diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/mm/discontig.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/mm/discontig.c')
-rw-r--r-- | arch/i386/mm/discontig.c | 383 |
1 files changed, 383 insertions, 0 deletions
diff --git a/arch/i386/mm/discontig.c b/arch/i386/mm/discontig.c new file mode 100644 index 000000000000..1726b4096b10 --- /dev/null +++ b/arch/i386/mm/discontig.c | |||
@@ -0,0 +1,383 @@ | |||
1 | /* | ||
2 | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | ||
3 | * August 2002: added remote node KVA remap - Martin J. Bligh | ||
4 | * | ||
5 | * Copyright (C) 2002, IBM Corp. | ||
6 | * | ||
7 | * All rights reserved. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
17 | * NON INFRINGEMENT. See the GNU General Public License for more | ||
18 | * details. | ||
19 | * | ||
20 | * You should have received a copy of the GNU General Public License | ||
21 | * along with this program; if not, write to the Free Software | ||
22 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
23 | */ | ||
24 | |||
25 | #include <linux/config.h> | ||
26 | #include <linux/mm.h> | ||
27 | #include <linux/bootmem.h> | ||
28 | #include <linux/mmzone.h> | ||
29 | #include <linux/highmem.h> | ||
30 | #include <linux/initrd.h> | ||
31 | #include <linux/nodemask.h> | ||
32 | #include <asm/e820.h> | ||
33 | #include <asm/setup.h> | ||
34 | #include <asm/mmzone.h> | ||
35 | #include <bios_ebda.h> | ||
36 | |||
37 | struct pglist_data *node_data[MAX_NUMNODES]; | ||
38 | bootmem_data_t node0_bdata; | ||
39 | |||
40 | /* | ||
41 | * numa interface - we expect the numa architecture specfic code to have | ||
42 | * populated the following initialisation. | ||
43 | * | ||
44 | * 1) node_online_map - the map of all nodes configured (online) in the system | ||
45 | * 2) physnode_map - the mapping between a pfn and owning node | ||
46 | * 3) node_start_pfn - the starting page frame number for a node | ||
47 | * 3) node_end_pfn - the ending page fram number for a node | ||
48 | */ | ||
49 | |||
50 | /* | ||
51 | * physnode_map keeps track of the physical memory layout of a generic | ||
52 | * numa node on a 256Mb break (each element of the array will | ||
53 | * represent 256Mb of memory and will be marked by the node id. so, | ||
54 | * if the first gig is on node 0, and the second gig is on node 1 | ||
55 | * physnode_map will contain: | ||
56 | * | ||
57 | * physnode_map[0-3] = 0; | ||
58 | * physnode_map[4-7] = 1; | ||
59 | * physnode_map[8- ] = -1; | ||
60 | */ | ||
61 | s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | ||
62 | |||
63 | void memory_present(int nid, unsigned long start, unsigned long end) | ||
64 | { | ||
65 | unsigned long pfn; | ||
66 | |||
67 | printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", | ||
68 | nid, start, end); | ||
69 | printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); | ||
70 | printk(KERN_DEBUG " "); | ||
71 | for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | ||
72 | physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | ||
73 | printk("%ld ", pfn); | ||
74 | } | ||
75 | printk("\n"); | ||
76 | } | ||
77 | |||
78 | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | ||
79 | unsigned long end_pfn) | ||
80 | { | ||
81 | unsigned long nr_pages = end_pfn - start_pfn; | ||
82 | |||
83 | if (!nr_pages) | ||
84 | return 0; | ||
85 | |||
86 | return (nr_pages + 1) * sizeof(struct page); | ||
87 | } | ||
88 | |||
89 | unsigned long node_start_pfn[MAX_NUMNODES]; | ||
90 | unsigned long node_end_pfn[MAX_NUMNODES]; | ||
91 | |||
92 | extern unsigned long find_max_low_pfn(void); | ||
93 | extern void find_max_pfn(void); | ||
