diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/kernel/cpu/cpufreq |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/kernel/cpu/cpufreq')
21 files changed, 8161 insertions, 0 deletions
diff --git a/arch/i386/kernel/cpu/cpufreq/Kconfig b/arch/i386/kernel/cpu/cpufreq/Kconfig new file mode 100644 index 000000000000..f25ffd74235c --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/Kconfig | |||
@@ -0,0 +1,231 @@ | |||
1 | # | ||
2 | # CPU Frequency scaling | ||
3 | # | ||
4 | |||
5 | menu "CPU Frequency scaling" | ||
6 | |||
7 | source "drivers/cpufreq/Kconfig" | ||
8 | |||
9 | if CPU_FREQ | ||
10 | |||
11 | comment "CPUFreq processor drivers" | ||
12 | |||
13 | config X86_ACPI_CPUFREQ | ||
14 | tristate "ACPI Processor P-States driver" | ||
15 | select CPU_FREQ_TABLE | ||
16 | depends on ACPI_PROCESSOR | ||
17 | help | ||
18 | This driver adds a CPUFreq driver which utilizes the ACPI | ||
19 | Processor Performance States. | ||
20 | |||
21 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
22 | |||
23 | If in doubt, say N. | ||
24 | |||
25 | config ELAN_CPUFREQ | ||
26 | tristate "AMD Elan" | ||
27 | select CPU_FREQ_TABLE | ||
28 | depends on X86_ELAN | ||
29 | ---help--- | ||
30 | This adds the CPUFreq driver for AMD Elan SC400 and SC410 | ||
31 | processors. | ||
32 | |||
33 | You need to specify the processor maximum speed as boot | ||
34 | parameter: elanfreq=maxspeed (in kHz) or as module | ||
35 | parameter "max_freq". | ||
36 | |||
37 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
38 | |||
39 | If in doubt, say N. | ||
40 | |||
41 | config X86_POWERNOW_K6 | ||
42 | tristate "AMD Mobile K6-2/K6-3 PowerNow!" | ||
43 | select CPU_FREQ_TABLE | ||
44 | help | ||
45 | This adds the CPUFreq driver for mobile AMD K6-2+ and mobile | ||
46 | AMD K6-3+ processors. | ||
47 | |||
48 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
49 | |||
50 | If in doubt, say N. | ||
51 | |||
52 | config X86_POWERNOW_K7 | ||
53 | tristate "AMD Mobile Athlon/Duron PowerNow!" | ||
54 | select CPU_FREQ_TABLE | ||
55 | help | ||
56 | This adds the CPUFreq driver for mobile AMD K7 mobile processors. | ||
57 | |||
58 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
59 | |||
60 | If in doubt, say N. | ||
61 | |||
62 | config X86_POWERNOW_K7_ACPI | ||
63 | bool | ||
64 | depends on X86_POWERNOW_K7 && ACPI_PROCESSOR | ||
65 | depends on !(X86_POWERNOW_K7 = y && ACPI_PROCESSOR = m) | ||
66 | default y | ||
67 | |||
68 | config X86_POWERNOW_K8 | ||
69 | tristate "AMD Opteron/Athlon64 PowerNow!" | ||
70 | select CPU_FREQ_TABLE | ||
71 | depends on EXPERIMENTAL | ||
72 | help | ||
73 | This adds the CPUFreq driver for mobile AMD Opteron/Athlon64 processors. | ||
74 | |||
75 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
76 | |||
77 | If in doubt, say N. | ||
78 | |||
79 | config X86_POWERNOW_K8_ACPI | ||
80 | bool | ||
81 | depends on X86_POWERNOW_K8 && ACPI_PROCESSOR | ||
82 | depends on !(X86_POWERNOW_K8 = y && ACPI_PROCESSOR = m) | ||
83 | default y | ||
84 | |||
85 | config X86_GX_SUSPMOD | ||
86 | tristate "Cyrix MediaGX/NatSemi Geode Suspend Modulation" | ||
87 | help | ||
88 | This add the CPUFreq driver for NatSemi Geode processors which | ||
89 | support suspend modulation. | ||
90 | |||
91 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
92 | |||
93 | If in doubt, say N. | ||
94 | |||
95 | config X86_SPEEDSTEP_CENTRINO | ||
96 | tristate "Intel Enhanced SpeedStep" | ||
97 | select CPU_FREQ_TABLE | ||
98 | select X86_SPEEDSTEP_CENTRINO_TABLE if (!X86_SPEEDSTEP_CENTRINO_ACPI) | ||
99 | help | ||
100 | This adds the CPUFreq driver for Enhanced SpeedStep enabled | ||
101 | mobile CPUs. This means Intel Pentium M (Centrino) CPUs. However, | ||
102 | you also need to say Y to "Use ACPI tables to decode..." below | ||
103 | [which might imply enabling ACPI] if you want to use this driver | ||
104 | on non-Banias CPUs. | ||
105 | |||
106 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
107 | |||
108 | If in doubt, say N. | ||
109 | |||
110 | config X86_SPEEDSTEP_CENTRINO_ACPI | ||
111 | bool "Use ACPI tables to decode valid frequency/voltage pairs" | ||
112 | depends on X86_SPEEDSTEP_CENTRINO && ACPI_PROCESSOR | ||
113 | depends on !(X86_SPEEDSTEP_CENTRINO = y && ACPI_PROCESSOR = m) | ||
114 | default y | ||
115 | help | ||
116 | Use primarily the information provided in the BIOS ACPI tables | ||
117 | to determine valid CPU frequency and voltage pairings. It is | ||
118 | required for the driver to work on non-Banias CPUs. | ||
119 | |||
120 | If in doubt, say Y. | ||
121 | |||
122 | config X86_SPEEDSTEP_CENTRINO_TABLE | ||
123 | bool "Built-in tables for Banias CPUs" | ||
124 | depends on X86_SPEEDSTEP_CENTRINO | ||
125 | default y | ||
126 | help | ||
127 | Use built-in tables for Banias CPUs if ACPI encoding | ||
128 | is not available. | ||
129 | |||
130 | If in doubt, say N. | ||
131 | |||
132 | config X86_SPEEDSTEP_ICH | ||
133 | tristate "Intel Speedstep on ICH-M chipsets (ioport interface)" | ||
134 | select CPU_FREQ_TABLE | ||
135 | help | ||
136 | This adds the CPUFreq driver for certain mobile Intel Pentium III | ||
137 | (Coppermine), all mobile Intel Pentium III-M (Tualatin) and all | ||
138 | mobile Intel Pentium 4 P4-M on systems which have an Intel ICH2, | ||
139 | ICH3 or ICH4 southbridge. | ||
140 | |||
141 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
142 | |||
143 | If in doubt, say N. | ||
144 | |||
145 | config X86_SPEEDSTEP_SMI | ||
146 | tristate "Intel SpeedStep on 440BX/ZX/MX chipsets (SMI interface)" | ||
147 | select CPU_FREQ_TABLE | ||
148 | depends on EXPERIMENTAL | ||
149 | help | ||
150 | This adds the CPUFreq driver for certain mobile Intel Pentium III | ||
151 | (Coppermine), all mobile Intel Pentium III-M (Tualatin) | ||
152 | on systems which have an Intel 440BX/ZX/MX southbridge. | ||
153 | |||
154 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
155 | |||
156 | If in doubt, say N. | ||
157 | |||
158 | config X86_P4_CLOCKMOD | ||
159 | tristate "Intel Pentium 4 clock modulation" | ||
160 | select CPU_FREQ_TABLE | ||
161 | help | ||
162 | This adds the CPUFreq driver for Intel Pentium 4 / XEON | ||
163 | processors. | ||
164 | |||
165 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
166 | |||
167 | If in doubt, say N. | ||
168 | |||
169 | config X86_CPUFREQ_NFORCE2 | ||
170 | tristate "nVidia nForce2 FSB changing" | ||
171 | depends on EXPERIMENTAL | ||
172 | help | ||
173 | This adds the CPUFreq driver for FSB changing on nVidia nForce2 | ||
174 | platforms. | ||
175 | |||
176 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
177 | |||
178 | If in doubt, say N. | ||
179 | |||
180 | config X86_LONGRUN | ||
181 | tristate "Transmeta LongRun" | ||
182 | help | ||
183 | This adds the CPUFreq driver for Transmeta Crusoe and Efficeon processors | ||
184 | which support LongRun. | ||
185 | |||
186 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
187 | |||
188 | If in doubt, say N. | ||
189 | |||
190 | config X86_LONGHAUL | ||
191 | tristate "VIA Cyrix III Longhaul" | ||
192 | select CPU_FREQ_TABLE | ||
193 | help | ||
194 | This adds the CPUFreq driver for VIA Samuel/CyrixIII, | ||
195 | VIA Cyrix Samuel/C3, VIA Cyrix Ezra and VIA Cyrix Ezra-T | ||
196 | processors. | ||
197 | |||
198 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
199 | |||
200 | If in doubt, say N. | ||
201 | |||
202 | comment "shared options" | ||
203 | |||
204 | config X86_ACPI_CPUFREQ_PROC_INTF | ||
205 | bool "/proc/acpi/processor/../performance interface (deprecated)" | ||
206 | depends on PROC_FS | ||
207 | depends on X86_ACPI_CPUFREQ || X86_SPEEDSTEP_CENTRINO_ACPI || X86_POWERNOW_K7_ACPI || X86_POWERNOW_K8_ACPI | ||
208 | help | ||
209 | This enables the deprecated /proc/acpi/processor/../performance | ||
210 | interface. While it is helpful for debugging, the generic, | ||
211 | cross-architecture cpufreq interfaces should be used. | ||
212 | |||
213 | If in doubt, say N. | ||
214 | |||
215 | config X86_SPEEDSTEP_LIB | ||
216 | tristate | ||
217 | default X86_SPEEDSTEP_ICH || X86_SPEEDSTEP_SMI || X86_P4_CLOCKMOD | ||
218 | |||
219 | config X86_SPEEDSTEP_RELAXED_CAP_CHECK | ||
220 | bool "Relaxed speedstep capability checks" | ||
221 | depends on (X86_SPEEDSTEP_SMI || X86_SPEEDSTEP_ICH) | ||
222 | help | ||
223 | Don't perform all checks for a speedstep capable system which would | ||
224 | normally be done. Some ancient or strange systems, though speedstep | ||
225 | capable, don't always indicate that they are speedstep capable. This | ||
226 | option lets the probing code bypass some of those checks if the | ||
227 | parameter "relaxed_check=1" is passed to the module. | ||
228 | |||
229 | endif # CPU_FREQ | ||
230 | |||
231 | endmenu | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/Makefile b/arch/i386/kernel/cpu/cpufreq/Makefile new file mode 100644 index 000000000000..a922e97aeedd --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/Makefile | |||
@@ -0,0 +1,14 @@ | |||
1 | obj-$(CONFIG_X86_POWERNOW_K6) += powernow-k6.o | ||
2 | obj-$(CONFIG_X86_POWERNOW_K7) += powernow-k7.o | ||
3 | obj-$(CONFIG_X86_POWERNOW_K8) += powernow-k8.o | ||
4 | obj-$(CONFIG_X86_LONGHAUL) += longhaul.o | ||
5 | obj-$(CONFIG_ELAN_CPUFREQ) += elanfreq.o | ||
6 | obj-$(CONFIG_X86_LONGRUN) += longrun.o | ||
7 | obj-$(CONFIG_X86_GX_SUSPMOD) += gx-suspmod.o | ||
8 | obj-$(CONFIG_X86_SPEEDSTEP_ICH) += speedstep-ich.o | ||
9 | obj-$(CONFIG_X86_SPEEDSTEP_CENTRINO) += speedstep-centrino.o | ||
10 | obj-$(CONFIG_X86_SPEEDSTEP_LIB) += speedstep-lib.o | ||
11 | obj-$(CONFIG_X86_SPEEDSTEP_SMI) += speedstep-smi.o | ||
12 | obj-$(CONFIG_X86_ACPI_CPUFREQ) += acpi-cpufreq.o | ||
13 | obj-$(CONFIG_X86_P4_CLOCKMOD) += p4-clockmod.o | ||
14 | obj-$(CONFIG_X86_CPUFREQ_NFORCE2) += cpufreq-nforce2.o | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c b/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c new file mode 100644 index 000000000000..963e17aa205d --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c | |||
@@ -0,0 +1,537 @@ | |||
1 | /* | ||
2 | * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) | ||
3 | * | ||
4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | ||
5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | ||
6 | * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> | ||
7 | * | ||
8 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation; either version 2 of the License, or (at | ||
13 | * your option) any later version. | ||
14 | * | ||
15 | * This program is distributed in the hope that it will be useful, but | ||
16 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
18 | * General Public License for more details. | ||
19 | * | ||
20 | * You should have received a copy of the GNU General Public License along | ||
21 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
22 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | ||
23 | * | ||
24 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
25 | */ | ||
26 | |||
27 | #include <linux/config.h> | ||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/cpufreq.h> | ||
32 | #include <linux/proc_fs.h> | ||
33 | #include <linux/seq_file.h> | ||
34 | #include <asm/io.h> | ||
35 | #include <asm/delay.h> | ||
36 | #include <asm/uaccess.h> | ||
37 | |||
38 | #include <linux/acpi.h> | ||
39 | #include <acpi/processor.h> | ||
40 | |||
41 | #include "speedstep-est-common.h" | ||
42 | |||
43 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) | ||
44 | |||
45 | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); | ||
46 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); | ||
47 | MODULE_LICENSE("GPL"); | ||
48 | |||
49 | |||
50 | struct cpufreq_acpi_io { | ||
51 | struct acpi_processor_performance acpi_data; | ||
52 | struct cpufreq_frequency_table *freq_table; | ||
53 | unsigned int resume; | ||
54 | }; | ||
55 | |||
56 | static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; | ||
57 | |||
58 | static struct cpufreq_driver acpi_cpufreq_driver; | ||
59 | |||
60 | static int | ||
61 | acpi_processor_write_port( | ||
62 | u16 port, | ||
63 | u8 bit_width, | ||
64 | u32 value) | ||
65 | { | ||
66 | if (bit_width <= 8) { | ||
67 | outb(value, port); | ||
68 | } else if (bit_width <= 16) { | ||
69 | outw(value, port); | ||
70 | } else if (bit_width <= 32) { | ||
71 | outl(value, port); | ||
72 | } else { | ||
73 | return -ENODEV; | ||
74 | } | ||
75 | return 0; | ||
76 | } | ||
77 | |||
78 | static int | ||
79 | acpi_processor_read_port( | ||
80 | u16 port, | ||
81 | u8 bit_width, | ||
82 | u32 *ret) | ||
83 | { | ||
84 | *ret = 0; | ||
85 | if (bit_width <= 8) { | ||
86 | *ret = inb(port); | ||
87 | } else if (bit_width <= 16) { | ||
88 | *ret = inw(port); | ||
89 | } else if (bit_width <= 32) { | ||
90 | *ret = inl(port); | ||
91 | } else { | ||
92 | return -ENODEV; | ||
93 | } | ||
94 | return 0; | ||
95 | } | ||
96 | |||
97 | static int | ||
98 | acpi_processor_set_performance ( | ||
99 | struct cpufreq_acpi_io *data, | ||
100 | unsigned int cpu, | ||
101 | int state) | ||
102 | { | ||
103 | u16 port = 0; | ||
104 | u8 bit_width = 0; | ||
105 | int ret = 0; | ||
106 | u32 value = 0; | ||
107 | int i = 0; | ||
108 | struct cpufreq_freqs cpufreq_freqs; | ||
109 | cpumask_t saved_mask; | ||
110 | int retval; | ||
111 | |||
112 | dprintk("acpi_processor_set_performance\n"); | ||
113 | |||
114 | /* | ||
115 | * TBD: Use something other than set_cpus_allowed. | ||
116 | * As set_cpus_allowed is a bit racy, | ||
117 | * with any other set_cpus_allowed for this process. | ||
118 | */ | ||
119 | saved_mask = current->cpus_allowed; | ||
120 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
121 | if (smp_processor_id() != cpu) { | ||
122 | return (-EAGAIN); | ||
123 | } | ||
124 | |||
125 | if (state == data->acpi_data.state) { | ||
126 | if (unlikely(data->resume)) { | ||
127 | dprintk("Called after resume, resetting to P%d\n", state); | ||
128 | data->resume = 0; | ||
129 | } else { | ||
130 | dprintk("Already at target state (P%d)\n", state); | ||
131 | retval = 0; | ||
132 | goto migrate_end; | ||
133 | } | ||
134 | } | ||
135 | |||
136 | dprintk("Transitioning from P%d to P%d\n", | ||
137 | data->acpi_data.state, state); | ||
138 | |||
139 | /* cpufreq frequency struct */ | ||
140 | cpufreq_freqs.cpu = cpu; | ||
141 | cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; | ||
142 | cpufreq_freqs.new = data->freq_table[state].frequency; | ||
143 | |||
144 | /* notify cpufreq */ | ||
145 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); | ||
146 | |||
147 | /* | ||
148 | * First we write the target state's 'control' value to the | ||
149 | * control_register. | ||
150 | */ | ||
151 | |||
152 | port = data->acpi_data.control_register.address; | ||
153 | bit_width = data->acpi_data.control_register.bit_width; | ||
154 | value = (u32) data->acpi_data.states[state].control; | ||
155 | |||
156 | dprintk("Writing 0x%08x to port 0x%04x\n", value, port); | ||
157 | |||
158 | ret = acpi_processor_write_port(port, bit_width, value); | ||
159 | if (ret) { | ||
160 | dprintk("Invalid port width 0x%04x\n", bit_width); | ||
161 | retval = ret; | ||
162 | goto migrate_end; | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * Then we read the 'status_register' and compare the value with the | ||
167 | * target state's 'status' to make sure the transition was successful. | ||
168 | * Note that we'll poll for up to 1ms (100 cycles of 10us) before | ||
169 | * giving up. | ||
170 | */ | ||
171 | |||
172 | port = data->acpi_data.status_register.address; | ||
173 | bit_width = data->acpi_data.status_register.bit_width; | ||
174 | |||
175 | dprintk("Looking for 0x%08x from port 0x%04x\n", | ||
176 | (u32) data->acpi_data.states[state].status, port); | ||
177 | |||
178 | for (i=0; i<100; i++) { | ||
179 | ret = acpi_processor_read_port(port, bit_width, &value); | ||
180 | if (ret) { | ||
181 | dprintk("Invalid port width 0x%04x\n", bit_width); | ||
182 | retval = ret; | ||
183 | goto migrate_end; | ||
184 | } | ||
185 | if (value == (u32) data->acpi_data.states[state].status) | ||
186 | break; | ||
187 | udelay(10); | ||
188 | } | ||
189 | |||
190 | /* notify cpufreq */ | ||
191 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); | ||
192 | |||
193 | if (value != (u32) data->acpi_data.states[state].status) { | ||
194 | unsigned int tmp = cpufreq_freqs.new; | ||
195 | cpufreq_freqs.new = cpufreq_freqs.old; | ||
196 | cpufreq_freqs.old = tmp; | ||
197 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); | ||
198 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); | ||
199 | printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); | ||
200 | retval = -ENODEV; | ||
201 | goto migrate_end; | ||
202 | } | ||
203 | |||
204 | dprintk("Transition successful after %d microseconds\n", i * 10); | ||
205 | |||
206 | data->acpi_data.state = state; | ||
207 | |||
208 | retval = 0; | ||
209 | migrate_end: | ||
210 | set_cpus_allowed(current, saved_mask); | ||
211 | return (retval); | ||
212 | } | ||
213 | |||
214 | |||
215 | static int | ||
216 | acpi_cpufreq_target ( | ||
217 | struct cpufreq_policy *policy, | ||
218 | unsigned int target_freq, | ||
219 | unsigned int relation) | ||
220 | { | ||
221 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | ||
222 | unsigned int next_state = 0; | ||
223 | unsigned int result = 0; | ||
224 | |||
225 | dprintk("acpi_cpufreq_setpolicy\n"); | ||
226 | |||
227 | result = cpufreq_frequency_table_target(policy, | ||
228 | data->freq_table, | ||
229 | target_freq, | ||
230 | relation, | ||
231 | &next_state); | ||
232 | if (result) | ||
233 | return (result); | ||
234 | |||
235 | result = acpi_processor_set_performance (data, policy->cpu, next_state); | ||
236 | |||
237 | return (result); | ||
238 | } | ||
239 | |||
240 | |||
241 | static int | ||
242 | acpi_cpufreq_verify ( | ||
243 | struct cpufreq_policy *policy) | ||
244 | { | ||
245 | unsigned int result = 0; | ||
246 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | ||
247 | |||
248 | dprintk("acpi_cpufreq_verify\n"); | ||
249 | |||
250 | result = cpufreq_frequency_table_verify(policy, | ||
251 | data->freq_table); | ||
252 | |||
253 | return (result); | ||
254 | } | ||
255 | |||
256 | |||
257 | static unsigned long | ||
258 | acpi_cpufreq_guess_freq ( | ||
259 | struct cpufreq_acpi_io *data, | ||
260 | unsigned int cpu) | ||
261 | { | ||
262 | if (cpu_khz) { | ||
263 | /* search the closest match to cpu_khz */ | ||
264 | unsigned int i; | ||
265 | unsigned long freq; | ||
266 | unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; | ||
267 | |||
268 | for (i=0; i < (data->acpi_data.state_count - 1); i++) { | ||
269 | freq = freqn; | ||
270 | freqn = data->acpi_data.states[i+1].core_frequency * 1000; | ||
271 | if ((2 * cpu_khz) > (freqn + freq)) { | ||
272 | data->acpi_data.state = i; | ||
273 | return (freq); | ||
274 | } | ||
275 | } | ||
276 | data->acpi_data.state = data->acpi_data.state_count - 1; | ||
277 | return (freqn); | ||
278 | } else | ||
279 | /* assume CPU is at P0... */ | ||
280 | data->acpi_data.state = 0; | ||
281 | return data->acpi_data.states[0].core_frequency * 1000; | ||
282 | |||
283 | } | ||
284 | |||
285 | |||
286 | /* | ||
287 | * acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities | ||
288 | * of this driver | ||
289 | * @perf: processor-specific acpi_io_data struct | ||
290 | * @cpu: CPU being initialized | ||
291 | * | ||
292 | * To avoid issues with legacy OSes, some BIOSes require to be informed of | ||
293 | * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC | ||
294 | * accordingly, for Enhanced Speedstep. Actual call to _PDC is done in | ||
295 | * driver/acpi/processor.c | ||
296 | */ | ||
297 | static void | ||
298 | acpi_processor_cpu_init_pdc_est( | ||
299 | struct acpi_processor_performance *perf, | ||
300 | unsigned int cpu, | ||
301 | struct acpi_object_list *obj_list | ||
302 | ) | ||
303 | { | ||
304 | union acpi_object *obj; | ||
305 | u32 *buf; | ||
306 | struct cpuinfo_x86 *c = cpu_data + cpu; | ||
307 | dprintk("acpi_processor_cpu_init_pdc_est\n"); | ||
308 | |||
309 | if (!cpu_has(c, X86_FEATURE_EST)) | ||
310 | return; | ||
311 | |||
312 | /* Initialize pdc. It will be used later. */ | ||
313 | if (!obj_list) | ||
314 | return; | ||
315 | |||
316 | if (!(obj_list->count && obj_list->pointer)) | ||
317 | return; | ||
318 | |||
319 | obj = obj_list->pointer; | ||
320 | if ((obj->buffer.length == 12) && obj->buffer.pointer) { | ||
321 | buf = (u32 *)obj->buffer.pointer; | ||
322 | buf[0] = ACPI_PDC_REVISION_ID; | ||
323 | buf[1] = 1; | ||
324 | buf[2] = ACPI_PDC_EST_CAPABILITY_SMP; | ||
325 | perf->pdc = obj_list; | ||
326 | } | ||
327 | return; | ||
328 | } | ||
329 | |||
330 | |||
331 | /* CPU specific PDC initialization */ | ||
332 | static void | ||
333 | acpi_processor_cpu_init_pdc( | ||
334 | struct acpi_processor_performance *perf, | ||
335 | unsigned int cpu, | ||
336 | struct acpi_object_list *obj_list | ||
337 | ) | ||
338 | { | ||
339 | struct cpuinfo_x86 *c = cpu_data + cpu; | ||
340 | dprintk("acpi_processor_cpu_init_pdc\n"); | ||
341 | perf->pdc = NULL; | ||
342 | if (cpu_has(c, X86_FEATURE_EST)) | ||
343 | acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list); | ||
344 | return; | ||
345 | } | ||
346 | |||
347 | |||
348 | static int | ||
349 | acpi_cpufreq_cpu_init ( | ||
350 | struct cpufreq_policy *policy) | ||
351 | { | ||
352 | unsigned int i; | ||
353 | unsigned int cpu = policy->cpu; | ||
354 | struct cpufreq_acpi_io *data; | ||
355 | unsigned int result = 0; | ||
356 | |||
357 | union acpi_object arg0 = {ACPI_TYPE_BUFFER}; | ||
358 | u32 arg0_buf[3]; | ||
359 | struct acpi_object_list arg_list = {1, &arg0}; | ||
360 | |||
361 | dprintk("acpi_cpufreq_cpu_init\n"); | ||
362 | /* setup arg_list for _PDC settings */ | ||
363 | arg0.buffer.length = 12; | ||
364 | arg0.buffer.pointer = (u8 *) arg0_buf; | ||
365 | |||
366 | data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); | ||
367 | if (!data) | ||
368 | return (-ENOMEM); | ||
369 | memset(data, 0, sizeof(struct cpufreq_acpi_io)); | ||
370 | |||
371 | acpi_io_data[cpu] = data; | ||
372 | |||
373 | acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list); | ||
374 | result = acpi_processor_register_performance(&data->acpi_data, cpu); | ||
375 | data->acpi_data.pdc = NULL; | ||
376 | |||
377 | if (result) | ||
378 | goto err_free; | ||
379 | |||
380 | if (is_const_loops_cpu(cpu)) { | ||
381 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
382 | } | ||
383 | |||
384 | /* capability check */ | ||
385 | if (data->acpi_data.state_count <= 1) { | ||
386 | dprintk("No P-States\n"); | ||
387 | result = -ENODEV; | ||
388 | goto err_unreg; | ||
389 | } | ||
390 | if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || | ||
391 | (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { | ||
392 | dprintk("Unsupported address space [%d, %d]\n", | ||
393 | (u32) (data->acpi_data.control_register.space_id), | ||
394 | (u32) (data->acpi_data.status_register.space_id)); | ||
395 | result = -ENODEV; | ||
396 | goto err_unreg; | ||
397 | } | ||
398 | |||
399 | /* alloc freq_table */ | ||
400 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); | ||
401 | if (!data->freq_table) { | ||
402 | result = -ENOMEM; | ||
403 | goto err_unreg; | ||
404 | } | ||
405 | |||
406 | /* detect transition latency */ | ||
407 | policy->cpuinfo.transition_latency = 0; | ||
408 | for (i=0; i<data->acpi_data.state_count; i++) { | ||
409 | if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) | ||
410 | policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; | ||
411 | } | ||
412 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
413 | |||
414 | /* The current speed is unknown and not detectable by ACPI... */ | ||
415 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); | ||
416 | |||
417 | /* table init */ | ||
418 | for (i=0; i<=data->acpi_data.state_count; i++) | ||
419 | { | ||
420 | data->freq_table[i].index = i; | ||
421 | if (i<data->acpi_data.state_count) | ||
422 | data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; | ||
423 | else | ||
424 | data->freq_table[i].frequency = CPUFREQ_TABLE_END; | ||
425 | } | ||
426 | |||
427 | result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); | ||
428 | if (result) { | ||
429 | goto err_freqfree; | ||
430 | } | ||
431 | |||
432 | /* notify BIOS that we exist */ | ||
433 | acpi_processor_notify_smm(THIS_MODULE); | ||
434 | |||
435 | printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", | ||
436 | cpu); | ||
437 | for (i = 0; i < data->acpi_data.state_count; i++) | ||
438 | dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", | ||
439 | (i == data->acpi_data.state?'*':' '), i, | ||
440 | (u32) data->acpi_data.states[i].core_frequency, | ||
441 | (u32) data->acpi_data.states[i].power, | ||
442 | (u32) data->acpi_data.states[i].transition_latency); | ||
443 | |||
444 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); | ||
445 | return (result); | ||
446 | |||
447 | err_freqfree: | ||
448 | kfree(data->freq_table); | ||
449 | err_unreg: | ||
450 | acpi_processor_unregister_performance(&data->acpi_data, cpu); | ||
451 | err_free: | ||
452 | kfree(data); | ||
453 | acpi_io_data[cpu] = NULL; | ||
454 | |||
455 | return (result); | ||
456 | } | ||
457 | |||
458 | |||
459 | static int | ||
460 | acpi_cpufreq_cpu_exit ( | ||
461 | struct cpufreq_policy *policy) | ||
462 | { | ||
463 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | ||
464 | |||
465 | |||
466 | dprintk("acpi_cpufreq_cpu_exit\n"); | ||
467 | |||
468 | if (data) { | ||
469 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
470 | acpi_io_data[policy->cpu] = NULL; | ||
471 | acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); | ||
472 | kfree(data); | ||
473 | } | ||
474 | |||
475 | return (0); | ||
476 | } | ||
477 | |||
478 | static int | ||
479 | acpi_cpufreq_resume ( | ||
480 | struct cpufreq_policy *policy) | ||
481 | { | ||
482 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | ||
483 | |||
484 | |||
485 | dprintk("acpi_cpufreq_resume\n"); | ||
486 | |||
487 | data->resume = 1; | ||
488 | |||
489 | return (0); | ||
490 | } | ||
491 | |||
492 | |||
493 | static struct freq_attr* acpi_cpufreq_attr[] = { | ||
494 | &cpufreq_freq_attr_scaling_available_freqs, | ||
495 | NULL, | ||
496 | }; | ||
497 | |||
498 | static struct cpufreq_driver acpi_cpufreq_driver = { | ||
499 | .verify = acpi_cpufreq_verify, | ||
500 | .target = acpi_cpufreq_target, | ||
501 | .init = acpi_cpufreq_cpu_init, | ||
502 | .exit = acpi_cpufreq_cpu_exit, | ||
503 | .resume = acpi_cpufreq_resume, | ||
504 | .name = "acpi-cpufreq", | ||
505 | .owner = THIS_MODULE, | ||
506 | .attr = acpi_cpufreq_attr, | ||
507 | }; | ||
508 | |||
509 | |||
510 | static int __init | ||
511 | acpi_cpufreq_init (void) | ||
512 | { | ||
513 | int result = 0; | ||
514 | |||
515 | dprintk("acpi_cpufreq_init\n"); | ||
516 | |||
517 | result = cpufreq_register_driver(&acpi_cpufreq_driver); | ||
518 | |||
519 | return (result); | ||
520 | } | ||
521 | |||
522 | |||
523 | static void __exit | ||
524 | acpi_cpufreq_exit (void) | ||
525 | { | ||
526 | dprintk("acpi_cpufreq_exit\n"); | ||
527 | |||
528 | cpufreq_unregister_driver(&acpi_cpufreq_driver); | ||
529 | |||
530 | return; | ||
531 | } | ||
532 | |||
533 | |||
534 | late_initcall(acpi_cpufreq_init); | ||
535 | module_exit(acpi_cpufreq_exit); | ||
536 | |||
537 | MODULE_ALIAS("acpi"); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/cpufreq-nforce2.c b/arch/i386/kernel/cpu/cpufreq/cpufreq-nforce2.c new file mode 100644 index 000000000000..04a405345203 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/cpufreq-nforce2.c | |||
@@ -0,0 +1,457 @@ | |||
1 | /* | ||
2 | * (C) 2004 Sebastian Witt <se.witt@gmx.net> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * Based upon reverse engineered information | ||
6 | * | ||
7 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
8 | */ | ||
9 | |||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/moduleparam.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/cpufreq.h> | ||
15 | #include <linux/pci.h> | ||
16 | #include <linux/delay.h> | ||
17 | |||
18 | #define NFORCE2_XTAL 25 | ||
19 | #define NFORCE2_BOOTFSB 0x48 | ||
20 | #define NFORCE2_PLLENABLE 0xa8 | ||
21 | #define NFORCE2_PLLREG 0xa4 | ||
22 | #define NFORCE2_PLLADR 0xa0 | ||
23 | #define NFORCE2_PLL(mul, div) (0x100000 | (mul << 8) | div) | ||
24 | |||
25 | #define NFORCE2_MIN_FSB 50 | ||
26 | #define NFORCE2_SAFE_DISTANCE 50 | ||
27 | |||
28 | /* Delay in ms between FSB changes */ | ||
29 | //#define NFORCE2_DELAY 10 | ||
30 | |||
31 | /* nforce2_chipset: | ||
32 | * FSB is changed using the chipset | ||
33 | */ | ||
34 | static struct pci_dev *nforce2_chipset_dev; | ||
35 | |||
36 | /* fid: | ||
37 | * multiplier * 10 | ||
38 | */ | ||
39 | static int fid = 0; | ||
40 | |||
41 | /* min_fsb, max_fsb: | ||
42 | * minimum and maximum FSB (= FSB at boot time) | ||
43 | */ | ||
44 | static int min_fsb = 0; | ||
45 | static int max_fsb = 0; | ||
46 | |||
47 | MODULE_AUTHOR("Sebastian Witt <se.witt@gmx.net>"); | ||
48 | MODULE_DESCRIPTION("nForce2 FSB changing cpufreq driver"); | ||
49 | MODULE_LICENSE("GPL"); | ||
50 | |||
51 | module_param(fid, int, 0444); | ||
52 | module_param(min_fsb, int, 0444); | ||
53 | |||
54 | MODULE_PARM_DESC(fid, "CPU multiplier to use (11.5 = 115)"); | ||
55 | MODULE_PARM_DESC(min_fsb, | ||
56 | "Minimum FSB to use, if not defined: current FSB - 50"); | ||
57 | |||
58 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "cpufreq-nforce2", msg) | ||
59 | |||
60 | /* | ||
61 | * nforce2_calc_fsb - calculate FSB | ||
62 | * @pll: PLL value | ||
63 | * | ||
64 | * Calculates FSB from PLL value | ||
65 | */ | ||
66 | static int nforce2_calc_fsb(int pll) | ||
67 | { | ||
68 | unsigned char mul, div; | ||
69 | |||
70 | mul = (pll >> 8) & 0xff; | ||
71 | div = pll & 0xff; | ||
72 | |||
73 | if (div > 0) | ||
74 | return NFORCE2_XTAL * mul / div; | ||
75 | |||
76 | return 0; | ||
77 | } | ||
78 | |||
79 | /* | ||
80 | * nforce2_calc_pll - calculate PLL value | ||
81 | * @fsb: FSB | ||
82 | * | ||
83 | * Calculate PLL value for given FSB | ||
84 | */ | ||
85 | static int nforce2_calc_pll(unsigned int fsb) | ||
86 | { | ||
87 | unsigned char xmul, xdiv; | ||
88 | unsigned char mul = 0, div = 0; | ||
89 | int tried = 0; | ||
90 | |||
91 | /* Try to calculate multiplier and divider up to 4 times */ | ||
92 | while (((mul == 0) || (div == 0)) && (tried <= 3)) { | ||
93 | for (xdiv = 1; xdiv <= 0x80; xdiv++) | ||
94 | for (xmul = 1; xmul <= 0xfe; xmul++) | ||
95 | if (nforce2_calc_fsb(NFORCE2_PLL(xmul, xdiv)) == | ||
96 | fsb + tried) { | ||
97 | mul = xmul; | ||
98 | div = xdiv; | ||
99 | } | ||
100 | tried++; | ||
101 | } | ||
102 | |||
103 | if ((mul == 0) || (div == 0)) | ||
104 | return -1; | ||
105 | |||
106 | return NFORCE2_PLL(mul, div); | ||
107 | } | ||
108 | |||
109 | /* | ||
110 | * nforce2_write_pll - write PLL value to chipset | ||
111 | * @pll: PLL value | ||
112 | * | ||
113 | * Writes new FSB PLL value to chipset | ||
114 | */ | ||
115 | static void nforce2_write_pll(int pll) | ||
116 | { | ||
117 | int temp; | ||
118 | |||
119 | /* Set the pll addr. to 0x00 */ | ||
120 | temp = 0x00; | ||
121 | pci_write_config_dword(nforce2_chipset_dev, NFORCE2_PLLADR, temp); | ||
122 | |||
123 | /* Now write the value in all 64 registers */ | ||
124 | for (temp = 0; temp <= 0x3f; temp++) { | ||
125 | pci_write_config_dword(nforce2_chipset_dev, | ||
126 | NFORCE2_PLLREG, pll); | ||
127 | } | ||
128 | |||
129 | return; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * nforce2_fsb_read - Read FSB | ||
134 | * | ||
135 | * Read FSB from chipset | ||
136 | * If bootfsb != 0, return FSB at boot-time | ||
137 | */ | ||
138 | static unsigned int nforce2_fsb_read(int bootfsb) | ||
139 | { | ||
140 | struct pci_dev *nforce2_sub5; | ||
141 | u32 fsb, temp = 0; | ||
142 | |||
143 | |||
144 | /* Get chipset boot FSB from subdevice 5 (FSB at boot-time) */ | ||
145 | nforce2_sub5 = pci_get_subsys(PCI_VENDOR_ID_NVIDIA, | ||
146 | 0x01EF, | ||
147 | PCI_ANY_ID, | ||
148 | PCI_ANY_ID, | ||
149 | NULL); | ||
150 | |||
151 | if (!nforce2_sub5) | ||
152 | return 0; | ||
153 | |||
154 | pci_read_config_dword(nforce2_sub5, NFORCE2_BOOTFSB, &fsb); | ||
155 | fsb /= 1000000; | ||
156 | |||
157 | /* Check if PLL register is already set */ | ||
158 | pci_read_config_byte(nforce2_chipset_dev, | ||
159 | NFORCE2_PLLENABLE, (u8 *)&temp); | ||
160 | |||
161 | if(bootfsb || !temp) | ||
162 | return fsb; | ||
163 | |||
164 | /* Use PLL register FSB value */ | ||
165 | pci_read_config_dword(nforce2_chipset_dev, | ||
166 | NFORCE2_PLLREG, &temp); | ||
167 | fsb = nforce2_calc_fsb(temp); | ||
168 | |||
169 | return fsb; | ||
170 | } | ||
171 | |||
172 | /* | ||
173 | * nforce2_set_fsb - set new FSB | ||
174 | * @fsb: New FSB | ||
175 | * | ||
176 | * Sets new FSB | ||
177 | */ | ||
178 | static int nforce2_set_fsb(unsigned int fsb) | ||
179 | { | ||
180 | u32 pll, temp = 0; | ||
181 | unsigned int tfsb; | ||
182 | int diff; | ||
183 | |||
184 | if ((fsb > max_fsb) || (fsb < NFORCE2_MIN_FSB)) { | ||
185 | printk(KERN_ERR "cpufreq: FSB %d is out of range!\n", fsb); | ||
186 | return -EINVAL; | ||
187 | } | ||
188 | |||
189 | tfsb = nforce2_fsb_read(0); | ||
190 | if (!tfsb) { | ||
191 | printk(KERN_ERR "cpufreq: Error while reading the FSB\n"); | ||
192 | return -EINVAL; | ||
193 | } | ||
194 | |||
195 | /* First write? Then set actual value */ | ||
196 | pci_read_config_byte(nforce2_chipset_dev, | ||
197 | NFORCE2_PLLENABLE, (u8 *)&temp); | ||
198 | if (!temp) { | ||
199 | pll = nforce2_calc_pll(tfsb); | ||
200 | |||
201 | if (pll < 0) | ||
202 | return -EINVAL; | ||
203 | |||
204 | nforce2_write_pll(pll); | ||
205 | } | ||
206 | |||
207 | /* Enable write access */ | ||
208 | temp = 0x01; | ||
209 | pci_write_config_byte(nforce2_chipset_dev, NFORCE2_PLLENABLE, (u8)temp); | ||
210 | |||
211 | diff = tfsb - fsb; | ||
212 | |||
213 | if (!diff) | ||
214 | return 0; | ||
215 | |||
216 | while ((tfsb != fsb) && (tfsb <= max_fsb) && (tfsb >= min_fsb)) { | ||
217 | if (diff < 0) | ||
218 | tfsb++; | ||
219 | else | ||
220 | tfsb--; | ||
221 | |||
222 | /* Calculate the PLL reg. value */ | ||
223 | if ((pll = nforce2_calc_pll(tfsb)) == -1) | ||
224 | return -EINVAL; | ||
225 | |||
226 | nforce2_write_pll(pll); | ||
227 | #ifdef NFORCE2_DELAY | ||
