diff options
author | Linus Torvalds <torvalds@g5.osdl.org> | 2006-06-23 10:52:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-06-23 10:52:36 -0400 |
commit | 37224470c8c6d90a4062e76a08d4dc1fcf91fc89 (patch) | |
tree | 627f537177bf8e951c12bec04c4a85f0125f5ece /arch/i386/kernel/cpu | |
parent | e83319510b04dd51a60da8a0b4ccf8b92b3ab1ad (diff) | |
parent | ae6c859b7dcd708efadf1c76279c33db213e3506 (diff) |
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (65 commits)
ACPI: suppress power button event on S3 resume
ACPI: resolve merge conflict between sem2mutex and processor_perflib.c
ACPI: use for_each_possible_cpu() instead of for_each_cpu()
ACPI: delete newly added debugging macros in processor_perflib.c
ACPI: UP build fix for bugzilla-5737
Enable P-state software coordination via _PDC
P-state software coordination for speedstep-centrino
P-state software coordination for acpi-cpufreq
P-state software coordination for ACPI core
ACPI: create acpi_thermal_resume()
ACPI: create acpi_fan_suspend()/acpi_fan_resume()
ACPI: pass pm_message_t from acpi_device_suspend() to root_suspend()
ACPI: create acpi_device_suspend()/acpi_device_resume()
ACPI: replace spin_lock_irq with mutex for ec poll mode
ACPI: Allow a WAN module enable/disable on a Thinkpad X60.
sem2mutex: acpi, acpi_link_lock
ACPI: delete unused acpi_bus_drivers_lock
sem2mutex: drivers/acpi/processor_perflib.c
ACPI add ia64 exports to build acpi_memhotplug as a module
ACPI: asus_acpi_init(): propagate correct return value
...
Manual resolve of conflicts in:
arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
include/acpi/processor.h
Diffstat (limited to 'arch/i386/kernel/cpu')
-rw-r--r-- | arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c | 291 | ||||
-rw-r--r-- | arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c | 254 |
2 files changed, 388 insertions, 157 deletions
diff --git a/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c b/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c index 1a7bdcef1926..05668e3598c0 100644 --- a/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c +++ b/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c | |||
@@ -48,12 +48,13 @@ MODULE_LICENSE("GPL"); | |||
48 | 48 | ||
49 | 49 | ||
50 | struct cpufreq_acpi_io { | 50 | struct cpufreq_acpi_io { |
51 | struct acpi_processor_performance acpi_data; | 51 | struct acpi_processor_performance *acpi_data; |
52 | struct cpufreq_frequency_table *freq_table; | 52 | struct cpufreq_frequency_table *freq_table; |
53 | unsigned int resume; | 53 | unsigned int resume; |
54 | }; | 54 | }; |
55 | 55 | ||
56 | static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; | 56 | static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; |
57 | static struct acpi_processor_performance *acpi_perf_data[NR_CPUS]; | ||
57 | 58 | ||
58 | static struct cpufreq_driver acpi_cpufreq_driver; | 59 | static struct cpufreq_driver acpi_cpufreq_driver; |
59 | 60 | ||
@@ -104,64 +105,43 @@ acpi_processor_set_performance ( | |||
104 | { | 105 | { |
105 | u16 port = 0; | 106 | u16 port = 0; |
106 | u8 bit_width = 0; | 107 | u8 bit_width = 0; |
107 | int ret; | ||
108 | u32 value = 0; | ||
109 | int i = 0; | 108 | int i = 0; |
110 | struct cpufreq_freqs cpufreq_freqs; | 109 | int ret = 0; |
111 | cpumask_t saved_mask; | 110 | u32 value = 0; |
112 | int retval; | 111 | int retval; |
112 | struct acpi_processor_performance *perf; | ||
113 | 113 | ||
114 | dprintk("acpi_processor_set_performance\n"); | 114 | dprintk("acpi_processor_set_performance\n"); |
115 | 115 | ||
116 | /* | 116 | retval = 0; |
117 | * TBD: Use something other than set_cpus_allowed. | 117 | perf = data->acpi_data; |
118 | * As set_cpus_allowed is a bit racy, | 118 | if (state == perf->state) { |
119 | * with any other set_cpus_allowed for this process. | ||
120 | */ | ||
121 | saved_mask = current->cpus_allowed; | ||
122 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
123 | if (smp_processor_id() != cpu) { | ||
124 | return (-EAGAIN); | ||
125 | } | ||
126 | |||
127 | if (state == data->acpi_data.state) { | ||
128 | if (unlikely(data->resume)) { | 119 | if (unlikely(data->resume)) { |
129 | dprintk("Called after resume, resetting to P%d\n", state); | 120 | dprintk("Called after resume, resetting to P%d\n", state); |
130 | data->resume = 0; | 121 | data->resume = 0; |
131 | } else { | 122 | } else { |
132 | dprintk("Already at target state (P%d)\n", state); | 123 | dprintk("Already at target state (P%d)\n", state); |
133 | retval = 0; | 124 | return (retval); |
134 | goto migrate_end; | ||
135 | } | 125 | } |
136 | } | 126 | } |
137 | 127 | ||
138 | dprintk("Transitioning from P%d to P%d\n", | 128 | dprintk("Transitioning from P%d to P%d\n", perf->state, state); |
139 | data->acpi_data.state, state); | ||
140 | |||
141 | /* cpufreq frequency struct */ | ||
142 | cpufreq_freqs.cpu = cpu; | ||
143 | cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; | ||
144 | cpufreq_freqs.new = data->freq_table[state].frequency; | ||
145 | |||
146 | /* notify cpufreq */ | ||
147 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); | ||
