aboutsummaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/cpu
diff options
context:
space:
mode:
authorLen Brown <len.brown@intel.com>2006-06-15 21:39:25 -0400
committerLen Brown <len.brown@intel.com>2006-06-15 21:39:25 -0400
commitd42510a0f58c2583c37c8e9b7548e3a68545863a (patch)
tree9d44b95405b9f0083e911a66cc5512860293f95a /arch/i386/kernel/cpu
parent8f2ddb37e564a9616c05fa0d5652e0049072a730 (diff)
parent193de0c79da580eb33a66113b62e2378fc1fb629 (diff)
Pull bugzilla-5737 into release branch
Conflicts: arch/x86_64/kernel/acpi/processor.c
Diffstat (limited to 'arch/i386/kernel/cpu')
-rw-r--r--arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c289
-rw-r--r--arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c250
2 files changed, 385 insertions, 154 deletions
diff --git a/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c b/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
index 3852d0a4c1b5..11da3ca237e3 100644
--- a/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
+++ b/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
@@ -48,12 +48,13 @@ MODULE_LICENSE("GPL");
48 48
49 49
50struct cpufreq_acpi_io { 50struct cpufreq_acpi_io {
51 struct acpi_processor_performance acpi_data; 51 struct acpi_processor_performance *acpi_data;
52 struct cpufreq_frequency_table *freq_table; 52 struct cpufreq_frequency_table *freq_table;
53 unsigned int resume; 53 unsigned int resume;
54}; 54};
55 55
56static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; 56static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
57static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
57 58
58static struct cpufreq_driver acpi_cpufreq_driver; 59static struct cpufreq_driver acpi_cpufreq_driver;
59 60
@@ -104,64 +105,43 @@ acpi_processor_set_performance (
104{ 105{
105 u16 port = 0; 106 u16 port = 0;
106 u8 bit_width = 0; 107 u8 bit_width = 0;
108 int i = 0;
107 int ret = 0; 109 int ret = 0;
108 u32 value = 0; 110 u32 value = 0;
109 int i = 0;
110 struct cpufreq_freqs cpufreq_freqs;
111 cpumask_t saved_mask;
112 int retval; 111 int retval;
112 struct acpi_processor_performance *perf;
113 113
114 dprintk("acpi_processor_set_performance\n"); 114 dprintk("acpi_processor_set_performance\n");
115 115
116 /* 116 retval = 0;
117 * TBD: Use something other than set_cpus_allowed. 117 perf = data->acpi_data;
118 * As set_cpus_allowed is a bit racy, 118 if (state == perf->state) {
119 * with any other set_cpus_allowed for this process.
120 */
121 saved_mask = current->cpus_allowed;
122 set_cpus_allowed(current, cpumask_of_cpu(cpu));
123 if (smp_processor_id() != cpu) {
124 return (-EAGAIN);
125 }
126
127 if (state == data->acpi_data.state) {
128 if (unlikely(data->resume)) { 119 if (unlikely(data->resume)) {
129 dprintk("Called after resume, resetting to P%d\n", state); 120 dprintk("Called after resume, resetting to P%d\n", state);
130 data->resume = 0; 121 data->resume = 0;
131 } else { 122 } else {
132 dprintk("Already at target state (P%d)\n", state); 123 dprintk("Already at target state (P%d)\n", state);
133 retval = 0; 124 return (retval);
134 goto migrate_end;
135 } 125 }
136 } 126 }
137 127
138 dprintk("Transitioning from P%d to P%d\n", 128 dprintk("Transitioning from P%d to P%d\n", perf->state, state);
139 data->acpi_data.state, state);
140
141 /* cpufreq frequency struct */
142 cpufreq_freqs.cpu = cpu;
143 cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
144 cpufreq_freqs.new = data->freq_table[state].frequency;
145
146 /* notify cpufreq */
147 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
148 129
149 /* 130 /*
150 * First we write the target state's 'control' value to the 131 * First we write the target state's 'control' value to the
151 * control_register. 132 * control_register.
152 */ 133 */
153 134
154 port = data->acpi_data.control_register.address; 135 port = perf->control_register.address;
155 bit_width = data->acpi_data.control_register.bit_width; 136 bit_width = perf->control_register.bit_width;
156 value = (u32) data->acpi_data.states[state].control; 137 value = (u32) perf->states[state].control;
157 138
158 dprintk("Writing 0x%08x to port 0x%04x\n", value, port); 139 dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
159 140
160 ret = acpi_processor_write_port(port, bit_width, value); 141 ret = acpi_processor_write_port(port, bit_width, value);
161 if (ret) { 142 if (ret) {
162 dprintk("Invalid port width 0x%04x\n", bit_width); 143 dprintk("Invalid port width 0x%04x\n", bit_width);
163 retval = ret; 144 return (ret);
164 goto migrate_end;
165 } 145 }
166 146
167 /* 147 /*
@@ -177,49 +157,36 @@ acpi_processor_set_performance (
177 * before giving up. 157 * before giving up.