94 | extern void one_highpage_init(struct page *, int, int); | ||
95 | |||
96 | extern struct e820map e820; | ||
97 | extern unsigned long init_pg_tables_end; | ||
98 | extern unsigned long highend_pfn, highstart_pfn; | ||
99 | extern unsigned long max_low_pfn; | ||
100 | extern unsigned long totalram_pages; | ||
101 | extern unsigned long totalhigh_pages; | ||
102 | |||
103 | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | ||
104 | |||
105 | unsigned long node_remap_start_pfn[MAX_NUMNODES]; | ||
106 | unsigned long node_remap_size[MAX_NUMNODES]; | ||
107 | unsigned long node_remap_offset[MAX_NUMNODES]; | ||
108 | void *node_remap_start_vaddr[MAX_NUMNODES]; | ||
109 | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | ||
110 | |||
111 | /* | ||
112 | * FLAT - support for basic PC memory model with discontig enabled, essentially | ||
113 | * a single node with all available processors in it with a flat | ||
114 | * memory map. | ||
115 | */ | ||
116 | int __init get_memcfg_numa_flat(void) | ||
117 | { | ||
118 | printk("NUMA - single node, flat memory mode\n"); | ||
119 | |||
120 | /* Run the memory configuration and find the top of memory. */ | ||
121 | find_max_pfn(); | ||
122 | node_start_pfn[0] = 0; | ||
123 | node_end_pfn[0] = max_pfn; | ||
124 | memory_present(0, 0, max_pfn); | ||
125 | |||
126 | /* Indicate there is one node available. */ | ||
127 | nodes_clear(node_online_map); | ||
128 | node_set_online(0); | ||
129 | return 1; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * Find the highest page frame number we have available for the node | ||
134 | */ | ||
135 | static void __init find_max_pfn_node(int nid) | ||
136 | { | ||
137 | if (node_end_pfn[nid] > max_pfn) | ||
138 | node_end_pfn[nid] = max_pfn; | ||
139 | /* | ||
140 | * if a user has given mem=XXXX, then we need to make sure | ||
141 | * that the node _starts_ before that, too, not just ends | ||
142 | */ | ||
143 | if (node_start_pfn[nid] > max_pfn) | ||
144 | node_start_pfn[nid] = max_pfn; | ||
145 | if (node_start_pfn[nid] > node_end_pfn[nid]) | ||
146 | BUG(); | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | ||
151 | * method. For node zero take this from the bottom of memory, for | ||
152 | * subsequent nodes place them at node_remap_start_vaddr which contains | ||
153 | * node local data in physically node local memory. See setup_memory() | ||
154 | * for details. | ||
155 | */ | ||
156 | static void __init allocate_pgdat(int nid) | ||
157 | { | ||
158 | if (nid && node_has_online_mem(nid)) | ||
159 | NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | ||
160 | else { | ||
161 | NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT)); | ||
162 | min_low_pfn += PFN_UP(sizeof(pg_data_t)); | ||
163 | } | ||
164 | } | ||
165 | |||
166 | void __init remap_numa_kva(void) | ||
167 | { | ||
168 | void *vaddr; | ||
169 | unsigned long pfn; | ||
170 | int node; | ||
171 | |||
172 | for_each_online_node(node) { | ||
173 | if (node == 0) | ||
174 | continue; | ||
175 | for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | ||
176 | vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | ||
177 | set_pmd_pfn((ulong) vaddr, | ||
178 | node_remap_start_pfn[node] + pfn, | ||
179 | PAGE_KERNEL_LARGE); | ||
180 | } | ||
181 | } | ||
182 | } | ||
183 | |||
184 | static unsigned long calculate_numa_remap_pages(void) | ||
185 | { | ||
186 | int nid; | ||
187 | unsigned long size, reserve_pages = 0; | ||
188 | |||
189 | for_each_online_node(nid) { | ||
190 | if (nid == 0) | ||
191 | continue; | ||
192 | if (!node_remap_size[nid]) | ||
193 | continue; | ||
194 | |||
195 | /* | ||
196 | * The acpi/srat node info can show hot-add memroy zones | ||
