diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/kernel/smp.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/kernel/smp.c')
-rw-r--r-- | arch/i386/kernel/smp.c | 612 |
1 files changed, 612 insertions, 0 deletions
diff --git a/arch/i386/kernel/smp.c b/arch/i386/kernel/smp.c new file mode 100644 index 000000000000..6223c33ac91c --- /dev/null +++ b/arch/i386/kernel/smp.c | |||
@@ -0,0 +1,612 @@ | |||
1 | /* | ||
2 | * Intel SMP support routines. | ||
3 | * | ||
4 | * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> | ||
5 | * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com> | ||
6 | * | ||
7 | * This code is released under the GNU General Public License version 2 or | ||
8 | * later. | ||
9 | */ | ||
10 | |||
11 | #include <linux/init.h> | ||
12 | |||
13 | #include <linux/mm.h> | ||
14 | #include <linux/irq.h> | ||
15 | #include <linux/delay.h> | ||
16 | #include <linux/spinlock.h> | ||
17 | #include <linux/smp_lock.h> | ||
18 | #include <linux/kernel_stat.h> | ||
19 | #include <linux/mc146818rtc.h> | ||
20 | #include <linux/cache.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | |||
23 | #include <asm/mtrr.h> | ||
24 | #include <asm/tlbflush.h> | ||
25 | #include <mach_apic.h> | ||
26 | |||
27 | /* | ||
28 | * Some notes on x86 processor bugs affecting SMP operation: | ||
29 | * | ||
30 | * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. | ||
31 | * The Linux implications for SMP are handled as follows: | ||
32 | * | ||
33 | * Pentium III / [Xeon] | ||
34 | * None of the E1AP-E3AP errata are visible to the user. | ||
35 | * | ||
36 | * E1AP. see PII A1AP | ||
37 | * E2AP. see PII A2AP | ||
38 | * E3AP. see PII A3AP | ||
39 | * | ||
40 | * Pentium II / [Xeon] | ||
41 | * None of the A1AP-A3AP errata are visible to the user. | ||
42 | * | ||
43 | * A1AP. see PPro 1AP | ||
44 | * A2AP. see PPro 2AP | ||
45 | * A3AP. see PPro 7AP | ||
46 | * | ||
47 | * Pentium Pro | ||
48 | * None of 1AP-9AP errata are visible to the normal user, | ||
49 | * except occasional delivery of 'spurious interrupt' as trap #15. | ||
50 | * This is very rare and a non-problem. | ||
51 | * | ||
52 | * 1AP. Linux maps APIC as non-cacheable | ||
53 | * 2AP. worked around in hardware | ||
54 | * 3AP. fixed in C0 and above steppings microcode update. | ||
55 | * Linux does not use excessive STARTUP_IPIs. | ||
56 | * 4AP. worked around in hardware | ||
57 | * 5AP. symmetric IO mode (normal Linux operation) not affected. | ||
58 | * 'noapic' mode has vector 0xf filled out properly. | ||
59 | * 6AP. 'noapic' mode might be affected - fixed in later steppings | ||
60 | * 7AP. We do not assume writes to the LVT deassering IRQs | ||
61 | * 8AP. We do not enable low power mode (deep sleep) during MP bootup | ||
62 | * 9AP. We do not use mixed mode | ||
63 | * | ||
64 | * Pentium | ||
65 | * There is a marginal case where REP MOVS on 100MHz SMP | ||
66 | * machines with B stepping processors can fail. XXX should provide | ||
67 | * an L1cache=Writethrough or L1cache=off option. | ||
68 | * | ||
69 | * B stepping CPUs may hang. There are hardware work arounds | ||
70 | * for this. We warn about it in case your board doesn't have the work | ||
71 | * arounds. Basically thats so I can tell anyone with a B stepping | ||
72 | * CPU and SMP problems "tough". | ||
73 | * | ||
74 | * Specific items [From Pentium Processor Specification Update] | ||
75 | * | ||
76 | * 1AP. Linux doesn't use remote read | ||
77 | * 2AP. Linux doesn't trust APIC errors | ||
78 | * 3AP. We work around this | ||
79 | * 4AP. Linux never generated 3 interrupts of the same priority | ||
