aboutsummaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/tsc.c
diff options
context:
space:
mode:
authorjohn stultz <johnstul@us.ibm.com>2006-06-26 03:25:10 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-06-26 12:58:21 -0400
commit539eb11e6e904f2cd4f62908cc5e44d724879721 (patch)
treedf18c747c5226b138862fb19fad5b1527055b9c9 /arch/i386/kernel/tsc.c
parent8d016ef1380a2a9a5ca5742ede04334199868f82 (diff)
[PATCH] Time: i386 Conversion - part 2: Rework TSC Support
As part of the i386 conversion to the generic timekeeping infrastructure, this introduces a new tsc.c file. The code in this file replaces the TSC initialization, management and access code currently in timer_tsc.c (which will be removed) that we want to preserve. The code also introduces the following functionality: o tsc_khz: like cpu_khz but stores the TSC frequency on systems that do not change TSC frequency w/ CPU frequency o check/mark_tsc_unstable: accessor/modifier flag for TSC timekeeping usability o minor cleanups to calibration math. This patch also includes a one line __cpuinitdata fix from Zwane Mwaikambo. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/i386/kernel/tsc.c')
-rw-r--r--arch/i386/kernel/tsc.c316
1 files changed, 316 insertions, 0 deletions
diff --git a/arch/i386/kernel/tsc.c b/arch/i386/kernel/tsc.c
new file mode 100644
index 000000000000..3b64eaafce2b
--- /dev/null
+++ b/arch/i386/kernel/tsc.c
@@ -0,0 +1,316 @@
1/*
2 * This code largely moved from arch/i386/kernel/timer/timer_tsc.c
3 * which was originally moved from arch/i386/kernel/time.c.
4 * See comments there for proper credits.
5 */
6
7#include <linux/workqueue.h>
8#include <linux/cpufreq.h>
9#include <linux/jiffies.h>
10#include <linux/init.h>
11
12#include <asm/tsc.h>
13#include <asm/io.h>
14
15#include "mach_timer.h"
16
17/*
18 * On some systems the TSC frequency does not
19 * change with the cpu frequency. So we need
20 * an extra value to store the TSC freq
21 */
22unsigned int tsc_khz;
23
24int tsc_disable __cpuinitdata = 0;
25
26#ifdef CONFIG_X86_TSC
27static int __init tsc_setup(char *str)
28{
29 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
30 "cannot disable TSC.\n");
31 return 1;
32}
33#else
34/*
35 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
36 * in cpu/common.c
37 */
38static int __init tsc_setup(char *str)
39{
40 tsc_disable = 1;
41
42 return 1;
43}
44#endif
45
46__setup("notsc", tsc_setup);
47
48
49/*
50 * code to mark and check if the TSC is unstable
51 * due to cpufreq or due to unsynced TSCs
52 */
53static int tsc_unstable;
54
55static inline int check_tsc_unstable(void)
56{
57 return tsc_unstable;
58}
59
60void mark_tsc_unstable(void)
61{
62 tsc_unstable = 1;
63}
64EXPORT_SYMBOL_GPL(mark_tsc_unstable);
65
66/* Accellerators for sched_clock()
67 * convert from cycles(64bits) => nanoseconds (64bits)
68 * basic equation:
69 * ns = cycles / (freq / ns_per_sec)
70 * ns = cycles * (ns_per_sec / freq)
71 * ns = cycles * (10^9 / (cpu_khz * 10^3))
72 * ns = cycles * (10^6 / cpu_khz)
73 *
74 * Then we use scaling math (suggested by george@mvista.com) to get:
75 * ns = cycles * (10^6 * SC / cpu_khz) / SC
76 * ns = cycles * cyc2ns_scale / SC
77 *
78 * And since SC is a constant power of two, we can convert the div
79 * into a shift.
80 *
81 * We can use khz divisor instead of mhz to keep a better percision, since
82 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
83 * (mathieu.desnoyers@polymtl.ca)
84 *
85 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
86 */
87static unsigned long cyc2ns_scale __read_mostly;
88
89#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
90
91static inline void set_cyc2ns_scale(unsigned long cpu_khz)
92{
93 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
94}
95
96static inline unsigned long long cycles_2_ns(unsigned long long cyc)
97{
98 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
99}
100
101/*
102 * Scheduler clock - returns current time in nanosec units.
103 */
104unsigned long long sched_clock(void)
105{
106 unsigned long long this_offset;
107
108 /*
109 * in the NUMA case we dont use the TSC as they are not
110 * synchronized across all CPUs.
111 */
112#ifndef CONFIG_NUMA
113 if (!cpu_khz || check_tsc_unstable())
114#endif
115 /* no locking but a rare wrong value is not a big deal */
116 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
117
118 /* read the Time Stamp Counter: */
119 rdtscll(this_offset);
120
121 /* return the value in ns */
122 return cycles_2_ns(this_offset);
123}
124
125static unsigned long calculate_cpu_khz(void)
126{
127 unsigned long long start, end;
128 unsigned long count;
129 u64 delta64;
130 int i;
131 unsigned long flags;
132
133 local_irq_save(flags);
134
135 /* run 3 times to ensure the cache is warm */
136 for (i = 0; i < 3; i++) {
137 mach_prepare_counter();
138 rdtscll(start);
139 mach_countup(&count);
140 rdtscll(end);
141 }
142 /*
143 * Error: ECTCNEVERSET
144 * The CTC wasn't reliable: we got a hit on the very first read,
145 * or the CPU was so fast/slow that the quotient wouldn't fit in
146 * 32 bits..