178 */ 158 */
179 159
180 port = data->acpi_data.status_register.address; 160 port = perf->status_register.address;
181 bit_width = data->acpi_data.status_register.bit_width; 161 bit_width = perf->status_register.bit_width;
182 162
183 dprintk("Looking for 0x%08x from port 0x%04x\n", 163 dprintk("Looking for 0x%08x from port 0x%04x\n",
184 (u32) data->acpi_data.states[state].status, port); 164 (u32) perf->states[state].status, port);
185 165
186 for (i=0; i<100; i++) { 166 for (i = 0; i < 100; i++) {
187 ret = acpi_processor_read_port(port, bit_width, &value); 167 ret = acpi_processor_read_port(port, bit_width, &value);
188 if (ret) { 168 if (ret) {
189 dprintk("Invalid port width 0x%04x\n", bit_width); 169 dprintk("Invalid port width 0x%04x\n", bit_width);
190 retval = ret; 170 return (ret);
191 goto migrate_end;
192 } 171 }
193 if (value == (u32) data->acpi_data.states[state].status) 172 if (value == (u32) perf->states[state].status)
194 break; 173 break;
195 udelay(10); 174 udelay(10);
196 } 175 }
197 } else { 176 } else {
198 i = 0; 177 i = 0;
199 value = (u32) data->acpi_data.states[state].status; 178 value = (u32) perf->states[state].status;
200 } 179 }
201 180
202 /* notify cpufreq */ 181 if (unlikely(value != (u32) perf->states[state].status)) {
203 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
204
205 if (unlikely(value != (u32) data->acpi_data.states[state].status)) {
206 unsigned int tmp = cpufreq_freqs.new;
207 cpufreq_freqs.new = cpufreq_freqs.old;
208 cpufreq_freqs.old = tmp;
209 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
210 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
211 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); 182 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
212 retval = -ENODEV; 183 retval = -ENODEV;
213 goto migrate_end; 184 return (retval);
214 } 185 }
215 186
216 dprintk("Transition successful after %d microseconds\n", i * 10); 187 dprintk("Transition successful after %d microseconds\n", i * 10);
217 188
218 data->acpi_data.state = state; 189 perf->state = state;
219
220 retval = 0;
221migrate_end:
222 set_cpus_allowed(current, saved_mask);
223 return (retval); 190 return (retval);
224} 191}
225 192
@@ -231,8 +198,17 @@ acpi_cpufreq_target (
231 unsigned int relation) 198 unsigned int relation)
232{ 199{
233 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; 200 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
201 struct acpi_processor_performance *perf;
202 struct cpufreq_freqs freqs;
203 cpumask_t online_policy_cpus;
204 cpumask_t saved_mask;
205 cpumask_t set_mask;
206 cpumask_t covered_cpus;
207 unsigned int cur_state = 0;
234 unsigned int next_state = 0; 208 unsigned int next_state = 0;
235 unsigned int result = 0; 209 unsigned int result = 0;
210 unsigned int j;
211 unsigned int tmp;
236 212
237 dprintk("acpi_cpufreq_setpolicy\n"); 213 dprintk("acpi_cpufreq_setpolicy\n");
238 214
@@ -241,11 +217,95 @@ acpi_cpufreq_target (
241 target_freq, 217 target_freq,
242 relation, 218 relation,
243 &next_state); 219 &next_state);
244 if (result) 220 if (unlikely(result))
245 return (result); 221 return (result);
246 222
247 result = acpi_processor_set_performance (data, policy->cpu, next_state); 223 perf = data->acpi_data;
224 cur_state = perf->state;
225 freqs.old = data->freq_table[cur_state].frequency;
226 freqs.new = data->freq_table[next_state].frequency;
227
228#ifdef CONFIG_HOTPLUG_CPU
229 /* cpufreq holds the hotplug lock, so we are safe from here on */
230 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
231#else
232 online_policy_cpus = policy->cpus;
233#endif
234
235 for_each_cpu_mask(j, online_policy_cpus) {
236 freqs.cpu = j;
237 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
238 }
239
240 /*
241 * We need to call driver->target() on all or any CPU in
242 * policy->cpus, depending on policy->shared_type.