80 | * to cause a lost local interrupt. | ||
81 | * 5AP. Remote read is never used | ||
82 | * 6AP. not affected - worked around in hardware | ||
83 | * 7AP. not affected - worked around in hardware | ||
84 | * 8AP. worked around in hardware - we get explicit CS errors if not | ||
85 | * 9AP. only 'noapic' mode affected. Might generate spurious | ||
86 | * interrupts, we log only the first one and count the | ||
87 | * rest silently. | ||
88 | * 10AP. not affected - worked around in hardware | ||
89 | * 11AP. Linux reads the APIC between writes to avoid this, as per | ||
90 | * the documentation. Make sure you preserve this as it affects | ||
91 | * the C stepping chips too. | ||
92 | * 12AP. not affected - worked around in hardware | ||
93 | * 13AP. not affected - worked around in hardware | ||
94 | * 14AP. we always deassert INIT during bootup | ||
95 | * 15AP. not affected - worked around in hardware | ||
96 | * 16AP. not affected - worked around in hardware | ||
97 | * 17AP. not affected - worked around in hardware | ||
98 | * 18AP. not affected - worked around in hardware | ||
99 | * 19AP. not affected - worked around in BIOS | ||
100 | * | ||
101 | * If this sounds worrying believe me these bugs are either ___RARE___, | ||
102 | * or are signal timing bugs worked around in hardware and there's | ||
103 | * about nothing of note with C stepping upwards. | ||
104 | */ | ||
105 | |||
106 | DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, }; | ||
107 | |||
108 | /* | ||
109 | * the following functions deal with sending IPIs between CPUs. | ||
110 | * | ||
111 | * We use 'broadcast', CPU->CPU IPIs and self-IPIs too. | ||
112 | */ | ||
113 | |||
114 | static inline int __prepare_ICR (unsigned int shortcut, int vector) | ||
115 | { | ||
116 | return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL; | ||
117 | } | ||
118 | |||
119 | static inline int __prepare_ICR2 (unsigned int mask) | ||
120 | { | ||
121 | return SET_APIC_DEST_FIELD(mask); | ||
122 | } | ||
123 | |||
124 | void __send_IPI_shortcut(unsigned int shortcut, int vector) | ||
125 | { | ||
126 | /* | ||
127 | * Subtle. In the case of the 'never do double writes' workaround | ||
128 | * we have to lock out interrupts to be safe. As we don't care | ||
129 | * of the value read we use an atomic rmw access to avoid costly | ||
130 | * cli/sti. Otherwise we use an even cheaper single atomic write | ||
131 | * to the APIC. | ||
132 | */ | ||
133 | unsigned int cfg; | ||
134 | |||
135 | /* | ||
136 | * Wait for idle. | ||
137 | */ | ||
138 | apic_wait_icr_idle(); | ||
139 | |||
140 | /* | ||
141 | * No need to touch the target chip field | ||
142 | */ | ||
143 | cfg = __prepare_ICR(shortcut, vector); | ||
144 | |||
145 | /* | ||
146 | * Send the IPI. The write to APIC_ICR fires this off. | ||
147 | */ | ||
148 | apic_write_around(APIC_ICR, cfg); | ||
149 | } | ||
150 | |||
151 | void fastcall send_IPI_self(int vector) | ||
152 | { | ||
153 | __send_IPI_shortcut(APIC_DEST_SELF, vector); | ||
154 | } | ||
155 | |||
156 | /* | ||
157 | * This is only used on smaller machines. | ||
158 | */ | ||
159 | void send_IPI_mask_bitmask(cpumask_t cpumask, int vector) | ||
160 | { | ||
161 | unsigned long mask = cpus_addr(cpumask)[0]; | ||
162 | unsigned long cfg; | ||
163 | unsigned long flags; | ||
164 | |||
165 | local_irq_save(flags); | ||
166 | |||
167 | /* | ||
168 | * Wait for idle. | ||
169 | */ | ||
170 | apic_wait_icr_idle(); | ||
171 | |||
172 | /* | ||
173 | * prepare target chip field | ||
174 | */ | ||
175 | cfg = __prepare_ICR2(mask); | ||
176 | apic_write_around(APIC_ICR2, cfg); | ||
177 | |||
178 | /* | ||