148 | 129 | ||
149 | /* | 130 | /* |
150 | * First we write the target state's 'control' value to the | 131 | * First we write the target state's 'control' value to the |
151 | * control_register. | 132 | * control_register. |
152 | */ | 133 | */ |
153 | 134 | ||
154 | port = data->acpi_data.control_register.address; | 135 | port = perf->control_register.address; |
155 | bit_width = data->acpi_data.control_register.bit_width; | 136 | bit_width = perf->control_register.bit_width; |
156 | value = (u32) data->acpi_data.states[state].control; | 137 | value = (u32) perf->states[state].control; |
157 | 138 | ||
158 | dprintk("Writing 0x%08x to port 0x%04x\n", value, port); | 139 | dprintk("Writing 0x%08x to port 0x%04x\n", value, port); |
159 | 140 | ||
160 | ret = acpi_processor_write_port(port, bit_width, value); | 141 | ret = acpi_processor_write_port(port, bit_width, value); |
161 | if (ret) { | 142 | if (ret) { |
162 | dprintk("Invalid port width 0x%04x\n", bit_width); | 143 | dprintk("Invalid port width 0x%04x\n", bit_width); |
163 | retval = ret; | 144 | return (ret); |
164 | goto migrate_end; | ||
165 | } | 145 | } |
166 | 146 | ||
167 | /* | 147 | /* |
@@ -177,48 +157,35 @@ acpi_processor_set_performance ( | |||
177 | * before giving up. | 157 | * before giving up. |
178 | */ | 158 | */ |
179 | 159 | ||
180 | port = data->acpi_data.status_register.address; | 160 | port = perf->status_register.address; |
181 | bit_width = data->acpi_data.status_register.bit_width; | 161 | bit_width = perf->status_register.bit_width; |
182 | 162 | ||
183 | dprintk("Looking for 0x%08x from port 0x%04x\n", | 163 | dprintk("Looking for 0x%08x from port 0x%04x\n", |
184 | (u32) data->acpi_data.states[state].status, port); | 164 | (u32) perf->states[state].status, port); |
185 | 165 | ||
186 | for (i=0; i<100; i++) { | 166 | for (i = 0; i < 100; i++) { |
187 | ret = acpi_processor_read_port(port, bit_width, &value); | 167 | ret = acpi_processor_read_port(port, bit_width, &value); |
188 | if (ret) { | 168 | if (ret) { |
189 | dprintk("Invalid port width 0x%04x\n", bit_width); | 169 | dprintk("Invalid port width 0x%04x\n", bit_width); |
190 | retval = ret; | 170 | return (ret); |
191 | goto migrate_end; | ||
192 | } | 171 | } |
193 | if (value == (u32) data->acpi_data.states[state].status) | 172 | if (value == (u32) perf->states[state].status) |
194 | break; | 173 | break; |
195 | udelay(10); | 174 | udelay(10); |
196 | } | 175 | } |
197 | } else { | 176 | } else { |
198 | value = (u32) data->acpi_data.states[state].status; | 177 | value = (u32) perf->states[state].status; |
199 | } | 178 | } |
200 | 179 | ||
201 | /* notify cpufreq */ | 180 | if (unlikely(value != (u32) perf->states[state].status)) { |
202 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); | ||
203 | |||
204 | if (unlikely(value != (u32) data->acpi_data.states[state].status)) { | ||
205 | unsigned int tmp = cpufreq_freqs.new; | ||
206 | cpufreq_freqs.new = cpufreq_freqs.old; | ||
207 | cpufreq_freqs.old = tmp; | ||
208 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); | ||
209 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); | ||
210 | printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); | 181 | printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); |
211 | retval = -ENODEV; | 182 | retval = -ENODEV; |
212 | goto migrate_end; | 183 | return (retval); |
213 | } | 184 | } |
214 | 185 | ||
215 | dprintk("Transition successful after %d microseconds\n", i * 10); | 186 | dprintk("Transition successful after %d microseconds\n", i * 10); |
216 | 187 | ||
217 | data->acpi_data.state = state; | 188 | perf->state = state; |
218 | |||
219 | retval = 0; | ||
220 | migrate_end: | ||
221 | set_cpus_allowed(current, saved_mask); | ||
222 | return (retval); | 189 | return (retval); |
223 | } | 190 | } |
224 | 191 | ||
@@ -230,8 +197,17 @@ acpi_cpufreq_target ( | |||
230 | unsigned int relation) | 197 | unsigned int relation) |
231 | { | 198 | { |
232 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | 199 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
200 | struct acpi_processor_performance *perf; | ||
201 | struct cpufreq_freqs freqs; | ||
202 | cpumask_t online_policy_cpus; | ||
203 | cpumask_t saved_mask; | ||
204 | cpumask_t set_mask; | ||
205 | cpumask_t covered_cpus; | ||
206 | unsigned int cur_state = 0; | ||
233 | unsigned int next_state = 0; | 207 | unsigned int next_state = 0; |
234 | unsigned int result = 0; | 208 | unsigned int result = 0; |
209 | unsigned int j; | ||
210 | unsigned int tmp; | ||
235 | 211 | ||
236 | dprintk("acpi_cpufreq_setpolicy\n"); | 212 | dprintk("acpi_cpufreq_setpolicy\n"); |
237 | 213 | ||
@@ -240,11 +216,95 @@ acpi_cpufreq_target ( | |||
240 | target_freq, | 216 | target_freq, |
241 | relation, | 217 | relation, |
242 | &next_state); | 218 | &next_state); |
243 | if (result) | 219 | if (unlikely(result)) |
244 | return (result); | 220 | return (result); |
245 | 221 | ||
246 | result = acpi_processor_set_performance (data, policy->cpu, next_state); | 222 | perf = data->acpi_data; |