243 */
244 saved_mask = current->cpus_allowed;
245 cpus_clear(covered_cpus);
246 for_each_cpu_mask(j, online_policy_cpus) {
247 /*
248 * Support for SMP systems.
249 * Make sure we are running on CPU that wants to change freq
250 */
251 cpus_clear(set_mask);
252 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
253 cpus_or(set_mask, set_mask, online_policy_cpus);
254 else
255 cpu_set(j, set_mask);
256
257 set_cpus_allowed(current, set_mask);
258 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
259 dprintk("couldn't limit to CPUs in this domain\n");
260 result = -EAGAIN;
261 break;
262 }
263
264 result = acpi_processor_set_performance (data, j, next_state);
265 if (result) {
266 result = -EAGAIN;
267 break;
268 }
269
270 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
271 break;
272
273 cpu_set(j, covered_cpus);
274 }
275
276 for_each_cpu_mask(j, online_policy_cpus) {
277 freqs.cpu = j;
278 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
279 }
248 280
281 if (unlikely(result)) {
282 /*
283 * We have failed halfway through the frequency change.
284 * We have sent callbacks to online_policy_cpus and
285 * acpi_processor_set_performance() has been called on
286 * coverd_cpus. Best effort undo..
287 */
288
289 if (!cpus_empty(covered_cpus)) {
290 for_each_cpu_mask(j, covered_cpus) {
291 policy->cpu = j;
292 acpi_processor_set_performance (data,
293 j,
294 cur_state);
295 }
296 }
297
298 tmp = freqs.new;
299 freqs.new = freqs.old;
300 freqs.old = tmp;
301 for_each_cpu_mask(j, online_policy_cpus) {
302 freqs.cpu = j;
303 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
304 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
305 }
306 }
307
308 set_cpus_allowed(current, saved_mask);
249 return (result); 309 return (result);
250} 310}
251 311
@@ -271,30 +331,65 @@ acpi_cpufreq_guess_freq (
271 struct cpufreq_acpi_io *data, 331 struct cpufreq_acpi_io *data,
272 unsigned int cpu) 332 unsigned int cpu)
273{ 333{
334 struct acpi_processor_performance *perf = data->acpi_data;
335
274 if (cpu_khz) { 336 if (cpu_khz) {
275 /* search the closest match to cpu_khz */ 337 /* search the closest match to cpu_khz */
276 unsigned int i; 338 unsigned int i;
277 unsigned long freq; 339 unsigned long freq;
278 unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; 340 unsigned long freqn = perf->states[0].core_frequency * 1000;
279 341
280 for (i=0; i < (data->acpi_data.state_count - 1); i++) { 342 for (i = 0; i < (perf->state_count - 1); i++) {
281 freq = freqn; 343 freq = freqn;
282 freqn = data->acpi_data.states[i+1].core_frequency * 1000; 344 freqn = perf->states[i+1].core_frequency * 1000;
283 if ((2 * cpu_khz) > (freqn + freq)) { 345 if ((2 * cpu_khz) > (freqn + freq)) {
284 data->acpi_data.state = i; 346 perf->state = i;
285 return (freq); 347 return (freq);
286 } 348 }
287 } 349 }
288 data->acpi_data.state = data->acpi_data.state_count - 1; 350 perf->state = perf->state_count - 1;
289 return (freqn); 351 return (freqn);
290 } else 352 } else {
291 /* assume CPU is at P0... */ 353 /* assume CPU is at P0... */
292 data->acpi_data.state = 0; 354 perf->state = 0;
293 return data->acpi_data.states[0].core_frequency * 1000; 355 return perf->states[0].core_frequency * 1000;
294 356 }
295} 357}
296 358
297 359
360/*
361 * acpi_cpufreq_early_init - initialize ACPI P-States library
362 *
363 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
364 * in order to determine correct frequency and voltage pairings. We can
365 * do _PDC and _PSD and find out the processor dependency for the
366 * actual init that will happen later...