179 | * program the ICR | ||
180 | */ | ||
181 | cfg = __prepare_ICR(0, vector); | ||
182 | |||
183 | /* | ||
184 | * Send the IPI. The write to APIC_ICR fires this off. | ||
185 | */ | ||
186 | apic_write_around(APIC_ICR, cfg); | ||
187 | |||
188 | local_irq_restore(flags); | ||
189 | } | ||
190 | |||
191 | void send_IPI_mask_sequence(cpumask_t mask, int vector) | ||
192 | { | ||
193 | unsigned long cfg, flags; | ||
194 | unsigned int query_cpu; | ||
195 | |||
196 | /* | ||
197 | * Hack. The clustered APIC addressing mode doesn't allow us to send | ||
198 | * to an arbitrary mask, so I do a unicasts to each CPU instead. This | ||
199 | * should be modified to do 1 message per cluster ID - mbligh | ||
200 | */ | ||
201 | |||
202 | local_irq_save(flags); | ||
203 | |||
204 | for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) { | ||
205 | if (cpu_isset(query_cpu, mask)) { | ||
206 | |||
207 | /* | ||
208 | * Wait for idle. | ||
209 | */ | ||
210 | apic_wait_icr_idle(); | ||
211 | |||
212 | /* | ||
213 | * prepare target chip field | ||
214 | */ | ||
215 | cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu)); | ||
216 | apic_write_around(APIC_ICR2, cfg); | ||
217 | |||
218 | /* | ||
219 | * program the ICR | ||
220 | */ | ||
221 | cfg = __prepare_ICR(0, vector); | ||
222 | |||
223 | /* | ||
224 | * Send the IPI. The write to APIC_ICR fires this off. | ||
225 | */ | ||
226 | apic_write_around(APIC_ICR, cfg); | ||
227 | } | ||
228 | } | ||
229 | local_irq_restore(flags); | ||
230 | } | ||
231 | |||
232 | #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */ | ||
233 | |||
234 | /* | ||
235 | * Smarter SMP flushing macros. | ||
236 | * c/o Linus Torvalds. | ||
237 | * | ||
238 | * These mean you can really definitely utterly forget about | ||
239 | * writing to user space from interrupts. (Its not allowed anyway). | ||
240 | * | ||
241 | * Optimizations Manfred Spraul <manfred@colorfullife.com> | ||
242 | */ | ||
243 | |||
244 | static cpumask_t flush_cpumask; | ||
245 | static struct mm_struct * flush_mm; | ||
246 | static unsigned long flush_va; | ||
247 | static DEFINE_SPINLOCK(tlbstate_lock); | ||
248 | #define FLUSH_ALL 0xffffffff | ||
249 | |||
250 | /* | ||
251 | * We cannot call mmdrop() because we are in interrupt context, | ||
252 | * instead update mm->cpu_vm_mask. | ||
253 | * | ||
254 | * We need to reload %cr3 since the page tables may be going | ||
255 | * away from under us.. | ||
256 | */ | ||
257 | static inline void leave_mm (unsigned long cpu) | ||
258 | { | ||
259 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) | ||
260 | BUG(); | ||
261 | cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); | ||
262 | load_cr3(swapper_pg_dir); | ||
263 | } | ||
264 | |||
265 | /* | ||
266 | * | ||
267 | * The flush IPI assumes that a thread switch happens in this order: | ||
268 | * [cpu0: the cpu that switches] | ||
269 | * 1) switch_mm() either 1a) or 1b) | ||
270 | * 1a) thread switch to a different mm | ||
271 | * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); | ||
272 | * Stop ipi delivery for the old mm. This is not synchronized with | ||
273 | * the other cpus, but smp_invalidate_interrupt ignore flush ipis | ||
274 | * for the wrong mm, and in the worst case we perform a superflous | ||
275 | * tlb flush. | ||
276 | * 1a2) set cpu_tlbstate to TLBSTATE_OK | ||
277 | * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 | ||
278 | * was in lazy tlb mode. | ||
279 | * 1a3) update cpu_tlbstate[].active_mm | ||
280 | * Now cpu0 accepts tlb flushes for the new mm. | ||
281 | * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); | ||