228 | mdelay(NFORCE2_DELAY); | ||
229 | #endif | ||
230 | } | ||
231 | |||
232 | temp = 0x40; | ||
233 | pci_write_config_byte(nforce2_chipset_dev, NFORCE2_PLLADR, (u8)temp); | ||
234 | |||
235 | return 0; | ||
236 | } | ||
237 | |||
238 | /** | ||
239 | * nforce2_get - get the CPU frequency | ||
240 | * @cpu: CPU number | ||
241 | * | ||
242 | * Returns the CPU frequency | ||
243 | */ | ||
244 | static unsigned int nforce2_get(unsigned int cpu) | ||
245 | { | ||
246 | if (cpu) | ||
247 | return 0; | ||
248 | return nforce2_fsb_read(0) * fid * 100; | ||
249 | } | ||
250 | |||
251 | /** | ||
252 | * nforce2_target - set a new CPUFreq policy | ||
253 | * @policy: new policy | ||
254 | * @target_freq: the target frequency | ||
255 | * @relation: how that frequency relates to achieved frequency (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
256 | * | ||
257 | * Sets a new CPUFreq policy. | ||
258 | */ | ||
259 | static int nforce2_target(struct cpufreq_policy *policy, | ||
260 | unsigned int target_freq, unsigned int relation) | ||
261 | { | ||
262 | // unsigned long flags; | ||
263 | struct cpufreq_freqs freqs; | ||
264 | unsigned int target_fsb; | ||
265 | |||
266 | if ((target_freq > policy->max) || (target_freq < policy->min)) | ||
267 | return -EINVAL; | ||
268 | |||
269 | target_fsb = target_freq / (fid * 100); | ||
270 | |||
271 | freqs.old = nforce2_get(policy->cpu); | ||
272 | freqs.new = target_fsb * fid * 100; | ||
273 | freqs.cpu = 0; /* Only one CPU on nForce2 plattforms */ | ||
274 | |||
275 | if (freqs.old == freqs.new) | ||
276 | return 0; | ||
277 | |||
278 | dprintk(KERN_INFO "cpufreq: Old CPU frequency %d kHz, new %d kHz\n", | ||
279 | freqs.old, freqs.new); | ||
280 | |||
281 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
282 | |||
283 | /* Disable IRQs */ | ||
284 | //local_irq_save(flags); | ||
285 | |||
286 | if (nforce2_set_fsb(target_fsb) < 0) | ||
287 | printk(KERN_ERR "cpufreq: Changing FSB to %d failed\n", | ||
288 | target_fsb); | ||
289 | else | ||
290 | dprintk(KERN_INFO "cpufreq: Changed FSB successfully to %d\n", | ||
291 | target_fsb); | ||
292 | |||
293 | /* Enable IRQs */ | ||
294 | //local_irq_restore(flags); | ||
295 | |||
296 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
297 | |||
298 | return 0; | ||
299 | } | ||
300 | |||
301 | /** | ||
302 | * nforce2_verify - verifies a new CPUFreq policy | ||
303 | * @policy: new policy | ||
304 | */ | ||
305 | static int nforce2_verify(struct cpufreq_policy *policy) | ||
306 | { | ||
307 | unsigned int fsb_pol_max; | ||
308 | |||
309 | fsb_pol_max = policy->max / (fid * 100); | ||
310 | |||
311 | if (policy->min < (fsb_pol_max * fid * 100)) | ||
312 | policy->max = (fsb_pol_max + 1) * fid * 100; | ||
313 | |||
314 | cpufreq_verify_within_limits(policy, | ||
315 | policy->cpuinfo.min_freq, | ||
316 | policy->cpuinfo.max_freq); | ||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | static int nforce2_cpu_init(struct cpufreq_policy *policy) | ||
321 | { | ||
322 | unsigned int fsb; | ||
323 | unsigned int rfid; | ||
324 | |||
325 | /* capability check */ | ||
326 | if (policy->cpu != 0) | ||
327 | return -ENODEV; | ||
328 | |||
329 | /* Get current FSB */ | ||
330 | fsb = nforce2_fsb_read(0); | ||
331 | |||
332 | if (!fsb) | ||
333 | return -EIO; | ||
334 | |||
335 | /* FIX: Get FID from CPU */ | ||
336 | if (!fid) { | ||
337 | if (!cpu_khz) { | ||
338 | printk(KERN_WARNING | ||
339 | "cpufreq: cpu_khz not set, can't calculate multiplier!\n"); | ||
340 | return -ENODEV; | ||
341 | } | ||
342 | |||
343 | fid = cpu_khz / (fsb * 100); | ||
344 | rfid = fid % 5; | ||
345 | |||
346 | if (rfid) { | ||
347 | if (rfid > 2) | ||
348 | fid += 5 - rfid; | ||
349 | else | ||
350 | fid -= rfid; | ||
351 | } | ||
352 | } | ||
353 | |||
354 | printk(KERN_INFO "cpufreq: FSB currently at %i MHz, FID %d.%d\n", fsb, | ||
355 | fid / 10, fid % 10); | ||
356 | |||
357 | /* Set maximum FSB to FSB at boot time */ | ||
358 | max_fsb = nforce2_fsb_read(1); | ||
359 | |||
360 | if(!max_fsb) | ||
361 | return -EIO; | ||
362 | |||
363 | if (!min_fsb) | ||
364 | min_fsb = max_fsb - NFORCE2_SAFE_DISTANCE; | ||
365 | |||
366 | if (min_fsb < NFORCE2_MIN_FSB) | ||
367 | min_fsb = NFORCE2_MIN_FSB; | ||
368 | |||
369 | /* cpuinfo and default policy values */ | ||
370 | policy->cpuinfo.min_freq = min_fsb * fid * 100; | ||
371 | policy->cpuinfo.max_freq = max_fsb * fid * 100; | ||
372 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
373 | policy->cur = nforce2_get(policy->cpu); | ||
374 | policy->min = policy->cpuinfo.min_freq; | ||
375 | policy->max = policy->cpuinfo.max_freq; | ||
376 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
377 | |||
378 | return 0; | ||
379 | } | ||
380 | |||
381 | static int nforce2_cpu_exit(struct cpufreq_policy *policy) | ||
382 | { | ||
383 | return 0; | ||
384 | } | ||
385 | |||
386 | static struct cpufreq_driver nforce2_driver = { | ||
387 | .name = "nforce2", | ||
388 | .verify = nforce2_verify, | ||
389 | .target = nforce2_target, | ||
390 | .get = nforce2_get, | ||
391 | .init = nforce2_cpu_init, | ||
392 | .exit = nforce2_cpu_exit, | ||
393 | .owner = THIS_MODULE, | ||
394 | }; | ||
395 | |||
396 | /** | ||
397 | * nforce2_detect_chipset - detect the Southbridge which contains FSB PLL logic | ||
398 | * | ||
399 | * Detects nForce2 A2 and C1 stepping | ||
400 | * | ||
401 | */ | ||
402 | static unsigned int nforce2_detect_chipset(void) | ||
403 | { | ||
404 | u8 revision; | ||
405 | |||
406 | nforce2_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_NVIDIA, | ||
407 | PCI_DEVICE_ID_NVIDIA_NFORCE2, | ||
408 | PCI_ANY_ID, | ||
409 | PCI_ANY_ID, | ||
410 | NULL); | ||
411 | |||
412 | if (nforce2_chipset_dev == NULL) | ||
413 | return -ENODEV; | ||
414 | |||
415 | pci_read_config_byte(nforce2_chipset_dev, PCI_REVISION_ID, &revision); | ||
416 | |||
417 | printk(KERN_INFO "cpufreq: Detected nForce2 chipset revision %X\n", | ||
418 | revision); | ||
419 | printk(KERN_INFO | ||
420 | "cpufreq: FSB changing is maybe unstable and can lead to crashes and data loss.\n"); | ||
421 | |||
422 | return 0; | ||
423 | } | ||
424 | |||
425 | /** | ||
426 | * nforce2_init - initializes the nForce2 CPUFreq driver | ||
427 | * | ||
428 | * Initializes the nForce2 FSB support. Returns -ENODEV on unsupported | ||
429 | * devices, -EINVAL on problems during initiatization, and zero on | ||
430 | * success. | ||
431 | */ | ||
432 | static int __init nforce2_init(void) | ||
433 | { | ||
434 | /* TODO: do we need to detect the processor? */ | ||
435 | |||
436 | /* detect chipset */ | ||
437 | if (nforce2_detect_chipset()) { | ||
438 | printk(KERN_ERR "cpufreq: No nForce2 chipset.\n"); | ||
439 | return -ENODEV; | ||
440 | } | ||
441 | |||
442 | return cpufreq_register_driver(&nforce2_driver); | ||
443 | } | ||
444 | |||
445 | /** | ||
446 | * nforce2_exit - unregisters cpufreq module | ||
447 | * | ||
448 | * Unregisters nForce2 FSB change support. | ||
449 | */ | ||
450 | static void __exit nforce2_exit(void) | ||
451 | { | ||
452 | cpufreq_unregister_driver(&nforce2_driver); | ||
453 | } | ||
454 | |||
455 | module_init(nforce2_init); | ||
456 | module_exit(nforce2_exit); | ||
457 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/elanfreq.c b/arch/i386/kernel/cpu/cpufreq/elanfreq.c new file mode 100644 index 000000000000..3f7caa4ae6d6 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/elanfreq.c | |||
@@ -0,0 +1,312 @@ | |||
1 | /* | ||
2 | * elanfreq: cpufreq driver for the AMD ELAN family | ||
3 | * | ||
4 | * (c) Copyright 2002 Robert Schwebel <r.schwebel@pengutronix.de> | ||
5 | * | ||
6 | * Parts of this code are (c) Sven Geggus <sven@geggus.net> | ||
7 | * | ||
8 | * All Rights Reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or | ||
11 | * modify it under the terms of the GNU General Public License | ||
12 | * as published by the Free Software Foundation; either version | ||
13 | * 2 of the License, or (at your option) any later version. | ||
14 | * | ||
15 | * 2002-02-13: - initial revision for 2.4.18-pre9 by Robert Schwebel | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/module.h> | ||
21 | #include <linux/init.h> | ||
22 | |||
23 | #include <linux/slab.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/cpufreq.h> | ||
26 | |||
27 | #include <asm/msr.h> | ||
28 | #include <asm/timex.h> | ||
29 | #include <asm/io.h> | ||
30 | |||
31 | #define REG_CSCIR 0x22 /* Chip Setup and Control Index Register */ | ||
32 | #define REG_CSCDR 0x23 /* Chip Setup and Control Data Register */ | ||
33 | |||
34 | /* Module parameter */ | ||
35 | static int max_freq; | ||
36 | |||
37 | struct s_elan_multiplier { | ||
38 | int clock; /* frequency in kHz */ | ||
39 | int val40h; /* PMU Force Mode register */ | ||
40 | int val80h; /* CPU Clock Speed Register */ | ||
41 | }; | ||
42 | |||
43 | /* | ||
44 | * It is important that the frequencies | ||
45 | * are listed in ascending order here! | ||
46 | */ | ||
47 | struct s_elan_multiplier elan_multiplier[] = { | ||
48 | {1000, 0x02, 0x18}, | ||
49 | {2000, 0x02, 0x10}, | ||
50 | {4000, 0x02, 0x08}, | ||
51 | {8000, 0x00, 0x00}, | ||
52 | {16000, 0x00, 0x02}, | ||
53 | {33000, 0x00, 0x04}, | ||
54 | {66000, 0x01, 0x04}, | ||
55 | {99000, 0x01, 0x05} | ||
56 | }; | ||
57 | |||
58 | static struct cpufreq_frequency_table elanfreq_table[] = { | ||
59 | {0, 1000}, | ||
60 | {1, 2000}, | ||
61 | {2, 4000}, | ||
62 | {3, 8000}, | ||
63 | {4, 16000}, | ||
64 | {5, 33000}, | ||
65 | {6, 66000}, | ||
66 | {7, 99000}, | ||
67 | {0, CPUFREQ_TABLE_END}, | ||
68 | }; | ||
69 | |||
70 | |||
71 | /** | ||
72 | * elanfreq_get_cpu_frequency: determine current cpu speed | ||
73 | * | ||
74 | * Finds out at which frequency the CPU of the Elan SOC runs | ||
75 | * at the moment. Frequencies from 1 to 33 MHz are generated | ||
76 | * the normal way, 66 and 99 MHz are called "Hyperspeed Mode" | ||
77 | * and have the rest of the chip running with 33 MHz. | ||
78 | */ | ||
79 | |||
80 | static unsigned int elanfreq_get_cpu_frequency(unsigned int cpu) | ||
81 | { | ||
82 | u8 clockspeed_reg; /* Clock Speed Register */ | ||
83 | |||
84 | local_irq_disable(); | ||
85 | outb_p(0x80,REG_CSCIR); | ||
86 | clockspeed_reg = inb_p(REG_CSCDR); | ||
87 | local_irq_enable(); | ||
88 | |||
89 | if ((clockspeed_reg & 0xE0) == 0xE0) { return 0; } | ||
90 | |||
91 | /* Are we in CPU clock multiplied mode (66/99 MHz)? */ | ||
92 | if ((clockspeed_reg & 0xE0) == 0xC0) { | ||
93 | if ((clockspeed_reg & 0x01) == 0) { | ||
94 | return 66000; | ||
95 | } else { | ||
96 | return 99000; | ||
97 | } | ||
98 | } | ||
99 | |||
100 | /* 33 MHz is not 32 MHz... */ | ||
101 | if ((clockspeed_reg & 0xE0)==0xA0) | ||
102 | return 33000; | ||
103 | |||
104 | return ((1<<((clockspeed_reg & 0xE0) >> 5)) * 1000); | ||
105 | } | ||
106 | |||
107 | |||
108 | /** | ||
109 | * elanfreq_set_cpu_frequency: Change the CPU core frequency | ||
110 | * @cpu: cpu number | ||
111 | * @freq: frequency in kHz | ||
112 | * | ||
113 | * This function takes a frequency value and changes the CPU frequency | ||
114 | * according to this. Note that the frequency has to be checked by | ||
115 | * elanfreq_validatespeed() for correctness! | ||
116 | * | ||
117 | * There is no return value. | ||
118 | */ | ||
119 | |||
120 | static void elanfreq_set_cpu_state (unsigned int state) { | ||
121 | |||
122 | struct cpufreq_freqs freqs; | ||
123 | |||
124 | freqs.old = elanfreq_get_cpu_frequency(0); | ||
125 | freqs.new = elan_multiplier[state].clock; | ||
126 | freqs.cpu = 0; /* elanfreq.c is UP only driver */ | ||
127 | |||
128 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
129 | |||
130 | printk(KERN_INFO "elanfreq: attempting to set frequency to %i kHz\n",elan_multiplier[state].clock); | ||
131 | |||
132 | |||
133 | /* | ||
134 | * Access to the Elan's internal registers is indexed via | ||
135 | * 0x22: Chip Setup & Control Register Index Register (CSCI) | ||
136 | * 0x23: Chip Setup & Control Register Data Register (CSCD) | ||
137 | * | ||
138 | */ | ||
139 | |||
140 | /* | ||
141 | * 0x40 is the Power Management Unit's Force Mode Register. | ||
142 | * Bit 6 enables Hyperspeed Mode (66/100 MHz core frequency) | ||
143 | */ | ||
144 | |||
145 | local_irq_disable(); | ||
146 | outb_p(0x40,REG_CSCIR); /* Disable hyperspeed mode */ | ||
147 | outb_p(0x00,REG_CSCDR); | ||
148 | local_irq_enable(); /* wait till internal pipelines and */ | ||
149 | udelay(1000); /* buffers have cleaned up */ | ||
150 | |||
151 | local_irq_disable(); | ||
152 | |||
153 | /* now, set the CPU clock speed register (0x80) */ | ||
154 | outb_p(0x80,REG_CSCIR); | ||
155 | outb_p(elan_multiplier[state].val80h,REG_CSCDR); | ||
156 | |||
157 | /* now, the hyperspeed bit in PMU Force Mode Register (0x40) */ | ||
158 | outb_p(0x40,REG_CSCIR); | ||
159 | outb_p(elan_multiplier[state].val40h,REG_CSCDR); | ||
160 | udelay(10000); | ||
161 | local_irq_enable(); | ||
162 | |||
163 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
164 | }; | ||
165 | |||
166 | |||
167 | /** | ||
168 | * elanfreq_validatespeed: test if frequency range is valid | ||
169 | * @policy: the policy to validate | ||
170 | * | ||
171 | * This function checks if a given frequency range in kHz is valid | ||
172 | * for the hardware supported by the driver. | ||
173 | */ | ||
174 | |||
175 | static int elanfreq_verify (struct cpufreq_policy *policy) | ||
176 | { | ||
177 | return cpufreq_frequency_table_verify(policy, &elanfreq_table[0]); | ||
178 | } | ||
179 | |||
180 | static int elanfreq_target (struct cpufreq_policy *policy, | ||
181 | unsigned int target_freq, | ||
182 | unsigned int relation) | ||
183 | { | ||
184 | unsigned int newstate = 0; | ||
185 | |||
186 | if (cpufreq_frequency_table_target(policy, &elanfreq_table[0], target_freq, relation, &newstate)) | ||
187 | return -EINVAL; | ||
188 | |||
189 | elanfreq_set_cpu_state(newstate); | ||
190 | |||
191 | return 0; | ||
192 | } | ||
193 | |||
194 | |||
195 | /* | ||
196 | * Module init and exit code | ||
197 | */ | ||
198 | |||
199 | static int elanfreq_cpu_init(struct cpufreq_policy *policy) | ||
200 | { | ||
201 | struct cpuinfo_x86 *c = cpu_data; | ||
202 | unsigned int i; | ||
203 | int result; | ||
204 | |||
205 | /* capability check */ | ||
206 | if ((c->x86_vendor != X86_VENDOR_AMD) || | ||
207 | (c->x86 != 4) || (c->x86_model!=10)) | ||
208 | return -ENODEV; | ||
209 | |||
210 | /* max freq */ | ||
211 | if (!max_freq) | ||
212 | max_freq = elanfreq_get_cpu_frequency(0); | ||
213 | |||
214 | /* table init */ | ||
215 | for (i=0; (elanfreq_table[i].frequency != CPUFREQ_TABLE_END); i++) { | ||
216 | if (elanfreq_table[i].frequency > max_freq) | ||
217 | elanfreq_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
218 | } | ||
219 | |||
220 | /* cpuinfo and default policy values */ | ||
221 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
222 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
223 | policy->cur = elanfreq_get_cpu_frequency(0); | ||
224 | |||
225 | result = cpufreq_frequency_table_cpuinfo(policy, elanfreq_table); | ||
226 | if (result) | ||
227 | return (result); | ||
228 | |||
229 | cpufreq_frequency_table_get_attr(elanfreq_table, policy->cpu); | ||
230 | |||
231 | return 0; | ||
232 | } | ||
233 | |||
234 | |||
235 | static int elanfreq_cpu_exit(struct cpufreq_policy *policy) | ||
236 | { | ||
237 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
238 | return 0; | ||
239 | } | ||
240 | |||
241 | |||
242 | #ifndef MODULE | ||
243 | /** | ||
244 | * elanfreq_setup - elanfreq command line parameter parsing | ||
245 | * | ||
246 | * elanfreq command line parameter. Use: | ||
247 | * elanfreq=66000 | ||
248 | * to set the maximum CPU frequency to 66 MHz. Note that in | ||
249 | * case you do not give this boot parameter, the maximum | ||
250 | * frequency will fall back to _current_ CPU frequency which | ||
251 | * might be lower. If you build this as a module, use the | ||
252 | * max_freq module parameter instead. | ||
253 | */ | ||
254 | static int __init elanfreq_setup(char *str) | ||
255 | { | ||
256 | max_freq = simple_strtoul(str, &str, 0); | ||
257 | printk(KERN_WARNING "You're using the deprecated elanfreq command line option. Use elanfreq.max_freq instead, please!\n"); | ||
258 | return 1; | ||
259 | } | ||
260 | __setup("elanfreq=", elanfreq_setup); | ||
261 | #endif | ||
262 | |||
263 | |||
264 | static struct freq_attr* elanfreq_attr[] = { | ||
265 | &cpufreq_freq_attr_scaling_available_freqs, | ||
266 | NULL, | ||
267 | }; | ||
268 | |||
269 | |||
270 | static struct cpufreq_driver elanfreq_driver = { | ||
271 | .get = elanfreq_get_cpu_frequency, | ||
272 | .verify = elanfreq_verify, | ||
273 | .target = elanfreq_target, | ||
274 | .init = elanfreq_cpu_init, | ||
275 | .exit = elanfreq_cpu_exit, | ||
276 | .name = "elanfreq", | ||
277 | .owner = THIS_MODULE, | ||
278 | .attr = elanfreq_attr, | ||
279 | }; | ||
280 | |||
281 | |||
282 | static int __init elanfreq_init(void) | ||
283 | { | ||
284 | struct cpuinfo_x86 *c = cpu_data; | ||
285 | |||
286 | /* Test if we have the right hardware */ | ||
287 | if ((c->x86_vendor != X86_VENDOR_AMD) || | ||
288 | (c->x86 != 4) || (c->x86_model!=10)) | ||
289 | { | ||
290 | printk(KERN_INFO "elanfreq: error: no Elan processor found!\n"); | ||
291 | return -ENODEV; | ||
292 | } | ||
293 | |||
294 | return cpufreq_register_driver(&elanfreq_driver); | ||
295 | } | ||
296 | |||
297 | |||
298 | static void __exit elanfreq_exit(void) | ||
299 | { | ||
300 | cpufreq_unregister_driver(&elanfreq_driver); | ||
301 | } | ||
302 | |||
303 | |||
304 | module_param (max_freq, int, 0444); | ||
305 | |||
306 | MODULE_LICENSE("GPL"); | ||
307 | MODULE_AUTHOR("Robert Schwebel <r.schwebel@pengutronix.de>, Sven Geggus <sven@geggus.net>"); | ||
308 | MODULE_DESCRIPTION("cpufreq driver for AMD's Elan CPUs"); | ||
309 | |||
310 | module_init(elanfreq_init); | ||
311 | module_exit(elanfreq_exit); | ||
312 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/gx-suspmod.c b/arch/i386/kernel/cpu/cpufreq/gx-suspmod.c new file mode 100644 index 000000000000..1a49adb1f4a6 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/gx-suspmod.c | |||
@@ -0,0 +1,502 @@ | |||
1 | /* | ||
2 | * Cyrix MediaGX and NatSemi Geode Suspend Modulation | ||
3 | * (C) 2002 Zwane Mwaikambo <zwane@commfireservices.com> | ||
4 | * (C) 2002 Hiroshi Miura <miura@da-cha.org> | ||
5 | * All Rights Reserved | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU General Public License | ||
9 | * version 2 as published by the Free Software Foundation | ||
10 | * | ||
11 | * The author(s) of this software shall not be held liable for damages | ||
12 | * of any nature resulting due to the use of this software. This | ||
13 | * software is provided AS-IS with no warranties. | ||
14 | * | ||
15 | * Theoritical note: | ||
16 | * | ||
17 | * (see Geode(tm) CS5530 manual (rev.4.1) page.56) | ||
18 | * | ||
19 | * CPU frequency control on NatSemi Geode GX1/GXLV processor and CS55x0 | ||
20 | * are based on Suspend Moduration. | ||
21 | * | ||
22 | * Suspend Modulation works by asserting and de-asserting the SUSP# pin | ||
23 | * to CPU(GX1/GXLV) for configurable durations. When asserting SUSP# | ||
24 | * the CPU enters an idle state. GX1 stops its core clock when SUSP# is | ||
25 | * asserted then power consumption is reduced. | ||
26 | * | ||
27 | * Suspend Modulation's OFF/ON duration are configurable | ||
28 | * with 'Suspend Modulation OFF Count Register' | ||
29 | * and 'Suspend Modulation ON Count Register'. | ||
30 | * These registers are 8bit counters that represent the number of | ||
31 | * 32us intervals which the SUSP# pin is asserted(ON)/de-asserted(OFF) | ||
32 | * to the processor. | ||
33 | * | ||
34 | * These counters define a ratio which is the effective frequency | ||
35 | * of operation of the system. | ||
36 | * | ||
37 | * OFF Count | ||
38 | * F_eff = Fgx * ---------------------- | ||
39 | * OFF Count + ON Count | ||
40 | * | ||
41 | * 0 <= On Count, Off Count <= 255 | ||
42 | * | ||
43 | * From these limits, we can get register values | ||
44 | * | ||
45 | * off_duration + on_duration <= MAX_DURATION | ||
46 | * on_duration = off_duration * (stock_freq - freq) / freq | ||
47 | * | ||
48 | * off_duration = (freq * DURATION) / stock_freq | ||
49 | * on_duration = DURATION - off_duration | ||
50 | * | ||
51 | * | ||
52 | *--------------------------------------------------------------------------- | ||
53 | * | ||
54 | * ChangeLog: | ||
55 | * Dec. 12, 2003 Hiroshi Miura <miura@da-cha.org> | ||
56 | * - fix on/off register mistake | ||
57 | * - fix cpu_khz calc when it stops cpu modulation. | ||
58 | * | ||
59 | * Dec. 11, 2002 Hiroshi Miura <miura@da-cha.org> | ||
60 | * - rewrite for Cyrix MediaGX Cx5510/5520 and | ||
61 | * NatSemi Geode Cs5530(A). | ||
62 | * | ||
63 | * Jul. ??, 2002 Zwane Mwaikambo <zwane@commfireservices.com> | ||
64 | * - cs5530_mod patch for 2.4.19-rc1. | ||
65 | * | ||
66 | *--------------------------------------------------------------------------- | ||
67 | * | ||
68 | * Todo | ||
69 | * Test on machines with 5510, 5530, 5530A | ||
70 | */ | ||
71 | |||
72 | /************************************************************************ | ||
73 | * Suspend Modulation - Definitions * | ||
74 | ************************************************************************/ | ||
75 | |||
76 | #include <linux/kernel.h> | ||
77 | #include <linux/module.h> | ||
78 | #include <linux/init.h> | ||
79 | #include <linux/smp.h> | ||
80 | #include <linux/cpufreq.h> | ||
81 | #include <linux/pci.h> | ||
82 | #include <asm/processor.h> | ||
83 | #include <asm/errno.h> | ||
84 | |||
85 | /* PCI config registers, all at F0 */ | ||
86 | #define PCI_PMER1 0x80 /* power management enable register 1 */ | ||
87 | #define PCI_PMER2 0x81 /* power management enable register 2 */ | ||
88 | #define PCI_PMER3 0x82 /* power management enable register 3 */ | ||
89 | #define PCI_IRQTC 0x8c /* irq speedup timer counter register:typical 2 to 4ms */ | ||
90 | #define PCI_VIDTC 0x8d /* video speedup timer counter register: typical 50 to 100ms */ | ||
91 | #define PCI_MODOFF 0x94 /* suspend modulation OFF counter register, 1 = 32us */ | ||
92 | #define PCI_MODON 0x95 /* suspend modulation ON counter register */ | ||
93 | #define PCI_SUSCFG 0x96 /* suspend configuration register */ | ||
94 | |||
95 | /* PMER1 bits */ | ||
96 | #define GPM (1<<0) /* global power management */ | ||
97 | #define GIT (1<<1) /* globally enable PM device idle timers */ | ||
98 | #define GTR (1<<2) /* globally enable IO traps */ | ||
99 | #define IRQ_SPDUP (1<<3) /* disable clock throttle during interrupt handling */ | ||
100 | #define VID_SPDUP (1<<4) /* disable clock throttle during vga video handling */ | ||
101 | |||
102 | /* SUSCFG bits */ | ||
103 | #define SUSMOD (1<<0) /* enable/disable suspend modulation */ | ||
104 | /* the belows support only with cs5530 (after rev.1.2)/cs5530A */ | ||
105 | #define SMISPDUP (1<<1) /* select how SMI re-enable suspend modulation: */ | ||
106 | /* IRQTC timer or read SMI speedup disable reg.(F1BAR[08-09h]) */ | ||
107 | #define SUSCFG (1<<2) /* enable powering down a GXLV processor. "Special 3Volt Suspend" mode */ | ||
108 | /* the belows support only with cs5530A */ | ||
109 | #define PWRSVE_ISA (1<<3) /* stop ISA clock */ | ||
110 | #define PWRSVE (1<<4) /* active idle */ | ||
111 | |||
112 | struct gxfreq_params { | ||
113 | u8 on_duration; | ||
114 | u8 off_duration; | ||
115 | u8 pci_suscfg; | ||
116 | u8 pci_pmer1; | ||
117 | u8 pci_pmer2; | ||
118 | u8 pci_rev; | ||
119 | struct pci_dev *cs55x0; | ||
120 | }; | ||
121 | |||
122 | static struct gxfreq_params *gx_params; | ||
123 | static int stock_freq; | ||
124 | |||
125 | /* PCI bus clock - defaults to 30.000 if cpu_khz is not available */ | ||
126 | static int pci_busclk = 0; | ||
127 | module_param (pci_busclk, int, 0444); | ||
128 | |||
129 | /* maximum duration for which the cpu may be suspended | ||
130 | * (32us * MAX_DURATION). If no parameter is given, this defaults | ||
131 | * to 255. | ||
132 | * Note that this leads to a maximum of 8 ms(!) where the CPU clock | ||
133 | * is suspended -- processing power is just 0.39% of what it used to be, | ||
134 | * though. 781.25 kHz(!) for a 200 MHz processor -- wow. */ | ||
135 | static int max_duration = 255; | ||
136 | module_param (max_duration, int, 0444); | ||
137 | |||
138 | /* For the default policy, we want at least some processing power | ||
139 | * - let's say 5%. (min = maxfreq / POLICY_MIN_DIV) | ||
140 | */ | ||
141 | #define POLICY_MIN_DIV 20 | ||
142 | |||
143 | |||
144 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "gx-suspmod", msg) | ||
145 | |||
146 | /** | ||
147 | * we can detect a core multipiler from dir0_lsb | ||
148 | * from GX1 datasheet p.56, | ||
149 | * MULT[3:0]: | ||
150 | * 0000 = SYSCLK multiplied by 4 (test only) | ||
151 | * 0001 = SYSCLK multiplied by 10 | ||
152 | * 0010 = SYSCLK multiplied by 4 | ||
153 | * 0011 = SYSCLK multiplied by 6 | ||
154 | * 0100 = SYSCLK multiplied by 9 | ||
155 | * 0101 = SYSCLK multiplied by 5 | ||
156 | * 0110 = SYSCLK multiplied by 7 | ||
157 | * 0111 = SYSCLK multiplied by 8 | ||
158 | * of 33.3MHz | ||
159 | **/ | ||
160 | static int gx_freq_mult[16] = { | ||
161 | 4, 10, 4, 6, 9, 5, 7, 8, | ||
162 | 0, 0, 0, 0, 0, 0, 0, 0 | ||
163 | }; | ||
164 | |||
165 | |||
166 | /**************************************************************** | ||
167 | * Low Level chipset interface * | ||
168 | ****************************************************************/ | ||
169 | static struct pci_device_id gx_chipset_tbl[] __initdata = { | ||
170 | { PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5530_LEGACY, PCI_ANY_ID, PCI_ANY_ID }, | ||
171 | { PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5520, PCI_ANY_ID, PCI_ANY_ID }, | ||
172 | { PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5510, PCI_ANY_ID, PCI_ANY_ID }, | ||
173 | { 0, }, | ||
174 | }; | ||
175 | |||
176 | /** | ||
177 | * gx_detect_chipset: | ||
178 | * | ||
179 | **/ | ||
180 | static __init struct pci_dev *gx_detect_chipset(void) | ||
181 | { | ||
182 | struct pci_dev *gx_pci = NULL; | ||
183 | |||
184 | /* check if CPU is a MediaGX or a Geode. */ | ||
185 | if ((current_cpu_data.x86_vendor != X86_VENDOR_NSC) && | ||
186 | (current_cpu_data.x86_vendor != X86_VENDOR_CYRIX)) { | ||
187 | dprintk("error: no MediaGX/Geode processor found!\n"); | ||
188 | return NULL; | ||
189 | } | ||
190 | |||
191 | /* detect which companion chip is used */ | ||
192 | while ((gx_pci = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, gx_pci)) != NULL) { | ||
193 | if ((pci_match_device (gx_chipset_tbl, gx_pci)) != NULL) { | ||
194 | return gx_pci; | ||
195 | } | ||
196 | } | ||
197 | |||
198 | dprintk("error: no supported chipset found!\n"); | ||
199 | return NULL; | ||
200 | } | ||
201 | |||
202 | /** | ||
203 | * gx_get_cpuspeed: | ||
204 | * | ||
205 | * Finds out at which efficient frequency the Cyrix MediaGX/NatSemi Geode CPU runs. | ||
206 | */ | ||
207 | static unsigned int gx_get_cpuspeed(unsigned int cpu) | ||
208 | { | ||
209 | if ((gx_params->pci_suscfg & SUSMOD) == 0) | ||
210 | return stock_freq; | ||
211 | |||
212 | return (stock_freq * gx_params->off_duration) | ||
213 | / (gx_params->on_duration + gx_params->off_duration); | ||
214 | } | ||
215 | |||
216 | /** | ||
217 | * gx_validate_speed: | ||
218 | * determine current cpu speed | ||
219 | * | ||
220 | **/ | ||
221 | |||
222 | static unsigned int gx_validate_speed(unsigned int khz, u8 *on_duration, u8 *off_duration) | ||
223 | { | ||
224 | unsigned int i; | ||
225 | u8 tmp_on, tmp_off; | ||
226 | int old_tmp_freq = stock_freq; | ||
227 | int tmp_freq; | ||
228 | |||
229 | *off_duration=1; | ||
230 | *on_duration=0; | ||
231 | |||
232 | for (i=max_duration; i>0; i--) { | ||
233 | tmp_off = ((khz * i) / stock_freq) & 0xff; | ||
234 | tmp_on = i - tmp_off; | ||
235 | tmp_freq = (stock_freq * tmp_off) / i; | ||
236 | /* if this relation is closer to khz, use this. If it's equal, | ||
237 | * prefer it, too - lower latency */ | ||
238 | if (abs(tmp_freq - khz) <= abs(old_tmp_freq - khz)) { | ||
239 | *on_duration = tmp_on; | ||
240 | *off_duration = tmp_off; | ||
241 | old_tmp_freq = tmp_freq; | ||
242 | } | ||
243 | } | ||
244 | |||
245 | return old_tmp_freq; | ||
246 | } | ||
247 | |||
248 | |||
249 | /** | ||
250 | * gx_set_cpuspeed: | ||
251 | * set cpu speed in khz. | ||
252 | **/ | ||
253 | |||
254 | static void gx_set_cpuspeed(unsigned int khz) | ||
255 | { | ||
256 | u8 suscfg, pmer1; | ||
257 | unsigned int new_khz; | ||
258 | unsigned long flags; | ||
259 | struct cpufreq_freqs freqs; | ||
260 | |||
261 | |||
262 | freqs.cpu = 0; | ||
263 | freqs.old = gx_get_cpuspeed(0); | ||
264 | |||
265 | new_khz = gx_validate_speed(khz, &gx_params->on_duration, &gx_params->off_duration); | ||
266 | |||
267 | freqs.new = new_khz; | ||
268 | |||
269 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
270 | local_irq_save(flags); | ||
271 | |||
272 | if (new_khz != stock_freq) { /* if new khz == 100% of CPU speed, it is special case */ | ||
273 | switch (gx_params->cs55x0->device) { | ||
274 | case PCI_DEVICE_ID_CYRIX_5530_LEGACY: | ||
275 | pmer1 = gx_params->pci_pmer1 | IRQ_SPDUP | VID_SPDUP; | ||
276 | /* FIXME: need to test other values -- Zwane,Miura */ | ||
277 | pci_write_config_byte(gx_params->cs55x0, PCI_IRQTC, 4); /* typical 2 to 4ms */ | ||
278 | pci_write_config_byte(gx_params->cs55x0, PCI_VIDTC, 100);/* typical 50 to 100ms */ | ||
279 | pci_write_config_byte(gx_params->cs55x0, PCI_PMER1, pmer1); | ||
280 | |||
281 | if (gx_params->pci_rev < 0x10) { /* CS5530(rev 1.2, 1.3) */ | ||
282 | suscfg = gx_params->pci_suscfg | SUSMOD; | ||
283 | } else { /* CS5530A,B.. */ | ||
284 | suscfg = gx_params->pci_suscfg | SUSMOD | PWRSVE; | ||
285 | } | ||
286 | break; | ||
287 | case PCI_DEVICE_ID_CYRIX_5520: | ||
288 | case PCI_DEVICE_ID_CYRIX_5510: | ||
289 | suscfg = gx_params->pci_suscfg | SUSMOD; | ||
290 | break; | ||
291 | default: | ||
292 | local_irq_restore(flags); | ||
293 | dprintk("fatal: try to set unknown chipset.\n"); | ||
294 | return; | ||
295 | } | ||
296 | } else { | ||
297 | suscfg = gx_params->pci_suscfg & ~(SUSMOD); | ||
298 | gx_params->off_duration = 0; | ||
299 | gx_params->on_duration = 0; | ||
300 | dprintk("suspend modulation disabled: cpu runs 100 percent speed.\n"); | ||
301 | } | ||
302 | |||
303 | pci_write_config_byte(gx_params->cs55x0, PCI_MODOFF, gx_params->off_duration); | ||
304 | pci_write_config_byte(gx_params->cs55x0, PCI_MODON, gx_params->on_duration); | ||
305 | |||
306 | pci_write_config_byte(gx_params->cs55x0, PCI_SUSCFG, suscfg); | ||
307 | pci_read_config_byte(gx_params->cs55x0, PCI_SUSCFG, &suscfg); | ||
308 | |||
309 | local_irq_restore(flags); | ||
310 | |||
311 | gx_params->pci_suscfg = suscfg; | ||
312 | |||
313 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
314 | |||
315 | dprintk("suspend modulation w/ duration of ON:%d us, OFF:%d us\n", | ||
316 | gx_params->on_duration * 32, gx_params->off_duration * 32); | ||
317 | dprintk("suspend modulation w/ clock speed: %d kHz.\n", freqs.new); | ||
318 | } | ||
319 | |||
320 | /**************************************************************** | ||
321 | * High level functions * | ||
322 | ****************************************************************/ | ||
323 | |||
324 | /* | ||
325 | * cpufreq_gx_verify: test if frequency range is valid | ||
326 | * | ||
327 | * This function checks if a given frequency range in kHz is valid | ||
328 | * for the hardware supported by the driver. | ||
329 | */ | ||
330 | |||
331 | static int cpufreq_gx_verify(struct cpufreq_policy *policy) | ||
332 | { | ||
333 | unsigned int tmp_freq = 0; | ||
334 | u8 tmp1, tmp2; | ||
335 | |||
336 | if (!stock_freq || !policy) | ||
337 | return -EINVAL; | ||
338 | |||
339 | policy->cpu = 0; | ||
340 | cpufreq_verify_within_limits(policy, (stock_freq / max_duration), stock_freq); | ||
341 | |||
342 | /* it needs to be assured that at least one supported frequency is | ||
343 | * within policy->min and policy->max. If it is not, policy->max | ||
344 | * needs to be increased until one freuqency is supported. | ||
345 | * policy->min may not be decreased, though. This way we guarantee a | ||
346 | * specific processing capacity. | ||
347 | */ | ||
348 | tmp_freq = gx_validate_speed(policy->min, &tmp1, &tmp2); | ||
349 | if (tmp_freq < policy->min) | ||
350 | tmp_freq += stock_freq / max_duration; | ||
351 | policy->min = tmp_freq; | ||
352 | if (policy->min > policy->max) | ||
353 | policy->max = tmp_freq; | ||
354 | tmp_freq = gx_validate_speed(policy->max, &tmp1, &tmp2); | ||
355 | if (tmp_freq > policy->max) | ||
356 | tmp_freq -= stock_freq / max_duration; | ||
357 | policy->max = tmp_freq; | ||
358 | if (policy->max < policy->min) | ||
359 | policy->max = policy->min; | ||
360 | cpufreq_verify_within_limits(policy, (stock_freq / max_duration), stock_freq); | ||
361 | |||
362 | return 0; | ||
363 | } | ||
364 | |||
365 | /* | ||
366 | * cpufreq_gx_target: | ||
367 | * | ||
368 | */ | ||
369 | static int cpufreq_gx_target(struct cpufreq_policy *policy, | ||
370 | unsigned int target_freq, | ||
371 | unsigned int relation) | ||
372 | { | ||
373 | u8 tmp1, tmp2; | ||
374 | unsigned int tmp_freq; | ||
375 | |||
376 | if (!stock_freq || !policy) | ||
377 | return -EINVAL; | ||
378 | |||
379 | policy->cpu = 0; | ||
380 | |||
381 | tmp_freq = gx_validate_speed(target_freq, &tmp1, &tmp2); | ||
382 | while (tmp_freq < policy->min) { | ||
383 | tmp_freq += stock_freq / max_duration; | ||
384 | tmp_freq = gx_validate_speed(tmp_freq, &tmp1, &tmp2); | ||
385 | } | ||
386 | while (tmp_freq > policy->max) { | ||
387 | tmp_freq -= stock_freq / max_duration; | ||
388 | tmp_freq = gx_validate_speed(tmp_freq, &tmp1, &tmp2); | ||
389 | } | ||
390 | |||
391 | gx_set_cpuspeed(tmp_freq); | ||
392 | |||
393 | return 0; | ||
394 | } | ||
395 | |||
396 | static int cpufreq_gx_cpu_init(struct cpufreq_policy *policy) | ||
397 | { | ||
398 | unsigned int maxfreq, curfreq; | ||
399 | |||
400 | if (!policy || policy->cpu != 0) | ||
401 | return -ENODEV; | ||
402 | |||
403 | /* determine maximum frequency */ | ||
404 | if (pci_busclk) { | ||
405 | maxfreq = pci_busclk * gx_freq_mult[getCx86(CX86_DIR1) & 0x0f]; | ||
406 | } else if (cpu_khz) { | ||
407 | maxfreq = cpu_khz; | ||
408 | } else { | ||