367 */
368static int acpi_cpufreq_early_init_acpi(void)
369{
370 struct acpi_processor_performance *data;
371 unsigned int i, j;
372
373 dprintk("acpi_cpufreq_early_init\n");
374
375 for_each_cpu(i) {
376 data = kzalloc(sizeof(struct acpi_processor_performance),
377 GFP_KERNEL);
378 if (!data) {
379 for_each_cpu(j) {
380 kfree(acpi_perf_data[j]);
381 acpi_perf_data[j] = NULL;
382 }
383 return (-ENOMEM);
384 }
385 acpi_perf_data[i] = data;
386 }
387
388 /* Do initialization in ACPI core */
389 acpi_processor_preregister_performance(acpi_perf_data);
390 return 0;
391}
392
298static int 393static int
299acpi_cpufreq_cpu_init ( 394acpi_cpufreq_cpu_init (
300 struct cpufreq_policy *policy) 395 struct cpufreq_policy *policy)
@@ -304,41 +399,51 @@ acpi_cpufreq_cpu_init (
304 struct cpufreq_acpi_io *data; 399 struct cpufreq_acpi_io *data;
305 unsigned int result = 0; 400 unsigned int result = 0;
306 struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; 401 struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
402 struct acpi_processor_performance *perf;
307 403
308 dprintk("acpi_cpufreq_cpu_init\n"); 404 dprintk("acpi_cpufreq_cpu_init\n");
309 405
406 if (!acpi_perf_data[cpu])
407 return (-ENODEV);
408
310 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); 409 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
311 if (!data) 410 if (!data)
312 return (-ENOMEM); 411 return (-ENOMEM);
313 412
413 data->acpi_data = acpi_perf_data[cpu];
314 acpi_io_data[cpu] = data; 414 acpi_io_data[cpu] = data;
315 415
316 result = acpi_processor_register_performance(&data->acpi_data, cpu); 416 result = acpi_processor_register_performance(data->acpi_data, cpu);
317 417
318 if (result) 418 if (result)
319 goto err_free; 419 goto err_free;
320 420
421 perf = data->acpi_data;
422 policy->cpus = perf->shared_cpu_map;
423 policy->shared_type = perf->shared_type;
424
321 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 425 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
322 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 426 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
323 } 427 }
324 428
325 /* capability check */ 429 /* capability check */
326 if (data->acpi_data.state_count <= 1) { 430 if (perf->state_count <= 1) {
327 dprintk("No P-States\n"); 431 dprintk("No P-States\n");
328 result = -ENODEV; 432 result = -ENODEV;
329 goto err_unreg; 433 goto err_unreg;
330 } 434 }
331 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || 435
332 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { 436 if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
437 (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
333 dprintk("Unsupported address space [%d, %d]\n", 438 dprintk("Unsupported address space [%d, %d]\n",
334 (u32) (data->acpi_data.control_register.space_id), 439 (u32) (perf->control_register.space_id),
335 (u32) (data->acpi_data.status_register.space_id)); 440 (u32) (perf->status_register.space_id));
336 result = -ENODEV; 441 result = -ENODEV;
337 goto err_unreg; 442 goto err_unreg;
338 } 443 }
339 444
340 /* alloc freq_table */ 445 /* alloc freq_table */
341 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); 446 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
342 if (!data->freq_table) { 447 if (!data->freq_table) {
343 result = -ENOMEM; 448 result = -ENOMEM;
344 goto err_unreg; 449 goto err_unreg;
@@ -346,9 +451,9 @@ acpi_cpufreq_cpu_init (
346 451
347 /* detect transition latency */ 452 /* detect transition latency */
348 policy->cpuinfo.transition_latency = 0; 453 policy->cpuinfo.transition_latency = 0;
349 for (i=0; i<data->acpi_data.state_count; i++) { 454 for (i=0; i<perf->state_count; i++) {
350 if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) 455 if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
351 policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; 456 policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
352 } 457 }
353 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 458 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
354 459
@@ -356,11 +461,11 @@ acpi_cpufreq_cpu_init (
356 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 461 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
357 462
358 /* table init */ 463 /* table init */
359 for (i=0; i<=data->acpi_data.state_count; i++) 464 for (i=0; i<=perf->state_count; i++)
360 { 465 {
361 data->freq_table[i].index = i; 466 data->freq_table[i].index = i;