282 | * Now the other cpus will send tlb flush ipis. | ||
283 | * 1a4) change cr3. | ||
284 | * 1b) thread switch without mm change | ||
285 | * cpu_tlbstate[].active_mm is correct, cpu0 already handles | ||
286 | * flush ipis. | ||
287 | * 1b1) set cpu_tlbstate to TLBSTATE_OK | ||
288 | * 1b2) test_and_set the cpu bit in cpu_vm_mask. | ||
289 | * Atomically set the bit [other cpus will start sending flush ipis], | ||
290 | * and test the bit. | ||
291 | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. | ||
292 | * 2) switch %%esp, ie current | ||
293 | * | ||
294 | * The interrupt must handle 2 special cases: | ||
295 | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. | ||
296 | * - the cpu performs speculative tlb reads, i.e. even if the cpu only | ||
297 | * runs in kernel space, the cpu could load tlb entries for user space | ||
298 | * pages. | ||
299 | * | ||
300 | * The good news is that cpu_tlbstate is local to each cpu, no | ||
301 | * write/read ordering problems. | ||
302 | */ | ||
303 | |||
304 | /* | ||
305 | * TLB flush IPI: | ||
306 | * | ||
307 | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. | ||
308 | * 2) Leave the mm if we are in the lazy tlb mode. | ||
309 | */ | ||
310 | |||
311 | fastcall void smp_invalidate_interrupt(struct pt_regs *regs) | ||
312 | { | ||
313 | unsigned long cpu; | ||
314 | |||
315 | cpu = get_cpu(); | ||
316 | |||
317 | if (!cpu_isset(cpu, flush_cpumask)) | ||
318 | goto out; | ||
319 | /* | ||
320 | * This was a BUG() but until someone can quote me the | ||
321 | * line from the intel manual that guarantees an IPI to | ||
322 | * multiple CPUs is retried _only_ on the erroring CPUs | ||
323 | * its staying as a return | ||
324 | * | ||
325 | * BUG(); | ||
326 | */ | ||
327 | |||
328 | if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { | ||
329 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { | ||
330 | if (flush_va == FLUSH_ALL) | ||
331 | local_flush_tlb(); | ||
332 | else | ||
333 | __flush_tlb_one(flush_va); | ||
334 | } else | ||
335 | leave_mm(cpu); | ||
336 | } | ||
337 | ack_APIC_irq(); | ||
338 | smp_mb__before_clear_bit(); | ||
339 | cpu_clear(cpu, flush_cpumask); | ||
340 | smp_mb__after_clear_bit(); | ||
341 | out: | ||
342 | put_cpu_no_resched(); | ||
343 | } | ||
344 | |||
345 | static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, | ||
346 | unsigned long va) | ||
347 | { | ||
348 | cpumask_t tmp; | ||
349 | /* | ||
350 | * A couple of (to be removed) sanity checks: | ||
351 | * | ||
352 | * - we do not send IPIs to not-yet booted CPUs. | ||
353 | * - current CPU must not be in mask | ||
354 | * - mask must exist :) | ||
355 | */ | ||
356 | BUG_ON(cpus_empty(cpumask)); | ||
357 | |||
358 | cpus_and(tmp, cpumask, cpu_online_map); | ||
359 | BUG_ON(!cpus_equal(cpumask, tmp)); | ||
360 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | ||
361 | BUG_ON(!mm); | ||
362 | |||
363 | /* | ||
364 | * i'm not happy about this global shared spinlock in the | ||
365 | * MM hot path, but we'll see how contended it is. | ||
366 | * Temporarily this turns IRQs off, so that lockups are | ||
367 | * detected by the NMI watchdog. | ||
368 | */ | ||
369 | spin_lock(&tlbstate_lock); | ||
370 | |||
371 | flush_mm = mm; | ||
372 | flush_va = va; | ||
373 | #if NR_CPUS <= BITS_PER_LONG | ||
374 | atomic_set_mask(cpumask, &flush_cpumask); | ||
375 | #else | ||
376 | { | ||
377 | int k; | ||
378 | unsigned long *flush_mask = (unsigned long *)&flush_cpumask; | ||
379 | unsigned long *cpu_mask = (unsigned long *)&cpumask; | ||
380 | for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k) | ||