409 | maxfreq = 30000 * gx_freq_mult[getCx86(CX86_DIR1) & 0x0f]; | ||
410 | } | ||
411 | stock_freq = maxfreq; | ||
412 | curfreq = gx_get_cpuspeed(0); | ||
413 | |||
414 | dprintk("cpu max frequency is %d.\n", maxfreq); | ||
415 | dprintk("cpu current frequency is %dkHz.\n",curfreq); | ||
416 | |||
417 | /* setup basic struct for cpufreq API */ | ||
418 | policy->cpu = 0; | ||
419 | |||
420 | if (max_duration < POLICY_MIN_DIV) | ||
421 | policy->min = maxfreq / max_duration; | ||
422 | else | ||
423 | policy->min = maxfreq / POLICY_MIN_DIV; | ||
424 | policy->max = maxfreq; | ||
425 | policy->cur = curfreq; | ||
426 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
427 | policy->cpuinfo.min_freq = maxfreq / max_duration; | ||
428 | policy->cpuinfo.max_freq = maxfreq; | ||
429 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
430 | |||
431 | return 0; | ||
432 | } | ||
433 | |||
434 | /* | ||
435 | * cpufreq_gx_init: | ||
436 | * MediaGX/Geode GX initialize cpufreq driver | ||
437 | */ | ||
438 | static struct cpufreq_driver gx_suspmod_driver = { | ||
439 | .get = gx_get_cpuspeed, | ||
440 | .verify = cpufreq_gx_verify, | ||
441 | .target = cpufreq_gx_target, | ||
442 | .init = cpufreq_gx_cpu_init, | ||
443 | .name = "gx-suspmod", | ||
444 | .owner = THIS_MODULE, | ||
445 | }; | ||
446 | |||
447 | static int __init cpufreq_gx_init(void) | ||
448 | { | ||
449 | int ret; | ||
450 | struct gxfreq_params *params; | ||
451 | struct pci_dev *gx_pci; | ||
452 | u32 class_rev; | ||
453 | |||
454 | /* Test if we have the right hardware */ | ||
455 | if ((gx_pci = gx_detect_chipset()) == NULL) | ||
456 | return -ENODEV; | ||
457 | |||
458 | /* check whether module parameters are sane */ | ||
459 | if (max_duration > 0xff) | ||
460 | max_duration = 0xff; | ||
461 | |||
462 | dprintk("geode suspend modulation available.\n"); | ||
463 | |||
464 | params = kmalloc(sizeof(struct gxfreq_params), GFP_KERNEL); | ||
465 | if (params == NULL) | ||
466 | return -ENOMEM; | ||
467 | memset(params, 0, sizeof(struct gxfreq_params)); | ||
468 | |||
469 | params->cs55x0 = gx_pci; | ||
470 | gx_params = params; | ||
471 | |||
472 | /* keep cs55x0 configurations */ | ||
473 | pci_read_config_byte(params->cs55x0, PCI_SUSCFG, &(params->pci_suscfg)); | ||
474 | pci_read_config_byte(params->cs55x0, PCI_PMER1, &(params->pci_pmer1)); | ||
475 | pci_read_config_byte(params->cs55x0, PCI_PMER2, &(params->pci_pmer2)); | ||
476 | pci_read_config_byte(params->cs55x0, PCI_MODON, &(params->on_duration)); | ||
477 | pci_read_config_byte(params->cs55x0, PCI_MODOFF, &(params->off_duration)); | ||
478 | pci_read_config_dword(params->cs55x0, PCI_CLASS_REVISION, &class_rev); | ||
479 | params->pci_rev = class_rev && 0xff; | ||
480 | |||
481 | if ((ret = cpufreq_register_driver(&gx_suspmod_driver))) { | ||
482 | kfree(params); | ||
483 | return ret; /* register error! */ | ||
484 | } | ||
485 | |||
486 | return 0; | ||
487 | } | ||
488 | |||
489 | static void __exit cpufreq_gx_exit(void) | ||
490 | { | ||
491 | cpufreq_unregister_driver(&gx_suspmod_driver); | ||
492 | pci_dev_put(gx_params->cs55x0); | ||
493 | kfree(gx_params); | ||
494 | } | ||
495 | |||
496 | MODULE_AUTHOR ("Hiroshi Miura <miura@da-cha.org>"); | ||
497 | MODULE_DESCRIPTION ("Cpufreq driver for Cyrix MediaGX and NatSemi Geode"); | ||
498 | MODULE_LICENSE ("GPL"); | ||
499 | |||
500 | module_init(cpufreq_gx_init); | ||
501 | module_exit(cpufreq_gx_exit); | ||
502 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/longhaul.c b/arch/i386/kernel/cpu/cpufreq/longhaul.c new file mode 100644 index 000000000000..ab0f9f5aac11 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/longhaul.c | |||
@@ -0,0 +1,658 @@ | |||
1 | /* | ||
2 | * (C) 2001-2004 Dave Jones. <davej@codemonkey.org.uk> | ||
3 | * (C) 2002 Padraig Brady. <padraig@antefacto.com> | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * Based upon datasheets & sample CPUs kindly provided by VIA. | ||
7 | * | ||
8 | * VIA have currently 3 different versions of Longhaul. | ||
9 | * Version 1 (Longhaul) uses the BCR2 MSR at 0x1147. | ||
10 | * It is present only in Samuel 1 (C5A), Samuel 2 (C5B) stepping 0. | ||
11 | * Version 2 of longhaul is the same as v1, but adds voltage scaling. | ||
12 | * Present in Samuel 2 (steppings 1-7 only) (C5B), and Ezra (C5C) | ||
13 | * voltage scaling support has currently been disabled in this driver | ||
14 | * until we have code that gets it right. | ||
15 | * Version 3 of longhaul got renamed to Powersaver and redesigned | ||
16 | * to use the POWERSAVER MSR at 0x110a. | ||
17 | * It is present in Ezra-T (C5M), Nehemiah (C5X) and above. | ||
18 | * It's pretty much the same feature wise to longhaul v2, though | ||
19 | * there is provision for scaling FSB too, but this doesn't work | ||
20 | * too well in practice so we don't even try to use this. | ||
21 | * | ||
22 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
23 | */ | ||
24 | |||
25 | #include <linux/kernel.h> | ||
26 | #include <linux/module.h> | ||
27 | #include <linux/moduleparam.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/cpufreq.h> | ||
30 | #include <linux/slab.h> | ||
31 | #include <linux/string.h> | ||
32 | |||
33 | #include <asm/msr.h> | ||
34 | #include <asm/timex.h> | ||
35 | #include <asm/io.h> | ||
36 | |||
37 | #include "longhaul.h" | ||
38 | |||
39 | #define PFX "longhaul: " | ||
40 | |||
41 | #define TYPE_LONGHAUL_V1 1 | ||
42 | #define TYPE_LONGHAUL_V2 2 | ||
43 | #define TYPE_POWERSAVER 3 | ||
44 | |||
45 | #define CPU_SAMUEL 1 | ||
46 | #define CPU_SAMUEL2 2 | ||
47 | #define CPU_EZRA 3 | ||
48 | #define CPU_EZRA_T 4 | ||
49 | #define CPU_NEHEMIAH 5 | ||
50 | |||
51 | static int cpu_model; | ||
52 | static unsigned int numscales=16, numvscales; | ||
53 | static unsigned int fsb; | ||
54 | static int minvid, maxvid; | ||
55 | static unsigned int minmult, maxmult; | ||
56 | static int can_scale_voltage; | ||
57 | static int vrmrev; | ||
58 | |||
59 | /* Module parameters */ | ||
60 | static int dont_scale_voltage; | ||
61 | |||
62 | |||
63 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "longhaul", msg) | ||
64 | |||
65 | |||
66 | #define __hlt() __asm__ __volatile__("hlt": : :"memory") | ||
67 | |||
68 | /* Clock ratios multiplied by 10 */ | ||
69 | static int clock_ratio[32]; | ||
70 | static int eblcr_table[32]; | ||
71 | static int voltage_table[32]; | ||
72 | static unsigned int highest_speed, lowest_speed; /* kHz */ | ||
73 | static int longhaul_version; | ||
74 | static struct cpufreq_frequency_table *longhaul_table; | ||
75 | |||
76 | #ifdef CONFIG_CPU_FREQ_DEBUG | ||
77 | static char speedbuffer[8]; | ||
78 | |||
79 | static char *print_speed(int speed) | ||
80 | { | ||
81 | if (speed > 1000) { | ||
82 | if (speed%1000 == 0) | ||
83 | sprintf (speedbuffer, "%dGHz", speed/1000); | ||
84 | else | ||
85 | sprintf (speedbuffer, "%d.%dGHz", speed/1000, (speed%1000)/100); | ||
86 | } else | ||
87 | sprintf (speedbuffer, "%dMHz", speed); | ||
88 | |||
89 | return speedbuffer; | ||
90 | } | ||
91 | #endif | ||
92 | |||
93 | |||
94 | static unsigned int calc_speed(int mult) | ||
95 | { | ||
96 | int khz; | ||
97 | khz = (mult/10)*fsb; | ||
98 | if (mult%10) | ||
99 | khz += fsb/2; | ||
100 | khz *= 1000; | ||
101 | return khz; | ||
102 | } | ||
103 | |||
104 | |||
105 | static int longhaul_get_cpu_mult(void) | ||
106 | { | ||
107 | unsigned long invalue=0,lo, hi; | ||
108 | |||
109 | rdmsr (MSR_IA32_EBL_CR_POWERON, lo, hi); | ||
110 | invalue = (lo & (1<<22|1<<23|1<<24|1<<25)) >>22; | ||
111 | if (longhaul_version==TYPE_LONGHAUL_V2 || longhaul_version==TYPE_POWERSAVER) { | ||
112 | if (lo & (1<<27)) | ||
113 | invalue+=16; | ||
114 | } | ||
115 | return eblcr_table[invalue]; | ||
116 | } | ||
117 | |||
118 | |||
119 | static void do_powersaver(union msr_longhaul *longhaul, | ||
120 | unsigned int clock_ratio_index) | ||
121 | { | ||
122 | int version; | ||
123 | |||
124 | switch (cpu_model) { | ||
125 | case CPU_EZRA_T: | ||
126 | version = 3; | ||
127 | break; | ||
128 | case CPU_NEHEMIAH: | ||
129 | version = 0xf; | ||
130 | break; | ||
131 | default: | ||
132 | return; | ||
133 | } | ||
134 | |||
135 | rdmsrl(MSR_VIA_LONGHAUL, longhaul->val); | ||
136 | longhaul->bits.SoftBusRatio = clock_ratio_index & 0xf; | ||
137 | longhaul->bits.SoftBusRatio4 = (clock_ratio_index & 0x10) >> 4; | ||
138 | longhaul->bits.EnableSoftBusRatio = 1; | ||
139 | longhaul->bits.RevisionKey = 0; | ||
140 | local_irq_disable(); | ||
141 | wrmsrl(MSR_VIA_LONGHAUL, longhaul->val); | ||
142 | local_irq_enable(); | ||
143 | __hlt(); | ||
144 | |||
145 | rdmsrl(MSR_VIA_LONGHAUL, longhaul->val); | ||
146 | longhaul->bits.EnableSoftBusRatio = 0; | ||
147 | longhaul->bits.RevisionKey = version; | ||
148 | local_irq_disable(); | ||
149 | wrmsrl(MSR_VIA_LONGHAUL, longhaul->val); | ||
150 | local_irq_enable(); | ||
151 | } | ||
152 | |||
153 | /** | ||
154 | * longhaul_set_cpu_frequency() | ||
155 | * @clock_ratio_index : bitpattern of the new multiplier. | ||
156 | * | ||
157 | * Sets a new clock ratio. | ||
158 | */ | ||
159 | |||
160 | static void longhaul_setstate(unsigned int clock_ratio_index) | ||
161 | { | ||
162 | int speed, mult; | ||
163 | struct cpufreq_freqs freqs; | ||
164 | union msr_longhaul longhaul; | ||
165 | union msr_bcr2 bcr2; | ||
166 | static unsigned int old_ratio=-1; | ||
167 | |||
168 | if (old_ratio == clock_ratio_index) | ||
169 | return; | ||
170 | old_ratio = clock_ratio_index; | ||
171 | |||
172 | mult = clock_ratio[clock_ratio_index]; | ||
173 | if (mult == -1) | ||
174 | return; | ||
175 | |||
176 | speed = calc_speed(mult); | ||
177 | if ((speed > highest_speed) || (speed < lowest_speed)) | ||
178 | return; | ||
179 | |||
180 | freqs.old = calc_speed(longhaul_get_cpu_mult()); | ||
181 | freqs.new = speed; | ||
182 | freqs.cpu = 0; /* longhaul.c is UP only driver */ | ||
183 | |||
184 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
185 | |||
186 | dprintk ("Setting to FSB:%dMHz Mult:%d.%dx (%s)\n", | ||
187 | fsb, mult/10, mult%10, print_speed(speed/1000)); | ||
188 | |||
189 | switch (longhaul_version) { | ||
190 | |||
191 | /* | ||
192 | * Longhaul v1. (Samuel[C5A] and Samuel2 stepping 0[C5B]) | ||
193 | * Software controlled multipliers only. | ||
194 | * | ||
195 | * *NB* Until we get voltage scaling working v1 & v2 are the same code. | ||
196 | * Longhaul v2 appears in Samuel2 Steppings 1->7 [C5b] and Ezra [C5C] | ||
197 | */ | ||
198 | case TYPE_LONGHAUL_V1: | ||
199 | case TYPE_LONGHAUL_V2: | ||
200 | rdmsrl (MSR_VIA_BCR2, bcr2.val); | ||
201 | /* Enable software clock multiplier */ | ||
202 | bcr2.bits.ESOFTBF = 1; | ||
203 | bcr2.bits.CLOCKMUL = clock_ratio_index; | ||
204 | local_irq_disable(); | ||
205 | wrmsrl (MSR_VIA_BCR2, bcr2.val); | ||
206 | local_irq_enable(); | ||
207 | |||
208 | __hlt(); | ||
209 | |||
210 | /* Disable software clock multiplier */ | ||
211 | rdmsrl (MSR_VIA_BCR2, bcr2.val); | ||
212 | bcr2.bits.ESOFTBF = 0; | ||
213 | local_irq_disable(); | ||
214 | wrmsrl (MSR_VIA_BCR2, bcr2.val); | ||
215 | local_irq_enable(); | ||
216 | break; | ||
217 | |||
218 | /* | ||
219 | * Longhaul v3 (aka Powersaver). (Ezra-T [C5M] & Nehemiah [C5N]) | ||
220 | * We can scale voltage with this too, but that's currently | ||
221 | * disabled until we come up with a decent 'match freq to voltage' | ||
222 | * algorithm. | ||
223 | * When we add voltage scaling, we will also need to do the | ||
224 | * voltage/freq setting in order depending on the direction | ||
225 | * of scaling (like we do in powernow-k7.c) | ||
226 | * Nehemiah can do FSB scaling too, but this has never been proven | ||
227 | * to work in practice. | ||
228 | */ | ||
229 | case TYPE_POWERSAVER: | ||
230 | do_powersaver(&longhaul, clock_ratio_index); | ||
231 | break; | ||
232 | } | ||
233 | |||
234 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
235 | } | ||
236 | |||
237 | /* | ||
238 | * Centaur decided to make life a little more tricky. | ||
239 | * Only longhaul v1 is allowed to read EBLCR BSEL[0:1]. | ||
240 | * Samuel2 and above have to try and guess what the FSB is. | ||
241 | * We do this by assuming we booted at maximum multiplier, and interpolate | ||
242 | * between that value multiplied by possible FSBs and cpu_mhz which | ||
243 | * was calculated at boot time. Really ugly, but no other way to do this. | ||
244 | */ | ||
245 | |||
246 | #define ROUNDING 0xf | ||
247 | |||
248 | static int _guess(int guess) | ||
249 | { | ||
250 | int target; | ||
251 | |||
252 | target = ((maxmult/10)*guess); | ||
253 | if (maxmult%10 != 0) | ||
254 | target += (guess/2); | ||
255 | target += ROUNDING/2; | ||
256 | target &= ~ROUNDING; | ||
257 | return target; | ||
258 | } | ||
259 | |||
260 | |||
261 | static int guess_fsb(void) | ||
262 | { | ||
263 | int speed = (cpu_khz/1000); | ||
264 | int i; | ||
265 | int speeds[3] = { 66, 100, 133 }; | ||
266 | |||
267 | speed += ROUNDING/2; | ||
268 | speed &= ~ROUNDING; | ||
269 | |||
270 | for (i=0; i<3; i++) { | ||
271 | if (_guess(speeds[i]) == speed) | ||
272 | return speeds[i]; | ||
273 | } | ||
274 | return 0; | ||
275 | } | ||
276 | |||
277 | |||
278 | static int __init longhaul_get_ranges(void) | ||
279 | { | ||
280 | unsigned long invalue; | ||
281 | unsigned int multipliers[32]= { | ||
282 | 50,30,40,100,55,35,45,95,90,70,80,60,120,75,85,65, | ||
283 | -1,110,120,-1,135,115,125,105,130,150,160,140,-1,155,-1,145 }; | ||
284 | unsigned int j, k = 0; | ||
285 | union msr_longhaul longhaul; | ||
286 | unsigned long lo, hi; | ||
287 | unsigned int eblcr_fsb_table_v1[] = { 66, 133, 100, -1 }; | ||
288 | unsigned int eblcr_fsb_table_v2[] = { 133, 100, -1, 66 }; | ||
289 | |||
290 | switch (longhaul_version) { | ||
291 | case TYPE_LONGHAUL_V1: | ||
292 | case TYPE_LONGHAUL_V2: | ||
293 | /* Ugh, Longhaul v1 didn't have the min/max MSRs. | ||
294 | Assume min=3.0x & max = whatever we booted at. */ | ||
295 | minmult = 30; | ||
296 | maxmult = longhaul_get_cpu_mult(); | ||
297 | rdmsr (MSR_IA32_EBL_CR_POWERON, lo, hi); | ||
298 | invalue = (lo & (1<<18|1<<19)) >>18; | ||
299 | if (cpu_model==CPU_SAMUEL || cpu_model==CPU_SAMUEL2) | ||
300 | fsb = eblcr_fsb_table_v1[invalue]; | ||
301 | else | ||
302 | fsb = guess_fsb(); | ||
303 | break; | ||
304 | |||
305 | case TYPE_POWERSAVER: | ||
306 | /* Ezra-T */ | ||
307 | if (cpu_model==CPU_EZRA_T) { | ||
308 | rdmsrl (MSR_VIA_LONGHAUL, longhaul.val); | ||
309 | invalue = longhaul.bits.MaxMHzBR; | ||
310 | if (longhaul.bits.MaxMHzBR4) | ||
311 | invalue += 16; | ||
312 | maxmult=multipliers[invalue]; | ||
313 | |||
314 | invalue = longhaul.bits.MinMHzBR; | ||
315 | if (longhaul.bits.MinMHzBR4 == 1) | ||
316 | minmult = 30; | ||
317 | else | ||
318 | minmult = multipliers[invalue]; | ||
319 | fsb = eblcr_fsb_table_v2[longhaul.bits.MaxMHzFSB]; | ||
320 | break; | ||
321 | } | ||
322 | |||
323 | /* Nehemiah */ | ||
324 | if (cpu_model==CPU_NEHEMIAH) { | ||
325 | rdmsrl (MSR_VIA_LONGHAUL, longhaul.val); | ||
326 | |||
327 | /* | ||
328 | * TODO: This code works, but raises a lot of questions. | ||
329 | * - Some Nehemiah's seem to have broken Min/MaxMHzBR's. | ||
330 | * We get around this by using a hardcoded multiplier of 4.0x | ||
331 | * for the minimimum speed, and the speed we booted up at for the max. | ||
332 | * This is done in longhaul_get_cpu_mult() by reading the EBLCR register. | ||
333 | * - According to some VIA documentation EBLCR is only | ||
334 | * in pre-Nehemiah C3s. How this still works is a mystery. | ||
335 | * We're possibly using something undocumented and unsupported, | ||
336 | * But it works, so we don't grumble. | ||
337 | */ | ||
338 | minmult=40; | ||
339 | maxmult=longhaul_get_cpu_mult(); | ||
340 | |||
341 | /* Starting with the 1.2GHz parts, theres a 200MHz bus. */ | ||
342 | if ((cpu_khz/1000) > 1200) | ||
343 | fsb = 200; | ||
344 | else | ||
345 | fsb = eblcr_fsb_table_v2[longhaul.bits.MaxMHzFSB]; | ||
346 | break; | ||
347 | } | ||
348 | } | ||
349 | |||
350 | dprintk ("MinMult:%d.%dx MaxMult:%d.%dx\n", | ||
351 | minmult/10, minmult%10, maxmult/10, maxmult%10); | ||
352 | |||
353 | if (fsb == -1) { | ||
354 | printk (KERN_INFO PFX "Invalid (reserved) FSB!\n"); | ||
355 | return -EINVAL; | ||
356 | } | ||
357 | |||
358 | highest_speed = calc_speed(maxmult); | ||
359 | lowest_speed = calc_speed(minmult); | ||
360 | dprintk ("FSB:%dMHz Lowest speed: %s Highest speed:%s\n", fsb, | ||
361 | print_speed(lowest_speed/1000), | ||
362 | print_speed(highest_speed/1000)); | ||
363 | |||
364 | if (lowest_speed == highest_speed) { | ||
365 | printk (KERN_INFO PFX "highestspeed == lowest, aborting.\n"); | ||
366 | return -EINVAL; | ||
367 | } | ||
368 | if (lowest_speed > highest_speed) { | ||
369 | printk (KERN_INFO PFX "nonsense! lowest (%d > %d) !\n", | ||
370 | lowest_speed, highest_speed); | ||
371 | return -EINVAL; | ||
372 | } | ||
373 | |||
374 | longhaul_table = kmalloc((numscales + 1) * sizeof(struct cpufreq_frequency_table), GFP_KERNEL); | ||
375 | if(!longhaul_table) | ||
376 | return -ENOMEM; | ||
377 | |||
378 | for (j=0; j < numscales; j++) { | ||
379 | unsigned int ratio; | ||
380 | ratio = clock_ratio[j]; | ||
381 | if (ratio == -1) | ||
382 | continue; | ||
383 | if (ratio > maxmult || ratio < minmult) | ||
384 | continue; | ||
385 | longhaul_table[k].frequency = calc_speed(ratio); | ||
386 | longhaul_table[k].index = j; | ||
387 | k++; | ||
388 | } | ||
389 | |||
390 | longhaul_table[k].frequency = CPUFREQ_TABLE_END; | ||
391 | if (!k) { | ||
392 | kfree (longhaul_table); | ||
393 | return -EINVAL; | ||
394 | } | ||
395 | |||
396 | return 0; | ||
397 | } | ||
398 | |||
399 | |||
400 | static void __init longhaul_setup_voltagescaling(void) | ||
401 | { | ||
402 | union msr_longhaul longhaul; | ||
403 | |||
404 | rdmsrl (MSR_VIA_LONGHAUL, longhaul.val); | ||
405 | |||
406 | if (!(longhaul.bits.RevisionID & 1)) | ||
407 | return; | ||
408 | |||
409 | minvid = longhaul.bits.MinimumVID; | ||
410 | maxvid = longhaul.bits.MaximumVID; | ||
411 | vrmrev = longhaul.bits.VRMRev; | ||
412 | |||
413 | if (minvid == 0 || maxvid == 0) { | ||
414 | printk (KERN_INFO PFX "Bogus values Min:%d.%03d Max:%d.%03d. " | ||
415 | "Voltage scaling disabled.\n", | ||
416 | minvid/1000, minvid%1000, maxvid/1000, maxvid%1000); | ||
417 | return; | ||
418 | } | ||
419 | |||
420 | if (minvid == maxvid) { | ||
421 | printk (KERN_INFO PFX "Claims to support voltage scaling but min & max are " | ||
422 | "both %d.%03d. Voltage scaling disabled\n", | ||
423 | maxvid/1000, maxvid%1000); | ||
424 | return; | ||
425 | } | ||
426 | |||
427 | if (vrmrev==0) { | ||
428 | dprintk ("VRM 8.5 \n"); | ||
429 | memcpy (voltage_table, vrm85scales, sizeof(voltage_table)); | ||
430 | numvscales = (voltage_table[maxvid]-voltage_table[minvid])/25; | ||
431 | } else { | ||
432 | dprintk ("Mobile VRM \n"); | ||
433 | memcpy (voltage_table, mobilevrmscales, sizeof(voltage_table)); | ||
434 | numvscales = (voltage_table[maxvid]-voltage_table[minvid])/5; | ||
435 | } | ||
436 | |||
437 | /* Current voltage isn't readable at first, so we need to | ||
438 | set it to a known value. The spec says to use maxvid */ | ||
439 | longhaul.bits.RevisionKey = longhaul.bits.RevisionID; /* FIXME: This is bad. */ | ||
440 | longhaul.bits.EnableSoftVID = 1; | ||
441 | longhaul.bits.SoftVID = maxvid; | ||
442 | wrmsrl (MSR_VIA_LONGHAUL, longhaul.val); | ||
443 | |||
444 | minvid = voltage_table[minvid]; | ||
445 | maxvid = voltage_table[maxvid]; | ||
446 | |||
447 | dprintk ("Min VID=%d.%03d Max VID=%d.%03d, %d possible voltage scales\n", | ||
448 | maxvid/1000, maxvid%1000, minvid/1000, minvid%1000, numvscales); | ||
449 | |||
450 | can_scale_voltage = 1; | ||
451 | } | ||
452 | |||
453 | |||
454 | static int longhaul_verify(struct cpufreq_policy *policy) | ||
455 | { | ||
456 | return cpufreq_frequency_table_verify(policy, longhaul_table); | ||
457 | } | ||
458 | |||
459 | |||
460 | static int longhaul_target(struct cpufreq_policy *policy, | ||
461 | unsigned int target_freq, unsigned int relation) | ||
462 | { | ||
463 | unsigned int table_index = 0; | ||
464 | unsigned int new_clock_ratio = 0; | ||
465 | |||
466 | if (cpufreq_frequency_table_target(policy, longhaul_table, target_freq, relation, &table_index)) | ||
467 | return -EINVAL; | ||
468 | |||
469 | new_clock_ratio = longhaul_table[table_index].index & 0xFF; | ||
470 | |||
471 | longhaul_setstate(new_clock_ratio); | ||
472 | |||
473 | return 0; | ||
474 | } | ||
475 | |||
476 | |||
477 | static unsigned int longhaul_get(unsigned int cpu) | ||
478 | { | ||
479 | if (cpu) | ||
480 | return 0; | ||
481 | return calc_speed(longhaul_get_cpu_mult()); | ||
482 | } | ||
483 | |||
484 | |||
485 | static int __init longhaul_cpu_init(struct cpufreq_policy *policy) | ||
486 | { | ||
487 | struct cpuinfo_x86 *c = cpu_data; | ||
488 | char *cpuname=NULL; | ||
489 | int ret; | ||
490 | |||
491 | switch (c->x86_model) { | ||
492 | case 6: | ||
493 | cpu_model = CPU_SAMUEL; | ||
494 | cpuname = "C3 'Samuel' [C5A]"; | ||
495 | longhaul_version = TYPE_LONGHAUL_V1; | ||
496 | memcpy (clock_ratio, samuel1_clock_ratio, sizeof(samuel1_clock_ratio)); | ||
497 | memcpy (eblcr_table, samuel1_eblcr, sizeof(samuel1_eblcr)); | ||
498 | break; | ||
499 | |||
500 | case 7: | ||
501 | longhaul_version = TYPE_LONGHAUL_V1; | ||
502 | switch (c->x86_mask) { | ||
503 | case 0: | ||
504 | cpu_model = CPU_SAMUEL2; | ||
505 | cpuname = "C3 'Samuel 2' [C5B]"; | ||
506 | /* Note, this is not a typo, early Samuel2's had Samuel1 ratios. */ | ||
507 | memcpy (clock_ratio, samuel1_clock_ratio, sizeof(samuel1_clock_ratio)); | ||
508 | memcpy (eblcr_table, samuel2_eblcr, sizeof(samuel2_eblcr)); | ||
509 | break; | ||
510 | case 1 ... 15: | ||
511 | if (c->x86_mask < 8) { | ||
512 | cpu_model = CPU_SAMUEL2; | ||
513 | cpuname = "C3 'Samuel 2' [C5B]"; | ||
514 | } else { | ||
515 | cpu_model = CPU_EZRA; | ||
516 | cpuname = "C3 'Ezra' [C5C]"; | ||
517 | } | ||
518 | memcpy (clock_ratio, ezra_clock_ratio, sizeof(ezra_clock_ratio)); | ||
519 | memcpy (eblcr_table, ezra_eblcr, sizeof(ezra_eblcr)); | ||
520 | break; | ||
521 | } | ||
522 | break; | ||
523 | |||
524 | case 8: | ||
525 | cpu_model = CPU_EZRA_T; | ||
526 | cpuname = "C3 'Ezra-T' [C5M]"; | ||
527 | longhaul_version = TYPE_POWERSAVER; | ||
528 | numscales=32; | ||
529 | memcpy (clock_ratio, ezrat_clock_ratio, sizeof(ezrat_clock_ratio)); | ||
530 | memcpy (eblcr_table, ezrat_eblcr, sizeof(ezrat_eblcr)); | ||
531 | break; | ||
532 | |||
533 | case 9: | ||
534 | cpu_model = CPU_NEHEMIAH; | ||
535 | longhaul_version = TYPE_POWERSAVER; | ||
536 | numscales=32; | ||
537 | switch (c->x86_mask) { | ||
538 | case 0 ... 1: | ||
539 | cpuname = "C3 'Nehemiah A' [C5N]"; | ||
540 | memcpy (clock_ratio, nehemiah_a_clock_ratio, sizeof(nehemiah_a_clock_ratio)); | ||
541 | memcpy (eblcr_table, nehemiah_a_eblcr, sizeof(nehemiah_a_eblcr)); | ||
542 | break; | ||
543 | case 2 ... 4: | ||
544 | cpuname = "C3 'Nehemiah B' [C5N]"; | ||
545 | memcpy (clock_ratio, nehemiah_b_clock_ratio, sizeof(nehemiah_b_clock_ratio)); | ||
546 | memcpy (eblcr_table, nehemiah_b_eblcr, sizeof(nehemiah_b_eblcr)); | ||
547 | break; | ||
548 | case 5 ... 15: | ||
549 | cpuname = "C3 'Nehemiah C' [C5N]"; | ||
550 | memcpy (clock_ratio, nehemiah_c_clock_ratio, sizeof(nehemiah_c_clock_ratio)); | ||
551 | memcpy (eblcr_table, nehemiah_c_eblcr, sizeof(nehemiah_c_eblcr)); | ||
552 | break; | ||
553 | } | ||
554 | break; | ||
555 | |||
556 | default: | ||
557 | cpuname = "Unknown"; | ||
558 | break; | ||
559 | } | ||
560 | |||
561 | printk (KERN_INFO PFX "VIA %s CPU detected. ", cpuname); | ||
562 | switch (longhaul_version) { | ||
563 | case TYPE_LONGHAUL_V1: | ||
564 | case TYPE_LONGHAUL_V2: | ||
565 | printk ("Longhaul v%d supported.\n", longhaul_version); | ||
566 | break; | ||
567 | case TYPE_POWERSAVER: | ||
568 | printk ("Powersaver supported.\n"); | ||
569 | break; | ||
570 | }; | ||
571 | |||
572 | ret = longhaul_get_ranges(); | ||
573 | if (ret != 0) | ||
574 | return ret; | ||
575 | |||
576 | if ((longhaul_version==TYPE_LONGHAUL_V2 || longhaul_version==TYPE_POWERSAVER) && | ||
577 | (dont_scale_voltage==0)) | ||
578 | longhaul_setup_voltagescaling(); | ||
579 | |||
580 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
581 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
582 | policy->cur = calc_speed(longhaul_get_cpu_mult()); | ||
583 | |||
584 | ret = cpufreq_frequency_table_cpuinfo(policy, longhaul_table); | ||
585 | if (ret) | ||
586 | return ret; | ||
587 | |||
588 | cpufreq_frequency_table_get_attr(longhaul_table, policy->cpu); | ||
589 | |||
590 | return 0; | ||
591 | } | ||
592 | |||
593 | static int __devexit longhaul_cpu_exit(struct cpufreq_policy *policy) | ||
594 | { | ||
595 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
596 | return 0; | ||
597 | } | ||
598 | |||
599 | static struct freq_attr* longhaul_attr[] = { | ||
600 | &cpufreq_freq_attr_scaling_available_freqs, | ||
601 | NULL, | ||
602 | }; | ||
603 | |||
604 | static struct cpufreq_driver longhaul_driver = { | ||
605 | .verify = longhaul_verify, | ||
606 | .target = longhaul_target, | ||
607 | .get = longhaul_get, | ||
608 | .init = longhaul_cpu_init, | ||
609 | .exit = __devexit_p(longhaul_cpu_exit), | ||
610 | .name = "longhaul", | ||
611 | .owner = THIS_MODULE, | ||
612 | .attr = longhaul_attr, | ||
613 | }; | ||
614 | |||
615 | |||
616 | static int __init longhaul_init(void) | ||
617 | { | ||
618 | struct cpuinfo_x86 *c = cpu_data; | ||
619 | |||
620 | if (c->x86_vendor != X86_VENDOR_CENTAUR || c->x86 != 6) | ||
621 | return -ENODEV; | ||
622 | |||
623 | switch (c->x86_model) { | ||
624 | case 6 ... 9: | ||
625 | return cpufreq_register_driver(&longhaul_driver); | ||
626 | default: | ||
627 | printk (KERN_INFO PFX "Unknown VIA CPU. Contact davej@codemonkey.org.uk\n"); | ||
628 | } | ||
629 | |||
630 | return -ENODEV; | ||
631 | } | ||
632 | |||
633 | |||
634 | static void __exit longhaul_exit(void) | ||
635 | { | ||
636 | int i=0; | ||
637 | |||
638 | for (i=0; i < numscales; i++) { | ||
639 | if (clock_ratio[i] == maxmult) { | ||
640 | longhaul_setstate(i); | ||
641 | break; | ||
642 | } | ||
643 | } | ||
644 | |||
645 | cpufreq_unregister_driver(&longhaul_driver); | ||
646 | kfree(longhaul_table); | ||
647 | } | ||
648 | |||
649 | module_param (dont_scale_voltage, int, 0644); | ||
650 | MODULE_PARM_DESC(dont_scale_voltage, "Don't scale voltage of processor"); | ||
651 | |||
652 | MODULE_AUTHOR ("Dave Jones <davej@codemonkey.org.uk>"); | ||
653 | MODULE_DESCRIPTION ("Longhaul driver for VIA Cyrix processors."); | ||
654 | MODULE_LICENSE ("GPL"); | ||
655 | |||
656 | module_init(longhaul_init); | ||
657 | module_exit(longhaul_exit); | ||
658 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/longhaul.h b/arch/i386/kernel/cpu/cpufreq/longhaul.h new file mode 100644 index 000000000000..2a495c162ec7 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/longhaul.h | |||
@@ -0,0 +1,466 @@ | |||
1 | /* | ||
2 | * longhaul.h | ||
3 | * (C) 2003 Dave Jones. | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * | ||
7 | * VIA-specific information | ||
8 | */ | ||
9 | |||
10 | union msr_bcr2 { | ||
11 | struct { | ||
12 | unsigned Reseved:19, // 18:0 | ||
13 | ESOFTBF:1, // 19 | ||
14 | Reserved2:3, // 22:20 | ||
15 | CLOCKMUL:4, // 26:23 | ||
16 | Reserved3:5; // 31:27 | ||
17 | } bits; | ||
18 | unsigned long val; | ||
19 | }; | ||
20 | |||
21 | union msr_longhaul { | ||
22 | struct { | ||
23 | unsigned RevisionID:4, // 3:0 | ||
24 | RevisionKey:4, // 7:4 | ||
25 | EnableSoftBusRatio:1, // 8 | ||
26 | EnableSoftVID:1, // 9 | ||
27 | EnableSoftBSEL:1, // 10 | ||
28 | Reserved:3, // 11:13 | ||
29 | SoftBusRatio4:1, // 14 | ||
30 | VRMRev:1, // 15 | ||
31 | SoftBusRatio:4, // 19:16 | ||
32 | SoftVID:5, // 24:20 | ||
33 | Reserved2:3, // 27:25 | ||
34 | SoftBSEL:2, // 29:28 | ||
35 | Reserved3:2, // 31:30 | ||
36 | MaxMHzBR:4, // 35:32 | ||
37 | MaximumVID:5, // 40:36 | ||
38 | MaxMHzFSB:2, // 42:41 | ||
39 | MaxMHzBR4:1, // 43 | ||
40 | Reserved4:4, // 47:44 | ||
41 | MinMHzBR:4, // 51:48 | ||
42 | MinimumVID:5, // 56:52 | ||
43 | MinMHzFSB:2, // 58:57 | ||
44 | MinMHzBR4:1, // 59 | ||
45 | Reserved5:4; // 63:60 | ||
46 | } bits; | ||
47 | unsigned long long val; | ||
48 | }; | ||
49 | |||
50 | /* | ||
51 | * Clock ratio tables. Div/Mod by 10 to get ratio. | ||
52 | * The eblcr ones specify the ratio read from the CPU. | ||
53 | * The clock_ratio ones specify what to write to the CPU. | ||
54 | */ | ||
55 | |||
56 | /* | ||
57 | * VIA C3 Samuel 1 & Samuel 2 (stepping 0) | ||
58 | */ | ||
59 | static int __initdata samuel1_clock_ratio[16] = { | ||
60 | -1, /* 0000 -> RESERVED */ | ||
61 | 30, /* 0001 -> 3.0x */ | ||
62 | 40, /* 0010 -> 4.0x */ | ||
63 | -1, /* 0011 -> RESERVED */ | ||
64 | -1, /* 0100 -> RESERVED */ | ||
65 | 35, /* 0101 -> 3.5x */ | ||
66 | 45, /* 0110 -> 4.5x */ | ||
67 | 55, /* 0111 -> 5.5x */ | ||
68 | 60, /* 1000 -> 6.0x */ | ||
69 | 70, /* 1001 -> 7.0x */ | ||
70 | 80, /* 1010 -> 8.0x */ | ||
71 | 50, /* 1011 -> 5.0x */ | ||
72 | 65, /* 1100 -> 6.5x */ | ||
73 | 75, /* 1101 -> 7.5x */ | ||
74 | -1, /* 1110 -> RESERVED */ | ||
75 | -1, /* 1111 -> RESERVED */ | ||
76 | }; | ||
77 | |||
78 | static int __initdata samuel1_eblcr[16] = { | ||
79 | 50, /* 0000 -> RESERVED */ | ||
80 | 30, /* 0001 -> 3.0x */ | ||
81 | 40, /* 0010 -> 4.0x */ | ||
82 | -1, /* 0011 -> RESERVED */ | ||
83 | 55, /* 0100 -> 5.5x */ | ||
84 | 35, /* 0101 -> 3.5x */ | ||
85 | 45, /* 0110 -> 4.5x */ | ||
86 | -1, /* 0111 -> RESERVED */ | ||
87 | -1, /* 1000 -> RESERVED */ | ||
88 | 70, /* 1001 -> 7.0x */ | ||
89 | 80, /* 1010 -> 8.0x */ | ||
90 | 60, /* 1011 -> 6.0x */ | ||
91 | -1, /* 1100 -> RESERVED */ | ||
92 | 75, /* 1101 -> 7.5x */ | ||
93 | -1, /* 1110 -> RESERVED */ | ||
94 | 65, /* 1111 -> 6.5x */ | ||
95 | }; | ||
96 | |||
97 | /* | ||
98 | * VIA C3 Samuel2 Stepping 1->15 | ||
99 | */ | ||
100 | static int __initdata samuel2_eblcr[16] = { | ||
101 | 50, /* 0000 -> 5.0x */ | ||
102 | 30, /* 0001 -> 3.0x */ | ||
103 | 40, /* 0010 -> 4.0x */ | ||
104 | 100, /* 0011 -> 10.0x */ | ||
105 | 55, /* 0100 -> 5.5x */ | ||
106 | 35, /* 0101 -> 3.5x */ | ||
107 | 45, /* 0110 -> 4.5x */ | ||
108 | 110, /* 0111 -> 11.0x */ | ||
109 | 90, /* 1000 -> 9.0x */ | ||
110 | 70, /* 1001 -> 7.0x */ | ||
111 | 80, /* 1010 -> 8.0x */ | ||
112 | 60, /* 1011 -> 6.0x */ | ||
113 | 120, /* 1100 -> 12.0x */ | ||
114 | 75, /* 1101 -> 7.5x */ | ||
115 | 130, /* 1110 -> 13.0x */ | ||
116 | 65, /* 1111 -> 6.5x */ | ||
117 | }; | ||
118 | |||
119 | /* | ||
120 | * VIA C3 Ezra | ||
121 | */ | ||
122 | static int __initdata ezra_clock_ratio[16] = { | ||
123 | 100, /* 0000 -> 10.0x */ | ||
124 | 30, /* 0001 -> 3.0x */ | ||
125 | 40, /* 0010 -> 4.0x */ | ||
126 | 90, /* 0011 -> 9.0x */ | ||
127 | 95, /* 0100 -> 9.5x */ | ||
128 | 35, /* 0101 -> 3.5x */ | ||
129 | 45, /* 0110 -> 4.5x */ | ||
130 | 55, /* 0111 -> 5.5x */ | ||
131 | 60, /* 1000 -> 6.0x */ | ||
132 | 70, /* 1001 -> 7.0x */ | ||
133 | 80, /* 1010 -> 8.0x */ | ||
134 | 50, /* 1011 -> 5.0x */ | ||
135 | 65, /* 1100 -> 6.5x */ | ||
136 | 75, /* 1101 -> 7.5x */ | ||
137 | 85, /* 1110 -> 8.5x */ | ||
138 | 120, /* 1111 -> 12.0x */ | ||
139 | }; | ||
140 | |||
141 | static int __initdata ezra_eblcr[16] = { | ||
142 | 50, /* 0000 -> 5.0x */ | ||
143 | 30, /* 0001 -> 3.0x */ | ||
144 | 40, /* 0010 -> 4.0x */ | ||
145 | 100, /* 0011 -> 10.0x */ | ||
146 | 55, /* 0100 -> 5.5x */ | ||
147 | 35, /* 0101 -> 3.5x */ | ||
148 | 45, /* 0110 -> 4.5x */ | ||
149 | 95, /* 0111 -> 9.5x */ | ||
150 | 90, /* 1000 -> 9.0x */ | ||
151 | 70, /* 1001 -> 7.0x */ | ||
152 | 80, /* 1010 -> 8.0x */ | ||
153 | 60, /* 1011 -> 6.0x */ | ||
154 | 120, /* 1100 -> 12.0x */ | ||
155 | 75, /* 1101 -> 7.5x */ | ||
156 | 85, /* 1110 -> 8.5x */ | ||
157 | 65, /* 1111 -> 6.5x */ | ||
158 | }; | ||
159 | |||
160 | /* | ||
161 | * VIA C3 (Ezra-T) [C5M]. | ||
162 | */ | ||
163 | static int __initdata ezrat_clock_ratio[32] = { | ||
164 | 100, /* 0000 -> 10.0x */ | ||
165 | 30, /* 0001 -> 3.0x */ | ||
166 | 40, /* 0010 -> 4.0x */ | ||
167 | 90, /* 0011 -> 9.0x */ | ||
168 | 95, /* 0100 -> 9.5x */ | ||
169 | 35, /* 0101 -> 3.5x */ | ||
170 | 45, /* 0110 -> 4.5x */ | ||
171 | 55, /* 0111 -> 5.5x */ | ||
172 | 60, /* 1000 -> 6.0x */ | ||
173 | 70, /* 1001 -> 7.0x */ | ||
174 | 80, /* 1010 -> 8.0x */ | ||
175 | 50, /* 1011 -> 5.0x */ | ||
176 | 65, /* 1100 -> 6.5x */ | ||
177 | 75, /* 1101 -> 7.5x */ | ||
178 | 85, /* 1110 -> 8.5x */ | ||
179 | 120, /* 1111 -> 12.0x */ | ||
180 | |||
181 | -1, /* 0000 -> RESERVED (10.0x) */ | ||
182 | 110, /* 0001 -> 11.0x */ | ||
183 | 120, /* 0010 -> 12.0x */ | ||
184 | -1, /* 0011 -> RESERVED (9.0x)*/ | ||
185 | 105, /* 0100 -> 10.5x */ | ||
186 | 115, /* 0101 -> 11.5x */ | ||
187 | 125, /* 0110 -> 12.5x */ | ||
188 | 135, /* 0111 -> 13.5x */ | ||
189 | 140, /* 1000 -> 14.0x */ | ||
190 | 150, /* 1001 -> 15.0x */ | ||
191 | 160, /* 1010 -> 16.0x */ | ||
192 | 130, /* 1011 -> 13.0x */ | ||
193 | 145, /* 1100 -> 14.5x */ | ||
194 | 155, /* 1101 -> 15.5x */ | ||
195 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
196 | -1, /* 1111 -> RESERVED (12.0x) */ | ||
197 | }; | ||
198 | |||
199 | static int __initdata ezrat_eblcr[32] = { | ||
200 | 50, /* 0000 -> 5.0x */ | ||
201 | 30, /* 0001 -> 3.0x */ | ||
202 | 40, /* 0010 -> 4.0x */ | ||
203 | 100, /* 0011 -> 10.0x */ | ||
204 | 55, /* 0100 -> 5.5x */ | ||
205 | 35, /* 0101 -> 3.5x */ | ||
206 | 45, /* 0110 -> 4.5x */ | ||
207 | 95, /* 0111 -> 9.5x */ | ||
208 | 90, /* 1000 -> 9.0x */ | ||
209 | 70, /* 1001 -> 7.0x */ | ||
210 | 80, /* 1010 -> 8.0x */ | ||
211 | 60, /* 1011 -> 6.0x */ | ||
212 | 120, /* 1100 -> 12.0x */ | ||
213 | 75, /* 1101 -> 7.5x */ | ||
214 | 85, /* 1110 -> 8.5x */ | ||
215 | 65, /* 1111 -> 6.5x */ | ||
216 | |||
217 | -1, /* 0000 -> RESERVED (9.0x) */ | ||
218 | 110, /* 0001 -> 11.0x */ | ||
219 | 120, /* 0010 -> 12.0x */ | ||
220 | -1, /* 0011 -> RESERVED (10.0x)*/ | ||
221 | 135, /* 0100 -> 13.5x */ | ||
222 | 115, /* 0101 -> 11.5x */ | ||
223 | 125, /* 0110 -> 12.5x */ | ||
224 | 105, /* 0111 -> 10.5x */ | ||
225 | 130, /* 1000 -> 13.0x */ | ||
226 | 150, /* 1001 -> 15.0x */ | ||
227 | 160, /* 1010 -> 16.0x */ | ||
228 | 140, /* 1011 -> 14.0x */ | ||
229 | -1, /* 1100 -> RESERVED (12.0x) */ | ||
230 | 155, /* 1101 -> 15.5x */ | ||
231 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
232 | 145, /* 1111 -> 14.5x */ | ||
233 | }; | ||
234 | |||
235 | /* | ||