362 if (i<data->acpi_data.state_count) 467 if (i<perf->state_count)
363 data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; 468 data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
364 else 469 else
365 data->freq_table[i].frequency = CPUFREQ_TABLE_END; 470 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
366 } 471 }
@@ -375,12 +480,12 @@ acpi_cpufreq_cpu_init (
375 480
376 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", 481 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
377 cpu); 482 cpu);
378 for (i = 0; i < data->acpi_data.state_count; i++) 483 for (i = 0; i < perf->state_count; i++)
379 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", 484 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
380 (i == data->acpi_data.state?'*':' '), i, 485 (i == perf->state?'*':' '), i,
381 (u32) data->acpi_data.states[i].core_frequency, 486 (u32) perf->states[i].core_frequency,
382 (u32) data->acpi_data.states[i].power, 487 (u32) perf->states[i].power,
383 (u32) data->acpi_data.states[i].transition_latency); 488 (u32) perf->states[i].transition_latency);
384 489
385 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); 490 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
386 491
@@ -395,7 +500,7 @@ acpi_cpufreq_cpu_init (
395 err_freqfree: 500 err_freqfree:
396 kfree(data->freq_table); 501 kfree(data->freq_table);
397 err_unreg: 502 err_unreg:
398 acpi_processor_unregister_performance(&data->acpi_data, cpu); 503 acpi_processor_unregister_performance(perf, cpu);
399 err_free: 504 err_free:
400 kfree(data); 505 kfree(data);
401 acpi_io_data[cpu] = NULL; 506 acpi_io_data[cpu] = NULL;
@@ -416,7 +521,7 @@ acpi_cpufreq_cpu_exit (
416 if (data) { 521 if (data) {
417 cpufreq_frequency_table_put_attr(policy->cpu); 522 cpufreq_frequency_table_put_attr(policy->cpu);
418 acpi_io_data[policy->cpu] = NULL; 523 acpi_io_data[policy->cpu] = NULL;
419 acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); 524 acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
420 kfree(data); 525 kfree(data);
421 } 526 }
422 527
@@ -462,7 +567,10 @@ acpi_cpufreq_init (void)
462 567
463 dprintk("acpi_cpufreq_init\n"); 568 dprintk("acpi_cpufreq_init\n");
464 569
465 result = cpufreq_register_driver(&acpi_cpufreq_driver); 570 result = acpi_cpufreq_early_init_acpi();
571
572 if (!result)
573 result = cpufreq_register_driver(&acpi_cpufreq_driver);
466 574
467 return (result); 575 return (result);
468} 576}
@@ -471,10 +579,15 @@ acpi_cpufreq_init (void)
471static void __exit 579static void __exit
472acpi_cpufreq_exit (void) 580acpi_cpufreq_exit (void)
473{ 581{
582 unsigned int i;
474 dprintk("acpi_cpufreq_exit\n"); 583 dprintk("acpi_cpufreq_exit\n");
475 584
476 cpufreq_unregister_driver(&acpi_cpufreq_driver); 585 cpufreq_unregister_driver(&acpi_cpufreq_driver);
477 586
587 for_each_cpu(i) {
588 kfree(acpi_perf_data[i]);
589 acpi_perf_data[i] = NULL;
590 }
478 return; 591 return;
479} 592}
480 593
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c b/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
index b0ff9075708c..4535ca0fe0cf 100644
--- a/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
+++ b/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
@@ -351,7 +351,36 @@ static unsigned int get_cur_freq(unsigned int cpu)
351 351
352#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI 352#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
353 353
354static struct acpi_processor_performance p; 354static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
355
356/*
357 * centrino_cpu_early_init_acpi - Do the preregistering with ACPI P-States
358 * library
359 *
360 * Before doing the actual init, we need to do _PSD related setup whenever
361 * supported by the BIOS. These are handled by this early_init routine.
362 */
363static int centrino_cpu_early_init_acpi(void)
364{
365 unsigned int i, j;
366 struct acpi_processor_performance *data;
367
368 for_each_cpu(i) {
369 data = kzalloc(sizeof(struct acpi_processor_performance),
370 GFP_KERNEL);
371 if (!data) {
372 for_each_cpu(j) {
373 kfree(acpi_perf_data[j]);
374 acpi_perf_data[j] = NULL;
375 }
376 return (-ENOMEM);
377 }
378 acpi_perf_data[i] = data;
379 }
380
381 acpi_processor_preregister_performance(acpi_perf_data);
382 return 0;
383}
355 384
356/* 385/*
357 * centrino_cpu_init_acpi - register with ACPI P-States library 386 * centrino_cpu_init_acpi - register with ACPI P-States library