381 | atomic_set_mask(cpu_mask[k], &flush_mask[k]); | ||
382 | } | ||
383 | #endif | ||
384 | /* | ||
385 | * We have to send the IPI only to | ||
386 | * CPUs affected. | ||
387 | */ | ||
388 | send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR); | ||
389 | |||
390 | while (!cpus_empty(flush_cpumask)) | ||
391 | /* nothing. lockup detection does not belong here */ | ||
392 | mb(); | ||
393 | |||
394 | flush_mm = NULL; | ||
395 | flush_va = 0; | ||
396 | spin_unlock(&tlbstate_lock); | ||
397 | } | ||
398 | |||
399 | void flush_tlb_current_task(void) | ||
400 | { | ||
401 | struct mm_struct *mm = current->mm; | ||
402 | cpumask_t cpu_mask; | ||
403 | |||
404 | preempt_disable(); | ||
405 | cpu_mask = mm->cpu_vm_mask; | ||
406 | cpu_clear(smp_processor_id(), cpu_mask); | ||
407 | |||
408 | local_flush_tlb(); | ||
409 | if (!cpus_empty(cpu_mask)) | ||
410 | flush_tlb_others(cpu_mask, mm, FLUSH_ALL); | ||
411 | preempt_enable(); | ||
412 | } | ||
413 | |||
414 | void flush_tlb_mm (struct mm_struct * mm) | ||
415 | { | ||
416 | cpumask_t cpu_mask; | ||
417 | |||
418 | preempt_disable(); | ||
419 | cpu_mask = mm->cpu_vm_mask; | ||
420 | cpu_clear(smp_processor_id(), cpu_mask); | ||
421 | |||
422 | if (current->active_mm == mm) { | ||
423 | if (current->mm) | ||
424 | local_flush_tlb(); | ||
425 | else | ||
426 | leave_mm(smp_processor_id()); | ||
427 | } | ||
428 | if (!cpus_empty(cpu_mask)) | ||
429 | flush_tlb_others(cpu_mask, mm, FLUSH_ALL); | ||
430 | |||
431 | preempt_enable(); | ||
432 | } | ||
433 | |||
434 | void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) | ||
435 | { | ||
436 | struct mm_struct *mm = vma->vm_mm; | ||
437 | cpumask_t cpu_mask; | ||
438 | |||
439 | preempt_disable(); | ||
440 | cpu_mask = mm->cpu_vm_mask; | ||
441 | cpu_clear(smp_processor_id(), cpu_mask); | ||
442 | |||
443 | if (current->active_mm == mm) { | ||
444 | if(current->mm) | ||
445 | __flush_tlb_one(va); | ||
446 | else | ||
447 | leave_mm(smp_processor_id()); | ||
448 | } | ||
449 | |||
450 | if (!cpus_empty(cpu_mask)) | ||
451 | flush_tlb_others(cpu_mask, mm, va); | ||
452 | |||
453 | preempt_enable(); | ||
454 | } | ||
455 | |||
456 | static void do_flush_tlb_all(void* info) | ||
457 | { | ||
458 | unsigned long cpu = smp_processor_id(); | ||
459 | |||
460 | __flush_tlb_all(); | ||
461 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) | ||
462 | leave_mm(cpu); | ||
463 | } | ||
464 | |||
465 | void flush_tlb_all(void) | ||
466 | { | ||
467 | on_each_cpu(do_flush_tlb_all, NULL, 1, 1); | ||
468 | } | ||
469 | |||
470 | /* | ||
471 | * this function sends a 'reschedule' IPI to another CPU. | ||
472 | * it goes straight through and wastes no time serializing | ||
473 | * anything. Worst case is that we lose a reschedule ... | ||
474 | */ | ||
475 | void smp_send_reschedule(int cpu) | ||
476 | { | ||
477 | send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR); | ||
478 | } | ||
479 | |||
480 | /* | ||
481 | * Structure and data for smp_call_function(). This is designed to minimise | ||
482 | * static memory requirements. It also looks cleaner. | ||
483 | */ | ||
484 | static DEFINE_SPINLOCK(call_lock); | ||
485 | |||
486 | struct call_data_struct { | ||
487 | void (*func) (void *info); | ||
488 | void *info; | ||
489 | atomic_t started; | ||
490 | atomic_t finished; | ||
491 | int wait; | ||
492 | }; | ||
493 | |||
494 | static struct call_data_struct * call_data; | ||
495 | |||
496 | /* | ||
497 | * this function sends a 'generic call function' IPI to all other CPUs | ||
498 | * in the system. | ||
499 | */ | ||
500 | |||