236 | * VIA C3 Nehemiah */ | ||
237 | |||
238 | static int __initdata nehemiah_a_clock_ratio[32] = { | ||
239 | 100, /* 0000 -> 10.0x */ | ||
240 | 160, /* 0001 -> 16.0x */ | ||
241 | -1, /* 0010 -> RESERVED */ | ||
242 | 90, /* 0011 -> 9.0x */ | ||
243 | 95, /* 0100 -> 9.5x */ | ||
244 | -1, /* 0101 -> RESERVED */ | ||
245 | -1, /* 0110 -> RESERVED */ | ||
246 | 55, /* 0111 -> 5.5x */ | ||
247 | 60, /* 1000 -> 6.0x */ | ||
248 | 70, /* 1001 -> 7.0x */ | ||
249 | 80, /* 1010 -> 8.0x */ | ||
250 | 50, /* 1011 -> 5.0x */ | ||
251 | 65, /* 1100 -> 6.5x */ | ||
252 | 75, /* 1101 -> 7.5x */ | ||
253 | 85, /* 1110 -> 8.5x */ | ||
254 | 120, /* 1111 -> 12.0x */ | ||
255 | 100, /* 0000 -> 10.0x */ | ||
256 | -1, /* 0001 -> RESERVED */ | ||
257 | 120, /* 0010 -> 12.0x */ | ||
258 | 90, /* 0011 -> 9.0x */ | ||
259 | 105, /* 0100 -> 10.5x */ | ||
260 | 115, /* 0101 -> 11.5x */ | ||
261 | 125, /* 0110 -> 12.5x */ | ||
262 | 135, /* 0111 -> 13.5x */ | ||
263 | 140, /* 1000 -> 14.0x */ | ||
264 | 150, /* 1001 -> 15.0x */ | ||
265 | 160, /* 1010 -> 16.0x */ | ||
266 | 130, /* 1011 -> 13.0x */ | ||
267 | 145, /* 1100 -> 14.5x */ | ||
268 | 155, /* 1101 -> 15.5x */ | ||
269 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
270 | 120, /* 1111 -> 12.0x */ | ||
271 | }; | ||
272 | |||
273 | static int __initdata nehemiah_b_clock_ratio[32] = { | ||
274 | 100, /* 0000 -> 10.0x */ | ||
275 | 160, /* 0001 -> 16.0x */ | ||
276 | -1, /* 0010 -> RESERVED */ | ||
277 | 90, /* 0011 -> 9.0x */ | ||
278 | 95, /* 0100 -> 9.5x */ | ||
279 | -1, /* 0101 -> RESERVED */ | ||
280 | -1, /* 0110 -> RESERVED */ | ||
281 | 55, /* 0111 -> 5.5x */ | ||
282 | 60, /* 1000 -> 6.0x */ | ||
283 | 70, /* 1001 -> 7.0x */ | ||
284 | 80, /* 1010 -> 8.0x */ | ||
285 | 50, /* 1011 -> 5.0x */ | ||
286 | 65, /* 1100 -> 6.5x */ | ||
287 | 75, /* 1101 -> 7.5x */ | ||
288 | 85, /* 1110 -> 8.5x */ | ||
289 | 120, /* 1111 -> 12.0x */ | ||
290 | 100, /* 0000 -> 10.0x */ | ||
291 | 110, /* 0001 -> 11.0x */ | ||
292 | 120, /* 0010 -> 12.0x */ | ||
293 | 90, /* 0011 -> 9.0x */ | ||
294 | 105, /* 0100 -> 10.5x */ | ||
295 | 115, /* 0101 -> 11.5x */ | ||
296 | 125, /* 0110 -> 12.5x */ | ||
297 | 135, /* 0111 -> 13.5x */ | ||
298 | 140, /* 1000 -> 14.0x */ | ||
299 | 150, /* 1001 -> 15.0x */ | ||
300 | 160, /* 1010 -> 16.0x */ | ||
301 | 130, /* 1011 -> 13.0x */ | ||
302 | 145, /* 1100 -> 14.5x */ | ||
303 | 155, /* 1101 -> 15.5x */ | ||
304 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
305 | 120, /* 1111 -> 12.0x */ | ||
306 | }; | ||
307 | |||
308 | static int __initdata nehemiah_c_clock_ratio[32] = { | ||
309 | 100, /* 0000 -> 10.0x */ | ||
310 | 160, /* 0001 -> 16.0x */ | ||
311 | 40, /* 0010 -> RESERVED */ | ||
312 | 90, /* 0011 -> 9.0x */ | ||
313 | 95, /* 0100 -> 9.5x */ | ||
314 | -1, /* 0101 -> RESERVED */ | ||
315 | 45, /* 0110 -> RESERVED */ | ||
316 | 55, /* 0111 -> 5.5x */ | ||
317 | 60, /* 1000 -> 6.0x */ | ||
318 | 70, /* 1001 -> 7.0x */ | ||
319 | 80, /* 1010 -> 8.0x */ | ||
320 | 50, /* 1011 -> 5.0x */ | ||
321 | 65, /* 1100 -> 6.5x */ | ||
322 | 75, /* 1101 -> 7.5x */ | ||
323 | 85, /* 1110 -> 8.5x */ | ||
324 | 120, /* 1111 -> 12.0x */ | ||
325 | 100, /* 0000 -> 10.0x */ | ||
326 | 110, /* 0001 -> 11.0x */ | ||
327 | 120, /* 0010 -> 12.0x */ | ||
328 | 90, /* 0011 -> 9.0x */ | ||
329 | 105, /* 0100 -> 10.5x */ | ||
330 | 115, /* 0101 -> 11.5x */ | ||
331 | 125, /* 0110 -> 12.5x */ | ||
332 | 135, /* 0111 -> 13.5x */ | ||
333 | 140, /* 1000 -> 14.0x */ | ||
334 | 150, /* 1001 -> 15.0x */ | ||
335 | 160, /* 1010 -> 16.0x */ | ||
336 | 130, /* 1011 -> 13.0x */ | ||
337 | 145, /* 1100 -> 14.5x */ | ||
338 | 155, /* 1101 -> 15.5x */ | ||
339 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
340 | 120, /* 1111 -> 12.0x */ | ||
341 | }; | ||
342 | |||
343 | static int __initdata nehemiah_a_eblcr[32] = { | ||
344 | 50, /* 0000 -> 5.0x */ | ||
345 | 160, /* 0001 -> 16.0x */ | ||
346 | -1, /* 0010 -> RESERVED */ | ||
347 | 100, /* 0011 -> 10.0x */ | ||
348 | 55, /* 0100 -> 5.5x */ | ||
349 | -1, /* 0101 -> RESERVED */ | ||
350 | -1, /* 0110 -> RESERVED */ | ||
351 | 95, /* 0111 -> 9.5x */ | ||
352 | 90, /* 1000 -> 9.0x */ | ||
353 | 70, /* 1001 -> 7.0x */ | ||
354 | 80, /* 1010 -> 8.0x */ | ||
355 | 60, /* 1011 -> 6.0x */ | ||
356 | 120, /* 1100 -> 12.0x */ | ||
357 | 75, /* 1101 -> 7.5x */ | ||
358 | 85, /* 1110 -> 8.5x */ | ||
359 | 65, /* 1111 -> 6.5x */ | ||
360 | 90, /* 0000 -> 9.0x */ | ||
361 | -1, /* 0001 -> RESERVED */ | ||
362 | 120, /* 0010 -> 12.0x */ | ||
363 | 100, /* 0011 -> 10.0x */ | ||
364 | 135, /* 0100 -> 13.5x */ | ||
365 | 115, /* 0101 -> 11.5x */ | ||
366 | 125, /* 0110 -> 12.5x */ | ||
367 | 105, /* 0111 -> 10.5x */ | ||
368 | 130, /* 1000 -> 13.0x */ | ||
369 | 150, /* 1001 -> 15.0x */ | ||
370 | 160, /* 1010 -> 16.0x */ | ||
371 | 140, /* 1011 -> 14.0x */ | ||
372 | 120, /* 1100 -> 12.0x */ | ||
373 | 155, /* 1101 -> 15.5x */ | ||
374 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
375 | 145 /* 1111 -> 14.5x */ | ||
376 | /* end of table */ | ||
377 | }; | ||
378 | static int __initdata nehemiah_b_eblcr[32] = { | ||
379 | 50, /* 0000 -> 5.0x */ | ||
380 | 160, /* 0001 -> 16.0x */ | ||
381 | -1, /* 0010 -> RESERVED */ | ||
382 | 100, /* 0011 -> 10.0x */ | ||
383 | 55, /* 0100 -> 5.5x */ | ||
384 | -1, /* 0101 -> RESERVED */ | ||
385 | -1, /* 0110 -> RESERVED */ | ||
386 | 95, /* 0111 -> 9.5x */ | ||
387 | 90, /* 1000 -> 9.0x */ | ||
388 | 70, /* 1001 -> 7.0x */ | ||
389 | 80, /* 1010 -> 8.0x */ | ||
390 | 60, /* 1011 -> 6.0x */ | ||
391 | 120, /* 1100 -> 12.0x */ | ||
392 | 75, /* 1101 -> 7.5x */ | ||
393 | 85, /* 1110 -> 8.5x */ | ||
394 | 65, /* 1111 -> 6.5x */ | ||
395 | 90, /* 0000 -> 9.0x */ | ||
396 | 110, /* 0001 -> 11.0x */ | ||
397 | 120, /* 0010 -> 12.0x */ | ||
398 | 100, /* 0011 -> 10.0x */ | ||
399 | 135, /* 0100 -> 13.5x */ | ||
400 | 115, /* 0101 -> 11.5x */ | ||
401 | 125, /* 0110 -> 12.5x */ | ||
402 | 105, /* 0111 -> 10.5x */ | ||
403 | 130, /* 1000 -> 13.0x */ | ||
404 | 150, /* 1001 -> 15.0x */ | ||
405 | 160, /* 1010 -> 16.0x */ | ||
406 | 140, /* 1011 -> 14.0x */ | ||
407 | 120, /* 1100 -> 12.0x */ | ||
408 | 155, /* 1101 -> 15.5x */ | ||
409 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
410 | 145 /* 1111 -> 14.5x */ | ||
411 | /* end of table */ | ||
412 | }; | ||
413 | static int __initdata nehemiah_c_eblcr[32] = { | ||
414 | 50, /* 0000 -> 5.0x */ | ||
415 | 160, /* 0001 -> 16.0x */ | ||
416 | 40, /* 0010 -> RESERVED */ | ||
417 | 100, /* 0011 -> 10.0x */ | ||
418 | 55, /* 0100 -> 5.5x */ | ||
419 | -1, /* 0101 -> RESERVED */ | ||
420 | 45, /* 0110 -> RESERVED */ | ||
421 | 95, /* 0111 -> 9.5x */ | ||
422 | 90, /* 1000 -> 9.0x */ | ||
423 | 70, /* 1001 -> 7.0x */ | ||
424 | 80, /* 1010 -> 8.0x */ | ||
425 | 60, /* 1011 -> 6.0x */ | ||
426 | 120, /* 1100 -> 12.0x */ | ||
427 | 75, /* 1101 -> 7.5x */ | ||
428 | 85, /* 1110 -> 8.5x */ | ||
429 | 65, /* 1111 -> 6.5x */ | ||
430 | 90, /* 0000 -> 9.0x */ | ||
431 | 110, /* 0001 -> 11.0x */ | ||
432 | 120, /* 0010 -> 12.0x */ | ||
433 | 100, /* 0011 -> 10.0x */ | ||
434 | 135, /* 0100 -> 13.5x */ | ||
435 | 115, /* 0101 -> 11.5x */ | ||
436 | 125, /* 0110 -> 12.5x */ | ||
437 | 105, /* 0111 -> 10.5x */ | ||
438 | 130, /* 1000 -> 13.0x */ | ||
439 | 150, /* 1001 -> 15.0x */ | ||
440 | 160, /* 1010 -> 16.0x */ | ||
441 | 140, /* 1011 -> 14.0x */ | ||
442 | 120, /* 1100 -> 12.0x */ | ||
443 | 155, /* 1101 -> 15.5x */ | ||
444 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
445 | 145 /* 1111 -> 14.5x */ | ||
446 | /* end of table */ | ||
447 | }; | ||
448 | |||
449 | /* | ||
450 | * Voltage scales. Div/Mod by 1000 to get actual voltage. | ||
451 | * Which scale to use depends on the VRM type in use. | ||
452 | */ | ||
453 | static int __initdata vrm85scales[32] = { | ||
454 | 1250, 1200, 1150, 1100, 1050, 1800, 1750, 1700, | ||
455 | 1650, 1600, 1550, 1500, 1450, 1400, 1350, 1300, | ||
456 | 1275, 1225, 1175, 1125, 1075, 1825, 1775, 1725, | ||
457 | 1675, 1625, 1575, 1525, 1475, 1425, 1375, 1325, | ||
458 | }; | ||
459 | |||
460 | static int __initdata mobilevrmscales[32] = { | ||
461 | 2000, 1950, 1900, 1850, 1800, 1750, 1700, 1650, | ||
462 | 1600, 1550, 1500, 1450, 1500, 1350, 1300, -1, | ||
463 | 1275, 1250, 1225, 1200, 1175, 1150, 1125, 1100, | ||
464 | 1075, 1050, 1025, 1000, 975, 950, 925, -1, | ||
465 | }; | ||
466 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/longrun.c b/arch/i386/kernel/cpu/cpufreq/longrun.c new file mode 100644 index 000000000000..e3868de4dc2e --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/longrun.c | |||
@@ -0,0 +1,326 @@ | |||
1 | /* | ||
2 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
7 | */ | ||
8 | |||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/slab.h> | ||
13 | #include <linux/cpufreq.h> | ||
14 | |||
15 | #include <asm/msr.h> | ||
16 | #include <asm/processor.h> | ||
17 | #include <asm/timex.h> | ||
18 | |||
19 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "longrun", msg) | ||
20 | |||
21 | static struct cpufreq_driver longrun_driver; | ||
22 | |||
23 | /** | ||
24 | * longrun_{low,high}_freq is needed for the conversion of cpufreq kHz | ||
25 | * values into per cent values. In TMTA microcode, the following is valid: | ||
26 | * performance_pctg = (current_freq - low_freq)/(high_freq - low_freq) | ||
27 | */ | ||
28 | static unsigned int longrun_low_freq, longrun_high_freq; | ||
29 | |||
30 | |||
31 | /** | ||
32 | * longrun_get_policy - get the current LongRun policy | ||
33 | * @policy: struct cpufreq_policy where current policy is written into | ||
34 | * | ||
35 | * Reads the current LongRun policy by access to MSR_TMTA_LONGRUN_FLAGS | ||
36 | * and MSR_TMTA_LONGRUN_CTRL | ||
37 | */ | ||
38 | static void __init longrun_get_policy(struct cpufreq_policy *policy) | ||
39 | { | ||
40 | u32 msr_lo, msr_hi; | ||
41 | |||
42 | rdmsr(MSR_TMTA_LONGRUN_FLAGS, msr_lo, msr_hi); | ||
43 | dprintk("longrun flags are %x - %x\n", msr_lo, msr_hi); | ||
44 | if (msr_lo & 0x01) | ||
45 | policy->policy = CPUFREQ_POLICY_PERFORMANCE; | ||
46 | else | ||
47 | policy->policy = CPUFREQ_POLICY_POWERSAVE; | ||
48 | |||
49 | rdmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
50 | dprintk("longrun ctrl is %x - %x\n", msr_lo, msr_hi); | ||
51 | msr_lo &= 0x0000007F; | ||
52 | msr_hi &= 0x0000007F; | ||
53 | |||
54 | if ( longrun_high_freq <= longrun_low_freq ) { | ||
55 | /* Assume degenerate Longrun table */ | ||
56 | policy->min = policy->max = longrun_high_freq; | ||
57 | } else { | ||
58 | policy->min = longrun_low_freq + msr_lo * | ||
59 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
60 | policy->max = longrun_low_freq + msr_hi * | ||
61 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
62 | } | ||
63 | policy->cpu = 0; | ||
64 | } | ||
65 | |||
66 | |||
67 | /** | ||
68 | * longrun_set_policy - sets a new CPUFreq policy | ||
69 | * @policy: new policy | ||
70 | * | ||
71 | * Sets a new CPUFreq policy on LongRun-capable processors. This function | ||
72 | * has to be called with cpufreq_driver locked. | ||
73 | */ | ||
74 | static int longrun_set_policy(struct cpufreq_policy *policy) | ||
75 | { | ||
76 | u32 msr_lo, msr_hi; | ||
77 | u32 pctg_lo, pctg_hi; | ||
78 | |||
79 | if (!policy) | ||
80 | return -EINVAL; | ||
81 | |||
82 | if ( longrun_high_freq <= longrun_low_freq ) { | ||
83 | /* Assume degenerate Longrun table */ | ||
84 | pctg_lo = pctg_hi = 100; | ||
85 | } else { | ||
86 | pctg_lo = (policy->min - longrun_low_freq) / | ||
87 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
88 | pctg_hi = (policy->max - longrun_low_freq) / | ||
89 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
90 | } | ||
91 | |||
92 | if (pctg_hi > 100) | ||
93 | pctg_hi = 100; | ||
94 | if (pctg_lo > pctg_hi) | ||
95 | pctg_lo = pctg_hi; | ||
96 | |||
97 | /* performance or economy mode */ | ||
98 | rdmsr(MSR_TMTA_LONGRUN_FLAGS, msr_lo, msr_hi); | ||
99 | msr_lo &= 0xFFFFFFFE; | ||
100 | switch (policy->policy) { | ||
101 | case CPUFREQ_POLICY_PERFORMANCE: | ||
102 | msr_lo |= 0x00000001; | ||
103 | break; | ||
104 | case CPUFREQ_POLICY_POWERSAVE: | ||
105 | break; | ||
106 | } | ||
107 | wrmsr(MSR_TMTA_LONGRUN_FLAGS, msr_lo, msr_hi); | ||
108 | |||
109 | /* lower and upper boundary */ | ||
110 | rdmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
111 | msr_lo &= 0xFFFFFF80; | ||
112 | msr_hi &= 0xFFFFFF80; | ||
113 | msr_lo |= pctg_lo; | ||
114 | msr_hi |= pctg_hi; | ||
115 | wrmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
116 | |||
117 | return 0; | ||
118 | } | ||
119 | |||
120 | |||
121 | /** | ||
122 | * longrun_verify_poliy - verifies a new CPUFreq policy | ||
123 | * @policy: the policy to verify | ||
124 | * | ||
125 | * Validates a new CPUFreq policy. This function has to be called with | ||
126 | * cpufreq_driver locked. | ||
127 | */ | ||
128 | static int longrun_verify_policy(struct cpufreq_policy *policy) | ||
129 | { | ||
130 | if (!policy) | ||
131 | return -EINVAL; | ||
132 | |||
133 | policy->cpu = 0; | ||
134 | cpufreq_verify_within_limits(policy, | ||
135 | policy->cpuinfo.min_freq, | ||
136 | policy->cpuinfo.max_freq); | ||
137 | |||
138 | if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) && | ||
139 | (policy->policy != CPUFREQ_POLICY_PERFORMANCE)) | ||
140 | return -EINVAL; | ||
141 | |||
142 | return 0; | ||
143 | } | ||
144 | |||
145 | static unsigned int longrun_get(unsigned int cpu) | ||
146 | { | ||
147 | u32 eax, ebx, ecx, edx; | ||
148 | |||
149 | if (cpu) | ||
150 | return 0; | ||
151 | |||
152 | cpuid(0x80860007, &eax, &ebx, &ecx, &edx); | ||
153 | dprintk("cpuid eax is %u\n", eax); | ||
154 | |||
155 | return (eax * 1000); | ||
156 | } | ||
157 | |||
158 | /** | ||
159 | * longrun_determine_freqs - determines the lowest and highest possible core frequency | ||
160 | * @low_freq: an int to put the lowest frequency into | ||
161 | * @high_freq: an int to put the highest frequency into | ||
162 | * | ||
163 | * Determines the lowest and highest possible core frequencies on this CPU. | ||
164 | * This is necessary to calculate the performance percentage according to | ||
165 | * TMTA rules: | ||
166 | * performance_pctg = (target_freq - low_freq)/(high_freq - low_freq) | ||
167 | */ | ||
168 | static unsigned int __init longrun_determine_freqs(unsigned int *low_freq, | ||
169 | unsigned int *high_freq) | ||
170 | { | ||
171 | u32 msr_lo, msr_hi; | ||
172 | u32 save_lo, save_hi; | ||
173 | u32 eax, ebx, ecx, edx; | ||
174 | u32 try_hi; | ||
175 | struct cpuinfo_x86 *c = cpu_data; | ||
176 | |||
177 | if (!low_freq || !high_freq) | ||
178 | return -EINVAL; | ||
179 | |||
180 | if (cpu_has(c, X86_FEATURE_LRTI)) { | ||
181 | /* if the LongRun Table Interface is present, the | ||
182 | * detection is a bit easier: | ||
183 | * For minimum frequency, read out the maximum | ||
184 | * level (msr_hi), write that into "currently | ||
185 | * selected level", and read out the frequency. | ||
186 | * For maximum frequency, read out level zero. | ||
187 | */ | ||
188 | /* minimum */ | ||
189 | rdmsr(MSR_TMTA_LRTI_READOUT, msr_lo, msr_hi); | ||
190 | wrmsr(MSR_TMTA_LRTI_READOUT, msr_hi, msr_hi); | ||
191 | rdmsr(MSR_TMTA_LRTI_VOLT_MHZ, msr_lo, msr_hi); | ||
192 | *low_freq = msr_lo * 1000; /* to kHz */ | ||
193 | |||
194 | /* maximum */ | ||
195 | wrmsr(MSR_TMTA_LRTI_READOUT, 0, msr_hi); | ||
196 | rdmsr(MSR_TMTA_LRTI_VOLT_MHZ, msr_lo, msr_hi); | ||
197 | *high_freq = msr_lo * 1000; /* to kHz */ | ||
198 | |||
199 | dprintk("longrun table interface told %u - %u kHz\n", *low_freq, *high_freq); | ||
200 | |||
201 | if (*low_freq > *high_freq) | ||
202 | *low_freq = *high_freq; | ||
203 | return 0; | ||
204 | } | ||
205 | |||
206 | /* set the upper border to the value determined during TSC init */ | ||
207 | *high_freq = (cpu_khz / 1000); | ||
208 | *high_freq = *high_freq * 1000; | ||
209 | dprintk("high frequency is %u kHz\n", *high_freq); | ||
210 | |||
211 | /* get current borders */ | ||
212 | rdmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
213 | save_lo = msr_lo & 0x0000007F; | ||
214 | save_hi = msr_hi & 0x0000007F; | ||
215 | |||
216 | /* if current perf_pctg is larger than 90%, we need to decrease the | ||
217 | * upper limit to make the calculation more accurate. | ||
218 | */ | ||
219 | cpuid(0x80860007, &eax, &ebx, &ecx, &edx); | ||
220 | /* try decreasing in 10% steps, some processors react only | ||
221 | * on some barrier values */ | ||
222 | for (try_hi = 80; try_hi > 0 && ecx > 90; try_hi -=10) { | ||
223 | /* set to 0 to try_hi perf_pctg */ | ||
224 | msr_lo &= 0xFFFFFF80; | ||
225 | msr_hi &= 0xFFFFFF80; | ||
226 | msr_lo |= 0; | ||
227 | msr_hi |= try_hi; | ||
228 | wrmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
229 | |||
230 | /* read out current core MHz and current perf_pctg */ | ||
231 | cpuid(0x80860007, &eax, &ebx, &ecx, &edx); | ||
232 | |||
233 | /* restore values */ | ||
234 | wrmsr(MSR_TMTA_LONGRUN_CTRL, save_lo, save_hi); | ||
235 | } | ||
236 | dprintk("percentage is %u %%, freq is %u MHz\n", ecx, eax); | ||
237 | |||
238 | /* performance_pctg = (current_freq - low_freq)/(high_freq - low_freq) | ||
239 | * eqals | ||
240 | * low_freq * ( 1 - perf_pctg) = (cur_freq - high_freq * perf_pctg) | ||
241 | * | ||
242 | * high_freq * perf_pctg is stored tempoarily into "ebx". | ||
243 | */ | ||
244 | ebx = (((cpu_khz / 1000) * ecx) / 100); /* to MHz */ | ||
245 | |||
246 | if ((ecx > 95) || (ecx == 0) || (eax < ebx)) | ||
247 | return -EIO; | ||
248 | |||
249 | edx = (eax - ebx) / (100 - ecx); | ||
250 | *low_freq = edx * 1000; /* back to kHz */ | ||
251 | |||
252 | dprintk("low frequency is %u kHz\n", *low_freq); | ||
253 | |||
254 | if (*low_freq > *high_freq) | ||
255 | *low_freq = *high_freq; | ||
256 | |||
257 | return 0; | ||
258 | } | ||
259 | |||
260 | |||
261 | static int __init longrun_cpu_init(struct cpufreq_policy *policy) | ||
262 | { | ||
263 | int result = 0; | ||
264 | |||
265 | /* capability check */ | ||
266 | if (policy->cpu != 0) | ||
267 | return -ENODEV; | ||
268 | |||
269 | /* detect low and high frequency */ | ||
270 | result = longrun_determine_freqs(&longrun_low_freq, &longrun_high_freq); | ||
271 | if (result) | ||
272 | return result; | ||
273 | |||
274 | /* cpuinfo and default policy values */ | ||
275 | policy->cpuinfo.min_freq = longrun_low_freq; | ||
276 | policy->cpuinfo.max_freq = longrun_high_freq; | ||
277 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
278 | longrun_get_policy(policy); | ||
279 | |||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | |||
284 | static struct cpufreq_driver longrun_driver = { | ||
285 | .flags = CPUFREQ_CONST_LOOPS, | ||
286 | .verify = longrun_verify_policy, | ||
287 | .setpolicy = longrun_set_policy, | ||
288 | .get = longrun_get, | ||
289 | .init = longrun_cpu_init, | ||
290 | .name = "longrun", | ||
291 | .owner = THIS_MODULE, | ||
292 | }; | ||
293 | |||
294 | |||
295 | /** | ||
296 | * longrun_init - initializes the Transmeta Crusoe LongRun CPUFreq driver | ||
297 | * | ||
298 | * Initializes the LongRun support. | ||
299 | */ | ||
300 | static int __init longrun_init(void) | ||
301 | { | ||
302 | struct cpuinfo_x86 *c = cpu_data; | ||
303 | |||
304 | if (c->x86_vendor != X86_VENDOR_TRANSMETA || | ||
305 | !cpu_has(c, X86_FEATURE_LONGRUN)) | ||
306 | return -ENODEV; | ||
307 | |||
308 | return cpufreq_register_driver(&longrun_driver); | ||
309 | } | ||
310 | |||
311 | |||
312 | /** | ||
313 | * longrun_exit - unregisters LongRun support | ||
314 | */ | ||
315 | static void __exit longrun_exit(void) | ||
316 | { | ||
317 | cpufreq_unregister_driver(&longrun_driver); | ||
318 | } | ||
319 | |||
320 | |||
321 | MODULE_AUTHOR ("Dominik Brodowski <linux@brodo.de>"); | ||
322 | MODULE_DESCRIPTION ("LongRun driver for Transmeta Crusoe and Efficeon processors."); | ||
323 | MODULE_LICENSE ("GPL"); | ||
324 | |||
325 | module_init(longrun_init); | ||
326 | module_exit(longrun_exit); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/p4-clockmod.c b/arch/i386/kernel/cpu/cpufreq/p4-clockmod.c new file mode 100644 index 000000000000..aa622d52c6e5 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/p4-clockmod.c | |||
@@ -0,0 +1,337 @@ | |||
1 | /* | ||
2 | * Pentium 4/Xeon CPU on demand clock modulation/speed scaling | ||
3 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
4 | * (C) 2002 Zwane Mwaikambo <zwane@commfireservices.com> | ||
5 | * (C) 2002 Arjan van de Ven <arjanv@redhat.com> | ||
6 | * (C) 2002 Tora T. Engstad | ||
7 | * All Rights Reserved | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or | ||
10 | * modify it under the terms of the GNU General Public License | ||
11 | * as published by the Free Software Foundation; either version | ||
12 | * 2 of the License, or (at your option) any later version. | ||
13 | * | ||
14 | * The author(s) of this software shall not be held liable for damages | ||
15 | * of any nature resulting due to the use of this software. This | ||
16 | * software is provided AS-IS with no warranties. | ||
17 | * | ||
18 | * Date Errata Description | ||
19 | * 20020525 N44, O17 12.5% or 25% DC causes lockup | ||
20 | * | ||
21 | */ | ||
22 | |||
23 | #include <linux/config.h> | ||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/smp.h> | ||
28 | #include <linux/cpufreq.h> | ||
29 | #include <linux/slab.h> | ||
30 | #include <linux/cpumask.h> | ||
31 | |||
32 | #include <asm/processor.h> | ||
33 | #include <asm/msr.h> | ||
34 | #include <asm/timex.h> | ||
35 | |||
36 | #include "speedstep-lib.h" | ||
37 | |||
38 | #define PFX "p4-clockmod: " | ||
39 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "p4-clockmod", msg) | ||
40 | |||
41 | /* | ||
42 | * Duty Cycle (3bits), note DC_DISABLE is not specified in | ||
43 | * intel docs i just use it to mean disable | ||
44 | */ | ||
45 | enum { | ||
46 | DC_RESV, DC_DFLT, DC_25PT, DC_38PT, DC_50PT, | ||
47 | DC_64PT, DC_75PT, DC_88PT, DC_DISABLE | ||
48 | }; | ||
49 | |||
50 | #define DC_ENTRIES 8 | ||
51 | |||
52 | |||
53 | static int has_N44_O17_errata[NR_CPUS]; | ||
54 | static unsigned int stock_freq; | ||
55 | static struct cpufreq_driver p4clockmod_driver; | ||
56 | static unsigned int cpufreq_p4_get(unsigned int cpu); | ||
57 | |||
58 | static int cpufreq_p4_setdc(unsigned int cpu, unsigned int newstate) | ||
59 | { | ||
60 | u32 l, h; | ||
61 | |||
62 | if (!cpu_online(cpu) || (newstate > DC_DISABLE) || (newstate == DC_RESV)) | ||
63 | return -EINVAL; | ||
64 | |||
65 | rdmsr(MSR_IA32_THERM_STATUS, l, h); | ||
66 | |||
67 | if (l & 0x01) | ||
68 | dprintk("CPU#%d currently thermal throttled\n", cpu); | ||
69 | |||
70 | if (has_N44_O17_errata[cpu] && (newstate == DC_25PT || newstate == DC_DFLT)) | ||
71 | newstate = DC_38PT; | ||
72 | |||
73 | rdmsr(MSR_IA32_THERM_CONTROL, l, h); | ||
74 | if (newstate == DC_DISABLE) { | ||
75 | dprintk("CPU#%d disabling modulation\n", cpu); | ||
76 | wrmsr(MSR_IA32_THERM_CONTROL, l & ~(1<<4), h); | ||
77 | } else { | ||
78 | dprintk("CPU#%d setting duty cycle to %d%%\n", | ||
79 | cpu, ((125 * newstate) / 10)); | ||
80 | /* bits 63 - 5 : reserved | ||
81 | * bit 4 : enable/disable | ||
82 | * bits 3-1 : duty cycle | ||
83 | * bit 0 : reserved | ||
84 | */ | ||
85 | l = (l & ~14); | ||
86 | l = l | (1<<4) | ((newstate & 0x7)<<1); | ||
87 | wrmsr(MSR_IA32_THERM_CONTROL, l, h); | ||
88 | } | ||
89 | |||
90 | return 0; | ||
91 | } | ||
92 | |||
93 | |||
94 | static struct cpufreq_frequency_table p4clockmod_table[] = { | ||
95 | {DC_RESV, CPUFREQ_ENTRY_INVALID}, | ||
96 | {DC_DFLT, 0}, | ||
97 | {DC_25PT, 0}, | ||
98 | {DC_38PT, 0}, | ||
99 | {DC_50PT, 0}, | ||
100 | {DC_64PT, 0}, | ||
101 | {DC_75PT, 0}, | ||
102 | {DC_88PT, 0}, | ||
103 | {DC_DISABLE, 0}, | ||
104 | {DC_RESV, CPUFREQ_TABLE_END}, | ||
105 | }; | ||
106 | |||
107 | |||
108 | static int cpufreq_p4_target(struct cpufreq_policy *policy, | ||
109 | unsigned int target_freq, | ||
110 | unsigned int relation) | ||
111 | { | ||
112 | unsigned int newstate = DC_RESV; | ||
113 | struct cpufreq_freqs freqs; | ||
114 | cpumask_t cpus_allowed; | ||
115 | int i; | ||
116 | |||
117 | if (cpufreq_frequency_table_target(policy, &p4clockmod_table[0], target_freq, relation, &newstate)) | ||
118 | return -EINVAL; | ||
119 | |||
120 | freqs.old = cpufreq_p4_get(policy->cpu); | ||
121 | freqs.new = stock_freq * p4clockmod_table[newstate].index / 8; | ||
122 | |||
123 | if (freqs.new == freqs.old) | ||
124 | return 0; | ||
125 | |||
126 | /* notifiers */ | ||
127 | for_each_cpu_mask(i, policy->cpus) { | ||
128 | freqs.cpu = i; | ||
129 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
130 | } | ||
131 | |||
132 | /* run on each logical CPU, see section 13.15.3 of IA32 Intel Architecture Software | ||
133 | * Developer's Manual, Volume 3 | ||
134 | */ | ||
135 | cpus_allowed = current->cpus_allowed; | ||
136 | |||
137 | for_each_cpu_mask(i, policy->cpus) { | ||
138 | cpumask_t this_cpu = cpumask_of_cpu(i); | ||
139 | |||
140 | set_cpus_allowed(current, this_cpu); | ||
141 | BUG_ON(smp_processor_id() != i); | ||
142 | |||
143 | cpufreq_p4_setdc(i, p4clockmod_table[newstate].index); | ||
144 | } | ||
145 | set_cpus_allowed(current, cpus_allowed); | ||
146 | |||
147 | /* notifiers */ | ||
148 | for_each_cpu_mask(i, policy->cpus) { | ||
149 | freqs.cpu = i; | ||
150 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
151 | } | ||
152 | |||
153 | return 0; | ||
154 | } | ||
155 | |||
156 | |||
157 | static int cpufreq_p4_verify(struct cpufreq_policy *policy) | ||
158 | { | ||
159 | return cpufreq_frequency_table_verify(policy, &p4clockmod_table[0]); | ||
160 | } | ||
161 | |||
162 | |||
163 | static unsigned int cpufreq_p4_get_frequency(struct cpuinfo_x86 *c) | ||
164 | { | ||
165 | if ((c->x86 == 0x06) && (c->x86_model == 0x09)) { | ||
166 | /* Pentium M (Banias) */ | ||
167 | printk(KERN_WARNING PFX "Warning: Pentium M detected. " | ||
168 | "The speedstep_centrino module offers voltage scaling" | ||
169 | " in addition of frequency scaling. You should use " | ||
170 | "that instead of p4-clockmod, if possible.\n"); | ||
171 | return speedstep_get_processor_frequency(SPEEDSTEP_PROCESSOR_PM); | ||
172 | } | ||
173 | |||
174 | if ((c->x86 == 0x06) && (c->x86_model == 0x0D)) { | ||
175 | /* Pentium M (Dothan) */ | ||
176 | printk(KERN_WARNING PFX "Warning: Pentium M detected. " | ||
177 | "The speedstep_centrino module offers voltage scaling" | ||
178 | " in addition of frequency scaling. You should use " | ||
179 | "that instead of p4-clockmod, if possible.\n"); | ||
180 | /* on P-4s, the TSC runs with constant frequency independent whether | ||
181 | * throttling is active or not. */ | ||
182 | p4clockmod_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
183 | return speedstep_get_processor_frequency(SPEEDSTEP_PROCESSOR_PM); | ||
184 | } | ||
185 | |||
186 | if (c->x86 != 0xF) { | ||
187 | printk(KERN_WARNING PFX "Unknown p4-clockmod-capable CPU. Please send an e-mail to <linux@brodo.de>\n"); | ||
188 | return 0; | ||
189 | } | ||
190 | |||
191 | /* on P-4s, the TSC runs with constant frequency independent whether | ||
192 | * throttling is active or not. */ | ||
193 | p4clockmod_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
194 | |||
195 | if (speedstep_detect_processor() == SPEEDSTEP_PROCESSOR_P4M) { | ||
196 | printk(KERN_WARNING PFX "Warning: Pentium 4-M detected. " | ||
197 | "The speedstep-ich or acpi cpufreq modules offer " | ||
198 | "voltage scaling in addition of frequency scaling. " | ||
199 | "You should use either one instead of p4-clockmod, " | ||
200 | "if possible.\n"); | ||
201 | return speedstep_get_processor_frequency(SPEEDSTEP_PROCESSOR_P4M); | ||
202 | } | ||
203 | |||
204 | return speedstep_get_processor_frequency(SPEEDSTEP_PROCESSOR_P4D); | ||
205 | } | ||
206 | |||
207 | |||
208 | |||
209 | static int cpufreq_p4_cpu_init(struct cpufreq_policy *policy) | ||
210 | { | ||
211 | struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; | ||
212 | int cpuid = 0; | ||
213 | unsigned int i; | ||
214 | |||
215 | #ifdef CONFIG_SMP | ||
216 | policy->cpus = cpu_sibling_map[policy->cpu]; | ||
217 | #endif | ||
218 | |||
219 | /* Errata workaround */ | ||
220 | cpuid = (c->x86 << 8) | (c->x86_model << 4) | c->x86_mask; | ||
221 | switch (cpuid) { | ||
222 | case 0x0f07: | ||
223 | case 0x0f0a: | ||
224 | case 0x0f11: | ||
225 | case 0x0f12: | ||
226 | has_N44_O17_errata[policy->cpu] = 1; | ||
227 | dprintk("has errata -- disabling low frequencies\n"); | ||
228 | } | ||
229 | |||
230 | /* get max frequency */ | ||
231 | stock_freq = cpufreq_p4_get_frequency(c); | ||
232 | if (!stock_freq) | ||
233 | return -EINVAL; | ||
234 | |||
235 | /* table init */ | ||
236 | for (i=1; (p4clockmod_table[i].frequency != CPUFREQ_TABLE_END); i++) { | ||
237 | if ((i<2) && (has_N44_O17_errata[policy->cpu])) | ||
238 | p4clockmod_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
239 | else | ||
240 | p4clockmod_table[i].frequency = (stock_freq * i)/8; | ||
241 | } | ||
242 | cpufreq_frequency_table_get_attr(p4clockmod_table, policy->cpu); | ||
243 | |||
244 | /* cpuinfo and default policy values */ | ||
245 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
246 | policy->cpuinfo.transition_latency = 1000000; /* assumed */ | ||
247 | policy->cur = stock_freq; | ||
248 | |||
249 | return cpufreq_frequency_table_cpuinfo(policy, &p4clockmod_table[0]); | ||
250 | } | ||
251 | |||
252 | |||
253 | static int cpufreq_p4_cpu_exit(struct cpufreq_policy *policy) | ||
254 | { | ||
255 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
256 | return 0; | ||
257 | } | ||
258 | |||
259 | static unsigned int cpufreq_p4_get(unsigned int cpu) | ||
260 | { | ||
261 | cpumask_t cpus_allowed; | ||
262 | u32 l, h; | ||
263 | |||
264 | cpus_allowed = current->cpus_allowed; | ||
265 | |||
266 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
267 | BUG_ON(smp_processor_id() != cpu); | ||
268 | |||
269 | rdmsr(MSR_IA32_THERM_CONTROL, l, h); | ||
270 | |||
271 | set_cpus_allowed(current, cpus_allowed); | ||
272 | |||
273 | if (l & 0x10) { | ||
274 | l = l >> 1; | ||
275 | l &= 0x7; | ||
276 | } else | ||
277 | l = DC_DISABLE; | ||
278 | |||
279 | if (l != DC_DISABLE) | ||
280 | return (stock_freq * l / 8); | ||
281 | |||
282 | return stock_freq; | ||
283 | } | ||
284 | |||
285 | static struct freq_attr* p4clockmod_attr[] = { | ||
286 | &cpufreq_freq_attr_scaling_available_freqs, | ||
287 | NULL, | ||
288 | }; | ||
289 | |||
290 | static struct cpufreq_driver p4clockmod_driver = { | ||
291 | .verify = cpufreq_p4_verify, | ||
292 | .target = cpufreq_p4_target, | ||
293 | .init = cpufreq_p4_cpu_init, | ||
294 | .exit = cpufreq_p4_cpu_exit, | ||
295 | .get = cpufreq_p4_get, | ||
296 | .name = "p4-clockmod", | ||
297 | .owner = THIS_MODULE, | ||
298 | .attr = p4clockmod_attr, | ||
299 | }; | ||
300 | |||
301 | |||
302 | static int __init cpufreq_p4_init(void) | ||
303 | { | ||
304 | struct cpuinfo_x86 *c = cpu_data; | ||
305 | int ret; | ||
306 | |||
307 | /* | ||
308 | * THERM_CONTROL is architectural for IA32 now, so | ||
309 | * we can rely on the capability checks | ||
310 | */ | ||
311 | if (c->x86_vendor != X86_VENDOR_INTEL) | ||
312 | return -ENODEV; | ||
313 | |||
314 | if (!test_bit(X86_FEATURE_ACPI, c->x86_capability) || | ||
315 | !test_bit(X86_FEATURE_ACC, c->x86_capability)) | ||
316 | return -ENODEV; | ||
317 | |||
318 | ret = cpufreq_register_driver(&p4clockmod_driver); | ||
319 | if (!ret) | ||
320 | printk(KERN_INFO PFX "P4/Xeon(TM) CPU On-Demand Clock Modulation available\n"); | ||
321 | |||
322 | return (ret); | ||
323 | } | ||
324 | |||
325 | |||
326 | static void __exit cpufreq_p4_exit(void) | ||
327 | { | ||
328 | cpufreq_unregister_driver(&p4clockmod_driver); | ||
329 | } | ||
330 | |||
331 | |||
332 | MODULE_AUTHOR ("Zwane Mwaikambo <zwane@commfireservices.com>"); | ||
333 | MODULE_DESCRIPTION ("cpufreq driver for Pentium(TM) 4/Xeon(TM)"); | ||
334 | MODULE_LICENSE ("GPL"); | ||
335 | |||
336 | late_initcall(cpufreq_p4_init); | ||
337 | module_exit(cpufreq_p4_exit); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/powernow-k6.c b/arch/i386/kernel/cpu/cpufreq/powernow-k6.c new file mode 100644 index 000000000000..222f8cfe3c57 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/powernow-k6.c | |||
@@ -0,0 +1,256 @@ | |||
1 | /* | ||
2 | * This file was based upon code in Powertweak Linux (http://powertweak.sf.net) | ||
3 | * (C) 2000-2003 Dave Jones, Arjan van de Ven, Janne Pänkälä, Dominik Brodowski. | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * | ||
7 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
8 | */ | ||
9 | |||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/init.h> | ||
13 | #include <linux/cpufreq.h> | ||
14 | #include <linux/ioport.h> | ||
15 | #include <linux/slab.h> | ||
16 | |||
17 | #include <asm/msr.h> | ||
18 | #include <asm/timex.h> | ||
19 | #include <asm/io.h> | ||
20 | |||
21 | |||
22 | #define POWERNOW_IOPORT 0xfff0 /* it doesn't matter where, as long | ||
23 | as it is unused */ | ||
24 | |||
25 | static unsigned int busfreq; /* FSB, in 10 kHz */ | ||
26 | static unsigned int max_multiplier; | ||
27 | |||
28 | |||
29 | /* Clock ratio multiplied by 10 - see table 27 in AMD#23446 */ | ||
30 | static struct cpufreq_frequency_table clock_ratio[] = { | ||
31 | {45, /* 000 -> 4.5x */ 0}, | ||
32 | {50, /* 001 -> 5.0x */ 0}, | ||
33 | {40, /* 010 -> 4.0x */ 0}, | ||
34 | {55, /* 011 -> 5.5x */ 0}, | ||
35 | {20, /* 100 -> 2.0x */ 0}, | ||
36 | {30, /* 101 -> 3.0x */ 0}, | ||
37 | {60, /* 110 -> 6.0x */ 0}, | ||
38 | {35, /* 111 -> 3.5x */ 0}, | ||
39 | {0, CPUFREQ_TABLE_END} | ||
40 | }; | ||
41 | |||
42 | |||
43 | /** | ||
44 | * powernow_k6_get_cpu_multiplier - returns the current FSB multiplier | ||
45 | * | ||
46 | * Returns the current setting of the frequency multiplier. Core clock | ||
47 | * speed is frequency of the Front-Side Bus multiplied with this value. | ||
48 | */ | ||
49 | static int powernow_k6_get_cpu_multiplier(void) | ||
50 | { | ||
51 | u64 invalue = 0; | ||
52 | u32 msrval; | ||
53 | |||
54 | msrval = POWERNOW_IOPORT + 0x1; | ||
55 | wrmsr(MSR_K6_EPMR, msrval, 0); /* enable the PowerNow port */ | ||
56 | invalue=inl(POWERNOW_IOPORT + 0x8); | ||
57 | msrval = POWERNOW_IOPORT + 0x0; | ||
58 | wrmsr(MSR_K6_EPMR, msrval, 0); /* disable it again */ | ||
59 | |||
60 | return clock_ratio[(invalue >> 5)&7].index; | ||
61 | } | ||
62 | |||
63 | |||
64 | /** | ||
65 | * powernow_k6_set_state - set the PowerNow! multiplier | ||