223 | cur_state = perf->state; | ||
224 | freqs.old = data->freq_table[cur_state].frequency; | ||
225 | freqs.new = data->freq_table[next_state].frequency; | ||
226 | |||
227 | #ifdef CONFIG_HOTPLUG_CPU | ||
228 | /* cpufreq holds the hotplug lock, so we are safe from here on */ | ||
229 | cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); | ||
230 | #else | ||
231 | online_policy_cpus = policy->cpus; | ||
232 | #endif | ||
233 | |||
234 | for_each_cpu_mask(j, online_policy_cpus) { | ||
235 | freqs.cpu = j; | ||
236 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
237 | } | ||
238 | |||
239 | /* | ||
240 | * We need to call driver->target() on all or any CPU in | ||
241 | * policy->cpus, depending on policy->shared_type. | ||
242 | */ | ||
243 | saved_mask = current->cpus_allowed; | ||
244 | cpus_clear(covered_cpus); | ||
245 | for_each_cpu_mask(j, online_policy_cpus) { | ||
246 | /* | ||
247 | * Support for SMP systems. | ||
248 | * Make sure we are running on CPU that wants to change freq | ||
249 | */ | ||
250 | cpus_clear(set_mask); | ||
251 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) | ||
252 | cpus_or(set_mask, set_mask, online_policy_cpus); | ||
253 | else | ||
254 | cpu_set(j, set_mask); | ||
255 | |||
256 | set_cpus_allowed(current, set_mask); | ||
257 | if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) { | ||
258 | dprintk("couldn't limit to CPUs in this domain\n"); | ||
259 | result = -EAGAIN; | ||
260 | break; | ||
261 | } | ||
262 | |||
263 | result = acpi_processor_set_performance (data, j, next_state); | ||
264 | if (result) { | ||
265 | result = -EAGAIN; | ||
266 | break; | ||
267 | } | ||
268 | |||
269 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) | ||
270 | break; | ||
271 | |||
272 | cpu_set(j, covered_cpus); | ||
273 | } | ||
274 | |||
275 | for_each_cpu_mask(j, online_policy_cpus) { | ||
276 | freqs.cpu = j; | ||
277 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
278 | } | ||
247 | 279 | ||
280 | if (unlikely(result)) { | ||
281 | /* | ||
282 | * We have failed halfway through the frequency change. | ||
283 | * We have sent callbacks to online_policy_cpus and | ||
284 | * acpi_processor_set_performance() has been called on | ||
285 | * coverd_cpus. Best effort undo.. | ||
286 | */ | ||
287 | |||
288 | if (!cpus_empty(covered_cpus)) { | ||
289 | for_each_cpu_mask(j, covered_cpus) { | ||
290 | policy->cpu = j; | ||
291 | acpi_processor_set_performance (data, | ||
292 | j, | ||
293 | cur_state); | ||
294 | } | ||
295 | } | ||
296 | |||
297 | tmp = freqs.new; | ||
298 | freqs.new = freqs.old; | ||
299 | freqs.old = tmp; | ||
300 | for_each_cpu_mask(j, online_policy_cpus) { | ||
301 | freqs.cpu = j; | ||
302 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
303 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
304 | } | ||
305 | } | ||
306 | |||
307 | set_cpus_allowed(current, saved_mask); | ||
248 | return (result); | 308 | return (result); |
249 | } | 309 | } |
250 | 310 | ||
@@ -270,30 +330,65 @@ acpi_cpufreq_guess_freq ( | |||
270 | struct cpufreq_acpi_io *data, | 330 | struct cpufreq_acpi_io *data, |
271 | unsigned int cpu) | 331 | unsigned int cpu) |
272 | { | 332 | { |
333 | struct acpi_processor_performance *perf = data->acpi_data; | ||
334 | |||
273 | if (cpu_khz) { | 335 | if (cpu_khz) { |
274 | /* search the closest match to cpu_khz */ | 336 | /* search the closest match to cpu_khz */ |
275 | unsigned int i; | 337 | unsigned int i; |
276 | unsigned long freq; | 338 | unsigned long freq; |
277 | unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; | 339 | unsigned long freqn = perf->states[0].core_frequency * 1000; |
278 | 340 | ||
279 | for (i=0; i < (data->acpi_data.state_count - 1); i++) { | 341 | for (i = 0; i < (perf->state_count - 1); i++) { |
280 | freq = freqn; | 342 | freq = freqn; |
281 | freqn = data->acpi_data.states[i+1].core_frequency * 1000; | 343 | freqn = perf->states[i+1].core_frequency * 1000; |
282 | if ((2 * cpu_khz) > (freqn + freq)) { | 344 | if ((2 * cpu_khz) > (freqn + freq)) { |
283 | data->acpi_data.state = i; | 345 | perf->state = i; |
284 | return (freq); | 346 | return (freq); |
285 | } | 347 | } |
286 | } | 348 | } |
287 | data->acpi_data.state = data->acpi_data.state_count - 1; | 349 | perf->state = perf->state_count - 1; |
288 | return (freqn); | 350 | return (freqn); |
289 | } else | 351 | } else { |
290 | /* assume CPU is at P0... */ | 352 | /* assume CPU is at P0... */ |
291 | data->acpi_data.state = 0; | 353 | perf->state = 0; |
292 | return data->acpi_data.states[0].core_frequency * 1000; | 354 | return perf->states[0].core_frequency * 1000; |
293 | 355 | } | |
294 | } | 356 | } |
295 | 357 | ||
296 | 358 | ||
359 | /* | ||
360 | * acpi_cpufreq_early_init - initialize ACPI P-States library | ||
361 | * | ||
362 | * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) | ||
363 | * in order to determine correct frequency and voltage pairings. We can | ||
364 | * do _PDC and _PSD and find out the processor dependency for the | ||
365 | * actual init that will happen later... | ||