@@ -365,46 +394,51 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
365 unsigned long cur_freq; 394 unsigned long cur_freq;
366 int result = 0, i; 395 int result = 0, i;
367 unsigned int cpu = policy->cpu; 396 unsigned int cpu = policy->cpu;
397 struct acpi_processor_performance *p;
398
399 p = acpi_perf_data[cpu];
368 400
369 /* register with ACPI core */ 401 /* register with ACPI core */
370 if (acpi_processor_register_performance(&p, cpu)) { 402 if (acpi_processor_register_performance(p, cpu)) {
371 dprintk(KERN_INFO PFX "obtaining ACPI data failed\n"); 403 dprintk(KERN_INFO PFX "obtaining ACPI data failed\n");
372 return -EIO; 404 return -EIO;
373 } 405 }
406 policy->cpus = p->shared_cpu_map;
407 policy->shared_type = p->shared_type;
374 408
375 /* verify the acpi_data */ 409 /* verify the acpi_data */
376 if (p.state_count <= 1) { 410 if (p->state_count <= 1) {
377 dprintk("No P-States\n"); 411 dprintk("No P-States\n");
378 result = -ENODEV; 412 result = -ENODEV;
379 goto err_unreg; 413 goto err_unreg;
380 } 414 }
381 415
382 if ((p.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || 416 if ((p->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
383 (p.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { 417 (p->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
384 dprintk("Invalid control/status registers (%x - %x)\n", 418 dprintk("Invalid control/status registers (%x - %x)\n",
385 p.control_register.space_id, p.status_register.space_id); 419 p->control_register.space_id, p->status_register.space_id);
386 result = -EIO; 420 result = -EIO;
387 goto err_unreg; 421 goto err_unreg;
388 } 422 }
389 423
390 for (i=0; i<p.state_count; i++) { 424 for (i=0; i<p->state_count; i++) {
391 if (p.states[i].control != p.states[i].status) { 425 if (p->states[i].control != p->states[i].status) {
392 dprintk("Different control (%llu) and status values (%llu)\n", 426 dprintk("Different control (%llu) and status values (%llu)\n",
393 p.states[i].control, p.states[i].status); 427 p->states[i].control, p->states[i].status);
394 result = -EINVAL; 428 result = -EINVAL;
395 goto err_unreg; 429 goto err_unreg;
396 } 430 }
397 431
398 if (!p.states[i].core_frequency) { 432 if (!p->states[i].core_frequency) {
399 dprintk("Zero core frequency for state %u\n", i); 433 dprintk("Zero core frequency for state %u\n", i);
400 result = -EINVAL; 434 result = -EINVAL;
401 goto err_unreg; 435 goto err_unreg;
402 } 436 }
403 437
404 if (p.states[i].core_frequency > p.states[0].core_frequency) { 438 if (p->states[i].core_frequency > p->states[0].core_frequency) {
405 dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i, 439 dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i,
406 p.states[i].core_frequency, p.states[0].core_frequency); 440 p->states[i].core_frequency, p->states[0].core_frequency);
407 p.states[i].core_frequency = 0; 441 p->states[i].core_frequency = 0;
408 continue; 442 continue;
409 } 443 }
410 } 444 }
@@ -416,26 +450,26 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
416 } 450 }
417 451
418 centrino_model[cpu]->model_name=NULL; 452 centrino_model[cpu]->model_name=NULL;
419 centrino_model[cpu]->max_freq = p.states[0].core_frequency * 1000; 453 centrino_model[cpu]->max_freq = p->states[0].core_frequency * 1000;
420 centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) * 454 centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) *
421 (p.state_count + 1), GFP_KERNEL); 455 (p->state_count + 1), GFP_KERNEL);
422 if (!centrino_model[cpu]->op_points) { 456 if (!centrino_model[cpu]->op_points) {
423 result = -ENOMEM; 457 result = -ENOMEM;
424 goto err_kfree; 458 goto err_kfree;
425 } 459 }
426 460
427 for (i=0; i<p.state_count; i++) { 461 for (i=0; i<p->state_count; i++) {
428 centrino_model[cpu]->op_points[i].index = p.states[i].control; 462 centrino_model[cpu]->op_points[i].index = p->states[i].control;
429 centrino_model[cpu]->op_points[i].frequency = p.states[i].core_frequency * 1000; 463 centrino_model[cpu]->op_points[i].frequency = p->states[i].core_frequency * 1000;
430 dprintk("adding state %i with frequency %u and control value %04x\n", 464 dprintk("adding state %i with frequency %u and control value %04x\n",
431 i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index); 465 i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index);
432 } 466 }
433 centrino_model[cpu]->op_points[p.state_count].frequency = CPUFREQ_TABLE_END; 467 centrino_model[cpu]->op_points[p->state_count].frequency = CPUFREQ_TABLE_END;