66 | * @best_i: clock_ratio[best_i] is the target multiplier | ||
67 | * | ||
68 | * Tries to change the PowerNow! multiplier | ||
69 | */ | ||
70 | static void powernow_k6_set_state (unsigned int best_i) | ||
71 | { | ||
72 | unsigned long outvalue=0, invalue=0; | ||
73 | unsigned long msrval; | ||
74 | struct cpufreq_freqs freqs; | ||
75 | |||
76 | if (clock_ratio[best_i].index > max_multiplier) { | ||
77 | printk(KERN_ERR "cpufreq: invalid target frequency\n"); | ||
78 | return; | ||
79 | } | ||
80 | |||
81 | freqs.old = busfreq * powernow_k6_get_cpu_multiplier(); | ||
82 | freqs.new = busfreq * clock_ratio[best_i].index; | ||
83 | freqs.cpu = 0; /* powernow-k6.c is UP only driver */ | ||
84 | |||
85 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
86 | |||
87 | /* we now need to transform best_i to the BVC format, see AMD#23446 */ | ||
88 | |||
89 | outvalue = (1<<12) | (1<<10) | (1<<9) | (best_i<<5); | ||
90 | |||
91 | msrval = POWERNOW_IOPORT + 0x1; | ||
92 | wrmsr(MSR_K6_EPMR, msrval, 0); /* enable the PowerNow port */ | ||
93 | invalue=inl(POWERNOW_IOPORT + 0x8); | ||
94 | invalue = invalue & 0xf; | ||
95 | outvalue = outvalue | invalue; | ||
96 | outl(outvalue ,(POWERNOW_IOPORT + 0x8)); | ||
97 | msrval = POWERNOW_IOPORT + 0x0; | ||
98 | wrmsr(MSR_K6_EPMR, msrval, 0); /* disable it again */ | ||
99 | |||
100 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
101 | |||
102 | return; | ||
103 | } | ||
104 | |||
105 | |||
106 | /** | ||
107 | * powernow_k6_verify - verifies a new CPUfreq policy | ||
108 | * @policy: new policy | ||
109 | * | ||
110 | * Policy must be within lowest and highest possible CPU Frequency, | ||
111 | * and at least one possible state must be within min and max. | ||
112 | */ | ||
113 | static int powernow_k6_verify(struct cpufreq_policy *policy) | ||
114 | { | ||
115 | return cpufreq_frequency_table_verify(policy, &clock_ratio[0]); | ||
116 | } | ||
117 | |||
118 | |||
119 | /** | ||
120 | * powernow_k6_setpolicy - sets a new CPUFreq policy | ||
121 | * @policy: new policy | ||
122 | * @target_freq: the target frequency | ||
123 | * @relation: how that frequency relates to achieved frequency (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
124 | * | ||
125 | * sets a new CPUFreq policy | ||
126 | */ | ||
127 | static int powernow_k6_target (struct cpufreq_policy *policy, | ||
128 | unsigned int target_freq, | ||
129 | unsigned int relation) | ||
130 | { | ||
131 | unsigned int newstate = 0; | ||
132 | |||
133 | if (cpufreq_frequency_table_target(policy, &clock_ratio[0], target_freq, relation, &newstate)) | ||
134 | return -EINVAL; | ||
135 | |||
136 | powernow_k6_set_state(newstate); | ||
137 | |||
138 | return 0; | ||
139 | } | ||
140 | |||
141 | |||
142 | static int powernow_k6_cpu_init(struct cpufreq_policy *policy) | ||
143 | { | ||
144 | unsigned int i; | ||
145 | int result; | ||
146 | |||
147 | if (policy->cpu != 0) | ||
148 | return -ENODEV; | ||
149 | |||
150 | /* get frequencies */ | ||
151 | max_multiplier = powernow_k6_get_cpu_multiplier(); | ||
152 | busfreq = cpu_khz / max_multiplier; | ||
153 | |||
154 | /* table init */ | ||
155 | for (i=0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) { | ||
156 | if (clock_ratio[i].index > max_multiplier) | ||
157 | clock_ratio[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
158 | else | ||
159 | clock_ratio[i].frequency = busfreq * clock_ratio[i].index; | ||
160 | } | ||
161 | |||
162 | /* cpuinfo and default policy values */ | ||
163 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
164 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
165 | policy->cur = busfreq * max_multiplier; | ||
166 | |||
167 | result = cpufreq_frequency_table_cpuinfo(policy, clock_ratio); | ||
168 | if (result) | ||
169 | return (result); | ||
170 | |||
171 | cpufreq_frequency_table_get_attr(clock_ratio, policy->cpu); | ||
172 | |||
173 | return 0; | ||
174 | } | ||
175 | |||
176 | |||
177 | static int powernow_k6_cpu_exit(struct cpufreq_policy *policy) | ||
178 | { | ||
179 | unsigned int i; | ||
180 | for (i=0; i<8; i++) { | ||
181 | if (i==max_multiplier) | ||
182 | powernow_k6_set_state(i); | ||
183 | } | ||
184 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
185 | return 0; | ||
186 | } | ||
187 | |||
188 | static unsigned int powernow_k6_get(unsigned int cpu) | ||
189 | { | ||
190 | return busfreq * powernow_k6_get_cpu_multiplier(); | ||
191 | } | ||
192 | |||
193 | static struct freq_attr* powernow_k6_attr[] = { | ||
194 | &cpufreq_freq_attr_scaling_available_freqs, | ||
195 | NULL, | ||
196 | }; | ||
197 | |||
198 | static struct cpufreq_driver powernow_k6_driver = { | ||
199 | .verify = powernow_k6_verify, | ||
200 | .target = powernow_k6_target, | ||
201 | .init = powernow_k6_cpu_init, | ||
202 | .exit = powernow_k6_cpu_exit, | ||
203 | .get = powernow_k6_get, | ||
204 | .name = "powernow-k6", | ||
205 | .owner = THIS_MODULE, | ||
206 | .attr = powernow_k6_attr, | ||
207 | }; | ||
208 | |||
209 | |||
210 | /** | ||
211 | * powernow_k6_init - initializes the k6 PowerNow! CPUFreq driver | ||
212 | * | ||
213 | * Initializes the K6 PowerNow! support. Returns -ENODEV on unsupported | ||
214 | * devices, -EINVAL or -ENOMEM on problems during initiatization, and zero | ||
215 | * on success. | ||
216 | */ | ||
217 | static int __init powernow_k6_init(void) | ||
218 | { | ||
219 | struct cpuinfo_x86 *c = cpu_data; | ||
220 | |||
221 | if ((c->x86_vendor != X86_VENDOR_AMD) || (c->x86 != 5) || | ||
222 | ((c->x86_model != 12) && (c->x86_model != 13))) | ||
223 | return -ENODEV; | ||
224 | |||
225 | if (!request_region(POWERNOW_IOPORT, 16, "PowerNow!")) { | ||
226 | printk("cpufreq: PowerNow IOPORT region already used.\n"); | ||
227 | return -EIO; | ||
228 | } | ||
229 | |||
230 | if (cpufreq_register_driver(&powernow_k6_driver)) { | ||
231 | release_region (POWERNOW_IOPORT, 16); | ||
232 | return -EINVAL; | ||
233 | } | ||
234 | |||
235 | return 0; | ||
236 | } | ||
237 | |||
238 | |||
239 | /** | ||
240 | * powernow_k6_exit - unregisters AMD K6-2+/3+ PowerNow! support | ||
241 | * | ||
242 | * Unregisters AMD K6-2+ / K6-3+ PowerNow! support. | ||
243 | */ | ||
244 | static void __exit powernow_k6_exit(void) | ||
245 | { | ||
246 | cpufreq_unregister_driver(&powernow_k6_driver); | ||
247 | release_region (POWERNOW_IOPORT, 16); | ||
248 | } | ||
249 | |||
250 | |||
251 | MODULE_AUTHOR ("Arjan van de Ven <arjanv@redhat.com>, Dave Jones <davej@codemonkey.org.uk>, Dominik Brodowski <linux@brodo.de>"); | ||
252 | MODULE_DESCRIPTION ("PowerNow! driver for AMD K6-2+ / K6-3+ processors."); | ||
253 | MODULE_LICENSE ("GPL"); | ||
254 | |||
255 | module_init(powernow_k6_init); | ||
256 | module_exit(powernow_k6_exit); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/powernow-k7.c b/arch/i386/kernel/cpu/cpufreq/powernow-k7.c new file mode 100644 index 000000000000..913f652623d9 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/powernow-k7.c | |||
@@ -0,0 +1,690 @@ | |||
1 | /* | ||
2 | * AMD K7 Powernow driver. | ||
3 | * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs. | ||
4 | * (C) 2003-2004 Dave Jones <davej@redhat.com> | ||
5 | * | ||
6 | * Licensed under the terms of the GNU GPL License version 2. | ||
7 | * Based upon datasheets & sample CPUs kindly provided by AMD. | ||
8 | * | ||
9 | * Errata 5: Processor may fail to execute a FID/VID change in presence of interrupt. | ||
10 | * - We cli/sti on stepping A0 CPUs around the FID/VID transition. | ||
11 | * Errata 15: Processors with half frequency multipliers may hang upon wakeup from disconnect. | ||
12 | * - We disable half multipliers if ACPI is used on A0 stepping CPUs. | ||
13 | */ | ||
14 | |||
15 | #include <linux/config.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/moduleparam.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/cpufreq.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/string.h> | ||
23 | #include <linux/dmi.h> | ||
24 | |||
25 | #include <asm/msr.h> | ||
26 | #include <asm/timex.h> | ||
27 | #include <asm/io.h> | ||
28 | #include <asm/system.h> | ||
29 | |||
30 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
31 | #include <linux/acpi.h> | ||
32 | #include <acpi/processor.h> | ||
33 | #endif | ||
34 | |||
35 | #include "powernow-k7.h" | ||
36 | |||
37 | #define PFX "powernow: " | ||
38 | |||
39 | |||
40 | struct psb_s { | ||
41 | u8 signature[10]; | ||
42 | u8 tableversion; | ||
43 | u8 flags; | ||
44 | u16 settlingtime; | ||
45 | u8 reserved1; | ||
46 | u8 numpst; | ||
47 | }; | ||
48 | |||
49 | struct pst_s { | ||
50 | u32 cpuid; | ||
51 | u8 fsbspeed; | ||
52 | u8 maxfid; | ||
53 | u8 startvid; | ||
54 | u8 numpstates; | ||
55 | }; | ||
56 | |||
57 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
58 | union powernow_acpi_control_t { | ||
59 | struct { | ||
60 | unsigned long fid:5, | ||
61 | vid:5, | ||
62 | sgtc:20, | ||
63 | res1:2; | ||
64 | } bits; | ||
65 | unsigned long val; | ||
66 | }; | ||
67 | #endif | ||
68 | |||
69 | #ifdef CONFIG_CPU_FREQ_DEBUG | ||
70 | /* divide by 1000 to get VCore voltage in V. */ | ||
71 | static int mobile_vid_table[32] = { | ||
72 | 2000, 1950, 1900, 1850, 1800, 1750, 1700, 1650, | ||
73 | 1600, 1550, 1500, 1450, 1400, 1350, 1300, 0, | ||
74 | 1275, 1250, 1225, 1200, 1175, 1150, 1125, 1100, | ||
75 | 1075, 1050, 1025, 1000, 975, 950, 925, 0, | ||
76 | }; | ||
77 | #endif | ||
78 | |||
79 | /* divide by 10 to get FID. */ | ||
80 | static int fid_codes[32] = { | ||
81 | 110, 115, 120, 125, 50, 55, 60, 65, | ||
82 | 70, 75, 80, 85, 90, 95, 100, 105, | ||
83 | 30, 190, 40, 200, 130, 135, 140, 210, | ||
84 | 150, 225, 160, 165, 170, 180, -1, -1, | ||
85 | }; | ||
86 | |||
87 | /* This parameter is used in order to force ACPI instead of legacy method for | ||
88 | * configuration purpose. | ||
89 | */ | ||
90 | |||
91 | static int acpi_force; | ||
92 | |||
93 | static struct cpufreq_frequency_table *powernow_table; | ||
94 | |||
95 | static unsigned int can_scale_bus; | ||
96 | static unsigned int can_scale_vid; | ||
97 | static unsigned int minimum_speed=-1; | ||
98 | static unsigned int maximum_speed; | ||
99 | static unsigned int number_scales; | ||
100 | static unsigned int fsb; | ||
101 | static unsigned int latency; | ||
102 | static char have_a0; | ||
103 | |||
104 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "powernow-k7", msg) | ||
105 | |||
106 | static int check_fsb(unsigned int fsbspeed) | ||
107 | { | ||
108 | int delta; | ||
109 | unsigned int f = fsb / 1000; | ||
110 | |||
111 | delta = (fsbspeed > f) ? fsbspeed - f : f - fsbspeed; | ||
112 | return (delta < 5); | ||
113 | } | ||
114 | |||
115 | static int check_powernow(void) | ||
116 | { | ||
117 | struct cpuinfo_x86 *c = cpu_data; | ||
118 | unsigned int maxei, eax, ebx, ecx, edx; | ||
119 | |||
120 | if ((c->x86_vendor != X86_VENDOR_AMD) || (c->x86 !=6)) { | ||
121 | #ifdef MODULE | ||
122 | printk (KERN_INFO PFX "This module only works with AMD K7 CPUs\n"); | ||
123 | #endif | ||
124 | return 0; | ||
125 | } | ||
126 | |||
127 | /* Get maximum capabilities */ | ||
128 | maxei = cpuid_eax (0x80000000); | ||
129 | if (maxei < 0x80000007) { /* Any powernow info ? */ | ||
130 | #ifdef MODULE | ||
131 | printk (KERN_INFO PFX "No powernow capabilities detected\n"); | ||
132 | #endif | ||
133 | return 0; | ||
134 | } | ||
135 | |||
136 | if ((c->x86_model == 6) && (c->x86_mask == 0)) { | ||
137 | printk (KERN_INFO PFX "K7 660[A0] core detected, enabling errata workarounds\n"); | ||
138 | have_a0 = 1; | ||
139 | } | ||
140 | |||
141 | cpuid(0x80000007, &eax, &ebx, &ecx, &edx); | ||
142 | |||
143 | /* Check we can actually do something before we say anything.*/ | ||
144 | if (!(edx & (1 << 1 | 1 << 2))) | ||
145 | return 0; | ||
146 | |||
147 | printk (KERN_INFO PFX "PowerNOW! Technology present. Can scale: "); | ||
148 | |||
149 | if (edx & 1 << 1) { | ||
150 | printk ("frequency"); | ||
151 | can_scale_bus=1; | ||
152 | } | ||
153 | |||
154 | if ((edx & (1 << 1 | 1 << 2)) == 0x6) | ||
155 | printk (" and "); | ||
156 | |||
157 | if (edx & 1 << 2) { | ||
158 | printk ("voltage"); | ||
159 | can_scale_vid=1; | ||
160 | } | ||
161 | |||
162 | printk (".\n"); | ||
163 | return 1; | ||
164 | } | ||
165 | |||
166 | |||
167 | static int get_ranges (unsigned char *pst) | ||
168 | { | ||
169 | unsigned int j; | ||
170 | unsigned int speed; | ||
171 | u8 fid, vid; | ||
172 | |||
173 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) * (number_scales + 1)), GFP_KERNEL); | ||
174 | if (!powernow_table) | ||
175 | return -ENOMEM; | ||
176 | memset(powernow_table, 0, (sizeof(struct cpufreq_frequency_table) * (number_scales + 1))); | ||
177 | |||
178 | for (j=0 ; j < number_scales; j++) { | ||
179 | fid = *pst++; | ||
180 | |||
181 | powernow_table[j].frequency = (fsb * fid_codes[fid]) / 10; | ||
182 | powernow_table[j].index = fid; /* lower 8 bits */ | ||
183 | |||
184 | speed = powernow_table[j].frequency; | ||
185 | |||
186 | if ((fid_codes[fid] % 10)==5) { | ||
187 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
188 | if (have_a0 == 1) | ||
189 | powernow_table[j].frequency = CPUFREQ_ENTRY_INVALID; | ||
190 | #endif | ||
191 | } | ||
192 | |||
193 | if (speed < minimum_speed) | ||
194 | minimum_speed = speed; | ||
195 | if (speed > maximum_speed) | ||
196 | maximum_speed = speed; | ||
197 | |||
198 | vid = *pst++; | ||
199 | powernow_table[j].index |= (vid << 8); /* upper 8 bits */ | ||
200 | |||
201 | dprintk (" FID: 0x%x (%d.%dx [%dMHz]) " | ||
202 | "VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10, | ||
203 | fid_codes[fid] % 10, speed/1000, vid, | ||
204 | mobile_vid_table[vid]/1000, | ||
205 | mobile_vid_table[vid]%1000); | ||
206 | } | ||
207 | powernow_table[number_scales].frequency = CPUFREQ_TABLE_END; | ||
208 | powernow_table[number_scales].index = 0; | ||
209 | |||
210 | return 0; | ||
211 | } | ||
212 | |||
213 | |||
214 | static void change_FID(int fid) | ||
215 | { | ||
216 | union msr_fidvidctl fidvidctl; | ||
217 | |||
218 | rdmsrl (MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
219 | if (fidvidctl.bits.FID != fid) { | ||
220 | fidvidctl.bits.SGTC = latency; | ||
221 | fidvidctl.bits.FID = fid; | ||
222 | fidvidctl.bits.VIDC = 0; | ||
223 | fidvidctl.bits.FIDC = 1; | ||
224 | wrmsrl (MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
225 | } | ||
226 | } | ||
227 | |||
228 | |||
229 | static void change_VID(int vid) | ||
230 | { | ||
231 | union msr_fidvidctl fidvidctl; | ||
232 | |||
233 | rdmsrl (MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
234 | if (fidvidctl.bits.VID != vid) { | ||
235 | fidvidctl.bits.SGTC = latency; | ||
236 | fidvidctl.bits.VID = vid; | ||
237 | fidvidctl.bits.FIDC = 0; | ||
238 | fidvidctl.bits.VIDC = 1; | ||
239 | wrmsrl (MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
240 | } | ||
241 | } | ||
242 | |||
243 | |||
244 | static void change_speed (unsigned int index) | ||
245 | { | ||
246 | u8 fid, vid; | ||
247 | struct cpufreq_freqs freqs; | ||
248 | union msr_fidvidstatus fidvidstatus; | ||
249 | int cfid; | ||
250 | |||
251 | /* fid are the lower 8 bits of the index we stored into | ||
252 | * the cpufreq frequency table in powernow_decode_bios, | ||
253 | * vid are the upper 8 bits. | ||
254 | */ | ||
255 | |||
256 | fid = powernow_table[index].index & 0xFF; | ||
257 | vid = (powernow_table[index].index & 0xFF00) >> 8; | ||
258 | |||
259 | freqs.cpu = 0; | ||
260 | |||
261 | rdmsrl (MSR_K7_FID_VID_STATUS, fidvidstatus.val); | ||
262 | cfid = fidvidstatus.bits.CFID; | ||
263 | freqs.old = fsb * fid_codes[cfid] / 10; | ||
264 | |||
265 | freqs.new = powernow_table[index].frequency; | ||
266 | |||
267 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
268 | |||
269 | /* Now do the magic poking into the MSRs. */ | ||
270 | |||
271 | if (have_a0 == 1) /* A0 errata 5 */ | ||
272 | local_irq_disable(); | ||
273 | |||
274 | if (freqs.old > freqs.new) { | ||
275 | /* Going down, so change FID first */ | ||
276 | change_FID(fid); | ||
277 | change_VID(vid); | ||
278 | } else { | ||
279 | /* Going up, so change VID first */ | ||
280 | change_VID(vid); | ||
281 | change_FID(fid); | ||
282 | } | ||
283 | |||
284 | |||
285 | if (have_a0 == 1) | ||
286 | local_irq_enable(); | ||
287 | |||
288 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
289 | } | ||
290 | |||
291 | |||
292 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
293 | |||
294 | static struct acpi_processor_performance *acpi_processor_perf; | ||
295 | |||
296 | static int powernow_acpi_init(void) | ||
297 | { | ||
298 | int i; | ||
299 | int retval = 0; | ||
300 | union powernow_acpi_control_t pc; | ||
301 | |||
302 | if (acpi_processor_perf != NULL && powernow_table != NULL) { | ||
303 | retval = -EINVAL; | ||
304 | goto err0; | ||
305 | } | ||
306 | |||
307 | acpi_processor_perf = kmalloc(sizeof(struct acpi_processor_performance), | ||
308 | GFP_KERNEL); | ||
309 | |||
310 | if (!acpi_processor_perf) { | ||
311 | retval = -ENOMEM; | ||
312 | goto err0; | ||
313 | } | ||
314 | |||
315 | memset(acpi_processor_perf, 0, sizeof(struct acpi_processor_performance)); | ||
316 | |||
317 | if (acpi_processor_register_performance(acpi_processor_perf, 0)) { | ||
318 | retval = -EIO; | ||
319 | goto err1; | ||
320 | } | ||
321 | |||
322 | if (acpi_processor_perf->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) { | ||
323 | retval = -ENODEV; | ||
324 | goto err2; | ||
325 | } | ||
326 | |||
327 | if (acpi_processor_perf->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) { | ||
328 | retval = -ENODEV; | ||
329 | goto err2; | ||
330 | } | ||
331 | |||
332 | number_scales = acpi_processor_perf->state_count; | ||
333 | |||
334 | if (number_scales < 2) { | ||
335 | retval = -ENODEV; | ||
336 | goto err2; | ||
337 | } | ||
338 | |||
339 | powernow_table = kmalloc((number_scales + 1) * (sizeof(struct cpufreq_frequency_table)), GFP_KERNEL); | ||
340 | if (!powernow_table) { | ||
341 | retval = -ENOMEM; | ||
342 | goto err2; | ||
343 | } | ||
344 | |||
345 | memset(powernow_table, 0, ((number_scales + 1) * sizeof(struct cpufreq_frequency_table))); | ||
346 | |||
347 | pc.val = (unsigned long) acpi_processor_perf->states[0].control; | ||
348 | for (i = 0; i < number_scales; i++) { | ||
349 | u8 fid, vid; | ||
350 | unsigned int speed; | ||
351 | |||
352 | pc.val = (unsigned long) acpi_processor_perf->states[i].control; | ||
353 | dprintk ("acpi: P%d: %d MHz %d mW %d uS control %08x SGTC %d\n", | ||
354 | i, | ||
355 | (u32) acpi_processor_perf->states[i].core_frequency, | ||
356 | (u32) acpi_processor_perf->states[i].power, | ||
357 | (u32) acpi_processor_perf->states[i].transition_latency, | ||
358 | (u32) acpi_processor_perf->states[i].control, | ||
359 | pc.bits.sgtc); | ||
360 | |||
361 | vid = pc.bits.vid; | ||
362 | fid = pc.bits.fid; | ||
363 | |||
364 | powernow_table[i].frequency = fsb * fid_codes[fid] / 10; | ||
365 | powernow_table[i].index = fid; /* lower 8 bits */ | ||
366 | powernow_table[i].index |= (vid << 8); /* upper 8 bits */ | ||
367 | |||
368 | speed = powernow_table[i].frequency; | ||
369 | |||
370 | if ((fid_codes[fid] % 10)==5) { | ||
371 | if (have_a0 == 1) | ||
372 | powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
373 | } | ||
374 | |||
375 | dprintk (" FID: 0x%x (%d.%dx [%dMHz]) " | ||
376 | "VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10, | ||
377 | fid_codes[fid] % 10, speed/1000, vid, | ||
378 | mobile_vid_table[vid]/1000, | ||
379 | mobile_vid_table[vid]%1000); | ||
380 | |||
381 | if (latency < pc.bits.sgtc) | ||
382 | latency = pc.bits.sgtc; | ||
383 | |||
384 | if (speed < minimum_speed) | ||
385 | minimum_speed = speed; | ||
386 | if (speed > maximum_speed) | ||
387 | maximum_speed = speed; | ||
388 | } | ||
389 | |||
390 | powernow_table[i].frequency = CPUFREQ_TABLE_END; | ||
391 | powernow_table[i].index = 0; | ||
392 | |||
393 | /* notify BIOS that we exist */ | ||
394 | acpi_processor_notify_smm(THIS_MODULE); | ||
395 | |||
396 | return 0; | ||
397 | |||
398 | err2: | ||
399 | acpi_processor_unregister_performance(acpi_processor_perf, 0); | ||
400 | err1: | ||
401 | kfree(acpi_processor_perf); | ||
402 | err0: | ||
403 | printk(KERN_WARNING PFX "ACPI perflib can not be used in this platform\n"); | ||
404 | acpi_processor_perf = NULL; | ||
405 | return retval; | ||
406 | } | ||
407 | #else | ||
408 | static int powernow_acpi_init(void) | ||
409 | { | ||
410 | printk(KERN_INFO PFX "no support for ACPI processor found." | ||
411 | " Please recompile your kernel with ACPI processor\n"); | ||
412 | return -EINVAL; | ||
413 | } | ||
414 | #endif | ||
415 | |||
416 | static int powernow_decode_bios (int maxfid, int startvid) | ||
417 | { | ||
418 | struct psb_s *psb; | ||
419 | struct pst_s *pst; | ||
420 | unsigned int i, j; | ||
421 | unsigned char *p; | ||
422 | unsigned int etuple; | ||
423 | unsigned int ret; | ||
424 | |||
425 | etuple = cpuid_eax(0x80000001); | ||
426 | |||
427 | for (i=0xC0000; i < 0xffff0 ; i+=16) { | ||
428 | |||
429 | p = phys_to_virt(i); | ||
430 | |||
431 | if (memcmp(p, "AMDK7PNOW!", 10) == 0){ | ||
432 | dprintk ("Found PSB header at %p\n", p); | ||
433 | psb = (struct psb_s *) p; | ||
434 | dprintk ("Table version: 0x%x\n", psb->tableversion); | ||
435 | if (psb->tableversion != 0x12) { | ||
436 | printk (KERN_INFO PFX "Sorry, only v1.2 tables supported right now\n"); | ||
437 | return -ENODEV; | ||
438 | } | ||
439 | |||
440 | dprintk ("Flags: 0x%x\n", psb->flags); | ||
441 | if ((psb->flags & 1)==0) { | ||
442 | dprintk ("Mobile voltage regulator\n"); | ||
443 | } else { | ||
444 | dprintk ("Desktop voltage regulator\n"); | ||
445 | } | ||
446 | |||
447 | latency = psb->settlingtime; | ||
448 | if (latency < 100) { | ||
449 | printk (KERN_INFO PFX "BIOS set settling time to %d microseconds." | ||
450 | "Should be at least 100. Correcting.\n", latency); | ||
451 | latency = 100; | ||
452 | } | ||
453 | dprintk ("Settling Time: %d microseconds.\n", psb->settlingtime); | ||
454 | dprintk ("Has %d PST tables. (Only dumping ones relevant to this CPU).\n", psb->numpst); | ||
455 | |||
456 | p += sizeof (struct psb_s); | ||
457 | |||
458 | pst = (struct pst_s *) p; | ||
459 | |||
460 | for (i = 0 ; i <psb->numpst; i++) { | ||
461 | pst = (struct pst_s *) p; | ||
462 | number_scales = pst->numpstates; | ||
463 | |||
464 | if ((etuple == pst->cpuid) && check_fsb(pst->fsbspeed) && | ||
465 | (maxfid==pst->maxfid) && (startvid==pst->startvid)) | ||
466 | { | ||
467 | dprintk ("PST:%d (@%p)\n", i, pst); | ||
468 | dprintk (" cpuid: 0x%x fsb: %d maxFID: 0x%x startvid: 0x%x\n", | ||
469 | pst->cpuid, pst->fsbspeed, pst->maxfid, pst->startvid); | ||
470 | |||
471 | ret = get_ranges ((char *) pst + sizeof (struct pst_s)); | ||
472 | return ret; | ||
473 | |||
474 | } else { | ||
475 | p = (char *) pst + sizeof (struct pst_s); | ||
476 | for (j=0 ; j < number_scales; j++) | ||
477 | p+=2; | ||
478 | } | ||
479 | } | ||
480 | printk (KERN_INFO PFX "No PST tables match this cpuid (0x%x)\n", etuple); | ||
481 | printk (KERN_INFO PFX "This is indicative of a broken BIOS.\n"); | ||
482 | |||
483 | return -EINVAL; | ||
484 | } | ||
485 | p++; | ||
486 | } | ||
487 | |||
488 | return -ENODEV; | ||
489 | } | ||
490 | |||
491 | |||
492 | static int powernow_target (struct cpufreq_policy *policy, | ||
493 | unsigned int target_freq, | ||
494 | unsigned int relation) | ||
495 | { | ||
496 | unsigned int newstate; | ||
497 | |||
498 | if (cpufreq_frequency_table_target(policy, powernow_table, target_freq, relation, &newstate)) | ||
499 | return -EINVAL; | ||
500 | |||
501 | change_speed(newstate); | ||
502 | |||
503 | return 0; | ||
504 | } | ||
505 | |||
506 | |||
507 | static int powernow_verify (struct cpufreq_policy *policy) | ||
508 | { | ||
509 | return cpufreq_frequency_table_verify(policy, powernow_table); | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * We use the fact that the bus frequency is somehow | ||
514 | * a multiple of 100000/3 khz, then we compute sgtc according | ||
515 | * to this multiple. | ||
516 | * That way, we match more how AMD thinks all of that work. | ||
517 | * We will then get the same kind of behaviour already tested under | ||
518 | * the "well-known" other OS. | ||
519 | */ | ||
520 | static int __init fixup_sgtc(void) | ||
521 | { | ||
522 | unsigned int sgtc; | ||
523 | unsigned int m; | ||
524 | |||
525 | m = fsb / 3333; | ||
526 | if ((m % 10) >= 5) | ||
527 | m += 5; | ||
528 | |||
529 | m /= 10; | ||
530 | |||
531 | sgtc = 100 * m * latency; | ||
532 | sgtc = sgtc / 3; | ||
533 | if (sgtc > 0xfffff) { | ||
534 | printk(KERN_WARNING PFX "SGTC too large %d\n", sgtc); | ||
535 | sgtc = 0xfffff; | ||
536 | } | ||
537 | return sgtc; | ||
538 | } | ||
539 | |||
540 | static unsigned int powernow_get(unsigned int cpu) | ||
541 | { | ||
542 | union msr_fidvidstatus fidvidstatus; | ||
543 | unsigned int cfid; | ||
544 | |||
545 | if (cpu) | ||
546 | return 0; | ||
547 | rdmsrl (MSR_K7_FID_VID_STATUS, fidvidstatus.val); | ||
548 | cfid = fidvidstatus.bits.CFID; | ||
549 | |||
550 | return (fsb * fid_codes[cfid] / 10); | ||
551 | } | ||
552 | |||
553 | |||
554 | static int __init acer_cpufreq_pst(struct dmi_system_id *d) | ||
555 | { | ||
556 | printk(KERN_WARNING "%s laptop with broken PST tables in BIOS detected.\n", d->ident); | ||
557 | printk(KERN_WARNING "You need to downgrade to 3A21 (09/09/2002), or try a newer BIOS than 3A71 (01/20/2003)\n"); | ||
558 | printk(KERN_WARNING "cpufreq scaling has been disabled as a result of this.\n"); | ||
559 | return 0; | ||
560 | } | ||
561 | |||
562 | /* | ||
563 | * Some Athlon laptops have really fucked PST tables. | ||
564 | * A BIOS update is all that can save them. | ||
565 | * Mention this, and disable cpufreq. | ||
566 | */ | ||
567 | static struct dmi_system_id __initdata powernow_dmi_table[] = { | ||
568 | { | ||
569 | .callback = acer_cpufreq_pst, | ||
570 | .ident = "Acer Aspire", | ||
571 | .matches = { | ||
572 | DMI_MATCH(DMI_SYS_VENDOR, "Insyde Software"), | ||
573 | DMI_MATCH(DMI_BIOS_VERSION, "3A71"), | ||
574 | }, | ||
575 | }, | ||
576 | { } | ||
577 | }; | ||
578 | |||
579 | static int __init powernow_cpu_init (struct cpufreq_policy *policy) | ||
580 | { | ||
581 | union msr_fidvidstatus fidvidstatus; | ||
582 | int result; | ||
583 | |||
584 | if (policy->cpu != 0) | ||
585 | return -ENODEV; | ||
586 | |||
587 | rdmsrl (MSR_K7_FID_VID_STATUS, fidvidstatus.val); | ||
588 | |||
589 | /* A K7 with powernow technology is set to max frequency by BIOS */ | ||
590 | fsb = (10 * cpu_khz) / fid_codes[fidvidstatus.bits.MFID]; | ||
591 | if (!fsb) { | ||
592 | printk(KERN_WARNING PFX "can not determine bus frequency\n"); | ||
593 | return -EINVAL; | ||
594 | } | ||
595 | dprintk("FSB: %3d.%03d MHz\n", fsb/1000, fsb%1000); | ||
596 | |||
597 | if (dmi_check_system(powernow_dmi_table) || acpi_force) { | ||
598 | printk (KERN_INFO PFX "PSB/PST known to be broken. Trying ACPI instead\n"); | ||
599 | result = powernow_acpi_init(); | ||
600 | } else { | ||
601 | result = powernow_decode_bios(fidvidstatus.bits.MFID, fidvidstatus.bits.SVID); | ||
602 | if (result) { | ||
603 | printk (KERN_INFO PFX "Trying ACPI perflib\n"); | ||
604 | maximum_speed = 0; | ||
605 | minimum_speed = -1; | ||
606 | latency = 0; | ||
607 | result = powernow_acpi_init(); | ||
608 | if (result) { | ||
609 | printk (KERN_INFO PFX "ACPI and legacy methods failed\n"); | ||
610 | printk (KERN_INFO PFX "See http://www.codemonkey.org.uk/projects/cpufreq/powernow-k7.shtml\n"); | ||
611 | } | ||
612 | } else { | ||
613 | /* SGTC use the bus clock as timer */ | ||
614 | latency = fixup_sgtc(); | ||
615 | printk(KERN_INFO PFX "SGTC: %d\n", latency); | ||
616 | } | ||
617 | } | ||
618 | |||
619 | if (result) | ||
620 | return result; | ||
621 | |||
622 | printk (KERN_INFO PFX "Minimum speed %d MHz. Maximum speed %d MHz.\n", | ||
623 | minimum_speed/1000, maximum_speed/1000); | ||
624 | |||
625 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
626 | |||
627 | policy->cpuinfo.transition_latency = cpufreq_scale(2000000UL, fsb, latency); | ||
628 | |||
629 | policy->cur = powernow_get(0); | ||
630 | |||
631 | cpufreq_frequency_table_get_attr(powernow_table, policy->cpu); | ||
632 | |||
633 | return cpufreq_frequency_table_cpuinfo(policy, powernow_table); | ||
634 | } | ||
635 | |||
636 | static int powernow_cpu_exit (struct cpufreq_policy *policy) { | ||
637 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
638 | |||
639 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
640 | if (acpi_processor_perf) { | ||
641 | acpi_processor_unregister_performance(acpi_processor_perf, 0); | ||
642 | kfree(acpi_processor_perf); | ||
643 | } | ||
644 | #endif | ||
645 | |||
646 | if (powernow_table) | ||
647 | kfree(powernow_table); | ||
648 | |||
649 | return 0; | ||
650 | } | ||
651 | |||
652 | static struct freq_attr* powernow_table_attr[] = { | ||
653 | &cpufreq_freq_attr_scaling_available_freqs, | ||
654 | NULL, | ||
655 | }; | ||
656 | |||
657 | static struct cpufreq_driver powernow_driver = { | ||
658 | .verify = powernow_verify, | ||
659 | .target = powernow_target, | ||
660 | .get = powernow_get, | ||
661 | .init = powernow_cpu_init, | ||
662 | .exit = powernow_cpu_exit, | ||
663 | .name = "powernow-k7", | ||
664 | .owner = THIS_MODULE, | ||
665 | .attr = powernow_table_attr, | ||
666 | }; | ||
667 | |||
668 | static int __init powernow_init (void) | ||
669 | { | ||
670 | if (check_powernow()==0) | ||
671 | return -ENODEV; | ||
672 | return cpufreq_register_driver(&powernow_driver); | ||
673 | } | ||
674 | |||
675 | |||
676 | static void __exit powernow_exit (void) | ||
677 | { | ||
678 | cpufreq_unregister_driver(&powernow_driver); | ||
679 | } | ||
680 | |||
681 | module_param(acpi_force, int, 0444); | ||
682 | MODULE_PARM_DESC(acpi_force, "Force ACPI to be used."); | ||
683 | |||
684 | MODULE_AUTHOR ("Dave Jones <davej@codemonkey.org.uk>"); | ||
685 | MODULE_DESCRIPTION ("Powernow driver for AMD K7 processors."); | ||
686 | MODULE_LICENSE ("GPL"); | ||
687 | |||
688 | late_initcall(powernow_init); | ||
689 | module_exit(powernow_exit); | ||
690 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/powernow-k7.h b/arch/i386/kernel/cpu/cpufreq/powernow-k7.h new file mode 100644 index 000000000000..f8a63b3664e3 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/powernow-k7.h | |||
@@ -0,0 +1,44 @@ | |||
1 | /* | ||
2 | * $Id: powernow-k7.h,v 1.2 2003/02/10 18:26:01 davej Exp $ | ||
3 | * (C) 2003 Dave Jones. | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * | ||
7 | * AMD-specific information | ||
8 | * | ||
9 | */ | ||
10 | |||
11 | union msr_fidvidctl { | ||
12 | struct { | ||
13 | unsigned FID:5, // 4:0 | ||
14 | reserved1:3, // 7:5 | ||
15 | VID:5, // 12:8 | ||
16 | reserved2:3, // 15:13 | ||
17 | FIDC:1, // 16 | ||
18 | VIDC:1, // 17 | ||
19 | reserved3:2, // 19:18 | ||
20 | FIDCHGRATIO:1, // 20 | ||
21 | reserved4:11, // 31-21 | ||
22 | SGTC:20, // 32:51 | ||
23 | reserved5:12; // 63:52 | ||
24 | } bits; | ||
25 | unsigned long long val; | ||
26 | }; | ||
27 | |||
28 | union msr_fidvidstatus { | ||
29 | struct { | ||
30 | unsigned CFID:5, // 4:0 | ||
31 | reserved1:3, // 7:5 | ||
32 | SFID:5, // 12:8 | ||
33 | reserved2:3, // 15:13 | ||
34 | MFID:5, // 20:16 | ||
35 | reserved3:11, // 31:21 | ||
36 | CVID:5, // 36:32 | ||
37 | reserved4:3, // 39:37 | ||
38 | SVID:5, // 44:40 | ||
39 | reserved5:3, // 47:45 | ||
40 | MVID:5, // 52:48 | ||
41 | reserved6:11; // 63:53 | ||
42 | } bits; | ||
43 | unsigned long long val; | ||
44 | }; | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/powernow-k8.c b/arch/i386/kernel/cpu/cpufreq/powernow-k8.c new file mode 100644 index 000000000000..a65ff7e32e5d --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/powernow-k8.c | |||
@@ -0,0 +1,1135 @@ | |||
1 | /* | ||
2 | * (c) 2003, 2004 Advanced Micro Devices, Inc. | ||
3 | * Your use of this code is subject to the terms and conditions of the | ||
4 | * GNU general public license version 2. See "COPYING" or | ||
5 | * http://www.gnu.org/licenses/gpl.html | ||
6 | * | ||
7 | * Support : paul.devriendt@amd.com | ||
8 | * | ||
9 | * Based on the powernow-k7.c module written by Dave Jones. | ||
10 | * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs | ||
11 | * (C) 2004 Dominik Brodowski <linux@brodo.de> | ||
12 | * (C) 2004 Pavel Machek <pavel@suse.cz> | ||
13 | * Licensed under the terms of the GNU GPL License version 2. | ||
14 | * Based upon datasheets & sample CPUs kindly provided by AMD. | ||
15 | * | ||
16 | * Valuable input gratefully received from Dave Jones, Pavel Machek, | ||
17 | * Dominik Brodowski, and others. | ||
18 | * Processor information obtained from Chapter 9 (Power and Thermal Management) | ||
19 | * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD | ||
20 | * Opteron Processors" available for download from www.amd.com | ||
21 | * | ||
22 | * Tables for specific CPUs can be infrerred from | ||
23 | * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf | ||
24 | */ | ||
25 | |||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/smp.h> | ||
28 | #include <linux/module.h> | ||
29 | #include <linux/init.h> | ||
30 | #include <linux/cpufreq.h> | ||
31 | #include <linux/slab.h> | ||
32 | #include <linux/string.h> | ||
33 | |||
34 | #include <asm/msr.h> | ||
35 | #include <asm/io.h> | ||
36 | #include <asm/delay.h> | ||
37 | |||
38 | #ifdef CONFIG_X86_POWERNOW_K8_ACPI | ||
39 | #include <linux/acpi.h> | ||
40 | #include <acpi/processor.h> | ||
41 | #endif | ||
42 | |||
43 | #define PFX "powernow-k8: " | ||
44 | #define BFX PFX "BIOS error: " | ||
45 | #define VERSION "version 1.00.09e" | ||
46 | #include "powernow-k8.h" | ||
47 | |||
48 | /* serialize freq changes */ | ||
49 | static DECLARE_MUTEX(fidvid_sem); | ||
50 | |||
51 | static struct powernow_k8_data *powernow_data[NR_CPUS]; | ||
52 | |||
53 | /* Return a frequency in MHz, given an input fid */ | ||
54 | static u32 find_freq_from_fid(u32 fid) | ||
55 | { | ||
56 | return 800 + (fid * 100); | ||
57 | } | ||
58 | |||
59 | /* Return a frequency in KHz, given an input fid */ | ||
60 | static u32 find_khz_freq_from_fid(u32 fid) | ||
61 | { | ||
62 | return 1000 * find_freq_from_fid(fid); | ||
63 | } | ||
64 | |||
65 | /* Return a voltage in miliVolts, given an input vid */ | ||
66 | static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid) | ||
67 | { | ||
68 | return 1550-vid*25; | ||