147 */
148 if (count <= 1)
149 goto err;
150
151 delta64 = end - start;
152
153 /* cpu freq too fast: */
154 if (delta64 > (1ULL<<32))
155 goto err;
156
157 /* cpu freq too slow: */
158 if (delta64 <= CALIBRATE_TIME_MSEC)
159 goto err;
160
161 delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
162 do_div(delta64,CALIBRATE_TIME_MSEC);
163
164 local_irq_restore(flags);
165 return (unsigned long)delta64;
166err:
167 local_irq_restore(flags);
168 return 0;
169}
170
171int recalibrate_cpu_khz(void)
172{
173#ifndef CONFIG_SMP
174 unsigned long cpu_khz_old = cpu_khz;
175
176 if (cpu_has_tsc) {
177 cpu_khz = calculate_cpu_khz();
178 tsc_khz = cpu_khz;
179 cpu_data[0].loops_per_jiffy =
180 cpufreq_scale(cpu_data[0].loops_per_jiffy,
181 cpu_khz_old, cpu_khz);
182 return 0;
183 } else
184 return -ENODEV;
185#else
186 return -ENODEV;
187#endif
188}
189
190EXPORT_SYMBOL(recalibrate_cpu_khz);
191
192void tsc_init(void)
193{
194 if (!cpu_has_tsc || tsc_disable)
195 return;
196
197 cpu_khz = calculate_cpu_khz();
198 tsc_khz = cpu_khz;
199
200 if (!cpu_khz)
201 return;
202
203 printk("Detected %lu.%03lu MHz processor.\n",
204 (unsigned long)cpu_khz / 1000,
205 (unsigned long)cpu_khz % 1000);
206
207 set_cyc2ns_scale(cpu_khz);
208}
209
210#ifdef CONFIG_CPU_FREQ
211
212static unsigned int cpufreq_delayed_issched = 0;
213static unsigned int cpufreq_init = 0;
214static struct work_struct cpufreq_delayed_get_work;
215
216static void handle_cpufreq_delayed_get(void *v)
217{
218 unsigned int cpu;
219
220 for_each_online_cpu(cpu)
221 cpufreq_get(cpu);
222
223 cpufreq_delayed_issched = 0;
224}
225
226/*
227 * if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries
228 * to verify the CPU frequency the timing core thinks the CPU is running
229 * at is still correct.
230 */
231static inline void cpufreq_delayed_get(void)
232{
233 if (cpufreq_init && !cpufreq_delayed_issched) {
234 cpufreq_delayed_issched = 1;
235 printk(KERN_DEBUG "Checking if CPU frequency changed.\n");
236 schedule_work(&cpufreq_delayed_get_work);
237 }
238}
239
240/*
241 * if the CPU frequency is scaled, TSC-based delays will need a different
242 * loops_per_jiffy value to function properly.
243 */
244static unsigned int ref_freq = 0;
245static unsigned long loops_per_jiffy_ref = 0;
246static unsigned long cpu_khz_ref = 0;
247
248static int
249time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
250{
251 struct cpufreq_freqs *freq = data;
252
253 if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
254 write_seqlock_irq(&xtime_lock);
255
256 if (!ref_freq) {
257 if (!freq->old){
258 ref_freq = freq->new;
259 goto end;
260 }
261 ref_freq = freq->old;
262 loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
263 cpu_khz_ref = cpu_khz;
264 }
265
266 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
267 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
268 (val == CPUFREQ_RESUMECHANGE)) {
269 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
270 cpu_data[freq->cpu].loops_per_jiffy =
271 cpufreq_scale(loops_per_jiffy_ref,
272 ref_freq, freq->new);
273
274 if (cpu_khz) {
275
276 if (num_online_cpus() == 1)
277 cpu_khz = cpufreq_scale(cpu_khz_ref,
278 ref_freq, freq->new);
279 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
280 tsc_khz = cpu_khz;
281 set_cyc2ns_scale(cpu_khz);
282 /*
283 * TSC based sched_clock turns
284 * to junk w/ cpufreq
285 */
286 mark_tsc_unstable();
287 }
288 }
289 }
290end:
291 if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
292 write_sequnlock_irq(&xtime_lock);
293
294 return 0;
295}
296
297static struct notifier_block time_cpufreq_notifier_block = {
298 .notifier_call = time_cpufreq_notifier
299};
300
301static int __init cpufreq_tsc(void)
302{
303 int ret;
304
305 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
306 ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
307 CPUFREQ_TRANSITION_NOTIFIER);
308 if (!ret)
309 cpufreq_init = 1;
310
311 return ret;
312}
313
314core_initcall(cpufreq_tsc);
315
316#endif