197 | * where memory could be added but not currently present. | ||
198 | */ | ||
199 | if (node_start_pfn[nid] > max_pfn) | ||
200 | continue; | ||
201 | if (node_end_pfn[nid] > max_pfn) | ||
202 | node_end_pfn[nid] = max_pfn; | ||
203 | |||
204 | /* ensure the remap includes space for the pgdat. */ | ||
205 | size = node_remap_size[nid] + sizeof(pg_data_t); | ||
206 | |||
207 | /* convert size to large (pmd size) pages, rounding up */ | ||
208 | size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | ||
209 | /* now the roundup is correct, convert to PAGE_SIZE pages */ | ||
210 | size = size * PTRS_PER_PTE; | ||
211 | printk("Reserving %ld pages of KVA for lmem_map of node %d\n", | ||
212 | size, nid); | ||
213 | node_remap_size[nid] = size; | ||
214 | reserve_pages += size; | ||
215 | node_remap_offset[nid] = reserve_pages; | ||
216 | printk("Shrinking node %d from %ld pages to %ld pages\n", | ||
217 | nid, node_end_pfn[nid], node_end_pfn[nid] - size); | ||
218 | node_end_pfn[nid] -= size; | ||
219 | node_remap_start_pfn[nid] = node_end_pfn[nid]; | ||
220 | } | ||
221 | printk("Reserving total of %ld pages for numa KVA remap\n", | ||
222 | reserve_pages); | ||
223 | return reserve_pages; | ||
224 | } | ||
225 | |||
226 | extern void setup_bootmem_allocator(void); | ||
227 | unsigned long __init setup_memory(void) | ||
228 | { | ||
229 | int nid; | ||
230 | unsigned long system_start_pfn, system_max_low_pfn; | ||
231 | unsigned long reserve_pages; | ||
232 | |||
233 | /* | ||
234 | * When mapping a NUMA machine we allocate the node_mem_map arrays | ||
235 | * from node local memory. They are then mapped directly into KVA | ||
236 | * between zone normal and vmalloc space. Calculate the size of | ||
237 | * this space and use it to adjust the boundry between ZONE_NORMAL | ||
238 | * and ZONE_HIGHMEM. | ||
239 | */ | ||
240 | find_max_pfn(); | ||
241 | get_memcfg_numa(); | ||
242 | |||
243 | reserve_pages = calculate_numa_remap_pages(); | ||
244 | |||
245 | /* partially used pages are not usable - thus round upwards */ | ||
246 | system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); | ||
247 | |||
248 | system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages; | ||
249 | printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n", | ||
250 | reserve_pages, max_low_pfn + reserve_pages); | ||
251 | printk("max_pfn = %ld\n", max_pfn); | ||
252 | #ifdef CONFIG_HIGHMEM | ||
253 | highstart_pfn = highend_pfn = max_pfn; | ||
254 | if (max_pfn > system_max_low_pfn) | ||
255 | highstart_pfn = system_max_low_pfn; | ||
256 | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | ||
257 | pages_to_mb(highend_pfn - highstart_pfn)); | ||
258 | #endif | ||
259 | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | ||
260 | pages_to_mb(system_max_low_pfn)); | ||
261 | printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", | ||
262 | min_low_pfn, max_low_pfn, highstart_pfn); | ||
263 | |||
264 | printk("Low memory ends at vaddr %08lx\n", | ||
265 | (ulong) pfn_to_kaddr(max_low_pfn)); | ||
266 | for_each_online_node(nid) { | ||
267 | node_remap_start_vaddr[nid] = pfn_to_kaddr( | ||
268 | (highstart_pfn + reserve_pages) - node_remap_offset[nid]); | ||
269 | allocate_pgdat(nid); | ||
270 | printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, | ||
271 | (ulong) node_remap_start_vaddr[nid], | ||
272 | (ulong) pfn_to_kaddr(highstart_pfn + reserve_pages | ||
273 | - node_remap_offset[nid] + node_remap_size[nid])); | ||
274 | } | ||
275 | printk("High memory starts at vaddr %08lx\n", | ||
276 | (ulong) pfn_to_kaddr(highstart_pfn)); | ||