69 | } | ||
70 | |||
71 | /* Return the vco fid for an input fid | ||
72 | * | ||
73 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids | ||
74 | * only from corresponding high fids. This returns "high" fid corresponding to | ||
75 | * "low" one. | ||
76 | */ | ||
77 | static u32 convert_fid_to_vco_fid(u32 fid) | ||
78 | { | ||
79 | if (fid < HI_FID_TABLE_BOTTOM) { | ||
80 | return 8 + (2 * fid); | ||
81 | } else { | ||
82 | return fid; | ||
83 | } | ||
84 | } | ||
85 | |||
86 | /* | ||
87 | * Return 1 if the pending bit is set. Unless we just instructed the processor | ||
88 | * to transition to a new state, seeing this bit set is really bad news. | ||
89 | */ | ||
90 | static int pending_bit_stuck(void) | ||
91 | { | ||
92 | u32 lo, hi; | ||
93 | |||
94 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
95 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; | ||
96 | } | ||
97 | |||
98 | /* | ||
99 | * Update the global current fid / vid values from the status msr. | ||
100 | * Returns 1 on error. | ||
101 | */ | ||
102 | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) | ||
103 | { | ||
104 | u32 lo, hi; | ||
105 | u32 i = 0; | ||
106 | |||
107 | lo = MSR_S_LO_CHANGE_PENDING; | ||
108 | while (lo & MSR_S_LO_CHANGE_PENDING) { | ||
109 | if (i++ > 0x1000000) { | ||
110 | printk(KERN_ERR PFX "detected change pending stuck\n"); | ||
111 | return 1; | ||
112 | } | ||
113 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
114 | } | ||
115 | |||
116 | data->currvid = hi & MSR_S_HI_CURRENT_VID; | ||
117 | data->currfid = lo & MSR_S_LO_CURRENT_FID; | ||
118 | |||
119 | return 0; | ||
120 | } | ||
121 | |||
122 | /* the isochronous relief time */ | ||
123 | static void count_off_irt(struct powernow_k8_data *data) | ||
124 | { | ||
125 | udelay((1 << data->irt) * 10); | ||
126 | return; | ||
127 | } | ||
128 | |||
129 | /* the voltage stabalization time */ | ||
130 | static void count_off_vst(struct powernow_k8_data *data) | ||
131 | { | ||
132 | udelay(data->vstable * VST_UNITS_20US); | ||
133 | return; | ||
134 | } | ||
135 | |||
136 | /* need to init the control msr to a safe value (for each cpu) */ | ||
137 | static void fidvid_msr_init(void) | ||
138 | { | ||
139 | u32 lo, hi; | ||
140 | u8 fid, vid; | ||
141 | |||
142 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
143 | vid = hi & MSR_S_HI_CURRENT_VID; | ||
144 | fid = lo & MSR_S_LO_CURRENT_FID; | ||
145 | lo = fid | (vid << MSR_C_LO_VID_SHIFT); | ||
146 | hi = MSR_C_HI_STP_GNT_BENIGN; | ||
147 | dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); | ||
148 | wrmsr(MSR_FIDVID_CTL, lo, hi); | ||
149 | } | ||
150 | |||
151 | |||
152 | /* write the new fid value along with the other control fields to the msr */ | ||
153 | static int write_new_fid(struct powernow_k8_data *data, u32 fid) | ||
154 | { | ||
155 | u32 lo; | ||
156 | u32 savevid = data->currvid; | ||
157 | |||
158 | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { | ||
159 | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); | ||
160 | return 1; | ||
161 | } | ||
162 | |||
163 | lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; | ||
164 | |||
165 | dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n", | ||
166 | fid, lo, data->plllock * PLL_LOCK_CONVERSION); | ||
167 | |||
168 | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); | ||
169 | |||
170 | if (query_current_values_with_pending_wait(data)) | ||
171 | return 1; | ||
172 | |||
173 | count_off_irt(data); | ||
174 | |||
175 | if (savevid != data->currvid) { | ||
176 | printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n", | ||
177 | savevid, data->currvid); | ||
178 | return 1; | ||
179 | } | ||
180 | |||
181 | if (fid != data->currfid) { | ||
182 | printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid, | ||
183 | data->currfid); | ||
184 | return 1; | ||
185 | } | ||
186 | |||
187 | return 0; | ||
188 | } | ||
189 | |||
190 | /* Write a new vid to the hardware */ | ||
191 | static int write_new_vid(struct powernow_k8_data *data, u32 vid) | ||
192 | { | ||
193 | u32 lo; | ||
194 | u32 savefid = data->currfid; | ||
195 | |||
196 | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { | ||
197 | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); | ||
198 | return 1; | ||
199 | } | ||
200 | |||
201 | lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; | ||
202 | |||
203 | dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n", | ||
204 | vid, lo, STOP_GRANT_5NS); | ||
205 | |||
206 | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); | ||
207 | |||
208 | if (query_current_values_with_pending_wait(data)) | ||
209 | return 1; | ||
210 | |||
211 | if (savefid != data->currfid) { | ||
212 | printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n", | ||
213 | savefid, data->currfid); | ||
214 | return 1; | ||
215 | } | ||
216 | |||
217 | if (vid != data->currvid) { | ||
218 | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid, | ||
219 | data->currvid); | ||
220 | return 1; | ||
221 | } | ||
222 | |||
223 | return 0; | ||
224 | } | ||
225 | |||
226 | /* | ||
227 | * Reduce the vid by the max of step or reqvid. | ||
228 | * Decreasing vid codes represent increasing voltages: | ||
229 | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of 0x1f is off. | ||
230 | */ | ||
231 | static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step) | ||
232 | { | ||
233 | if ((data->currvid - reqvid) > step) | ||
234 | reqvid = data->currvid - step; | ||
235 | |||
236 | if (write_new_vid(data, reqvid)) | ||
237 | return 1; | ||
238 | |||
239 | count_off_vst(data); | ||
240 | |||
241 | return 0; | ||
242 | } | ||
243 | |||
244 | /* Change the fid and vid, by the 3 phases. */ | ||
245 | static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid) | ||
246 | { | ||
247 | if (core_voltage_pre_transition(data, reqvid)) | ||
248 | return 1; | ||
249 | |||
250 | if (core_frequency_transition(data, reqfid)) | ||
251 | return 1; | ||
252 | |||
253 | if (core_voltage_post_transition(data, reqvid)) | ||
254 | return 1; | ||
255 | |||
256 | if (query_current_values_with_pending_wait(data)) | ||
257 | return 1; | ||
258 | |||
259 | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { | ||
260 | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n", | ||
261 | smp_processor_id(), | ||
262 | reqfid, reqvid, data->currfid, data->currvid); | ||
263 | return 1; | ||
264 | } | ||
265 | |||
266 | dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", | ||
267 | smp_processor_id(), data->currfid, data->currvid); | ||
268 | |||
269 | return 0; | ||
270 | } | ||
271 | |||
272 | /* Phase 1 - core voltage transition ... setup voltage */ | ||
273 | static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid) | ||
274 | { | ||
275 | u32 rvosteps = data->rvo; | ||
276 | u32 savefid = data->currfid; | ||
277 | |||
278 | dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n", | ||
279 | smp_processor_id(), | ||
280 | data->currfid, data->currvid, reqvid, data->rvo); | ||
281 | |||
282 | while (data->currvid > reqvid) { | ||
283 | dprintk("ph1: curr 0x%x, req vid 0x%x\n", | ||
284 | data->currvid, reqvid); | ||
285 | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) | ||
286 | return 1; | ||
287 | } | ||
288 | |||
289 | while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) { | ||
290 | if (data->currvid == 0) { | ||
291 | rvosteps = 0; | ||
292 | } else { | ||
293 | dprintk("ph1: changing vid for rvo, req 0x%x\n", | ||
294 | data->currvid - 1); | ||
295 | if (decrease_vid_code_by_step(data, data->currvid - 1, 1)) | ||
296 | return 1; | ||
297 | rvosteps--; | ||
298 | } | ||
299 | } | ||
300 | |||
301 | if (query_current_values_with_pending_wait(data)) | ||
302 | return 1; | ||
303 | |||
304 | if (savefid != data->currfid) { | ||
305 | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid); | ||
306 | return 1; | ||
307 | } | ||
308 | |||
309 | dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n", | ||
310 | data->currfid, data->currvid); | ||
311 | |||
312 | return 0; | ||
313 | } | ||
314 | |||
315 | /* Phase 2 - core frequency transition */ | ||
316 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) | ||
317 | { | ||
318 | u32 vcoreqfid, vcocurrfid, vcofiddiff, savevid = data->currvid; | ||
319 | |||
320 | if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) { | ||
321 | printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n", | ||
322 | reqfid, data->currfid); | ||
323 | return 1; | ||
324 | } | ||
325 | |||
326 | if (data->currfid == reqfid) { | ||
327 | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid); | ||
328 | return 0; | ||
329 | } | ||
330 | |||
331 | dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n", | ||
332 | smp_processor_id(), | ||
333 | data->currfid, data->currvid, reqfid); | ||
334 | |||
335 | vcoreqfid = convert_fid_to_vco_fid(reqfid); | ||
336 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | ||
337 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | ||
338 | : vcoreqfid - vcocurrfid; | ||
339 | |||
340 | while (vcofiddiff > 2) { | ||
341 | if (reqfid > data->currfid) { | ||
342 | if (data->currfid > LO_FID_TABLE_TOP) { | ||
343 | if (write_new_fid(data, data->currfid + 2)) { | ||
344 | return 1; | ||
345 | } | ||
346 | } else { | ||
347 | if (write_new_fid | ||
348 | (data, 2 + convert_fid_to_vco_fid(data->currfid))) { | ||
349 | return 1; | ||
350 | } | ||
351 | } | ||
352 | } else { | ||
353 | if (write_new_fid(data, data->currfid - 2)) | ||
354 | return 1; | ||
355 | } | ||
356 | |||
357 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | ||
358 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | ||
359 | : vcoreqfid - vcocurrfid; | ||
360 | } | ||
361 | |||
362 | if (write_new_fid(data, reqfid)) | ||
363 | return 1; | ||
364 | |||
365 | if (query_current_values_with_pending_wait(data)) | ||
366 | return 1; | ||
367 | |||
368 | if (data->currfid != reqfid) { | ||
369 | printk(KERN_ERR PFX | ||
370 | "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n", | ||
371 | data->currfid, reqfid); | ||
372 | return 1; | ||
373 | } | ||
374 | |||
375 | if (savevid != data->currvid) { | ||
376 | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", | ||
377 | savevid, data->currvid); | ||
378 | return 1; | ||
379 | } | ||
380 | |||
381 | dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n", | ||
382 | data->currfid, data->currvid); | ||
383 | |||
384 | return 0; | ||
385 | } | ||
386 | |||
387 | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ | ||
388 | static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid) | ||
389 | { | ||
390 | u32 savefid = data->currfid; | ||
391 | u32 savereqvid = reqvid; | ||
392 | |||
393 | dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", | ||
394 | smp_processor_id(), | ||
395 | data->currfid, data->currvid); | ||
396 | |||
397 | if (reqvid != data->currvid) { | ||
398 | if (write_new_vid(data, reqvid)) | ||
399 | return 1; | ||
400 | |||
401 | if (savefid != data->currfid) { | ||
402 | printk(KERN_ERR PFX | ||
403 | "ph3: bad fid change, save 0x%x, curr 0x%x\n", | ||
404 | savefid, data->currfid); | ||
405 | return 1; | ||
406 | } | ||
407 | |||
408 | if (data->currvid != reqvid) { | ||
409 | printk(KERN_ERR PFX | ||
410 | "ph3: failed vid transition\n, req 0x%x, curr 0x%x", | ||
411 | reqvid, data->currvid); | ||
412 | return 1; | ||
413 | } | ||
414 | } | ||
415 | |||
416 | if (query_current_values_with_pending_wait(data)) | ||
417 | return 1; | ||
418 | |||
419 | if (savereqvid != data->currvid) { | ||
420 | dprintk("ph3 failed, currvid 0x%x\n", data->currvid); | ||
421 | return 1; | ||
422 | } | ||
423 | |||
424 | if (savefid != data->currfid) { | ||
425 | dprintk("ph3 failed, currfid changed 0x%x\n", | ||
426 | data->currfid); | ||
427 | return 1; | ||
428 | } | ||
429 | |||
430 | dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n", | ||
431 | data->currfid, data->currvid); | ||
432 | |||
433 | return 0; | ||
434 | } | ||
435 | |||
436 | static int check_supported_cpu(unsigned int cpu) | ||
437 | { | ||
438 | cpumask_t oldmask = CPU_MASK_ALL; | ||
439 | u32 eax, ebx, ecx, edx; | ||
440 | unsigned int rc = 0; | ||
441 | |||
442 | oldmask = current->cpus_allowed; | ||
443 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
444 | schedule(); | ||
445 | |||
446 | if (smp_processor_id() != cpu) { | ||
447 | printk(KERN_ERR "limiting to cpu %u failed\n", cpu); | ||
448 | goto out; | ||
449 | } | ||
450 | |||
451 | if (current_cpu_data.x86_vendor != X86_VENDOR_AMD) | ||
452 | goto out; | ||
453 | |||
454 | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | ||
455 | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || | ||
456 | ((eax & CPUID_XFAM) != CPUID_XFAM_K8) || | ||
457 | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_E)) { | ||
458 | printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax); | ||
459 | goto out; | ||
460 | } | ||
461 | |||
462 | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); | ||
463 | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { | ||
464 | printk(KERN_INFO PFX | ||
465 | "No frequency change capabilities detected\n"); | ||
466 | goto out; | ||
467 | } | ||
468 | |||
469 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | ||
470 | if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) { | ||
471 | printk(KERN_INFO PFX "Power state transitions not supported\n"); | ||
472 | goto out; | ||
473 | } | ||
474 | |||
475 | rc = 1; | ||
476 | |||
477 | out: | ||
478 | set_cpus_allowed(current, oldmask); | ||
479 | schedule(); | ||
480 | return rc; | ||
481 | |||
482 | } | ||
483 | |||
484 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) | ||
485 | { | ||
486 | unsigned int j; | ||
487 | u8 lastfid = 0xff; | ||
488 | |||
489 | for (j = 0; j < data->numps; j++) { | ||
490 | if (pst[j].vid > LEAST_VID) { | ||
491 | printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid); | ||
492 | return -EINVAL; | ||
493 | } | ||
494 | if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */ | ||
495 | printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j); | ||
496 | return -ENODEV; | ||
497 | } | ||
498 | if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */ | ||
499 | printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j); | ||
500 | return -ENODEV; | ||
501 | } | ||
502 | if ((pst[j].fid > MAX_FID) | ||
503 | || (pst[j].fid & 1) | ||
504 | || (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) { | ||
505 | /* Only first fid is allowed to be in "low" range */ | ||
506 | printk(KERN_ERR PFX "two low fids - %d : 0x%x\n", j, pst[j].fid); | ||
507 | return -EINVAL; | ||
508 | } | ||
509 | if (pst[j].fid < lastfid) | ||
510 | lastfid = pst[j].fid; | ||
511 | } | ||
512 | if (lastfid & 1) { | ||
513 | printk(KERN_ERR PFX "lastfid invalid\n"); | ||
514 | return -EINVAL; | ||
515 | } | ||
516 | if (lastfid > LO_FID_TABLE_TOP) | ||
517 | printk(KERN_INFO PFX "first fid not from lo freq table\n"); | ||
518 | |||
519 | return 0; | ||
520 | } | ||
521 | |||
522 | static void print_basics(struct powernow_k8_data *data) | ||
523 | { | ||
524 | int j; | ||
525 | for (j = 0; j < data->numps; j++) { | ||
526 | if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) | ||
527 | printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j, | ||
528 | data->powernow_table[j].index & 0xff, | ||
529 | data->powernow_table[j].frequency/1000, | ||
530 | data->powernow_table[j].index >> 8, | ||
531 | find_millivolts_from_vid(data, data->powernow_table[j].index >> 8)); | ||
532 | } | ||
533 | if (data->batps) | ||
534 | printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps); | ||
535 | } | ||
536 | |||
537 | static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) | ||
538 | { | ||
539 | struct cpufreq_frequency_table *powernow_table; | ||
540 | unsigned int j; | ||
541 | |||
542 | if (data->batps) { /* use ACPI support to get full speed on mains power */ | ||
543 | printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps); | ||
544 | data->numps = data->batps; | ||
545 | } | ||
546 | |||
547 | for ( j=1; j<data->numps; j++ ) { | ||
548 | if (pst[j-1].fid >= pst[j].fid) { | ||
549 | printk(KERN_ERR PFX "PST out of sequence\n"); | ||
550 | return -EINVAL; | ||
551 | } | ||
552 | } | ||
553 | |||
554 | if (data->numps < 2) { | ||
555 | printk(KERN_ERR PFX "no p states to transition\n"); | ||
556 | return -ENODEV; | ||
557 | } | ||
558 | |||
559 | if (check_pst_table(data, pst, maxvid)) | ||
560 | return -EINVAL; | ||
561 | |||
562 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | ||
563 | * (data->numps + 1)), GFP_KERNEL); | ||
564 | if (!powernow_table) { | ||
565 | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); | ||
566 | return -ENOMEM; | ||
567 | } | ||
568 | |||
569 | for (j = 0; j < data->numps; j++) { | ||
570 | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ | ||
571 | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ | ||
572 | powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid); | ||
573 | } | ||
574 | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; | ||
575 | powernow_table[data->numps].index = 0; | ||
576 | |||
577 | if (query_current_values_with_pending_wait(data)) { | ||
578 | kfree(powernow_table); | ||
579 | return -EIO; | ||
580 | } | ||
581 | |||
582 | dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); | ||
583 | data->powernow_table = powernow_table; | ||
584 | print_basics(data); | ||
585 | |||
586 | for (j = 0; j < data->numps; j++) | ||
587 | if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid)) | ||
588 | return 0; | ||
589 | |||
590 | dprintk("currfid/vid do not match PST, ignoring\n"); | ||
591 | return 0; | ||
592 | } | ||
593 | |||
594 | /* Find and validate the PSB/PST table in BIOS. */ | ||
595 | static int find_psb_table(struct powernow_k8_data *data) | ||
596 | { | ||
597 | struct psb_s *psb; | ||
598 | unsigned int i; | ||
599 | u32 mvs; | ||
600 | u8 maxvid; | ||
601 | u32 cpst = 0; | ||
602 | u32 thiscpuid; | ||
603 | |||
604 | for (i = 0xc0000; i < 0xffff0; i += 0x10) { | ||
605 | /* Scan BIOS looking for the signature. */ | ||
606 | /* It can not be at ffff0 - it is too big. */ | ||
607 | |||
608 | psb = phys_to_virt(i); | ||
609 | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) | ||
610 | continue; | ||
611 | |||
612 | dprintk("found PSB header at 0x%p\n", psb); | ||
613 | |||
614 | dprintk("table vers: 0x%x\n", psb->tableversion); | ||
615 | if (psb->tableversion != PSB_VERSION_1_4) { | ||
616 | printk(KERN_INFO BFX "PSB table is not v1.4\n"); | ||
617 | return -ENODEV; | ||
618 | } | ||
619 | |||
620 | dprintk("flags: 0x%x\n", psb->flags1); | ||
621 | if (psb->flags1) { | ||
622 | printk(KERN_ERR BFX "unknown flags\n"); | ||
623 | return -ENODEV; | ||
624 | } | ||
625 | |||
626 | data->vstable = psb->vstable; | ||
627 | dprintk("voltage stabilization time: %d(*20us)\n", data->vstable); | ||
628 | |||
629 | dprintk("flags2: 0x%x\n", psb->flags2); | ||
630 | data->rvo = psb->flags2 & 3; | ||
631 | data->irt = ((psb->flags2) >> 2) & 3; | ||
632 | mvs = ((psb->flags2) >> 4) & 3; | ||
633 | data->vidmvs = 1 << mvs; | ||
634 | data->batps = ((psb->flags2) >> 6) & 3; | ||
635 | |||
636 | dprintk("ramp voltage offset: %d\n", data->rvo); | ||
637 | dprintk("isochronous relief time: %d\n", data->irt); | ||
638 | dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); | ||
639 | |||
640 | dprintk("numpst: 0x%x\n", psb->num_tables); | ||
641 | cpst = psb->num_tables; | ||
642 | if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){ | ||
643 | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | ||
644 | if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) { | ||
645 | cpst = 1; | ||
646 | } | ||
647 | } | ||
648 | if (cpst != 1) { | ||
649 | printk(KERN_ERR BFX "numpst must be 1\n"); | ||
650 | return -ENODEV; | ||
651 | } | ||
652 | |||
653 | data->plllock = psb->plllocktime; | ||
654 | dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); | ||
655 | dprintk("maxfid: 0x%x\n", psb->maxfid); | ||
656 | dprintk("maxvid: 0x%x\n", psb->maxvid); | ||
657 | maxvid = psb->maxvid; | ||
658 | |||
659 | data->numps = psb->numps; | ||
660 | dprintk("numpstates: 0x%x\n", data->numps); | ||
661 | return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid); | ||
662 | } | ||
663 | /* | ||
664 | * If you see this message, complain to BIOS manufacturer. If | ||
665 | * he tells you "we do not support Linux" or some similar | ||
666 | * nonsense, remember that Windows 2000 uses the same legacy | ||
667 | * mechanism that the old Linux PSB driver uses. Tell them it | ||
668 | * is broken with Windows 2000. | ||
669 | * | ||
670 | * The reference to the AMD documentation is chapter 9 in the | ||
671 | * BIOS and Kernel Developer's Guide, which is available on | ||
672 | * www.amd.com | ||
673 | */ | ||
674 | printk(KERN_ERR PFX "BIOS error - no PSB\n"); | ||
675 | return -ENODEV; | ||
676 | } | ||
677 | |||
678 | #ifdef CONFIG_X86_POWERNOW_K8_ACPI | ||
679 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) | ||
680 | { | ||
681 | if (!data->acpi_data.state_count) | ||
682 | return; | ||
683 | |||
684 | data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK; | ||
685 | data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK; | ||
686 | data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK; | ||
687 | data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK); | ||
688 | data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK; | ||
689 | } | ||
690 | |||
691 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) | ||
692 | { | ||
693 | int i; | ||
694 | int cntlofreq = 0; | ||
695 | struct cpufreq_frequency_table *powernow_table; | ||
696 | |||
697 | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { | ||
698 | dprintk("register performance failed\n"); | ||
699 | return -EIO; | ||
700 | } | ||
701 | |||
702 | /* verify the data contained in the ACPI structures */ | ||
703 | if (data->acpi_data.state_count <= 1) { | ||
704 | dprintk("No ACPI P-States\n"); | ||
705 | goto err_out; | ||
706 | } | ||
707 | |||
708 | if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || | ||
709 | (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | ||
710 | dprintk("Invalid control/status registers (%x - %x)\n", | ||
711 | data->acpi_data.control_register.space_id, | ||
712 | data->acpi_data.status_register.space_id); | ||
713 | goto err_out; | ||
714 | } | ||
715 | |||
716 | /* fill in data->powernow_table */ | ||
717 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | ||
718 | * (data->acpi_data.state_count + 1)), GFP_KERNEL); | ||
719 | if (!powernow_table) { | ||
720 | dprintk("powernow_table memory alloc failure\n"); | ||
721 | goto err_out; | ||
722 | } | ||
723 | |||
724 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
725 | u32 fid = data->acpi_data.states[i].control & FID_MASK; | ||
726 | u32 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK; | ||
727 | |||
728 | dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); | ||
729 | |||
730 | powernow_table[i].index = fid; /* lower 8 bits */ | ||
731 | powernow_table[i].index |= (vid << 8); /* upper 8 bits */ | ||
732 | powernow_table[i].frequency = find_khz_freq_from_fid(fid); | ||
733 | |||
734 | /* verify frequency is OK */ | ||
735 | if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) || | ||
736 | (powernow_table[i].frequency < (MIN_FREQ * 1000))) { | ||
737 | dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency); | ||
738 | powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
739 | continue; | ||
740 | } | ||
741 | |||
742 | /* verify voltage is OK - BIOSs are using "off" to indicate invalid */ | ||
743 | if (vid == 0x1f) { | ||
744 | dprintk("invalid vid %u, ignoring\n", vid); | ||
745 | powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
746 | continue; | ||
747 | } | ||
748 | |||
749 | if (fid < HI_FID_TABLE_BOTTOM) { | ||
750 | if (cntlofreq) { | ||
751 | /* if both entries are the same, ignore this | ||
752 | * one... | ||
753 | */ | ||
754 | if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) || | ||
755 | (powernow_table[i].index != powernow_table[cntlofreq].index)) { | ||
756 | printk(KERN_ERR PFX "Too many lo freq table entries\n"); | ||
757 | goto err_out_mem; | ||
758 | } | ||
759 | |||
760 | dprintk("double low frequency table entry, ignoring it.\n"); | ||
761 | powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
762 | continue; | ||
763 | } else | ||
764 | cntlofreq = i; | ||
765 | } | ||
766 | |||
767 | if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) { | ||
768 | printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n", | ||
769 | powernow_table[i].frequency, | ||
770 | (unsigned int) (data->acpi_data.states[i].core_frequency * 1000)); | ||
771 | powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
772 | continue; | ||
773 | } | ||
774 | } | ||
775 | |||
776 | powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END; | ||
777 | powernow_table[data->acpi_data.state_count].index = 0; | ||
778 | data->powernow_table = powernow_table; | ||
779 | |||
780 | /* fill in data */ | ||
781 | data->numps = data->acpi_data.state_count; | ||
782 | print_basics(data); | ||
783 | powernow_k8_acpi_pst_values(data, 0); | ||
784 | |||
785 | /* notify BIOS that we exist */ | ||
786 | acpi_processor_notify_smm(THIS_MODULE); | ||
787 | |||
788 | return 0; | ||
789 | |||
790 | err_out_mem: | ||
791 | kfree(powernow_table); | ||
792 | |||
793 | err_out: | ||
794 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); | ||
795 | |||
796 | /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */ | ||
797 | data->acpi_data.state_count = 0; | ||
798 | |||
799 | return -ENODEV; | ||
800 | } | ||
801 | |||
802 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) | ||
803 | { | ||
804 | if (data->acpi_data.state_count) | ||
805 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); | ||
806 | } | ||
807 | |||
808 | #else | ||
809 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; } | ||
810 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; } | ||
811 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; } | ||
812 | #endif /* CONFIG_X86_POWERNOW_K8_ACPI */ | ||
813 | |||
814 | /* Take a frequency, and issue the fid/vid transition command */ | ||
815 | static int transition_frequency(struct powernow_k8_data *data, unsigned int index) | ||
816 | { | ||
817 | u32 fid; | ||
818 | u32 vid; | ||
819 | int res; | ||
820 | struct cpufreq_freqs freqs; | ||
821 | |||
822 | dprintk("cpu %d transition to index %u\n", smp_processor_id(), index); | ||
823 | |||
824 | /* fid are the lower 8 bits of the index we stored into | ||
825 | * the cpufreq frequency table in find_psb_table, vid are | ||
826 | * the upper 8 bits. | ||
827 | */ | ||
828 | |||
829 | fid = data->powernow_table[index].index & 0xFF; | ||
830 | vid = (data->powernow_table[index].index & 0xFF00) >> 8; | ||
831 | |||
832 | dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); | ||
833 | |||
834 | if (query_current_values_with_pending_wait(data)) | ||
835 | return 1; | ||
836 | |||
837 | if ((data->currvid == vid) && (data->currfid == fid)) { | ||
838 | dprintk("target matches current values (fid 0x%x, vid 0x%x)\n", | ||
839 | fid, vid); | ||
840 | return 0; | ||
841 | } | ||
842 | |||
843 | if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) { | ||
844 | printk("ignoring illegal change in lo freq table-%x to 0x%x\n", | ||
845 | data->currfid, fid); | ||
846 | return 1; | ||
847 | } | ||
848 | |||
849 | dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n", | ||
850 | smp_processor_id(), fid, vid); | ||
851 | |||
852 | freqs.cpu = data->cpu; | ||
853 | |||
854 | freqs.old = find_khz_freq_from_fid(data->currfid); | ||
855 | freqs.new = find_khz_freq_from_fid(fid); | ||
856 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
857 | |||
858 | down(&fidvid_sem); | ||
859 | res = transition_fid_vid(data, fid, vid); | ||
860 | up(&fidvid_sem); | ||
861 | |||
862 | freqs.new = find_khz_freq_from_fid(data->currfid); | ||
863 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
864 | |||
865 | return res; | ||
866 | } | ||
867 | |||
868 | /* Driver entry point to switch to the target frequency */ | ||
869 | static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation) | ||
870 | { | ||
871 | cpumask_t oldmask = CPU_MASK_ALL; | ||
872 | struct powernow_k8_data *data = powernow_data[pol->cpu]; | ||
873 | u32 checkfid = data->currfid; | ||
874 | u32 checkvid = data->currvid; | ||
875 | unsigned int newstate; | ||
876 | int ret = -EIO; | ||
877 | |||
878 | /* only run on specific CPU from here on */ | ||
879 | oldmask = current->cpus_allowed; | ||
880 | set_cpus_allowed(current, cpumask_of_cpu(pol->cpu)); | ||
881 | schedule(); | ||
882 | |||
883 | if (smp_processor_id() != pol->cpu) { | ||
884 | printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu); | ||
885 | goto err_out; | ||
886 | } | ||
887 | |||
888 | if (pending_bit_stuck()) { | ||
889 | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); | ||
890 | goto err_out; | ||
891 | } | ||
892 | |||
893 | dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", | ||
894 | pol->cpu, targfreq, pol->min, pol->max, relation); | ||
895 | |||
896 | if (query_current_values_with_pending_wait(data)) { | ||
897 | ret = -EIO; | ||
898 | goto err_out; | ||
899 | } | ||
900 | |||
901 | dprintk("targ: curr fid 0x%x, vid 0x%x\n", | ||
902 | data->currfid, data->currvid); | ||
903 | |||
904 | if ((checkvid != data->currvid) || (checkfid != data->currfid)) { | ||
905 | printk(KERN_ERR PFX | ||
906 | "error - out of sync, fid 0x%x 0x%x, vid 0x%x 0x%x\n", | ||
907 | checkfid, data->currfid, checkvid, data->currvid); | ||
908 | } | ||
909 | |||
910 | if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate)) | ||
911 | goto err_out; | ||
912 | |||
913 | powernow_k8_acpi_pst_values(data, newstate); | ||
914 | |||
915 | if (transition_frequency(data, newstate)) { | ||
916 | printk(KERN_ERR PFX "transition frequency failed\n"); | ||
917 | ret = 1; | ||
918 | goto err_out; | ||
919 | } | ||
920 | |||
921 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
922 | ret = 0; | ||
923 | |||
924 | err_out: | ||
925 | set_cpus_allowed(current, oldmask); | ||
926 | schedule(); | ||
927 | |||
928 | return ret; | ||
929 | } | ||
930 | |||
931 | /* Driver entry point to verify the policy and range of frequencies */ | ||
932 | static int powernowk8_verify(struct cpufreq_policy *pol) | ||
933 | { | ||
934 | struct powernow_k8_data *data = powernow_data[pol->cpu]; | ||
935 | |||
936 | return cpufreq_frequency_table_verify(pol, data->powernow_table); | ||
937 | } | ||
938 | |||
939 | /* per CPU init entry point to the driver */ | ||
940 | static int __init powernowk8_cpu_init(struct cpufreq_policy *pol) | ||
941 | { | ||
942 | struct powernow_k8_data *data; | ||
943 | cpumask_t oldmask = CPU_MASK_ALL; | ||
944 | int rc; | ||
945 | |||
946 | if (!check_supported_cpu(pol->cpu)) | ||
947 | return -ENODEV; | ||
948 | |||
949 | data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); | ||
950 | if (!data) { | ||
951 | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); | ||
952 | return -ENOMEM; | ||
953 | } | ||
954 | memset(data,0,sizeof(struct powernow_k8_data)); | ||
955 | |||
956 | data->cpu = pol->cpu; | ||
957 | |||
958 | if (powernow_k8_cpu_init_acpi(data)) { | ||
959 | /* | ||
960 | * Use the PSB BIOS structure. This is only availabe on | ||
961 | * an UP version, and is deprecated by AMD. | ||
962 | */ | ||
963 | |||
964 | if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) { | ||
965 | printk(KERN_INFO PFX "MP systems not supported by PSB BIOS structure\n"); | ||
966 | kfree(data); | ||
967 | return -ENODEV; | ||
968 | } | ||
969 | if (pol->cpu != 0) { | ||
970 | printk(KERN_ERR PFX "init not cpu 0\n"); | ||
971 | kfree(data); | ||
972 | return -ENODEV; | ||
973 | } | ||
974 | rc = find_psb_table(data); | ||
975 | if (rc) { | ||
976 | kfree(data); | ||
977 | return -ENODEV; | ||
978 | } | ||
979 | } | ||
980 | |||
981 | /* only run on specific CPU from here on */ | ||
982 | oldmask = current->cpus_allowed; | ||
983 | set_cpus_allowed(current, cpumask_of_cpu(pol->cpu)); | ||
984 | schedule(); | ||
985 | |||
986 | if (smp_processor_id() != pol->cpu) { | ||
987 | printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu); | ||
988 | goto err_out; | ||
989 | } | ||
990 | |||
991 | if (pending_bit_stuck()) { | ||
992 | printk(KERN_ERR PFX "failing init, change pending bit set\n"); | ||
993 | goto err_out; | ||
994 | } | ||
995 | |||
996 | if (query_current_values_with_pending_wait(data)) | ||
997 | goto err_out; | ||
998 | |||
999 | fidvid_msr_init(); | ||
1000 | |||
1001 | /* run on any CPU again */ | ||
1002 | set_cpus_allowed(current, oldmask); | ||
1003 | schedule(); | ||
1004 | |||
1005 | pol->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
1006 | |||
1007 | /* Take a crude guess here. | ||
1008 | * That guess was in microseconds, so multiply with 1000 */ | ||
1009 | pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US) | ||
1010 | + (3 * (1 << data->irt) * 10)) * 1000; | ||
1011 | |||
1012 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1013 | dprintk("policy current frequency %d kHz\n", pol->cur); | ||
1014 | |||
1015 | /* min/max the cpu is capable of */ | ||
1016 | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { | ||
1017 | printk(KERN_ERR PFX "invalid powernow_table\n"); | ||
1018 | powernow_k8_cpu_exit_acpi(data); | ||
1019 | kfree(data->powernow_table); | ||
1020 | kfree(data); | ||
1021 | return -EINVAL; | ||
1022 | } | ||
1023 | |||
1024 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); | ||
1025 | |||
1026 | printk("cpu_init done, current fid 0x%x, vid 0x%x\n", | ||
1027 | data->currfid, data->currvid); | ||
1028 | |||
1029 | powernow_data[pol->cpu] = data; | ||
1030 | |||
1031 | return 0; | ||
1032 | |||
1033 | err_out: | ||
1034 | set_cpus_allowed(current, oldmask); | ||
1035 | schedule(); | ||
1036 | powernow_k8_cpu_exit_acpi(data); | ||
1037 | |||
1038 | kfree(data); | ||
1039 | return -ENODEV; | ||
1040 | } | ||
1041 | |||
1042 | static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol) | ||
1043 | { | ||
1044 | struct powernow_k8_data *data = powernow_data[pol->cpu]; | ||
1045 | |||
1046 | if (!data) | ||
1047 | return -EINVAL; | ||
1048 | |||
1049 | powernow_k8_cpu_exit_acpi(data); | ||
