code)) | ||
| 495 | return; | ||
| 496 | |||
| 497 | tsk->thread.cr2 = address; | ||
| 498 | tsk->thread.error_code = error_code; | ||
| 499 | tsk->thread.trap_no = 14; | ||
| 500 | info.si_signo = SIGBUS; | ||
| 501 | info.si_errno = 0; | ||
| 502 | info.si_code = BUS_ADRERR; | ||
| 503 | info.si_addr = (void __user *)address; | ||
| 504 | force_sig_info(SIGBUS, &info, tsk); | ||
| 505 | return; | ||
| 506 | |||
| 507 | vmalloc_fault: | ||
| 508 | { | ||
| 509 | /* | ||
| 510 | * Synchronize this task's top level page-table | ||
| 511 | * with the 'reference' page table. | ||
| 512 | * | ||
| 513 | * Do _not_ use "tsk" here. We might be inside | ||
| 514 | * an interrupt in the middle of a task switch.. | ||
| 515 | */ | ||
| 516 | int index = pgd_index(address); | ||
| 517 | unsigned long pgd_paddr; | ||
| 518 | pgd_t *pgd, *pgd_k; | ||
| 519 | pud_t *pud, *pud_k; | ||
| 520 | pmd_t *pmd, *pmd_k; | ||
| 521 | pte_t *pte_k; | ||
| 522 | |||
| 523 | asm("movl %%cr3,%0":"=r" (pgd_paddr)); | ||
| 524 | pgd = index + (pgd_t *)__va(pgd_paddr); | ||
| 525 | pgd_k = init_mm.pgd + index; | ||
| 526 | |||
| 527 | if (!pgd_present(*pgd_k)) | ||
| 528 | goto no_context; | ||
| 529 | |||
| 530 | /* | ||
| 531 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
| 532 | * and redundant with the set_pmd() on non-PAE. As would | ||
| 533 | * set_pud. | ||
| 534 | */ | ||
| 535 | |||
| 536 | pud = pud_offset(pgd, address); | ||
| 537 | pud_k = pud_offset(pgd_k, address); | ||
| 538 | if (!pud_present(*pud_k)) | ||
| 539 | goto no_context; | ||
| 540 | |||
| 541 | pmd = pmd_offset(pud, address); | ||
| 542 | pmd_k = pmd_offset(pud_k, address); | ||
| 543 | if (!pmd_present(*pmd_k)) | ||
| 544 | goto no_context; | ||
| 545 | set_pmd(pmd, *pmd_k); | ||
| 546 | |||
| 547 | pte_k = pte_offset_kernel(pmd_k, address); | ||
| 548 | if (!pte_present(*pte_k)) | ||
| 549 | goto no_context; | ||
| 550 | return; | ||
| 551 | } | ||
| 552 | } | ||