501 | int smp_call_function (void (*func) (void *info), void *info, int nonatomic, | ||
502 | int wait) | ||
503 | /* | ||
504 | * [SUMMARY] Run a function on all other CPUs. | ||
505 | * <func> The function to run. This must be fast and non-blocking. | ||
506 | * <info> An arbitrary pointer to pass to the function. | ||
507 | * <nonatomic> currently unused. | ||
508 | * <wait> If true, wait (atomically) until function has completed on other CPUs. | ||
509 | * [RETURNS] 0 on success, else a negative status code. Does not return until | ||
510 | * remote CPUs are nearly ready to execute <<func>> or are or have executed. | ||
511 | * | ||
512 | * You must not call this function with disabled interrupts or from a | ||
513 | * hardware interrupt handler or from a bottom half handler. | ||
514 | */ | ||
515 | { | ||
516 | struct call_data_struct data; | ||
517 | int cpus = num_online_cpus()-1; | ||
518 | |||
519 | if (!cpus) | ||
520 | return 0; | ||
521 | |||
522 | /* Can deadlock when called with interrupts disabled */ | ||
523 | WARN_ON(irqs_disabled()); | ||
524 | |||
525 | data.func = func; | ||
526 | data.info = info; | ||
527 | atomic_set(&data.started, 0); | ||
528 | data.wait = wait; | ||
529 | if (wait) | ||
530 | atomic_set(&data.finished, 0); | ||
531 | |||
532 | spin_lock(&call_lock); | ||
533 | call_data = &data; | ||
534 | mb(); | ||
535 | |||
536 | /* Send a message to all other CPUs and wait for them to respond */ | ||
537 | send_IPI_allbutself(CALL_FUNCTION_VECTOR); | ||
538 | |||
539 | /* Wait for response */ | ||
540 | while (atomic_read(&data.started) != cpus) | ||
541 | cpu_relax(); | ||
542 | |||
543 | if (wait) | ||
544 | while (atomic_read(&data.finished) != cpus) | ||
545 | cpu_relax(); | ||
546 | spin_unlock(&call_lock); | ||
547 | |||
548 | return 0; | ||
549 | } | ||
550 | |||
551 | static void stop_this_cpu (void * dummy) | ||
552 | { | ||
553 | /* | ||
554 | * Remove this CPU: | ||
555 | */ | ||
556 | cpu_clear(smp_processor_id(), cpu_online_map); | ||
557 | local_irq_disable(); | ||
558 | disable_local_APIC(); | ||
559 | if (cpu_data[smp_processor_id()].hlt_works_ok) | ||
560 | for(;;) __asm__("hlt"); | ||
561 | for (;;); | ||
562 | } | ||
563 | |||
564 | /* | ||
565 | * this function calls the 'stop' function on all other CPUs in the system. | ||
566 | */ | ||
567 | |||
568 | void smp_send_stop(void) | ||
569 | { | ||
570 | smp_call_function(stop_this_cpu, NULL, 1, 0); | ||
571 | |||
572 | local_irq_disable(); | ||
573 | disable_local_APIC(); | ||
574 | local_irq_enable(); | ||
575 | } | ||
576 | |||
577 | /* | ||
578 | * Reschedule call back. Nothing to do, | ||
579 | * all the work is done automatically when | ||
580 | * we return from the interrupt. | ||
581 | */ | ||
582 | fastcall void smp_reschedule_interrupt(struct pt_regs *regs) | ||
583 | { | ||
584 | ack_APIC_irq(); | ||
585 | } | ||
586 | |||
587 | fastcall void smp_call_function_interrupt(struct pt_regs *regs) | ||
588 | { | ||
589 | void (*func) (void *info) = call_data->func; | ||
590 | void *info = call_data->info; | ||
591 | int wait = call_data->wait; | ||
592 | |||
593 | ack_APIC_irq(); | ||
594 | /* | ||
595 | * Notify initiating CPU that I've grabbed the data and am | ||
596 | * about to execute the function | ||
597 | */ | ||
598 | mb(); | ||
599 | atomic_inc(&call_data->started); | ||
600 | /* | ||
601 | * At this point the info structure may be out of scope unless wait==1 | ||
602 | */ | ||
603 | irq_enter(); | ||
604 | (*func)(info); | ||
605 | irq_exit(); | ||
606 | |||
607 | if (wait) { | ||
608 | mb(); | ||
609 | atomic_inc(&call_data->finished); | ||
610 | } | ||
611 | } | ||
612 | |||