1050 | |||
1051 | cpufreq_frequency_table_put_attr(pol->cpu); | ||
1052 | |||
1053 | kfree(data->powernow_table); | ||
1054 | kfree(data); | ||
1055 | |||
1056 | return 0; | ||
1057 | } | ||
1058 | |||
1059 | static unsigned int powernowk8_get (unsigned int cpu) | ||
1060 | { | ||
1061 | struct powernow_k8_data *data = powernow_data[cpu]; | ||
1062 | cpumask_t oldmask = current->cpus_allowed; | ||
1063 | unsigned int khz = 0; | ||
1064 | |||
1065 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
1066 | if (smp_processor_id() != cpu) { | ||
1067 | printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu); | ||
1068 | set_cpus_allowed(current, oldmask); | ||
1069 | return 0; | ||
1070 | } | ||
1071 | preempt_disable(); | ||
1072 | |||
1073 | if (query_current_values_with_pending_wait(data)) | ||
1074 | goto out; | ||
1075 | |||
1076 | khz = find_khz_freq_from_fid(data->currfid); | ||
1077 | |||
1078 | out: | ||
1079 | preempt_enable_no_resched(); | ||
1080 | set_cpus_allowed(current, oldmask); | ||
1081 | |||
1082 | return khz; | ||
1083 | } | ||
1084 | |||
1085 | static struct freq_attr* powernow_k8_attr[] = { | ||
1086 | &cpufreq_freq_attr_scaling_available_freqs, | ||
1087 | NULL, | ||
1088 | }; | ||
1089 | |||
1090 | static struct cpufreq_driver cpufreq_amd64_driver = { | ||
1091 | .verify = powernowk8_verify, | ||
1092 | .target = powernowk8_target, | ||
1093 | .init = powernowk8_cpu_init, | ||
1094 | .exit = __devexit_p(powernowk8_cpu_exit), | ||
1095 | .get = powernowk8_get, | ||
1096 | .name = "powernow-k8", | ||
1097 | .owner = THIS_MODULE, | ||
1098 | .attr = powernow_k8_attr, | ||
1099 | }; | ||
1100 | |||
1101 | /* driver entry point for init */ | ||
1102 | static int __init powernowk8_init(void) | ||
1103 | { | ||
1104 | unsigned int i, supported_cpus = 0; | ||
1105 | |||
1106 | for (i=0; i<NR_CPUS; i++) { | ||
1107 | if (!cpu_online(i)) | ||
1108 | continue; | ||
1109 | if (check_supported_cpu(i)) | ||
1110 | supported_cpus++; | ||
1111 | } | ||
1112 | |||
1113 | if (supported_cpus == num_online_cpus()) { | ||
1114 | printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n", | ||
1115 | supported_cpus); | ||
1116 | return cpufreq_register_driver(&cpufreq_amd64_driver); | ||
1117 | } | ||
1118 | |||
1119 | return -ENODEV; | ||
1120 | } | ||
1121 | |||
1122 | /* driver entry point for term */ | ||
1123 | static void __exit powernowk8_exit(void) | ||
1124 | { | ||
1125 | dprintk("exit\n"); | ||
1126 | |||
1127 | cpufreq_unregister_driver(&cpufreq_amd64_driver); | ||
1128 | } | ||
1129 | |||
1130 | MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>"); | ||
1131 | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); | ||
1132 | MODULE_LICENSE("GPL"); | ||
1133 | |||
1134 | late_initcall(powernowk8_init); | ||
1135 | module_exit(powernowk8_exit); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/powernow-k8.h b/arch/i386/kernel/cpu/cpufreq/powernow-k8.h new file mode 100644 index 000000000000..63ebc8470f52 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/powernow-k8.h | |||
@@ -0,0 +1,176 @@ | |||
1 | /* | ||
2 | * (c) 2003, 2004 Advanced Micro Devices, Inc. | ||
3 | * Your use of this code is subject to the terms and conditions of the | ||
4 | * GNU general public license version 2. See "COPYING" or | ||
5 | * http://www.gnu.org/licenses/gpl.html | ||
6 | */ | ||
7 | |||
8 | struct powernow_k8_data { | ||
9 | unsigned int cpu; | ||
10 | |||
11 | u32 numps; /* number of p-states */ | ||
12 | u32 batps; /* number of p-states supported on battery */ | ||
13 | |||
14 | /* these values are constant when the PSB is used to determine | ||
15 | * vid/fid pairings, but are modified during the ->target() call | ||
16 | * when ACPI is used */ | ||
17 | u32 rvo; /* ramp voltage offset */ | ||
18 | u32 irt; /* isochronous relief time */ | ||
19 | u32 vidmvs; /* usable value calculated from mvs */ | ||
20 | u32 vstable; /* voltage stabilization time, units 20 us */ | ||
21 | u32 plllock; /* pll lock time, units 1 us */ | ||
22 | |||
23 | /* keep track of the current fid / vid */ | ||
24 | u32 currvid, currfid; | ||
25 | |||
26 | /* the powernow_table includes all frequency and vid/fid pairings: | ||
27 | * fid are the lower 8 bits of the index, vid are the upper 8 bits. | ||
28 | * frequency is in kHz */ | ||
29 | struct cpufreq_frequency_table *powernow_table; | ||
30 | |||
31 | #ifdef CONFIG_X86_POWERNOW_K8_ACPI | ||
32 | /* the acpi table needs to be kept. it's only available if ACPI was | ||
33 | * used to determine valid frequency/vid/fid states */ | ||
34 | struct acpi_processor_performance acpi_data; | ||
35 | #endif | ||
36 | }; | ||
37 | |||
38 | |||
39 | /* processor's cpuid instruction support */ | ||
40 | #define CPUID_PROCESSOR_SIGNATURE 1 /* function 1 */ | ||
41 | #define CPUID_XFAM 0x0ff00000 /* extended family */ | ||
42 | #define CPUID_XFAM_K8 0 | ||
43 | #define CPUID_XMOD 0x000f0000 /* extended model */ | ||
44 | #define CPUID_XMOD_REV_E 0x00020000 | ||
45 | #define CPUID_USE_XFAM_XMOD 0x00000f00 | ||
46 | #define CPUID_GET_MAX_CAPABILITIES 0x80000000 | ||
47 | #define CPUID_FREQ_VOLT_CAPABILITIES 0x80000007 | ||
48 | #define P_STATE_TRANSITION_CAPABLE 6 | ||
49 | |||
50 | /* Model Specific Registers for p-state transitions. MSRs are 64-bit. For */ | ||
51 | /* writes (wrmsr - opcode 0f 30), the register number is placed in ecx, and */ | ||
52 | /* the value to write is placed in edx:eax. For reads (rdmsr - opcode 0f 32), */ | ||
53 | /* the register number is placed in ecx, and the data is returned in edx:eax. */ | ||
54 | |||
55 | #define MSR_FIDVID_CTL 0xc0010041 | ||
56 | #define MSR_FIDVID_STATUS 0xc0010042 | ||
57 | |||
58 | /* Field definitions within the FID VID Low Control MSR : */ | ||
59 | #define MSR_C_LO_INIT_FID_VID 0x00010000 | ||
60 | #define MSR_C_LO_NEW_VID 0x00001f00 | ||
61 | #define MSR_C_LO_NEW_FID 0x0000002f | ||
62 | #define MSR_C_LO_VID_SHIFT 8 | ||
63 | |||
64 | /* Field definitions within the FID VID High Control MSR : */ | ||
65 | #define MSR_C_HI_STP_GNT_TO 0x000fffff | ||
66 | |||
67 | /* Field definitions within the FID VID Low Status MSR : */ | ||
68 | #define MSR_S_LO_CHANGE_PENDING 0x80000000 /* cleared when completed */ | ||
69 | #define MSR_S_LO_MAX_RAMP_VID 0x1f000000 | ||
70 | #define MSR_S_LO_MAX_FID 0x003f0000 | ||
71 | #define MSR_S_LO_START_FID 0x00003f00 | ||
72 | #define MSR_S_LO_CURRENT_FID 0x0000003f | ||
73 | |||
74 | /* Field definitions within the FID VID High Status MSR : */ | ||
75 | #define MSR_S_HI_MAX_WORKING_VID 0x001f0000 | ||
76 | #define MSR_S_HI_START_VID 0x00001f00 | ||
77 | #define MSR_S_HI_CURRENT_VID 0x0000001f | ||
78 | #define MSR_C_HI_STP_GNT_BENIGN 0x00000001 | ||
79 | |||
80 | /* | ||
81 | * There are restrictions frequencies have to follow: | ||
82 | * - only 1 entry in the low fid table ( <=1.4GHz ) | ||
83 | * - lowest entry in the high fid table must be >= 2 * the entry in the | ||
84 | * low fid table | ||
85 | * - lowest entry in the high fid table must be a <= 200MHz + 2 * the entry | ||
86 | * in the low fid table | ||
87 | * - the parts can only step at 200 MHz intervals, so 1.9 GHz is never valid | ||
88 | * - lowest frequency must be >= interprocessor hypertransport link speed | ||
89 | * (only applies to MP systems obviously) | ||
90 | */ | ||
91 | |||
92 | /* fids (frequency identifiers) are arranged in 2 tables - lo and hi */ | ||
93 | #define LO_FID_TABLE_TOP 6 /* fid values marking the boundary */ | ||
94 | #define HI_FID_TABLE_BOTTOM 8 /* between the low and high tables */ | ||
95 | |||
96 | #define LO_VCOFREQ_TABLE_TOP 1400 /* corresponding vco frequency values */ | ||
97 | #define HI_VCOFREQ_TABLE_BOTTOM 1600 | ||
98 | |||
99 | #define MIN_FREQ_RESOLUTION 200 /* fids jump by 2 matching freq jumps by 200 */ | ||
100 | |||
101 | #define MAX_FID 0x2a /* Spec only gives FID values as far as 5 GHz */ | ||
102 | #define LEAST_VID 0x1e /* Lowest (numerically highest) useful vid value */ | ||
103 | |||
104 | #define MIN_FREQ 800 /* Min and max freqs, per spec */ | ||
105 | #define MAX_FREQ 5000 | ||
106 | |||
107 | #define INVALID_FID_MASK 0xffffffc1 /* not a valid fid if these bits are set */ | ||
108 | #define INVALID_VID_MASK 0xffffffe0 /* not a valid vid if these bits are set */ | ||
109 | |||
110 | #define STOP_GRANT_5NS 1 /* min poss memory access latency for voltage change */ | ||
111 | |||
112 | #define PLL_LOCK_CONVERSION (1000/5) /* ms to ns, then divide by clock period */ | ||
113 | |||
114 | #define MAXIMUM_VID_STEPS 1 /* Current cpus only allow a single step of 25mV */ | ||
115 | #define VST_UNITS_20US 20 /* Voltage Stabalization Time is in units of 20us */ | ||
116 | |||
117 | /* | ||
118 | * Most values of interest are enocoded in a single field of the _PSS | ||
119 | * entries: the "control" value. | ||
120 | */ | ||
121 | |||
122 | #define IRT_SHIFT 30 | ||
123 | #define RVO_SHIFT 28 | ||
124 | #define PLL_L_SHIFT 20 | ||
125 | #define MVS_SHIFT 18 | ||
126 | #define VST_SHIFT 11 | ||
127 | #define VID_SHIFT 6 | ||
128 | #define IRT_MASK 3 | ||
129 | #define RVO_MASK 3 | ||
130 | #define PLL_L_MASK 0x7f | ||
131 | #define MVS_MASK 3 | ||
132 | #define VST_MASK 0x7f | ||
133 | #define VID_MASK 0x1f | ||
134 | #define FID_MASK 0x3f | ||
135 | |||
136 | |||
137 | /* | ||
138 | * Version 1.4 of the PSB table. This table is constructed by BIOS and is | ||
139 | * to tell the OS's power management driver which VIDs and FIDs are | ||
140 | * supported by this particular processor. | ||
141 | * If the data in the PSB / PST is wrong, then this driver will program the | ||
142 | * wrong values into hardware, which is very likely to lead to a crash. | ||
143 | */ | ||
144 | |||
145 | #define PSB_ID_STRING "AMDK7PNOW!" | ||
146 | #define PSB_ID_STRING_LEN 10 | ||
147 | |||
148 | #define PSB_VERSION_1_4 0x14 | ||
149 | |||
150 | struct psb_s { | ||
151 | u8 signature[10]; | ||
152 | u8 tableversion; | ||
153 | u8 flags1; | ||
154 | u16 vstable; | ||
155 | u8 flags2; | ||
156 | u8 num_tables; | ||
157 | u32 cpuid; | ||
158 | u8 plllocktime; | ||
159 | u8 maxfid; | ||
160 | u8 maxvid; | ||
161 | u8 numps; | ||
162 | }; | ||
163 | |||
164 | /* Pairs of fid/vid values are appended to the version 1.4 PSB table. */ | ||
165 | struct pst_s { | ||
166 | u8 fid; | ||
167 | u8 vid; | ||
168 | }; | ||
169 | |||
170 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "powernow-k8", msg) | ||
171 | |||
172 | static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid); | ||
173 | static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid); | ||
174 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid); | ||
175 | |||
176 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c b/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c new file mode 100644 index 000000000000..07d5612dc00f --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c | |||
@@ -0,0 +1,715 @@ | |||
1 | /* | ||
2 | * cpufreq driver for Enhanced SpeedStep, as found in Intel's Pentium | ||
3 | * M (part of the Centrino chipset). | ||
4 | * | ||
5 | * Despite the "SpeedStep" in the name, this is almost entirely unlike | ||
6 | * traditional SpeedStep. | ||
7 | * | ||
8 | * Modelled on speedstep.c | ||
9 | * | ||
10 | * Copyright (C) 2003 Jeremy Fitzhardinge <jeremy@goop.org> | ||
11 | * | ||
12 | * WARNING WARNING WARNING | ||
13 | * | ||
14 | * This driver manipulates the PERF_CTL MSR, which is only somewhat | ||
15 | * documented. While it seems to work on my laptop, it has not been | ||
16 | * tested anywhere else, and it may not work for you, do strange | ||
17 | * things or simply crash. | ||
18 | */ | ||
19 | |||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/cpufreq.h> | ||
24 | #include <linux/config.h> | ||
25 | #include <linux/delay.h> | ||
26 | #include <linux/compiler.h> | ||
27 | |||
28 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | ||
29 | #include <linux/acpi.h> | ||
30 | #include <acpi/processor.h> | ||
31 | #endif | ||
32 | |||
33 | #include <asm/msr.h> | ||
34 | #include <asm/processor.h> | ||
35 | #include <asm/cpufeature.h> | ||
36 | |||
37 | #include "speedstep-est-common.h" | ||
38 | |||
39 | #define PFX "speedstep-centrino: " | ||
40 | #define MAINTAINER "Jeremy Fitzhardinge <jeremy@goop.org>" | ||
41 | |||
42 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-centrino", msg) | ||
43 | |||
44 | |||
45 | struct cpu_id | ||
46 | { | ||
47 | __u8 x86; /* CPU family */ | ||
48 | __u8 x86_model; /* model */ | ||
49 | __u8 x86_mask; /* stepping */ | ||
50 | }; | ||
51 | |||
52 | enum { | ||
53 | CPU_BANIAS, | ||
54 | CPU_DOTHAN_A1, | ||
55 | CPU_DOTHAN_A2, | ||
56 | CPU_DOTHAN_B0, | ||
57 | }; | ||
58 | |||
59 | static const struct cpu_id cpu_ids[] = { | ||
60 | [CPU_BANIAS] = { 6, 9, 5 }, | ||
61 | [CPU_DOTHAN_A1] = { 6, 13, 1 }, | ||
62 | [CPU_DOTHAN_A2] = { 6, 13, 2 }, | ||
63 | [CPU_DOTHAN_B0] = { 6, 13, 6 }, | ||
64 | }; | ||
65 | #define N_IDS (sizeof(cpu_ids)/sizeof(cpu_ids[0])) | ||
66 | |||
67 | struct cpu_model | ||
68 | { | ||
69 | const struct cpu_id *cpu_id; | ||
70 | const char *model_name; | ||
71 | unsigned max_freq; /* max clock in kHz */ | ||
72 | |||
73 | struct cpufreq_frequency_table *op_points; /* clock/voltage pairs */ | ||
74 | }; | ||
75 | static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x); | ||
76 | |||
77 | /* Operating points for current CPU */ | ||
78 | static struct cpu_model *centrino_model[NR_CPUS]; | ||
79 | static const struct cpu_id *centrino_cpu[NR_CPUS]; | ||
80 | |||
81 | static struct cpufreq_driver centrino_driver; | ||
82 | |||
83 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE | ||
84 | |||
85 | /* Computes the correct form for IA32_PERF_CTL MSR for a particular | ||
86 | frequency/voltage operating point; frequency in MHz, volts in mV. | ||
87 | This is stored as "index" in the structure. */ | ||
88 | #define OP(mhz, mv) \ | ||
89 | { \ | ||
90 | .frequency = (mhz) * 1000, \ | ||
91 | .index = (((mhz)/100) << 8) | ((mv - 700) / 16) \ | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * These voltage tables were derived from the Intel Pentium M | ||
96 | * datasheet, document 25261202.pdf, Table 5. I have verified they | ||
97 | * are consistent with my IBM ThinkPad X31, which has a 1.3GHz Pentium | ||
98 | * M. | ||
99 | */ | ||
100 | |||
101 | /* Ultra Low Voltage Intel Pentium M processor 900MHz (Banias) */ | ||
102 | static struct cpufreq_frequency_table banias_900[] = | ||
103 | { | ||
104 | OP(600, 844), | ||
105 | OP(800, 988), | ||
106 | OP(900, 1004), | ||
107 | { .frequency = CPUFREQ_TABLE_END } | ||
108 | }; | ||
109 | |||
110 | /* Ultra Low Voltage Intel Pentium M processor 1000MHz (Banias) */ | ||
111 | static struct cpufreq_frequency_table banias_1000[] = | ||
112 | { | ||
113 | OP(600, 844), | ||
114 | OP(800, 972), | ||
115 | OP(900, 988), | ||
116 | OP(1000, 1004), | ||
117 | { .frequency = CPUFREQ_TABLE_END } | ||
118 | }; | ||
119 | |||
120 | /* Low Voltage Intel Pentium M processor 1.10GHz (Banias) */ | ||
121 | static struct cpufreq_frequency_table banias_1100[] = | ||
122 | { | ||
123 | OP( 600, 956), | ||
124 | OP( 800, 1020), | ||
125 | OP( 900, 1100), | ||
126 | OP(1000, 1164), | ||
127 | OP(1100, 1180), | ||
128 | { .frequency = CPUFREQ_TABLE_END } | ||
129 | }; | ||
130 | |||
131 | |||
132 | /* Low Voltage Intel Pentium M processor 1.20GHz (Banias) */ | ||
133 | static struct cpufreq_frequency_table banias_1200[] = | ||
134 | { | ||
135 | OP( 600, 956), | ||
136 | OP( 800, 1004), | ||
137 | OP( 900, 1020), | ||
138 | OP(1000, 1100), | ||
139 | OP(1100, 1164), | ||
140 | OP(1200, 1180), | ||
141 | { .frequency = CPUFREQ_TABLE_END } | ||
142 | }; | ||
143 | |||
144 | /* Intel Pentium M processor 1.30GHz (Banias) */ | ||
145 | static struct cpufreq_frequency_table banias_1300[] = | ||
146 | { | ||
147 | OP( 600, 956), | ||
148 | OP( 800, 1260), | ||
149 | OP(1000, 1292), | ||
150 | OP(1200, 1356), | ||
151 | OP(1300, 1388), | ||
152 | { .frequency = CPUFREQ_TABLE_END } | ||
153 | }; | ||
154 | |||
155 | /* Intel Pentium M processor 1.40GHz (Banias) */ | ||
156 | static struct cpufreq_frequency_table banias_1400[] = | ||
157 | { | ||
158 | OP( 600, 956), | ||
159 | OP( 800, 1180), | ||
160 | OP(1000, 1308), | ||
161 | OP(1200, 1436), | ||
162 | OP(1400, 1484), | ||
163 | { .frequency = CPUFREQ_TABLE_END } | ||
164 | }; | ||
165 | |||
166 | /* Intel Pentium M processor 1.50GHz (Banias) */ | ||
167 | static struct cpufreq_frequency_table banias_1500[] = | ||
168 | { | ||
169 | OP( 600, 956), | ||
170 | OP( 800, 1116), | ||
171 | OP(1000, 1228), | ||
172 | OP(1200, 1356), | ||
173 | OP(1400, 1452), | ||
174 | OP(1500, 1484), | ||
175 | { .frequency = CPUFREQ_TABLE_END } | ||
176 | }; | ||
177 | |||
178 | /* Intel Pentium M processor 1.60GHz (Banias) */ | ||
179 | static struct cpufreq_frequency_table banias_1600[] = | ||
180 | { | ||
181 | OP( 600, 956), | ||
182 | OP( 800, 1036), | ||
183 | OP(1000, 1164), | ||
184 | OP(1200, 1276), | ||
185 | OP(1400, 1420), | ||
186 | OP(1600, 1484), | ||
187 | { .frequency = CPUFREQ_TABLE_END } | ||
188 | }; | ||
189 | |||
190 | /* Intel Pentium M processor 1.70GHz (Banias) */ | ||
191 | static struct cpufreq_frequency_table banias_1700[] = | ||
192 | { | ||
193 | OP( 600, 956), | ||
194 | OP( 800, 1004), | ||
195 | OP(1000, 1116), | ||
196 | OP(1200, 1228), | ||
197 | OP(1400, 1308), | ||
198 | OP(1700, 1484), | ||
199 | { .frequency = CPUFREQ_TABLE_END } | ||
200 | }; | ||
201 | #undef OP | ||
202 | |||
203 | #define _BANIAS(cpuid, max, name) \ | ||
204 | { .cpu_id = cpuid, \ | ||
205 | .model_name = "Intel(R) Pentium(R) M processor " name "MHz", \ | ||
206 | .max_freq = (max)*1000, \ | ||
207 | .op_points = banias_##max, \ | ||
208 | } | ||
209 | #define BANIAS(max) _BANIAS(&cpu_ids[CPU_BANIAS], max, #max) | ||
210 | |||
211 | /* CPU models, their operating frequency range, and freq/voltage | ||
212 | operating points */ | ||
213 | static struct cpu_model models[] = | ||
214 | { | ||
215 | _BANIAS(&cpu_ids[CPU_BANIAS], 900, " 900"), | ||
216 | BANIAS(1000), | ||
217 | BANIAS(1100), | ||
218 | BANIAS(1200), | ||
219 | BANIAS(1300), | ||
220 | BANIAS(1400), | ||
221 | BANIAS(1500), | ||
222 | BANIAS(1600), | ||
223 | BANIAS(1700), | ||
224 | |||
225 | /* NULL model_name is a wildcard */ | ||
226 | { &cpu_ids[CPU_DOTHAN_A1], NULL, 0, NULL }, | ||
227 | { &cpu_ids[CPU_DOTHAN_A2], NULL, 0, NULL }, | ||
228 | { &cpu_ids[CPU_DOTHAN_B0], NULL, 0, NULL }, | ||
229 | |||
230 | { NULL, } | ||
231 | }; | ||
232 | #undef _BANIAS | ||
233 | #undef BANIAS | ||
234 | |||
235 | static int centrino_cpu_init_table(struct cpufreq_policy *policy) | ||
236 | { | ||
237 | struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu]; | ||
238 | struct cpu_model *model; | ||
239 | |||
240 | for(model = models; model->cpu_id != NULL; model++) | ||
241 | if (centrino_verify_cpu_id(cpu, model->cpu_id) && | ||
242 | (model->model_name == NULL || | ||
243 | strcmp(cpu->x86_model_id, model->model_name) == 0)) | ||
244 | break; | ||
245 | |||
246 | if (model->cpu_id == NULL) { | ||
247 | /* No match at all */ | ||
248 | dprintk(KERN_INFO PFX "no support for CPU model \"%s\": " | ||
249 | "send /proc/cpuinfo to " MAINTAINER "\n", | ||
250 | cpu->x86_model_id); | ||
251 | return -ENOENT; | ||
252 | } | ||
253 | |||
254 | if (model->op_points == NULL) { | ||
255 | /* Matched a non-match */ | ||
256 | dprintk(KERN_INFO PFX "no table support for CPU model \"%s\": \n", | ||
257 | cpu->x86_model_id); | ||
258 | #ifndef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | ||
259 | dprintk(KERN_INFO PFX "try compiling with CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI enabled\n"); | ||
260 | #endif | ||
261 | return -ENOENT; | ||
262 | } | ||
263 | |||
264 | centrino_model[policy->cpu] = model; | ||
265 | |||
266 | dprintk("found \"%s\": max frequency: %dkHz\n", | ||
267 | model->model_name, model->max_freq); | ||
268 | |||
269 | return 0; | ||
270 | } | ||
271 | |||
272 | #else | ||
273 | static inline int centrino_cpu_init_table(struct cpufreq_policy *policy) { return -ENODEV; } | ||
274 | #endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE */ | ||
275 | |||
276 | static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x) | ||
277 | { | ||
278 | if ((c->x86 == x->x86) && | ||
279 | (c->x86_model == x->x86_model) && | ||
280 | (c->x86_mask == x->x86_mask)) | ||
281 | return 1; | ||
282 | return 0; | ||
283 | } | ||
284 | |||
285 | /* To be called only after centrino_model is initialized */ | ||
286 | static unsigned extract_clock(unsigned msr, unsigned int cpu, int failsafe) | ||
287 | { | ||
288 | int i; | ||
289 | |||
290 | /* | ||
291 | * Extract clock in kHz from PERF_CTL value | ||
292 | * for centrino, as some DSDTs are buggy. | ||
293 | * Ideally, this can be done using the acpi_data structure. | ||
294 | */ | ||
295 | if ((centrino_cpu[cpu] == &cpu_ids[CPU_BANIAS]) || | ||
296 | (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_A1]) || | ||
297 | (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_B0])) { | ||
298 | msr = (msr >> 8) & 0xff; | ||
299 | return msr * 100000; | ||
300 | } | ||
301 | |||
302 | if ((!centrino_model[cpu]) || (!centrino_model[cpu]->op_points)) | ||
303 | return 0; | ||
304 | |||
305 | msr &= 0xffff; | ||
306 | for (i=0;centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++) { | ||
307 | if (msr == centrino_model[cpu]->op_points[i].index) | ||
308 | return centrino_model[cpu]->op_points[i].frequency; | ||
309 | } | ||
310 | if (failsafe) | ||
311 | return centrino_model[cpu]->op_points[i-1].frequency; | ||
312 | else | ||
313 | return 0; | ||
314 | } | ||
315 | |||
316 | /* Return the current CPU frequency in kHz */ | ||
317 | static unsigned int get_cur_freq(unsigned int cpu) | ||
318 | { | ||
319 | unsigned l, h; | ||
320 | unsigned clock_freq; | ||
321 | cpumask_t saved_mask; | ||
322 | |||
323 | saved_mask = current->cpus_allowed; | ||
324 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); | ||
325 | if (smp_processor_id() != cpu) | ||
326 | return 0; | ||
327 | |||
328 | rdmsr(MSR_IA32_PERF_STATUS, l, h); | ||
329 | clock_freq = extract_clock(l, cpu, 0); | ||
330 | |||
331 | if (unlikely(clock_freq == 0)) { | ||
332 | /* | ||
333 | * On some CPUs, we can see transient MSR values (which are | ||
334 | * not present in _PSS), while CPU is doing some automatic | ||
335 | * P-state transition (like TM2). Get the last freq set | ||
336 | * in PERF_CTL. | ||
337 | */ | ||
338 | rdmsr(MSR_IA32_PERF_CTL, l, h); | ||
339 | clock_freq = extract_clock(l, cpu, 1); | ||
340 | } | ||
341 | |||
342 | set_cpus_allowed(current, saved_mask); | ||
343 | return clock_freq; | ||
344 | } | ||
345 | |||
346 | |||
347 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | ||
348 | |||
349 | static struct acpi_processor_performance p; | ||
350 | |||
351 | /* | ||
352 | * centrino_cpu_init_acpi - register with ACPI P-States library | ||
353 | * | ||
354 | * Register with the ACPI P-States library (part of drivers/acpi/processor.c) | ||
355 | * in order to determine correct frequency and voltage pairings by reading | ||
356 | * the _PSS of the ACPI DSDT or SSDT tables. | ||
357 | */ | ||
358 | static int centrino_cpu_init_acpi(struct cpufreq_policy *policy) | ||
359 | { | ||
360 | union acpi_object arg0 = {ACPI_TYPE_BUFFER}; | ||
361 | u32 arg0_buf[3]; | ||
362 | struct acpi_object_list arg_list = {1, &arg0}; | ||
363 | unsigned long cur_freq; | ||
364 | int result = 0, i; | ||
365 | unsigned int cpu = policy->cpu; | ||
366 | |||
367 | /* _PDC settings */ | ||
368 | arg0.buffer.length = 12; | ||
369 | arg0.buffer.pointer = (u8 *) arg0_buf; | ||
370 | arg0_buf[0] = ACPI_PDC_REVISION_ID; | ||
371 | arg0_buf[1] = 1; | ||
372 | arg0_buf[2] = ACPI_PDC_EST_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_MSR; | ||
373 | |||
374 | p.pdc = &arg_list; | ||
375 | |||
376 | /* register with ACPI core */ | ||
377 | if (acpi_processor_register_performance(&p, cpu)) { | ||
378 | dprintk(KERN_INFO PFX "obtaining ACPI data failed\n"); | ||
379 | return -EIO; | ||
380 | } | ||
381 | |||
382 | /* verify the acpi_data */ | ||
383 | if (p.state_count <= 1) { | ||
384 | dprintk("No P-States\n"); | ||
385 | result = -ENODEV; | ||
386 | goto err_unreg; | ||
387 | } | ||
388 | |||
389 | if ((p.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || | ||
390 | (p.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | ||
391 | dprintk("Invalid control/status registers (%x - %x)\n", | ||
392 | p.control_register.space_id, p.status_register.space_id); | ||
393 | result = -EIO; | ||
394 | goto err_unreg; | ||
395 | } | ||
396 | |||
397 | for (i=0; i<p.state_count; i++) { | ||
398 | if (p.states[i].control != p.states[i].status) { | ||
399 | dprintk("Different control (%x) and status values (%x)\n", | ||
400 | p.states[i].control, p.states[i].status); | ||
401 | result = -EINVAL; | ||
402 | goto err_unreg; | ||
403 | } | ||
404 | |||
405 | if (!p.states[i].core_frequency) { | ||
406 | dprintk("Zero core frequency for state %u\n", i); | ||
407 | result = -EINVAL; | ||
408 | goto err_unreg; | ||
409 | } | ||
410 | |||
411 | if (p.states[i].core_frequency > p.states[0].core_frequency) { | ||
412 | dprintk("P%u has larger frequency (%u) than P0 (%u), skipping\n", i, | ||
413 | p.states[i].core_frequency, p.states[0].core_frequency); | ||
414 | p.states[i].core_frequency = 0; | ||
415 | continue; | ||
416 | } | ||
417 | } | ||
418 | |||
419 | centrino_model[cpu] = kmalloc(sizeof(struct cpu_model), GFP_KERNEL); | ||
420 | if (!centrino_model[cpu]) { | ||
421 | result = -ENOMEM; | ||
422 | goto err_unreg; | ||
423 | } | ||
424 | memset(centrino_model[cpu], 0, sizeof(struct cpu_model)); | ||
425 | |||
426 | centrino_model[cpu]->model_name=NULL; | ||
427 | centrino_model[cpu]->max_freq = p.states[0].core_frequency * 1000; | ||
428 | centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) * | ||
429 | (p.state_count + 1), GFP_KERNEL); | ||
430 | if (!centrino_model[cpu]->op_points) { | ||
431 | result = -ENOMEM; | ||
432 | goto err_kfree; | ||
433 | } | ||
434 | |||
435 | for (i=0; i<p.state_count; i++) { | ||
436 | centrino_model[cpu]->op_points[i].index = p.states[i].control; | ||
437 | centrino_model[cpu]->op_points[i].frequency = p.states[i].core_frequency * 1000; | ||
438 | dprintk("adding state %i with frequency %u and control value %04x\n", | ||
439 | i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index); | ||
440 | } | ||
441 | centrino_model[cpu]->op_points[p.state_count].frequency = CPUFREQ_TABLE_END; | ||
442 | |||
443 | cur_freq = get_cur_freq(cpu); | ||
444 | |||
445 | for (i=0; i<p.state_count; i++) { | ||
446 | if (!p.states[i].core_frequency) { | ||
447 | dprintk("skipping state %u\n", i); | ||
448 | centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
449 | continue; | ||
450 | } | ||
451 | |||
452 | if (extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0) != | ||
453 | (centrino_model[cpu]->op_points[i].frequency)) { | ||
454 | dprintk("Invalid encoded frequency (%u vs. %u)\n", | ||
455 | extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0), | ||
456 | centrino_model[cpu]->op_points[i].frequency); | ||
457 | result = -EINVAL; | ||
458 | goto err_kfree_all; | ||
459 | } | ||
460 | |||
461 | if (cur_freq == centrino_model[cpu]->op_points[i].frequency) | ||
462 | p.state = i; | ||
463 | } | ||
464 | |||
465 | /* notify BIOS that we exist */ | ||
466 | acpi_processor_notify_smm(THIS_MODULE); | ||
467 | |||
468 | return 0; | ||
469 | |||
470 | err_kfree_all: | ||
471 | kfree(centrino_model[cpu]->op_points); | ||
472 | err_kfree: | ||
473 | kfree(centrino_model[cpu]); | ||
474 | err_unreg: | ||
475 | acpi_processor_unregister_performance(&p, cpu); | ||
476 | dprintk(KERN_INFO PFX "invalid ACPI data\n"); | ||
477 | return (result); | ||
478 | } | ||
479 | #else | ||
480 | static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; } | ||
481 | #endif | ||
482 | |||
483 | static int centrino_cpu_init(struct cpufreq_policy *policy) | ||
484 | { | ||
485 | struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu]; | ||
486 | unsigned freq; | ||
487 | unsigned l, h; | ||
488 | int ret; | ||
489 | int i; | ||
490 | |||
491 | /* Only Intel makes Enhanced Speedstep-capable CPUs */ | ||
492 | if (cpu->x86_vendor != X86_VENDOR_INTEL || !cpu_has(cpu, X86_FEATURE_EST)) | ||
493 | return -ENODEV; | ||
494 | |||
495 | for (i = 0; i < N_IDS; i++) | ||
496 | if (centrino_verify_cpu_id(cpu, &cpu_ids[i])) | ||
497 | break; | ||
498 | |||
499 | if (i != N_IDS) | ||
500 | centrino_cpu[policy->cpu] = &cpu_ids[i]; | ||
501 | |||
502 | if (is_const_loops_cpu(policy->cpu)) { | ||
503 | centrino_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
504 | } | ||
505 | |||
506 | if (centrino_cpu_init_acpi(policy)) { | ||
507 | if (policy->cpu != 0) | ||
508 | return -ENODEV; | ||
509 | |||
510 | if (!centrino_cpu[policy->cpu]) { | ||
511 | dprintk(KERN_INFO PFX "found unsupported CPU with " | ||
512 | "Enhanced SpeedStep: send /proc/cpuinfo to " | ||
513 | MAINTAINER "\n"); | ||
514 | return -ENODEV; | ||
515 | } | ||
516 | |||
517 | if (centrino_cpu_init_table(policy)) { | ||
518 | return -ENODEV; | ||
519 | } | ||
520 | } | ||
521 | |||
522 | /* Check to see if Enhanced SpeedStep is enabled, and try to | ||
523 | enable it if not. */ | ||
524 | rdmsr(MSR_IA32_MISC_ENABLE, l, h); | ||
525 | |||
526 | if (!(l & (1<<16))) { | ||
527 | l |= (1<<16); | ||
528 | dprintk("trying to enable Enhanced SpeedStep (%x)\n", l); | ||
529 | wrmsr(MSR_IA32_MISC_ENABLE, l, h); | ||
530 | |||
531 | /* check to see if it stuck */ | ||
532 | rdmsr(MSR_IA32_MISC_ENABLE, l, h); | ||
533 | if (!(l & (1<<16))) { | ||
534 | printk(KERN_INFO PFX "couldn't enable Enhanced SpeedStep\n"); | ||
535 | return -ENODEV; | ||
536 | } | ||
537 | } | ||
538 | |||
539 | freq = get_cur_freq(policy->cpu); | ||
540 | |||
541 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
542 | policy->cpuinfo.transition_latency = 10000; /* 10uS transition latency */ | ||
543 | policy->cur = freq; | ||
544 | |||
545 | dprintk("centrino_cpu_init: cur=%dkHz\n", policy->cur); | ||
546 | |||
547 | ret = cpufreq_frequency_table_cpuinfo(policy, centrino_model[policy->cpu]->op_points); | ||
548 | if (ret) | ||
549 | return (ret); | ||
550 | |||
551 | cpufreq_frequency_table_get_attr(centrino_model[policy->cpu]->op_points, policy->cpu); | ||
552 | |||
553 | return 0; | ||
554 | } | ||
555 | |||
556 | static int centrino_cpu_exit(struct cpufreq_policy *policy) | ||
557 | { | ||
558 | unsigned int cpu = policy->cpu; | ||
559 | |||
560 | if (!centrino_model[cpu]) | ||
561 | return -ENODEV; | ||
562 | |||
563 | cpufreq_frequency_table_put_attr(cpu); | ||
564 | |||
565 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI | ||
566 | if (!centrino_model[cpu]->model_name) { | ||
567 | dprintk("unregistering and freeing ACPI data\n"); | ||
568 | acpi_processor_unregister_performance(&p, cpu); | ||
569 | kfree(centrino_model[cpu]->op_points); | ||
570 | kfree(centrino_model[cpu]); | ||
571 | } | ||
572 | #endif | ||
573 | |||
574 | centrino_model[cpu] = NULL; | ||
575 | |||
576 | return 0; | ||
577 | } | ||
578 | |||
579 | /** | ||
580 | * centrino_verify - verifies a new CPUFreq policy | ||
581 | * @policy: new policy | ||
582 | * | ||
583 | * Limit must be within this model's frequency range at least one | ||
584 | * border included. | ||
585 | */ | ||
586 | static int centrino_verify (struct cpufreq_policy *policy) | ||
587 | { | ||
588 | return cpufreq_frequency_table_verify(policy, centrino_model[policy->cpu]->op_points); | ||
589 | } | ||
590 | |||
591 | /** | ||
592 | * centrino_setpolicy - set a new CPUFreq policy | ||
593 | * @policy: new policy | ||
594 | * @target_freq: the target frequency | ||
595 | * @relation: how that frequency relates to achieved frequency (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
596 | * | ||
597 | * Sets a new CPUFreq policy. | ||
598 | */ | ||
599 | static int centrino_target (struct cpufreq_policy *policy, | ||
600 | unsigned int target_freq, | ||
601 | unsigned int relation) | ||
602 | { | ||
603 | unsigned int newstate = 0; | ||
604 | unsigned int msr, oldmsr, h, cpu = policy->cpu; | ||
605 | struct cpufreq_freqs freqs; | ||
606 | cpumask_t saved_mask; | ||
607 | int retval; | ||
608 | |||
609 | if (centrino_model[cpu] == NULL) | ||
610 | return -ENODEV; | ||
611 | |||
612 | /* | ||
613 | * Support for SMP systems. | ||
614 | * Make sure we are running on the CPU that wants to change frequency | ||
615 | */ | ||
616 | saved_mask = current->cpus_allowed; | ||
617 | set_cpus_allowed(current, policy->cpus); | ||
618 | if (!cpu_isset(smp_processor_id(), policy->cpus)) { | ||
619 | dprintk("couldn't limit to CPUs in this domain\n"); | ||
620 | return(-EAGAIN); | ||
621 | } | ||
622 | |||
623 | if (cpufreq_frequency_table_target(policy, centrino_model[cpu]->op_points, target_freq, | ||
624 | relation, &newstate)) { | ||
625 | retval = -EINVAL; | ||
626 | goto migrate_end; | ||
627 | } | ||
628 | |||
629 | msr = centrino_model[cpu]->op_points[newstate].index; | ||
630 | rdmsr(MSR_IA32_PERF_CTL, oldmsr, h); | ||
631 | |||
632 | if (msr == (oldmsr & 0xffff)) { | ||
633 | retval = 0; | ||
634 | dprintk("no change needed - msr was and needs to be %x\n", oldmsr); | ||
635 | goto migrate_end; | ||
636 | } | ||
637 | |||
638 | freqs.cpu = cpu; | ||
639 | freqs.old = extract_clock(oldmsr, cpu, 0); | ||
640 | freqs.new = extract_clock(msr, cpu, 0); | ||
641 | |||
642 | dprintk("target=%dkHz old=%d new=%d msr=%04x\n", | ||
643 | target_freq, freqs.old, freqs.new, msr); | ||
644 | |||
645 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
646 | |||
647 | /* all but 16 LSB are "reserved", so treat them with | ||
648 | care */ | ||
649 | oldmsr &= ~0xffff; | ||
650 | msr &= 0xffff; | ||
651 | oldmsr |= msr; | ||
652 | |||
653 | wrmsr(MSR_IA32_PERF_CTL, oldmsr, h); | ||
654 | |||
655 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
656 | |||
657 | retval = 0; | ||
658 | migrate_end: | ||
659 | set_cpus_allowed(current, saved_mask); | ||
660 | return (retval); | ||
661 | } | ||
662 | |||
663 | static struct freq_attr* centrino_attr[] = { | ||
664 | &cpufreq_freq_attr_scaling_available_freqs, | ||
665 | NULL, | ||
666 | }; | ||
667 | |||
668 | static struct cpufreq_driver centrino_driver = { | ||
669 | .name = "centrino", /* should be speedstep-centrino, | ||
670 | but there's a 16 char limit */ | ||
671 | .init = centrino_cpu_init, | ||