366 | */ | ||
367 | static int acpi_cpufreq_early_init_acpi(void) | ||
368 | { | ||
369 | struct acpi_processor_performance *data; | ||
370 | unsigned int i, j; | ||
371 | |||
372 | dprintk("acpi_cpufreq_early_init\n"); | ||
373 | |||
374 | for_each_cpu(i) { | ||
375 | data = kzalloc(sizeof(struct acpi_processor_performance), | ||
376 | GFP_KERNEL); | ||
377 | if (!data) { | ||
378 | for_each_cpu(j) { | ||
379 | kfree(acpi_perf_data[j]); | ||
380 | acpi_perf_data[j] = NULL; | ||
381 | } | ||
382 | return (-ENOMEM); | ||
383 | } | ||
384 | acpi_perf_data[i] = data; | ||
385 | } | ||
386 | |||
387 | /* Do initialization in ACPI core */ | ||
388 | acpi_processor_preregister_performance(acpi_perf_data); | ||
389 | return 0; | ||
390 | } | ||
391 | |||
297 | static int | 392 | static int |
298 | acpi_cpufreq_cpu_init ( | 393 | acpi_cpufreq_cpu_init ( |
299 | struct cpufreq_policy *policy) | 394 | struct cpufreq_policy *policy) |
@@ -303,41 +398,51 @@ acpi_cpufreq_cpu_init ( | |||
303 | struct cpufreq_acpi_io *data; | 398 | struct cpufreq_acpi_io *data; |
304 | unsigned int result = 0; | 399 | unsigned int result = 0; |
305 | struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; | 400 | struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; |
401 | struct acpi_processor_performance *perf; | ||
306 | 402 | ||
307 | dprintk("acpi_cpufreq_cpu_init\n"); | 403 | dprintk("acpi_cpufreq_cpu_init\n"); |
308 | 404 | ||
405 | if (!acpi_perf_data[cpu]) | ||
406 | return (-ENODEV); | ||
407 | |||
309 | data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); | 408 | data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); |
310 | if (!data) | 409 | if (!data) |
311 | return (-ENOMEM); | 410 | return (-ENOMEM); |
312 | 411 | ||
412 | data->acpi_data = acpi_perf_data[cpu]; | ||
313 | acpi_io_data[cpu] = data; | 413 | acpi_io_data[cpu] = data; |
314 | 414 | ||
315 | result = acpi_processor_register_performance(&data->acpi_data, cpu); | 415 | result = acpi_processor_register_performance(data->acpi_data, cpu); |
316 | 416 | ||
317 | if (result) | 417 | if (result) |
318 | goto err_free; | 418 | goto err_free; |
319 | 419 | ||
420 | perf = data->acpi_data; | ||
421 | policy->cpus = perf->shared_cpu_map; | ||
422 | policy->shared_type = perf->shared_type; | ||
423 | |||
320 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { | 424 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { |
321 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; | 425 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
322 | } | 426 | } |
323 | 427 | ||
324 | /* capability check */ | 428 | /* capability check */ |
325 | if (data->acpi_data.state_count <= 1) { | 429 | if (perf->state_count <= 1) { |
326 | dprintk("No P-States\n"); | 430 | dprintk("No P-States\n"); |
327 | result = -ENODEV; | 431 | result = -ENODEV; |
328 | goto err_unreg; | 432 | goto err_unreg; |
329 | } | 433 | } |
330 | if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || | 434 | |
331 | (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { | 435 | if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || |
436 | (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { | ||
332 | dprintk("Unsupported address space [%d, %d]\n", | 437 | dprintk("Unsupported address space [%d, %d]\n", |
333 | (u32) (data->acpi_data.control_register.space_id), | 438 | (u32) (perf->control_register.space_id), |
334 | (u32) (data->acpi_data.status_register.space_id)); | 439 | (u32) (perf->status_register.space_id)); |
335 | result = -ENODEV; | 440 | result = -ENODEV; |
336 | goto err_unreg; | 441 | goto err_unreg; |
337 | } | 442 | } |
338 | 443 | ||
339 | /* alloc freq_table */ | 444 | /* alloc freq_table */ |
340 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); | 445 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL); |
341 | if (!data->freq_table) { | 446 | if (!data->freq_table) { |
342 | result = -ENOMEM; | 447 | result = -ENOMEM; |
343 | goto err_unreg; | 448 | goto err_unreg; |
@@ -345,9 +450,9 @@ acpi_cpufreq_cpu_init ( | |||
345 | 450 | ||
346 | /* detect transition latency */ | 451 | /* detect transition latency */ |
347 | policy->cpuinfo.transition_latency = 0; | 452 | policy->cpuinfo.transition_latency = 0; |
348 | for (i=0; i<data->acpi_data.state_count; i++) { | 453 | for (i=0; i<perf->state_count; i++) { |
349 | if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) | 454 | if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) |
350 | policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; | 455 | policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000; |
351 | } | 456 | } |
352 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | 457 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; |
353 | 458 | ||
@@ -355,11 +460,11 @@ acpi_cpufreq_cpu_init ( | |||
355 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); | 460 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
356 | 461 | ||
357 | /* table init */ | 462 | /* table init */ |
358 | for (i=0; i<=data->acpi_data.state_count; i++) | 463 | for (i=0; i<=perf->state_count; i++) |