434 468
435 cur_freq = get_cur_freq(cpu); 469 cur_freq = get_cur_freq(cpu);
436 470
437 for (i=0; i<p.state_count; i++) { 471 for (i=0; i<p->state_count; i++) {
438 if (!p.states[i].core_frequency) { 472 if (!p->states[i].core_frequency) {
439 dprintk("skipping state %u\n", i); 473 dprintk("skipping state %u\n", i);
440 centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID; 474 centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID;
441 continue; 475 continue;
@@ -451,7 +485,7 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
451 } 485 }
452 486
453 if (cur_freq == centrino_model[cpu]->op_points[i].frequency) 487 if (cur_freq == centrino_model[cpu]->op_points[i].frequency)
454 p.state = i; 488 p->state = i;
455 } 489 }
456 490
457 /* notify BIOS that we exist */ 491 /* notify BIOS that we exist */
@@ -464,12 +498,13 @@ static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
464 err_kfree: 498 err_kfree:
465 kfree(centrino_model[cpu]); 499 kfree(centrino_model[cpu]);
466 err_unreg: 500 err_unreg:
467 acpi_processor_unregister_performance(&p, cpu); 501 acpi_processor_unregister_performance(p, cpu);
468 dprintk(KERN_INFO PFX "invalid ACPI data\n"); 502 dprintk(KERN_INFO PFX "invalid ACPI data\n");
469 return (result); 503 return (result);
470} 504}
471#else 505#else
472static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; } 506static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; }
507static inline int centrino_cpu_early_init_acpi(void) { return 0; }
473#endif 508#endif
474 509
475static int centrino_cpu_init(struct cpufreq_policy *policy) 510static int centrino_cpu_init(struct cpufreq_policy *policy)
@@ -555,10 +590,15 @@ static int centrino_cpu_exit(struct cpufreq_policy *policy)
555 590
556#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI 591#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
557 if (!centrino_model[cpu]->model_name) { 592 if (!centrino_model[cpu]->model_name) {
558 dprintk("unregistering and freeing ACPI data\n"); 593 static struct acpi_processor_performance *p;
559 acpi_processor_unregister_performance(&p, cpu); 594
560 kfree(centrino_model[cpu]->op_points); 595 if (acpi_perf_data[cpu]) {
561 kfree(centrino_model[cpu]); 596 p = acpi_perf_data[cpu];
597 dprintk("unregistering and freeing ACPI data\n");
598 acpi_processor_unregister_performance(p, cpu);
599 kfree(centrino_model[cpu]->op_points);
600 kfree(centrino_model[cpu]);
601 }
562 } 602 }
563#endif 603#endif
564 604
@@ -592,63 +632,128 @@ static int centrino_target (struct cpufreq_policy *policy,
592 unsigned int relation) 632 unsigned int relation)
593{ 633{
594 unsigned int newstate = 0; 634 unsigned int newstate = 0;
595 unsigned int msr, oldmsr, h, cpu = policy->cpu; 635 unsigned int msr, oldmsr = 0, h = 0, cpu = policy->cpu;
596 struct cpufreq_freqs freqs; 636 struct cpufreq_freqs freqs;
637 cpumask_t online_policy_cpus;
597 cpumask_t saved_mask; 638 cpumask_t saved_mask;
598 int retval; 639 cpumask_t set_mask;
640 cpumask_t covered_cpus;
641 int retval = 0;
642 unsigned int j, k, first_cpu, tmp;
599 643
600 if (centrino_model[cpu] == NULL) 644 if (unlikely(centrino_model[cpu] == NULL))
601 return -ENODEV; 645 return -ENODEV;
602 646
603 /* 647 if (unlikely(cpufreq_frequency_table_target(policy,
604 * Support for SMP systems. 648 centrino_model[cpu]->op_points,
605 * Make sure we are running on the CPU that wants to change frequency 649 target_freq,
606 */ 650 relation,
607 saved_mask = current->cpus_allowed; 651 &newstate))) {
608 set_cpus_allowed(current, policy->cpus); 652 return -EINVAL;
609 if (!cpu_isset(smp_processor_id(), policy->cpus)) {
610 dprintk("couldn't limit to CPUs in this domain\n");
611 return(-EAGAIN);
612 } 653 }
613 654
614 if (cpufreq_frequency_table_target(policy, centrino_model[cpu]->op_points, target_freq, 655#ifdef CONFIG_HOTPLUG_CPU
615 relation, &newstate)) { 656 /* cpufreq holds the hotplug lock, so we are safe from here on */
616 retval = -EINVAL; 657 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
617 goto migrate_end; 658#else
618 } 659 online_policy_cpus = policy->cpus;
660#endif
619 661
620 msr = centrino_model[cpu]->op_points[newstate].index; 662 saved_mask = current->cpus_allowed;
621 rdmsr(MSR_IA32_PERF_CTL, oldmsr, h); 663 first_cpu = 1;
664 cpus_clear(covered_cpus);
665 for_each_cpu_mask(j, online_policy_cpus) {
666 /*
667 * Support for SMP systems.