277 | vmalloc_earlyreserve = reserve_pages * PAGE_SIZE; | ||
278 | for_each_online_node(nid) | ||
279 | find_max_pfn_node(nid); | ||
280 | |||
281 | memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); | ||
282 | NODE_DATA(0)->bdata = &node0_bdata; | ||
283 | setup_bootmem_allocator(); | ||
284 | return max_low_pfn; | ||
285 | } | ||
286 | |||
287 | void __init zone_sizes_init(void) | ||
288 | { | ||
289 | int nid; | ||
290 | |||
291 | /* | ||
292 | * Insert nodes into pgdat_list backward so they appear in order. | ||
293 | * Clobber node 0's links and NULL out pgdat_list before starting. | ||
294 | */ | ||
295 | pgdat_list = NULL; | ||
296 | for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) { | ||
297 | if (!node_online(nid)) | ||
298 | continue; | ||
299 | NODE_DATA(nid)->pgdat_next = pgdat_list; | ||
300 | pgdat_list = NODE_DATA(nid); | ||
301 | } | ||
302 | |||
303 | for_each_online_node(nid) { | ||
304 | unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; | ||
305 | unsigned long *zholes_size; | ||
306 | unsigned int max_dma; | ||
307 | |||
308 | unsigned long low = max_low_pfn; | ||
309 | unsigned long start = node_start_pfn[nid]; | ||
310 | unsigned long high = node_end_pfn[nid]; | ||
311 | |||
312 | max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
313 | |||
314 | if (node_has_online_mem(nid)){ | ||
315 | if (start > low) { | ||
316 | #ifdef CONFIG_HIGHMEM | ||
317 | BUG_ON(start > high); | ||
318 | zones_size[ZONE_HIGHMEM] = high - start; | ||
319 | #endif | ||
320 | } else { | ||
321 | if (low < max_dma) | ||
322 | zones_size[ZONE_DMA] = low; | ||
323 | else { | ||
324 | BUG_ON(max_dma > low); | ||
325 | BUG_ON(low > high); | ||
326 | zones_size[ZONE_DMA] = max_dma; | ||
327 | zones_size[ZONE_NORMAL] = low - max_dma; | ||
328 | #ifdef CONFIG_HIGHMEM | ||
329 | zones_size[ZONE_HIGHMEM] = high - low; | ||
330 | #endif | ||
331 | } | ||
332 | } | ||
333 | } | ||
334 | |||
335 | zholes_size = get_zholes_size(nid); | ||
336 | /* | ||
337 | * We let the lmem_map for node 0 be allocated from the | ||
338 | * normal bootmem allocator, but other nodes come from the | ||
339 | * remapped KVA area - mbligh | ||
340 | */ | ||
341 | if (!nid) | ||
342 | free_area_init_node(nid, NODE_DATA(nid), | ||
343 | zones_size, start, zholes_size); | ||
344 | else { | ||
345 | unsigned long lmem_map; | ||
346 | lmem_map = (unsigned long)node_remap_start_vaddr[nid]; | ||
347 | lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1; | ||
348 | lmem_map &= PAGE_MASK; | ||
349 | NODE_DATA(nid)->node_mem_map = (struct page *)lmem_map; | ||
350 | free_area_init_node(nid, NODE_DATA(nid), zones_size, | ||
351 | start, zholes_size); | ||
352 | } | ||
353 | } | ||
354 | return; | ||
355 | } | ||
356 | |||
357 | void __init set_highmem_pages_init(int bad_ppro) | ||
358 | { | ||
359 | #ifdef CONFIG_HIGHMEM | ||
360 | struct zone *zone; | ||
361 | |||
362 | for_each_zone(zone) { | ||
363 | unsigned long node_pfn, node_high_size, zone_start_pfn; | ||
364 | struct page * zone_mem_map; | ||
365 | |||
366 | if (!is_highmem(zone)) | ||
367 | continue; | ||
368 | |||
369 | printk("Initializing %s for node %d\n", zone->name, | ||
370 | zone->zone_pgdat->node_id); | ||
371 | |||
372 | node_high_size = zone->spanned_pages; | ||
373 | zone_mem_map = zone->zone_mem_map; | ||
374 | zone_start_pfn = zone->zone_start_pfn; | ||
375 | |||
376 | for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) { | ||
377 | one_highpage_init((struct page *)(zone_mem_map + node_pfn), | ||
378 | zone_start_pfn + node_pfn, bad_ppro); | ||
379 | } | ||
380 | } | ||
381 | totalram_pages += totalhigh_pages; | ||
382 | #endif | ||
383 | } | ||