359 | { | 464 | { |
360 | data->freq_table[i].index = i; | 465 | data->freq_table[i].index = i; |
361 | if (i<data->acpi_data.state_count) | 466 | if (i<perf->state_count) |
362 | data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; | 467 | data->freq_table[i].frequency = perf->states[i].core_frequency * 1000; |
363 | else | 468 | else |
364 | data->freq_table[i].frequency = CPUFREQ_TABLE_END; | 469 | data->freq_table[i].frequency = CPUFREQ_TABLE_END; |
365 | } | 470 | } |
@@ -374,12 +479,12 @@ acpi_cpufreq_cpu_init ( | |||
374 | 479 | ||
375 | printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", | 480 | printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", |
376 | cpu); | 481 | cpu); |
377 | for (i = 0; i < data->acpi_data.state_count; i++) | 482 | for (i = 0; i < perf->state_count; i++) |
378 | dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", | 483 | dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", |
379 | (i == data->acpi_data.state?'*':' '), i, | 484 | (i == perf->state?'*':' '), i, |
380 | (u32) data->acpi_data.states[i].core_frequency, | 485 | (u32) perf->states[i].core_frequency, |
381 | (u32) data->acpi_data.states[i].power, | 486 | (u32) perf->states[i].power, |
382 | (u32) data->acpi_data.states[i].transition_latency); | 487 | (u32) perf->states[i].transition_latency); |
383 | 488 | ||
384 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); | 489 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); |
385 | 490 | ||
@@ -394,7 +499,7 @@ acpi_cpufreq_cpu_init ( | |||
394 | err_freqfree: | 499 | err_freqfree: |
395 | kfree(data->freq_table); | 500 | kfree(data->freq_table); |
396 | err_unreg: | 501 | err_unreg: |
397 | acpi_processor_unregister_performance(&data->acpi_data, cpu); | 502 | acpi_processor_unregister_performance(perf, cpu); |
398 | err_free: | 503 | err_free: |
399 | kfree(data); | 504 | kfree(data); |
400 | acpi_io_data[cpu] = NULL; | 505 | acpi_io_data[cpu] = NULL; |
@@ -415,7 +520,7 @@ acpi_cpufreq_cpu_exit ( | |||
415 | if (data) { | 520 | if (data) { |
416 | cpufreq_frequency_table_put_attr(policy->cpu); | 521 | cpufreq_frequency_table_put_attr(policy->cpu); |
417 | acpi_io_data[policy->cpu] = NULL; | 522 | acpi_io_data[policy->cpu] = NULL; |
418 | acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); | 523 | acpi_processor_unregister_performance(data->acpi_data, policy->cpu); |
419 | kfree(data); | 524 | kfree(data); |
420 | } | 525 | } |
421 | 526 | ||
@@ -462,7 +567,10 @@ acpi_cpufreq_init (void) | |||
462 | 567 | ||
463 | dprintk("acpi_cpufreq_init\n"); | 568 | dprintk("acpi_cpufreq_init\n"); |
464 | 569 | ||
465 | result = cpufreq_register_driver(&acpi_cpufreq_driver); | 570 | result = acpi_cpufreq_early_init_acpi(); |
571 | |||
572 | if (!result) | ||
573 | result = cpufreq_register_driver(&acpi_cpufreq_driver); | ||
466 | 574 | ||
467 | return (result); | 575 | return (result); |
468 | } | 576 | } |
@@ -471,10 +579,15 @@ acpi_cpufreq_init (void) | |||
471 | static void __exit | 579 | static void __exit |
472 | acpi_cpufreq_exit (void) | 580 | acpi_cpufreq_exit (void) |
473 | { | 581 | { |
582 | unsigned int i; | ||
474 | dprintk("acpi_cpufreq_exit\n"); | 583 | dprintk("acpi_cpufreq_exit\n"); |
475 | 584 | ||
476 | cpufreq_unregister_driver(&acpi_cpufreq_driver); | 585 | cpufreq_unregister_driver(&acpi_cpufreq_driver); |
477 | 586 | ||
587 | for_each_cpu(i) { | ||
588 | kfree(acpi_perf_data[i]); | ||
589 | acpi_perf_data[i] = NULL; | ||
590 | } | ||
478 | return; | 591 | return; |
479 | } | 592 | } |
480 | 593 | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c b/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c index f1a82c5de1ba..31c3a5baaa7f 100644 --- a/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c | |||
@@ -347,7 +347,36 @@ static unsigned int get_cur_freq(unsigned int cpu) | |||
347 | 347 | ||
348 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | 348 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI |
349 | 349 | ||
350 | static struct acpi_processor_performance p; | 350 | static struct acpi_processor_performance *acpi_perf_data[NR_CPUS]; |
351 | |||
352 | /* | ||
353 | * centrino_cpu_early_init_acpi - Do the preregistering with ACPI P-States | ||
354 | * library | ||
355 | * | ||
356 | * Before doing the actual init, we need to do _PSD related setup whenever | ||
357 | * supported by the BIOS. These are handled by this early_init routine. | ||
358 | */ | ||
359 | static int centrino_cpu_early_init_acpi(void) | ||
360 | { | ||
361 | unsigned int i, j; | ||
362 | struct acpi_processor_performance *data; | ||
363 | |||
364 | for_each_cpu(i) { | ||
365 | data = kzalloc(sizeof(struct acpi_processor_performance), | ||
366 | GFP_KERNEL); | ||
367 | if (!data) { | ||
368 | for_each_cpu(j) { | ||
369 | kfree(acpi_perf_data[j]); | ||
370 | acpi_perf_data[j] = NULL; | ||
371 | } | ||
372 | return (-ENOMEM); | ||
373 | } | ||
374 | acpi_perf_data[i] = data; | ||
375 | } | ||
376 | |||
377 | acpi_processor_preregister_performance(acpi_perf_data); | ||
378 | return 0; | ||
379 | } | ||
351 | 380 | ||
352 | /* | 381 | /* |