668 * Make sure we are running on CPU that wants to change freq
669 */
670 cpus_clear(set_mask);
671 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
672 cpus_or(set_mask, set_mask, online_policy_cpus);
673 else
674 cpu_set(j, set_mask);
675
676 set_cpus_allowed(current, set_mask);
677 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
678 dprintk("couldn't limit to CPUs in this domain\n");
679 retval = -EAGAIN;
680 if (first_cpu) {
681 /* We haven't started the transition yet. */
682 goto migrate_end;
683 }
684 break;
685 }
622 686
623 if (msr == (oldmsr & 0xffff)) { 687 msr = centrino_model[cpu]->op_points[newstate].index;
624 retval = 0; 688
625 dprintk("no change needed - msr was and needs to be %x\n", oldmsr); 689 if (first_cpu) {
626 goto migrate_end; 690 rdmsr(MSR_IA32_PERF_CTL, oldmsr, h);
627 } 691 if (msr == (oldmsr & 0xffff)) {
692 dprintk("no change needed - msr was and needs "
693 "to be %x\n", oldmsr);
694 retval = 0;
695 goto migrate_end;
696 }
697
698 freqs.old = extract_clock(oldmsr, cpu, 0);
699 freqs.new = extract_clock(msr, cpu, 0);
700
701 dprintk("target=%dkHz old=%d new=%d msr=%04x\n",
702 target_freq, freqs.old, freqs.new, msr);
703
704 for_each_cpu_mask(k, online_policy_cpus) {
705 freqs.cpu = k;
706 cpufreq_notify_transition(&freqs,
707 CPUFREQ_PRECHANGE);
708 }
709
710 first_cpu = 0;
711 /* all but 16 LSB are reserved, treat them with care */
712 oldmsr &= ~0xffff;
713 msr &= 0xffff;
714 oldmsr |= msr;
715 }
628 716
629 freqs.cpu = cpu; 717 wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
630 freqs.old = extract_clock(oldmsr, cpu, 0); 718 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
631 freqs.new = extract_clock(msr, cpu, 0); 719 break;
632 720
633 dprintk("target=%dkHz old=%d new=%d msr=%04x\n", 721 cpu_set(j, covered_cpus);
634 target_freq, freqs.old, freqs.new, msr); 722 }
635 723
636 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 724 for_each_cpu_mask(k, online_policy_cpus) {
725 freqs.cpu = k;
726 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
727 }
637 728
638 /* all but 16 LSB are "reserved", so treat them with 729 if (unlikely(retval)) {
639 care */ 730 /*
640 oldmsr &= ~0xffff; 731 * We have failed halfway through the frequency change.
641 msr &= 0xffff; 732 * We have sent callbacks to policy->cpus and
642 oldmsr |= msr; 733 * MSRs have already been written on coverd_cpus.
734 * Best effort undo..
735 */
643 736
644 wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); 737 if (!cpus_empty(covered_cpus)) {
738 for_each_cpu_mask(j, covered_cpus) {
739 set_cpus_allowed(current, cpumask_of_cpu(j));
740 wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
741 }
742 }
645 743
646 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 744 tmp = freqs.new;
745 freqs.new = freqs.old;
746 freqs.old = tmp;
747 for_each_cpu_mask(j, online_policy_cpus) {
748 freqs.cpu = j;
749 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
750 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
751 }
752 }
647 753
648 retval = 0;
649migrate_end: 754migrate_end:
650 set_cpus_allowed(current, saved_mask); 755 set_cpus_allowed(current, saved_mask);
651 return (retval); 756 return 0;
652} 757}
653 758
654static struct freq_attr* centrino_attr[] = { 759static struct freq_attr* centrino_attr[] = {
@@ -690,12 +795,25 @@ static int __init centrino_init(void)
690 if (!cpu_has(cpu, X86_FEATURE_EST)) 795 if (!cpu_has(cpu, X86_FEATURE_EST))
691 return -ENODEV; 796 return -ENODEV;
692 797
798 centrino_cpu_early_init_acpi();
799
693 return cpufreq_register_driver(&centrino_driver); 800 return cpufreq_register_driver(&centrino_driver);
694} 801}
695 802
696static void __exit centrino_exit(void) 803static void __exit centrino_exit(void)
697{ 804{
805#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
806 unsigned int j;
807#endif
808
698 cpufreq_unregister_driver(&centrino_driver); 809 cpufreq_unregister_driver(&centrino_driver);
810
811#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
812 for_each_cpu(j) {
813 kfree(acpi_perf_data[j]);
814 acpi_perf_data[j] = NULL;
815 }
816#endif
699} 817}
700 818
701MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>"); 819MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>");