353 | * centrino_cpu_init_acpi - register with ACPI P-States library | 382 | * centrino_cpu_init_acpi - register with ACPI P-States library |
@@ -361,46 +390,51 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy) | |||
361 | unsigned long cur_freq; | 390 | unsigned long cur_freq; |
362 | int result = 0, i; | 391 | int result = 0, i; |
363 | unsigned int cpu = policy->cpu; | 392 | unsigned int cpu = policy->cpu; |
393 | struct acpi_processor_performance *p; | ||
394 | |||
395 | p = acpi_perf_data[cpu]; | ||
364 | 396 | ||
365 | /* register with ACPI core */ | 397 | /* register with ACPI core */ |
366 | if (acpi_processor_register_performance(&p, cpu)) { | 398 | if (acpi_processor_register_performance(p, cpu)) { |
367 | dprintk("obtaining ACPI data failed\n"); | 399 | dprintk(PFX "obtaining ACPI data failed\n"); |
368 | return -EIO; | 400 | return -EIO; |
369 | } | 401 | } |
402 | policy->cpus = p->shared_cpu_map; | ||
403 | policy->shared_type = p->shared_type; | ||
370 | 404 | ||
371 | /* verify the acpi_data */ | 405 | /* verify the acpi_data */ |
372 | if (p.state_count <= 1) { | 406 | if (p->state_count <= 1) { |
373 | dprintk("No P-States\n"); | 407 | dprintk("No P-States\n"); |
374 | result = -ENODEV; | 408 | result = -ENODEV; |
375 | goto err_unreg; | 409 | goto err_unreg; |
376 | } | 410 | } |
377 | 411 | ||
378 | if ((p.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || | 412 | if ((p->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || |
379 | (p.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | 413 | (p->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { |
380 | dprintk("Invalid control/status registers (%x - %x)\n", | 414 | dprintk("Invalid control/status registers (%x - %x)\n", |
381 | p.control_register.space_id, p.status_register.space_id); | 415 | p->control_register.space_id, p->status_register.space_id); |
382 | result = -EIO; | 416 | result = -EIO; |
383 | goto err_unreg; | 417 | goto err_unreg; |
384 | } | 418 | } |
385 | 419 | ||
386 | for (i=0; i<p.state_count; i++) { | 420 | for (i=0; i<p->state_count; i++) { |
387 | if (p.states[i].control != p.states[i].status) { | 421 | if (p->states[i].control != p->states[i].status) { |
388 | dprintk("Different control (%llu) and status values (%llu)\n", | 422 | dprintk("Different control (%llu) and status values (%llu)\n", |
389 | p.states[i].control, p.states[i].status); | 423 | p->states[i].control, p->states[i].status); |
390 | result = -EINVAL; | 424 | result = -EINVAL; |
391 | goto err_unreg; | 425 | goto err_unreg; |
392 | } | 426 | } |
393 | 427 | ||
394 | if (!p.states[i].core_frequency) { | 428 | if (!p->states[i].core_frequency) { |
395 | dprintk("Zero core frequency for state %u\n", i); | 429 | dprintk("Zero core frequency for state %u\n", i); |
396 | result = -EINVAL; | 430 | result = -EINVAL; |
397 | goto err_unreg; | 431 | goto err_unreg; |
398 | } | 432 | } |
399 | 433 | ||
400 | if (p.states[i].core_frequency > p.states[0].core_frequency) { | 434 | if (p->states[i].core_frequency > p->states[0].core_frequency) { |
401 | dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i, | 435 | dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i, |
402 | p.states[i].core_frequency, p.states[0].core_frequency); | 436 | p->states[i].core_frequency, p->states[0].core_frequency); |
403 | p.states[i].core_frequency = 0; | 437 | p->states[i].core_frequency = 0; |
404 | continue; | 438 | continue; |
405 | } | 439 | } |
406 | } | 440 | } |
@@ -412,26 +446,26 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy) | |||
412 | } | 446 | } |
413 | 447 | ||
414 | centrino_model[cpu]->model_name=NULL; | 448 | centrino_model[cpu]->model_name=NULL; |
415 | centrino_model[cpu]->max_freq = p.states[0].core_frequency * 1000; | 449 | centrino_model[cpu]->max_freq = p->states[0].core_frequency * 1000; |
416 | centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) * | 450 | centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) * |
417 | (p.state_count + 1), GFP_KERNEL); | 451 | (p->state_count + 1), GFP_KERNEL); |
418 | if (!centrino_model[cpu]->op_points) { | 452 | if (!centrino_model[cpu]->op_points) { |
419 | result = -ENOMEM; | 453 | result = -ENOMEM; |
420 | goto err_kfree; | 454 | goto err_kfree; |
421 | } | 455 | } |
422 | 456 | ||
423 | for (i=0; i<p.state_count; i++) { | 457 | for (i=0; i<p->state_count; i++) { |
424 | centrino_model[cpu]->op_points[i].index = p.states[i].control; | 458 | centrino_model[cpu]->op_points[i].index = p->states[i].control; |
425 | centrino_model[cpu]->op_points[i].frequency = p.states[i].core_frequency * 1000; | 459 | centrino_model[cpu]->op_points[i].frequency = p->states[i].core_frequency * 1000; |
426 | dprintk("adding state %i with frequency %u and control value %04x\n", | 460 | dprintk("adding state %i with frequency %u and control value %04x\n", |
427 | i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index); | 461 | i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index); |
428 | } | 462 | } |
429 | centrino_model[cpu]->op_points[p.state_count].frequency = CPUFREQ_TABLE_END; | 463 | centrino_model[cpu]->op_points[p->state_count].frequency = CPUFREQ_TABLE_END; |
430 | 464 | ||
431 | cur_freq = get_cur_freq(cpu); | 465 | cur_freq = get_cur_freq(cpu); |
432 | 466 | ||
433 | for (i=0; i<p.state_count; i++) { | 467 | for (i=0; i<p->state_count; i++) { |
434 | if (!p.states[i].core_frequency) { | 468 | if (!p->states[i].core_frequency) { |
435 | dprintk("skipping state %u\n", i); | 469 | dprintk("skipping state %u\n", i); |
436 | centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID; | 470 | centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID; |
437 | continue; | 471 | continue; |
@@ -447,7 +481,7 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy) | |||
447 | } | 481 | } |
448 | 482 | ||
449 | if (cur_freq == centrino_model[cpu]->op_points[i].frequency) | 483 | if (cur_freq == centrino_model[cpu]->op_points[i].frequency) |
450 | p.state = i; | 484 | p->state = i; |
451 | } | 485 | } |
452 | 486 | ||
453 | /* notify BIOS that we exist */ | 487 | /* notify BIOS that we exist */ |
@@ -460,12 +494,13 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy) | |||
460 | err_kfree: | 494 | err_kfree: |
461 | kfree(centrino_model[cpu]); | 495 | kfree(centrino_model[cpu]); |
462 | err_unreg: | 496 | err_unreg: |
463 | acpi_processor_unregister_performance(&p, cpu); | 497 | acpi_processor_unregister_performance(p, cpu); |
464 | dprintk("invalid ACPI data\n"); | 498 | dprintk(PFX "invalid ACPI data\n"); |
465 | return (result); | 499 | return (result); |
466 | } | 500 | } |
467 | #else | 501 | #else |
468 | static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; } | 502 | static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; } |
503 | static inline int centrino_cpu_early_init_acpi(void) { return 0; } | ||
469 | #endif | 504 | #endif |
470 | 505 | ||
471 | static int centrino_cpu_init(struct cpufreq_policy *policy) | 506 | static int centrino_cpu_init(struct cpufreq_policy *policy) |
@@ -551,10 +586,15 @@ static int centrino_cpu_exit(struct cpufreq_policy *policy) | |||
551 | 586 | ||
552 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | 587 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI |
553 | if (!centrino_model[cpu]->model_name) { | 588 | if (!centrino_model[cpu]->model_name) { |
554 | dprintk("unregistering and freeing ACPI data\n"); | 589 | static struct acpi_processor_performance *p; |
555 | acpi_processor_unregister_performance(&p, cpu); | 590 | |
556 | kfree(centrino_model[cpu]->op_points); | 591 | if (acpi_perf_data[cpu]) { |
557 | kfree(centrino_model[cpu]); | 592 | p = acpi_perf_data[cpu]; |
593 | dprintk("unregistering and freeing ACPI data\n"); | ||
594 | acpi_processor_unregister_performance(p, cpu); | ||
595 | kfree(centrino_model[cpu]->op_points); | ||
596 | kfree(centrino_model[cpu]); | ||
597 | } | ||
558 | } | 598 | } |
559 | #endif | 599 | #endif |
560 | 600 | ||
@@ -588,63 +628,128 @@ static int centrino_target (struct cpufreq_policy *policy, | |||
588 | unsigned int relation) | 628 | unsigned int relation) |
589 | { | 629 | { |
590 | unsigned int newstate = 0; | 630 | unsigned int newstate = 0; |
591 | unsigned int msr, oldmsr, h, cpu = policy->cpu; | 631 | unsigned int msr, oldmsr = 0, h = 0, cpu = policy->cpu; |
592 | struct cpufreq_freqs freqs; | 632 | struct cpufreq_freqs freqs; |
633 | cpumask_t online_policy_cpus; | ||
593 | cpumask_t saved_mask; | 634 | cpumask_t saved_mask; |
594 | int retval; | 635 | cpumask_t set_mask; |
636 | cpumask_t covered_cpus; | ||
637 | int retval = 0; | ||
638 | unsigned int j, k, first_cpu, tmp; | ||
595 | 639 | ||
596 | if (centrino_model[cpu] == NULL) | 640 | if (unlikely(centrino_model[cpu] == NULL)) |
597 | return -ENODEV; | 641 | return -ENODEV; |
598 | 642 | ||
599 | /* | 643 | if (unlikely(cpufreq_frequency_table_target(policy, |
600 | * Support for SMP systems. | 644 | centrino_model[cpu]->op_points, |
601 | * Make sure we are running on the CPU that wants to change frequency | 645 | target_freq, |
602 | */ | 646 | relation, |
603 | saved_mask = current->cpus_allowed; | 647 | &newstate))) { |
604 | set_cpus_allowed(current, policy->cpus); | 648 | return -EINVAL; |
605 | if (!cpu_isset(smp_processor_id(), policy->cpus)) { | ||
606 | dprintk("couldn't limit to CPUs in this domain\n"); | ||
607 | return(-EAGAIN); | ||
608 | } | 649 | } |
609 | 650 | ||
610 | if (cpufreq_frequency_table_target(policy, centrino_model[cpu]->op_points, target_freq, | 651 | #ifdef CONFIG_HOTPLUG_CPU |
611 | relation, &newstate)) { | 652 | /* cpufreq holds the hotplug lock, so we are safe from here on */ |
612 | retval = -EINVAL; | 653 | cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); |
613 | goto migrate_end; | 654 | #else |
614 | } | 655 | online_policy_cpus = policy->cpus; |
656 | #endif | ||
615 | 657 | ||
616 | msr = centrino_model[cpu]->op_points[newstate].index; | 658 | saved_mask = current->cpus_allowed; |
617 | rdmsr(MSR_IA32_PERF_CTL, oldmsr, h); | 659 | first_cpu = 1; |
660 | cpus_clear(covered_cpus); | ||
661 | for_each_cpu_mask(j, online_policy_cpus) { | ||
662 | /* | ||
663 | * Support for SMP systems. | ||
664 | * Make sure we are running on CPU that wants to change freq | ||
665 | */ | ||
666 | cpus_clear(set_mask); | ||
667 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) | ||
668 | cpus_or(set_mask, set_mask, online_policy_cpus); | ||
669 | else | ||
670 | cpu_set(j, set_mask); | ||
671 | |||
672 | set_cpus_allowed(current, set_mask); | ||
673 | if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) { | ||
674 | dprintk("couldn't limit to CPUs in this domain\n"); | ||
675 | retval = -EAGAIN; | ||
676 | if (first_cpu) { | ||
677 | /* We haven't started the transition yet. */ | ||
678 | goto migrate_end; | ||
679 | } | ||
680 | break; | ||
681 | } | ||
618 | 682 | ||
619 | if (msr == (oldmsr & 0xffff)) { | 683 | msr = centrino_model[cpu]->op_points[newstate].index; |
620 | retval = 0; | 684 | |
621 | dprintk("no change needed - msr was and needs to be %x\n", oldmsr); | 685 | if (first_cpu) { |
622 | goto migrate_end; | 686 | rdmsr(MSR_IA32_PERF_CTL, oldmsr, h); |
623 | } | 687 | if (msr == (oldmsr & 0xffff)) { |
688 | dprintk("no change needed - msr was and needs " | ||
689 | "to be %x\n", oldmsr); | ||
690 | retval = 0; | ||
691 | goto migrate_end; | ||
692 | } | ||
693 | |||
694 | freqs.old = extract_clock(oldmsr, cpu, 0); | ||
695 | freqs.new = extract_clock(msr, cpu, 0); | ||
696 | |||
697 | dprintk("target=%dkHz old=%d new=%d msr=%04x\n", | ||
698 | target_freq, freqs.old, freqs.new, msr); | ||
699 | |||
700 | for_each_cpu_mask(k, online_policy_cpus) { | ||
701 | freqs.cpu = k; | ||
702 | cpufreq_notify_transition(&freqs, | ||
703 | CPUFREQ_PRECHANGE); | ||
704 | } | ||
705 | |||
706 | first_cpu = 0; | ||
707 | /* all but 16 LSB are reserved, treat them with care */ | ||
708 | oldmsr &= ~0xffff; | ||
709 | msr &= 0xffff; | ||
710 | oldmsr |= msr; | ||
711 | } | ||
624 | 712 | ||
625 | freqs.cpu = cpu; | 713 | wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); |
626 | freqs.old = extract_clock(oldmsr, cpu, 0); | 714 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) |
627 | freqs.new = extract_clock(msr, cpu, 0); | 715 | break; |
628 | 716 | ||
629 | dprintk("target=%dkHz old=%d new=%d msr=%04x\n", | 717 | cpu_set(j, covered_cpus); |
630 | target_freq, freqs.old, freqs.new, msr); | 718 | } |
631 | 719 | ||
632 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | 720 | for_each_cpu_mask(k, online_policy_cpus) { |
721 | freqs.cpu = k; | ||
722 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
723 | } | ||
633 | 724 | ||
634 | /* all but 16 LSB are "reserved", so treat them with | 725 | if (unlikely(retval)) { |
635 | care */ | 726 | /* |
636 | oldmsr &= ~0xffff; | 727 | * We have failed halfway through the frequency change. |
637 | msr &= 0xffff; | 728 | * We have sent callbacks to policy->cpus and |
638 | oldmsr |= msr; | 729 | * MSRs have already been written on coverd_cpus. |
730 | * Best effort undo.. | ||
731 | */ | ||
639 | 732 | ||
640 | wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); | 733 | if (!cpus_empty(covered_cpus)) { |
734 | for_each_cpu_mask(j, covered_cpus) { | ||
735 | set_cpus_allowed(current, cpumask_of_cpu(j)); | ||
736 | wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); | ||
737 | } | ||
738 | } | ||
641 | 739 | ||
642 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | 740 | tmp = freqs.new; |
741 | freqs.new = freqs.old; | ||
742 | freqs.old = tmp; | ||
743 | for_each_cpu_mask(j, online_policy_cpus) { | ||
744 | freqs.cpu = j; | ||
745 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
746 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
747 | } | ||
748 | } | ||
643 | 749 | ||
644 | retval = 0; | ||
645 | migrate_end: | 750 | migrate_end: |
646 | set_cpus_allowed(current, saved_mask); | 751 | set_cpus_allowed(current, saved_mask); |
647 | return (retval); | 752 | return 0; |
648 | } | 753 | } |
649 | 754 | ||
650 | static struct freq_attr* centrino_attr[] = { | 755 | static struct freq_attr* centrino_attr[] = { |
@@ -686,12 +791,25 @@ static int __init centrino_init(void) | |||
686 | if (!cpu_has(cpu, X86_FEATURE_EST)) | 791 | if (!cpu_has(cpu, X86_FEATURE_EST)) |
687 | return -ENODEV; | 792 | return -ENODEV; |
688 | 793 | ||
794 | centrino_cpu_early_init_acpi(); | ||
795 | |||
689 | return cpufreq_register_driver(¢rino_driver); | 796 | return cpufreq_register_driver(¢rino_driver); |
690 | } | 797 | } |
691 | 798 | ||
692 | static void __exit centrino_exit(void) | 799 | static void __exit centrino_exit(void) |
693 | { | 800 | { |
801 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | ||
802 | unsigned int j; | ||
803 | #endif | ||
804 | |||
694 | cpufreq_unregister_driver(¢rino_driver); | 805 | cpufreq_unregister_driver(¢rino_driver); |
806 | |||
807 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | ||
808 | for_each_cpu(j) { | ||
809 | kfree(acpi_perf_data[j]); | ||
810 | acpi_perf_data[j] = NULL; | ||
811 | } | ||
812 | #endif | ||
695 | } | 813 | } |
696 | 814 | ||
697 | MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>"); | 815 | MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>"); |