672 | .exit = centrino_cpu_exit, | ||
673 | .verify = centrino_verify, | ||
674 | .target = centrino_target, | ||
675 | .get = get_cur_freq, | ||
676 | .attr = centrino_attr, | ||
677 | .owner = THIS_MODULE, | ||
678 | }; | ||
679 | |||
680 | |||
681 | /** | ||
682 | * centrino_init - initializes the Enhanced SpeedStep CPUFreq driver | ||
683 | * | ||
684 | * Initializes the Enhanced SpeedStep support. Returns -ENODEV on | ||
685 | * unsupported devices, -ENOENT if there's no voltage table for this | ||
686 | * particular CPU model, -EINVAL on problems during initiatization, | ||
687 | * and zero on success. | ||
688 | * | ||
689 | * This is quite picky. Not only does the CPU have to advertise the | ||
690 | * "est" flag in the cpuid capability flags, we look for a specific | ||
691 | * CPU model and stepping, and we need to have the exact model name in | ||
692 | * our voltage tables. That is, be paranoid about not releasing | ||
693 | * someone's valuable magic smoke. | ||
694 | */ | ||
695 | static int __init centrino_init(void) | ||
696 | { | ||
697 | struct cpuinfo_x86 *cpu = cpu_data; | ||
698 | |||
699 | if (!cpu_has(cpu, X86_FEATURE_EST)) | ||
700 | return -ENODEV; | ||
701 | |||
702 | return cpufreq_register_driver(¢rino_driver); | ||
703 | } | ||
704 | |||
705 | static void __exit centrino_exit(void) | ||
706 | { | ||
707 | cpufreq_unregister_driver(¢rino_driver); | ||
708 | } | ||
709 | |||
710 | MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>"); | ||
711 | MODULE_DESCRIPTION ("Enhanced SpeedStep driver for Intel Pentium M processors."); | ||
712 | MODULE_LICENSE ("GPL"); | ||
713 | |||
714 | late_initcall(centrino_init); | ||
715 | module_exit(centrino_exit); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-est-common.h b/arch/i386/kernel/cpu/cpufreq/speedstep-est-common.h new file mode 100644 index 000000000000..5ce995c9d866 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-est-common.h | |||
@@ -0,0 +1,25 @@ | |||
1 | /* | ||
2 | * Routines common for drivers handling Enhanced Speedstep Technology | ||
3 | * Copyright (C) 2004 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2 -- see | ||
6 | * COPYING for details. | ||
7 | */ | ||
8 | |||
9 | static inline int is_const_loops_cpu(unsigned int cpu) | ||
10 | { | ||
11 | struct cpuinfo_x86 *c = cpu_data + cpu; | ||
12 | |||
13 | if (c->x86_vendor != X86_VENDOR_INTEL || !cpu_has(c, X86_FEATURE_EST)) | ||
14 | return 0; | ||
15 | |||
16 | /* | ||
17 | * on P-4s, the TSC runs with constant frequency independent of cpu freq | ||
18 | * when we use EST | ||
19 | */ | ||
20 | if (c->x86 == 0xf) | ||
21 | return 1; | ||
22 | |||
23 | return 0; | ||
24 | } | ||
25 | |||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-ich.c b/arch/i386/kernel/cpu/cpufreq/speedstep-ich.c new file mode 100644 index 000000000000..5b7d18a06afa --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-ich.c | |||
@@ -0,0 +1,424 @@ | |||
1 | /* | ||
2 | * (C) 2001 Dave Jones, Arjan van de ven. | ||
3 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * Based upon reverse engineered information, and on Intel documentation | ||
7 | * for chipsets ICH2-M and ICH3-M. | ||
8 | * | ||
9 | * Many thanks to Ducrot Bruno for finding and fixing the last | ||
10 | * "missing link" for ICH2-M/ICH3-M support, and to Thomas Winkler | ||
11 | * for extensive testing. | ||
12 | * | ||
13 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
14 | */ | ||
15 | |||
16 | |||
17 | /********************************************************************* | ||
18 | * SPEEDSTEP - DEFINITIONS * | ||
19 | *********************************************************************/ | ||
20 | |||
21 | #include <linux/kernel.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/cpufreq.h> | ||
25 | #include <linux/pci.h> | ||
26 | #include <linux/slab.h> | ||
27 | |||
28 | #include "speedstep-lib.h" | ||
29 | |||
30 | |||
31 | /* speedstep_chipset: | ||
32 | * It is necessary to know which chipset is used. As accesses to | ||
33 | * this device occur at various places in this module, we need a | ||
34 | * static struct pci_dev * pointing to that device. | ||
35 | */ | ||
36 | static struct pci_dev *speedstep_chipset_dev; | ||
37 | |||
38 | |||
39 | /* speedstep_processor | ||
40 | */ | ||
41 | static unsigned int speedstep_processor = 0; | ||
42 | |||
43 | |||
44 | /* | ||
45 | * There are only two frequency states for each processor. Values | ||
46 | * are in kHz for the time being. | ||
47 | */ | ||
48 | static struct cpufreq_frequency_table speedstep_freqs[] = { | ||
49 | {SPEEDSTEP_HIGH, 0}, | ||
50 | {SPEEDSTEP_LOW, 0}, | ||
51 | {0, CPUFREQ_TABLE_END}, | ||
52 | }; | ||
53 | |||
54 | |||
55 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-ich", msg) | ||
56 | |||
57 | |||
58 | /** | ||
59 | * speedstep_set_state - set the SpeedStep state | ||
60 | * @state: new processor frequency state (SPEEDSTEP_LOW or SPEEDSTEP_HIGH) | ||
61 | * | ||
62 | * Tries to change the SpeedStep state. | ||
63 | */ | ||
64 | static void speedstep_set_state (unsigned int state) | ||
65 | { | ||
66 | u32 pmbase; | ||
67 | u8 pm2_blk; | ||
68 | u8 value; | ||
69 | unsigned long flags; | ||
70 | |||
71 | if (!speedstep_chipset_dev || (state > 0x1)) | ||
72 | return; | ||
73 | |||
74 | /* get PMBASE */ | ||
75 | pci_read_config_dword(speedstep_chipset_dev, 0x40, &pmbase); | ||
76 | if (!(pmbase & 0x01)) { | ||
77 | printk(KERN_ERR "speedstep-ich: could not find speedstep register\n"); | ||
78 | return; | ||
79 | } | ||
80 | |||
81 | pmbase &= 0xFFFFFFFE; | ||
82 | if (!pmbase) { | ||
83 | printk(KERN_ERR "speedstep-ich: could not find speedstep register\n"); | ||
84 | return; | ||
85 | } | ||
86 | |||
87 | /* Disable IRQs */ | ||
88 | local_irq_save(flags); | ||
89 | |||
90 | /* read state */ | ||
91 | value = inb(pmbase + 0x50); | ||
92 | |||
93 | dprintk("read at pmbase 0x%x + 0x50 returned 0x%x\n", pmbase, value); | ||
94 | |||
95 | /* write new state */ | ||
96 | value &= 0xFE; | ||
97 | value |= state; | ||
98 | |||
99 | dprintk("writing 0x%x to pmbase 0x%x + 0x50\n", value, pmbase); | ||
100 | |||
101 | /* Disable bus master arbitration */ | ||
102 | pm2_blk = inb(pmbase + 0x20); | ||
103 | pm2_blk |= 0x01; | ||
104 | outb(pm2_blk, (pmbase + 0x20)); | ||
105 | |||
106 | /* Actual transition */ | ||
107 | outb(value, (pmbase + 0x50)); | ||
108 | |||
109 | /* Restore bus master arbitration */ | ||
110 | pm2_blk &= 0xfe; | ||
111 | outb(pm2_blk, (pmbase + 0x20)); | ||
112 | |||
113 | /* check if transition was successful */ | ||
114 | value = inb(pmbase + 0x50); | ||
115 | |||
116 | /* Enable IRQs */ | ||
117 | local_irq_restore(flags); | ||
118 | |||
119 | dprintk("read at pmbase 0x%x + 0x50 returned 0x%x\n", pmbase, value); | ||
120 | |||
121 | if (state == (value & 0x1)) { | ||
122 | dprintk("change to %u MHz succeeded\n", (speedstep_get_processor_frequency(speedstep_processor) / 1000)); | ||
123 | } else { | ||
124 | printk (KERN_ERR "cpufreq: change failed - I/O error\n"); | ||
125 | } | ||
126 | |||
127 | return; | ||
128 | } | ||
129 | |||
130 | |||
131 | /** | ||
132 | * speedstep_activate - activate SpeedStep control in the chipset | ||
133 | * | ||
134 | * Tries to activate the SpeedStep status and control registers. | ||
135 | * Returns -EINVAL on an unsupported chipset, and zero on success. | ||
136 | */ | ||
137 | static int speedstep_activate (void) | ||
138 | { | ||
139 | u16 value = 0; | ||
140 | |||
141 | if (!speedstep_chipset_dev) | ||
142 | return -EINVAL; | ||
143 | |||
144 | pci_read_config_word(speedstep_chipset_dev, 0x00A0, &value); | ||
145 | if (!(value & 0x08)) { | ||
146 | value |= 0x08; | ||
147 | dprintk("activating SpeedStep (TM) registers\n"); | ||
148 | pci_write_config_word(speedstep_chipset_dev, 0x00A0, value); | ||
149 | } | ||
150 | |||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | |||
155 | /** | ||
156 | * speedstep_detect_chipset - detect the Southbridge which contains SpeedStep logic | ||
157 | * | ||
158 | * Detects ICH2-M, ICH3-M and ICH4-M so far. The pci_dev points to | ||
159 | * the LPC bridge / PM module which contains all power-management | ||
160 | * functions. Returns the SPEEDSTEP_CHIPSET_-number for the detected | ||
161 | * chipset, or zero on failure. | ||
162 | */ | ||
163 | static unsigned int speedstep_detect_chipset (void) | ||
164 | { | ||
165 | speedstep_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
166 | PCI_DEVICE_ID_INTEL_82801DB_12, | ||
167 | PCI_ANY_ID, | ||
168 | PCI_ANY_ID, | ||
169 | NULL); | ||
170 | if (speedstep_chipset_dev) | ||
171 | return 4; /* 4-M */ | ||
172 | |||
173 | speedstep_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
174 | PCI_DEVICE_ID_INTEL_82801CA_12, | ||
175 | PCI_ANY_ID, | ||
176 | PCI_ANY_ID, | ||
177 | NULL); | ||
178 | if (speedstep_chipset_dev) | ||
179 | return 3; /* 3-M */ | ||
180 | |||
181 | |||
182 | speedstep_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
183 | PCI_DEVICE_ID_INTEL_82801BA_10, | ||
184 | PCI_ANY_ID, | ||
185 | PCI_ANY_ID, | ||
186 | NULL); | ||
187 | if (speedstep_chipset_dev) { | ||
188 | /* speedstep.c causes lockups on Dell Inspirons 8000 and | ||
189 | * 8100 which use a pretty old revision of the 82815 | ||
190 | * host brige. Abort on these systems. | ||
191 | */ | ||
192 | static struct pci_dev *hostbridge; | ||
193 | u8 rev = 0; | ||
194 | |||
195 | hostbridge = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
196 | PCI_DEVICE_ID_INTEL_82815_MC, | ||
197 | PCI_ANY_ID, | ||
198 | PCI_ANY_ID, | ||
199 | NULL); | ||
200 | |||
201 | if (!hostbridge) | ||
202 | return 2; /* 2-M */ | ||
203 | |||
204 | pci_read_config_byte(hostbridge, PCI_REVISION_ID, &rev); | ||
205 | if (rev < 5) { | ||
206 | dprintk("hostbridge does not support speedstep\n"); | ||
207 | speedstep_chipset_dev = NULL; | ||
208 | pci_dev_put(hostbridge); | ||
209 | return 0; | ||
210 | } | ||
211 | |||
212 | pci_dev_put(hostbridge); | ||
213 | return 2; /* 2-M */ | ||
214 | } | ||
215 | |||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | static unsigned int _speedstep_get(cpumask_t cpus) | ||
220 | { | ||
221 | unsigned int speed; | ||
222 | cpumask_t cpus_allowed; | ||
223 | |||
224 | cpus_allowed = current->cpus_allowed; | ||
225 | set_cpus_allowed(current, cpus); | ||
226 | speed = speedstep_get_processor_frequency(speedstep_processor); | ||
227 | set_cpus_allowed(current, cpus_allowed); | ||
228 | dprintk("detected %u kHz as current frequency\n", speed); | ||
229 | return speed; | ||
230 | } | ||
231 | |||
232 | static unsigned int speedstep_get(unsigned int cpu) | ||
233 | { | ||
234 | return _speedstep_get(cpumask_of_cpu(cpu)); | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * speedstep_target - set a new CPUFreq policy | ||
239 | * @policy: new policy | ||
240 | * @target_freq: the target frequency | ||
241 | * @relation: how that frequency relates to achieved frequency (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
242 | * | ||
243 | * Sets a new CPUFreq policy. | ||
244 | */ | ||
245 | static int speedstep_target (struct cpufreq_policy *policy, | ||
246 | unsigned int target_freq, | ||
247 | unsigned int relation) | ||
248 | { | ||
249 | unsigned int newstate = 0; | ||
250 | struct cpufreq_freqs freqs; | ||
251 | cpumask_t cpus_allowed; | ||
252 | int i; | ||
253 | |||
254 | if (cpufreq_frequency_table_target(policy, &speedstep_freqs[0], target_freq, relation, &newstate)) | ||
255 | return -EINVAL; | ||
256 | |||
257 | freqs.old = _speedstep_get(policy->cpus); | ||
258 | freqs.new = speedstep_freqs[newstate].frequency; | ||
259 | freqs.cpu = policy->cpu; | ||
260 | |||
261 | dprintk("transiting from %u to %u kHz\n", freqs.old, freqs.new); | ||
262 | |||
263 | /* no transition necessary */ | ||
264 | if (freqs.old == freqs.new) | ||
265 | return 0; | ||
266 | |||
267 | cpus_allowed = current->cpus_allowed; | ||
268 | |||
269 | for_each_cpu_mask(i, policy->cpus) { | ||
270 | freqs.cpu = i; | ||
271 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
272 | } | ||
273 | |||
274 | /* switch to physical CPU where state is to be changed */ | ||
275 | set_cpus_allowed(current, policy->cpus); | ||
276 | |||
277 | speedstep_set_state(newstate); | ||
278 | |||
279 | /* allow to be run on all CPUs */ | ||
280 | set_cpus_allowed(current, cpus_allowed); | ||
281 | |||
282 | for_each_cpu_mask(i, policy->cpus) { | ||
283 | freqs.cpu = i; | ||
284 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
285 | } | ||
286 | |||
287 | return 0; | ||
288 | } | ||
289 | |||
290 | |||
291 | /** | ||
292 | * speedstep_verify - verifies a new CPUFreq policy | ||
293 | * @policy: new policy | ||
294 | * | ||
295 | * Limit must be within speedstep_low_freq and speedstep_high_freq, with | ||
296 | * at least one border included. | ||
297 | */ | ||
298 | static int speedstep_verify (struct cpufreq_policy *policy) | ||
299 | { | ||
300 | return cpufreq_frequency_table_verify(policy, &speedstep_freqs[0]); | ||
301 | } | ||
302 | |||
303 | |||
304 | static int speedstep_cpu_init(struct cpufreq_policy *policy) | ||
305 | { | ||
306 | int result = 0; | ||
307 | unsigned int speed; | ||
308 | cpumask_t cpus_allowed; | ||
309 | |||
310 | /* only run on CPU to be set, or on its sibling */ | ||
311 | #ifdef CONFIG_SMP | ||
312 | policy->cpus = cpu_sibling_map[policy->cpu]; | ||
313 | #endif | ||
314 | |||
315 | cpus_allowed = current->cpus_allowed; | ||
316 | set_cpus_allowed(current, policy->cpus); | ||
317 | |||
318 | /* detect low and high frequency */ | ||
319 | result = speedstep_get_freqs(speedstep_processor, | ||
320 | &speedstep_freqs[SPEEDSTEP_LOW].frequency, | ||
321 | &speedstep_freqs[SPEEDSTEP_HIGH].frequency, | ||
322 | &speedstep_set_state); | ||
323 | set_cpus_allowed(current, cpus_allowed); | ||
324 | if (result) | ||
325 | return result; | ||
326 | |||
327 | /* get current speed setting */ | ||
328 | speed = _speedstep_get(policy->cpus); | ||
329 | if (!speed) | ||
330 | return -EIO; | ||
331 | |||
332 | dprintk("currently at %s speed setting - %i MHz\n", | ||
333 | (speed == speedstep_freqs[SPEEDSTEP_LOW].frequency) ? "low" : "high", | ||
334 | (speed / 1000)); | ||
335 | |||
336 | /* cpuinfo and default policy values */ | ||
337 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
338 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
339 | policy->cur = speed; | ||
340 | |||
341 | result = cpufreq_frequency_table_cpuinfo(policy, speedstep_freqs); | ||
342 | if (result) | ||
343 | return (result); | ||
344 | |||
345 | cpufreq_frequency_table_get_attr(speedstep_freqs, policy->cpu); | ||
346 | |||
347 | return 0; | ||
348 | } | ||
349 | |||
350 | |||
351 | static int speedstep_cpu_exit(struct cpufreq_policy *policy) | ||
352 | { | ||
353 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
354 | return 0; | ||
355 | } | ||
356 | |||
357 | static struct freq_attr* speedstep_attr[] = { | ||
358 | &cpufreq_freq_attr_scaling_available_freqs, | ||
359 | NULL, | ||
360 | }; | ||
361 | |||
362 | |||
363 | static struct cpufreq_driver speedstep_driver = { | ||
364 | .name = "speedstep-ich", | ||
365 | .verify = speedstep_verify, | ||
366 | .target = speedstep_target, | ||
367 | .init = speedstep_cpu_init, | ||
368 | .exit = speedstep_cpu_exit, | ||
369 | .get = speedstep_get, | ||
370 | .owner = THIS_MODULE, | ||
371 | .attr = speedstep_attr, | ||
372 | }; | ||
373 | |||
374 | |||
375 | /** | ||
376 | * speedstep_init - initializes the SpeedStep CPUFreq driver | ||
377 | * | ||
378 | * Initializes the SpeedStep support. Returns -ENODEV on unsupported | ||
379 | * devices, -EINVAL on problems during initiatization, and zero on | ||
380 | * success. | ||
381 | */ | ||
382 | static int __init speedstep_init(void) | ||
383 | { | ||
384 | /* detect processor */ | ||
385 | speedstep_processor = speedstep_detect_processor(); | ||
386 | if (!speedstep_processor) { | ||
387 | dprintk("Intel(R) SpeedStep(TM) capable processor not found\n"); | ||
388 | return -ENODEV; | ||
389 | } | ||
390 | |||
391 | /* detect chipset */ | ||
392 | if (!speedstep_detect_chipset()) { | ||
393 | dprintk("Intel(R) SpeedStep(TM) for this chipset not (yet) available.\n"); | ||
394 | return -ENODEV; | ||
395 | } | ||
396 | |||
397 | /* activate speedstep support */ | ||
398 | if (speedstep_activate()) { | ||
399 | pci_dev_put(speedstep_chipset_dev); | ||
400 | return -EINVAL; | ||
401 | } | ||
402 | |||
403 | return cpufreq_register_driver(&speedstep_driver); | ||
404 | } | ||
405 | |||
406 | |||
407 | /** | ||
408 | * speedstep_exit - unregisters SpeedStep support | ||
409 | * | ||
410 | * Unregisters SpeedStep support. | ||
411 | */ | ||
412 | static void __exit speedstep_exit(void) | ||
413 | { | ||
414 | pci_dev_put(speedstep_chipset_dev); | ||
415 | cpufreq_unregister_driver(&speedstep_driver); | ||
416 | } | ||
417 | |||
418 | |||
419 | MODULE_AUTHOR ("Dave Jones <davej@codemonkey.org.uk>, Dominik Brodowski <linux@brodo.de>"); | ||
420 | MODULE_DESCRIPTION ("Speedstep driver for Intel mobile processors on chipsets with ICH-M southbridges."); | ||
421 | MODULE_LICENSE ("GPL"); | ||
422 | |||
423 | module_init(speedstep_init); | ||
424 | module_exit(speedstep_exit); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-lib.c b/arch/i386/kernel/cpu/cpufreq/speedstep-lib.c new file mode 100644 index 000000000000..8ba430a9c3a2 --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-lib.c | |||
@@ -0,0 +1,385 @@ | |||
1 | /* | ||
2 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * Library for common functions for Intel SpeedStep v.1 and v.2 support | ||
7 | * | ||
8 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
9 | */ | ||
10 | |||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/moduleparam.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/cpufreq.h> | ||
16 | #include <linux/pci.h> | ||
17 | #include <linux/slab.h> | ||
18 | |||
19 | #include <asm/msr.h> | ||
20 | #include "speedstep-lib.h" | ||
21 | |||
22 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-lib", msg) | ||
23 | |||
24 | #ifdef CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK | ||
25 | static int relaxed_check = 0; | ||
26 | #else | ||
27 | #define relaxed_check 0 | ||
28 | #endif | ||
29 | |||
30 | /********************************************************************* | ||
31 | * GET PROCESSOR CORE SPEED IN KHZ * | ||
32 | *********************************************************************/ | ||
33 | |||
34 | static unsigned int pentium3_get_frequency (unsigned int processor) | ||
35 | { | ||
36 | /* See table 14 of p3_ds.pdf and table 22 of 29834003.pdf */ | ||
37 | struct { | ||
38 | unsigned int ratio; /* Frequency Multiplier (x10) */ | ||
39 | u8 bitmap; /* power on configuration bits | ||
40 | [27, 25:22] (in MSR 0x2a) */ | ||
41 | } msr_decode_mult [] = { | ||
42 | { 30, 0x01 }, | ||
43 | { 35, 0x05 }, | ||
44 | { 40, 0x02 }, | ||
45 | { 45, 0x06 }, | ||
46 | { 50, 0x00 }, | ||
47 | { 55, 0x04 }, | ||
48 | { 60, 0x0b }, | ||
49 | { 65, 0x0f }, | ||
50 | { 70, 0x09 }, | ||
51 | { 75, 0x0d }, | ||
52 | { 80, 0x0a }, | ||
53 | { 85, 0x26 }, | ||
54 | { 90, 0x20 }, | ||
55 | { 100, 0x2b }, | ||
56 | { 0, 0xff } /* error or unknown value */ | ||
57 | }; | ||
58 | |||
59 | /* PIII(-M) FSB settings: see table b1-b of 24547206.pdf */ | ||
60 | struct { | ||
61 | unsigned int value; /* Front Side Bus speed in MHz */ | ||
62 | u8 bitmap; /* power on configuration bits [18: 19] | ||
63 | (in MSR 0x2a) */ | ||
64 | } msr_decode_fsb [] = { | ||
65 | { 66, 0x0 }, | ||
66 | { 100, 0x2 }, | ||
67 | { 133, 0x1 }, | ||
68 | { 0, 0xff} | ||
69 | }; | ||
70 | |||
71 | u32 msr_lo, msr_tmp; | ||
72 | int i = 0, j = 0; | ||
73 | |||
74 | /* read MSR 0x2a - we only need the low 32 bits */ | ||
75 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp); | ||
76 | dprintk("P3 - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp); | ||
77 | msr_tmp = msr_lo; | ||
78 | |||
79 | /* decode the FSB */ | ||
80 | msr_tmp &= 0x00c0000; | ||
81 | msr_tmp >>= 18; | ||
82 | while (msr_tmp != msr_decode_fsb[i].bitmap) { | ||
83 | if (msr_decode_fsb[i].bitmap == 0xff) | ||
84 | return 0; | ||
85 | i++; | ||
86 | } | ||
87 | |||
88 | /* decode the multiplier */ | ||
89 | if (processor == SPEEDSTEP_PROCESSOR_PIII_C_EARLY) { | ||
90 | dprintk("workaround for early PIIIs\n"); | ||
91 | msr_lo &= 0x03c00000; | ||
92 | } else | ||
93 | msr_lo &= 0x0bc00000; | ||
94 | msr_lo >>= 22; | ||
95 | while (msr_lo != msr_decode_mult[j].bitmap) { | ||
96 | if (msr_decode_mult[j].bitmap == 0xff) | ||
97 | return 0; | ||
98 | j++; | ||
99 | } | ||
100 | |||
101 | dprintk("speed is %u\n", (msr_decode_mult[j].ratio * msr_decode_fsb[i].value * 100)); | ||
102 | |||
103 | return (msr_decode_mult[j].ratio * msr_decode_fsb[i].value * 100); | ||
104 | } | ||
105 | |||
106 | |||
107 | static unsigned int pentiumM_get_frequency(void) | ||
108 | { | ||
109 | u32 msr_lo, msr_tmp; | ||
110 | |||
111 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp); | ||
112 | dprintk("PM - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp); | ||
113 | |||
114 | /* see table B-2 of 24547212.pdf */ | ||
115 | if (msr_lo & 0x00040000) { | ||
116 | printk(KERN_DEBUG "speedstep-lib: PM - invalid FSB: 0x%x 0x%x\n", msr_lo, msr_tmp); | ||
117 | return 0; | ||
118 | } | ||
119 | |||
120 | msr_tmp = (msr_lo >> 22) & 0x1f; | ||
121 | dprintk("bits 22-26 are 0x%x, speed is %u\n", msr_tmp, (msr_tmp * 100 * 1000)); | ||
122 | |||
123 | return (msr_tmp * 100 * 1000); | ||
124 | } | ||
125 | |||
126 | |||
127 | static unsigned int pentium4_get_frequency(void) | ||
128 | { | ||
129 | struct cpuinfo_x86 *c = &boot_cpu_data; | ||
130 | u32 msr_lo, msr_hi, mult; | ||
131 | unsigned int fsb = 0; | ||
132 | |||
133 | rdmsr(0x2c, msr_lo, msr_hi); | ||
134 | |||
135 | dprintk("P4 - MSR_EBC_FREQUENCY_ID: 0x%x 0x%x\n", msr_lo, msr_hi); | ||
136 | |||
137 | /* decode the FSB: see IA-32 Intel (C) Architecture Software | ||
138 | * Developer's Manual, Volume 3: System Prgramming Guide, | ||
139 | * revision #12 in Table B-1: MSRs in the Pentium 4 and | ||
140 | * Intel Xeon Processors, on page B-4 and B-5. | ||
141 | */ | ||
142 | if (c->x86_model < 2) | ||
143 | fsb = 100 * 1000; | ||
144 | else { | ||
145 | u8 fsb_code = (msr_lo >> 16) & 0x7; | ||
146 | switch (fsb_code) { | ||
147 | case 0: | ||
148 | fsb = 100 * 1000; | ||
149 | break; | ||
150 | case 1: | ||
151 | fsb = 13333 * 10; | ||
152 | break; | ||
153 | case 2: | ||
154 | fsb = 200 * 1000; | ||
155 | break; | ||
156 | } | ||
157 | } | ||
158 | |||
159 | if (!fsb) | ||
160 | printk(KERN_DEBUG "speedstep-lib: couldn't detect FSB speed. Please send an e-mail to <linux@brodo.de>\n"); | ||
161 | |||
162 | /* Multiplier. */ | ||
163 | if (c->x86_model < 2) | ||
164 | mult = msr_lo >> 27; | ||
165 | else | ||
166 | mult = msr_lo >> 24; | ||
167 | |||
168 | dprintk("P4 - FSB %u kHz; Multiplier %u; Speed %u kHz\n", fsb, mult, (fsb * mult)); | ||
169 | |||
170 | return (fsb * mult); | ||
171 | } | ||
172 | |||
173 | |||
174 | unsigned int speedstep_get_processor_frequency(unsigned int processor) | ||
175 | { | ||
176 | switch (processor) { | ||
177 | case SPEEDSTEP_PROCESSOR_PM: | ||
178 | return pentiumM_get_frequency(); | ||
179 | case SPEEDSTEP_PROCESSOR_P4D: | ||
180 | case SPEEDSTEP_PROCESSOR_P4M: | ||
181 | return pentium4_get_frequency(); | ||
182 | case SPEEDSTEP_PROCESSOR_PIII_T: | ||
183 | case SPEEDSTEP_PROCESSOR_PIII_C: | ||
184 | case SPEEDSTEP_PROCESSOR_PIII_C_EARLY: | ||
185 | return pentium3_get_frequency(processor); | ||
186 | default: | ||
187 | return 0; | ||
188 | }; | ||
189 | return 0; | ||
190 | } | ||
191 | EXPORT_SYMBOL_GPL(speedstep_get_processor_frequency); | ||
192 | |||
193 | |||
194 | /********************************************************************* | ||
195 | * DETECT SPEEDSTEP-CAPABLE PROCESSOR * | ||
196 | *********************************************************************/ | ||
197 | |||
198 | unsigned int speedstep_detect_processor (void) | ||
199 | { | ||
200 | struct cpuinfo_x86 *c = cpu_data; | ||
201 | u32 ebx, msr_lo, msr_hi; | ||
202 | |||
203 | dprintk("x86: %x, model: %x\n", c->x86, c->x86_model); | ||
204 | |||
205 | if ((c->x86_vendor != X86_VENDOR_INTEL) || | ||
206 | ((c->x86 != 6) && (c->x86 != 0xF))) | ||
207 | return 0; | ||
208 | |||
209 | if (c->x86 == 0xF) { | ||
210 | /* Intel Mobile Pentium 4-M | ||
211 | * or Intel Mobile Pentium 4 with 533 MHz FSB */ | ||
212 | if (c->x86_model != 2) | ||
213 | return 0; | ||
214 | |||
215 | ebx = cpuid_ebx(0x00000001); | ||
216 | ebx &= 0x000000FF; | ||
217 | |||
218 | dprintk("ebx value is %x, x86_mask is %x\n", ebx, c->x86_mask); | ||
219 | |||
220 | switch (c->x86_mask) { | ||
221 | case 4: | ||
222 | /* | ||
223 | * B-stepping [M-P4-M] | ||
224 | * sample has ebx = 0x0f, production has 0x0e. | ||
225 | */ | ||
226 | if ((ebx == 0x0e) || (ebx == 0x0f)) | ||
227 | return SPEEDSTEP_PROCESSOR_P4M; | ||
228 | break; | ||
229 | case 7: | ||
230 | /* | ||
231 | * C-stepping [M-P4-M] | ||
232 | * needs to have ebx=0x0e, else it's a celeron: | ||
233 | * cf. 25130917.pdf / page 7, footnote 5 even | ||
234 | * though 25072120.pdf / page 7 doesn't say | ||
235 | * samples are only of B-stepping... | ||
236 | */ | ||
237 | if (ebx == 0x0e) | ||
238 | return SPEEDSTEP_PROCESSOR_P4M; | ||
239 | break; | ||
240 | case 9: | ||
241 | /* | ||
242 | * D-stepping [M-P4-M or M-P4/533] | ||
243 | * | ||
244 | * this is totally strange: CPUID 0x0F29 is | ||
245 | * used by M-P4-M, M-P4/533 and(!) Celeron CPUs. | ||
246 | * The latter need to be sorted out as they don't | ||
247 | * support speedstep. | ||
248 | * Celerons with CPUID 0x0F29 may have either | ||
249 | * ebx=0x8 or 0xf -- 25130917.pdf doesn't say anything | ||
250 | * specific. | ||
251 | * M-P4-Ms may have either ebx=0xe or 0xf [see above] | ||
252 | * M-P4/533 have either ebx=0xe or 0xf. [25317607.pdf] | ||
253 | * also, M-P4M HTs have ebx=0x8, too | ||
254 | * For now, they are distinguished by the model_id string | ||
255 | */ | ||
256 | if ((ebx == 0x0e) || (strstr(c->x86_model_id,"Mobile Intel(R) Pentium(R) 4") != NULL)) | ||
257 | return SPEEDSTEP_PROCESSOR_P4M; | ||
258 | break; | ||
259 | default: | ||
260 | break; | ||
261 | } | ||
262 | return 0; | ||
263 | } | ||
264 | |||
265 | switch (c->x86_model) { | ||
266 | case 0x0B: /* Intel PIII [Tualatin] */ | ||
267 | /* cpuid_ebx(1) is 0x04 for desktop PIII, | ||
268 | 0x06 for mobile PIII-M */ | ||
269 | ebx = cpuid_ebx(0x00000001); | ||
270 | dprintk("ebx is %x\n", ebx); | ||
271 | |||
272 | ebx &= 0x000000FF; | ||
273 | |||
274 | if (ebx != 0x06) | ||
275 | return 0; | ||
276 | |||
277 | /* So far all PIII-M processors support SpeedStep. See | ||
278 | * Intel's 24540640.pdf of June 2003 | ||
279 | */ | ||
280 | |||
281 | return SPEEDSTEP_PROCESSOR_PIII_T; | ||
282 | |||
283 | case 0x08: /* Intel PIII [Coppermine] */ | ||
284 | |||
285 | /* all mobile PIII Coppermines have FSB 100 MHz | ||
286 | * ==> sort out a few desktop PIIIs. */ | ||
287 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_hi); | ||
288 | dprintk("Coppermine: MSR_IA32_EBL_CR_POWERON is 0x%x, 0x%x\n", msr_lo, msr_hi); | ||
289 | msr_lo &= 0x00c0000; | ||
290 | if (msr_lo != 0x0080000) | ||
291 | return 0; | ||
292 | |||
293 | /* | ||
294 | * If the processor is a mobile version, | ||
295 | * platform ID has bit 50 set | ||
296 | * it has SpeedStep technology if either | ||
297 | * bit 56 or 57 is set | ||
298 | */ | ||
299 | rdmsr(MSR_IA32_PLATFORM_ID, msr_lo, msr_hi); | ||
300 | dprintk("Coppermine: MSR_IA32_PLATFORM ID is 0x%x, 0x%x\n", msr_lo, msr_hi); | ||
301 | if ((msr_hi & (1<<18)) && (relaxed_check ? 1 : (msr_hi & (3<<24)))) { | ||
302 | if (c->x86_mask == 0x01) { | ||
303 | dprintk("early PIII version\n"); | ||
304 | return SPEEDSTEP_PROCESSOR_PIII_C_EARLY; | ||
305 | } else | ||
306 | return SPEEDSTEP_PROCESSOR_PIII_C; | ||
307 | } | ||
308 | |||
309 | default: | ||
310 | return 0; | ||
311 | } | ||
312 | } | ||
313 | EXPORT_SYMBOL_GPL(speedstep_detect_processor); | ||
314 | |||
315 | |||
316 | /********************************************************************* | ||
317 | * DETECT SPEEDSTEP SPEEDS * | ||
318 | *********************************************************************/ | ||
319 | |||
320 | unsigned int speedstep_get_freqs(unsigned int processor, | ||
321 | unsigned int *low_speed, | ||
322 | unsigned int *high_speed, | ||
323 | void (*set_state) (unsigned int state)) | ||
324 | { | ||
325 | unsigned int prev_speed; | ||
326 | unsigned int ret = 0; | ||
327 | unsigned long flags; | ||
328 | |||
329 | if ((!processor) || (!low_speed) || (!high_speed) || (!set_state)) | ||
330 | return -EINVAL; | ||
331 | |||
332 | dprintk("trying to determine both speeds\n"); | ||
333 | |||
334 | /* get current speed */ | ||
335 | prev_speed = speedstep_get_processor_frequency(processor); | ||
336 | if (!prev_speed) | ||
337 | return -EIO; | ||
338 | |||
339 | dprintk("previous seped is %u\n", prev_speed); | ||
340 | |||
341 | local_irq_save(flags); | ||
342 | |||
343 | /* switch to low state */ | ||
344 | set_state(SPEEDSTEP_LOW); | ||
345 | *low_speed = speedstep_get_processor_frequency(processor); | ||
346 | if (!*low_speed) { | ||
347 | ret = -EIO; | ||
348 | goto out; | ||
349 | } | ||
350 | |||
351 | dprintk("low seped is %u\n", *low_speed); | ||
352 | |||
353 | /* switch to high state */ | ||
354 | set_state(SPEEDSTEP_HIGH); | ||
355 | *high_speed = speedstep_get_processor_frequency(processor); | ||
356 | if (!*high_speed) { | ||
357 | ret = -EIO; | ||
358 | goto out; | ||
359 | } | ||
360 | |||
361 | dprintk("high seped is %u\n", *high_speed); | ||
362 | |||
363 | if (*low_speed == *high_speed) { | ||
364 | ret = -ENODEV; | ||
365 | goto out; | ||
366 | } | ||
367 | |||
368 | /* switch to previous state, if necessary */ | ||
369 | if (*high_speed != prev_speed) | ||
370 | set_state(SPEEDSTEP_LOW); | ||
371 | |||
372 | out: | ||
373 | local_irq_restore(flags); | ||
374 | return (ret); | ||
375 | } | ||
376 | EXPORT_SYMBOL_GPL(speedstep_get_freqs); | ||
377 | |||
378 | #ifdef CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK | ||
379 | module_param(relaxed_check, int, 0444); | ||
380 | MODULE_PARM_DESC(relaxed_check, "Don't do all checks for speedstep capability."); | ||
381 | #endif | ||
382 | |||
383 | MODULE_AUTHOR ("Dominik Brodowski <linux@brodo.de>"); | ||
384 | MODULE_DESCRIPTION ("Library for Intel SpeedStep 1 or 2 cpufreq drivers."); | ||
385 | MODULE_LICENSE ("GPL"); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-lib.h b/arch/i386/kernel/cpu/cpufreq/speedstep-lib.h new file mode 100644 index 000000000000..261a2c9b7f6b --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-lib.h | |||
@@ -0,0 +1,47 @@ | |||
1 | /* | ||
2 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * Library for common functions for Intel SpeedStep v.1 and v.2 support | ||
7 | * | ||
8 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
9 | */ | ||
10 | |||
11 | |||
12 | |||
13 | /* processors */ | ||
14 | |||
15 | #define SPEEDSTEP_PROCESSOR_PIII_C_EARLY 0x00000001 /* Coppermine core */ | ||
16 | #define SPEEDSTEP_PROCESSOR_PIII_C 0x00000002 /* Coppermine core */ | ||
17 | #define SPEEDSTEP_PROCESSOR_PIII_T 0x00000003 /* Tualatin core */ | ||
18 | #define SPEEDSTEP_PROCESSOR_P4M 0x00000004 /* P4-M */ | ||
19 | |||
20 | /* the following processors are not speedstep-capable and are not auto-detected | ||
21 | * in speedstep_detect_processor(). However, their speed can be detected using | ||
22 | * the speedstep_get_processor_frequency() call. */ | ||
23 | #define SPEEDSTEP_PROCESSOR_PM 0xFFFFFF03 /* Pentium M */ | ||
24 | #define SPEEDSTEP_PROCESSOR_P4D 0xFFFFFF04 /* desktop P4 */ | ||
25 | |||
26 | /* speedstep states -- only two of them */ | ||
27 | |||
28 | #define SPEEDSTEP_HIGH 0x00000000 | ||
29 | #define SPEEDSTEP_LOW 0x00000001 | ||
30 | |||
31 | |||
32 | /* detect a speedstep-capable processor */ | ||
33 | extern unsigned int speedstep_detect_processor (void); | ||
34 | |||
35 | /* detect the current speed (in khz) of the processor */ | ||
36 | extern unsigned int speedstep_get_processor_frequency(unsigned int processor); | ||
37 | |||
38 | |||
39 | /* detect the low and high speeds of the processor. The callback | ||
40 | * set_state"'s first argument is either SPEEDSTEP_HIGH or | ||
41 | * SPEEDSTEP_LOW; the second argument is zero so that no | ||
42 | * cpufreq_notify_transition calls are initiated. | ||
43 | */ | ||
44 | extern unsigned int speedstep_get_freqs(unsigned int processor, | ||
45 | unsigned int *low_speed, | ||
46 | unsigned int *high_speed, | ||
47 | void (*set_state) (unsigned int state)); | ||
diff --git a/arch/i386/kernel/cpu/cpufreq/speedstep-smi.c b/arch/i386/kernel/cpu/cpufreq/speedstep-smi.c new file mode 100644 index 000000000000..79440b3f087e --- /dev/null +++ b/arch/i386/kernel/cpu/cpufreq/speedstep-smi.c | |||
@@ -0,0 +1,424 @@ | |||
1 | /* | ||
2 | * Intel SpeedStep SMI driver. | ||
3 | * | ||
4 | * (C) 2003 Hiroshi Miura <miura@da-cha.org> | ||
5 | * | ||
6 | * Licensed under the terms of the GNU GPL License version 2. | ||
7 | * | ||
8 | */ | ||
9 | |||
10 | |||
11 | /********************************************************************* | ||
12 | * SPEEDSTEP - DEFINITIONS * | ||
13 | *********************************************************************/ | ||
14 | |||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/moduleparam.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/cpufreq.h> | ||
20 | #include <linux/pci.h> | ||
21 | #include <linux/slab.h> | ||
22 | #include <linux/delay.h> | ||
23 | #include <asm/ist.h> | ||
24 | |||
25 | #include "speedstep-lib.h" | ||
26 | |||
27 | /* speedstep system management interface port/command. | ||
28 | * | ||
29 | * These parameters are got from IST-SMI BIOS call. | ||
30 | * If user gives it, these are used. | ||
31 | * | ||
32 | */ | ||
33 | static int smi_port = 0; | ||
34 | static int smi_cmd = 0; | ||
35 | static unsigned int smi_sig = 0; | ||
36 | |||
37 | /* info about the processor */ | ||
38 | static unsigned int speedstep_processor = 0; | ||
39 | |||
40 | /* | ||
41 | * There are only two frequency states for each processor. Values | ||
42 | * are in kHz for the time being. | ||
43 | */ | ||
44 | static struct cpufreq_frequency_table speedstep_freqs[] = { | ||
45 | {SPEEDSTEP_HIGH, 0}, | ||
46 | {SPEEDSTEP_LOW, 0}, | ||
47 | {0, CPUFREQ_TABLE_END}, | ||
48 | }; | ||
49 | |||
50 | #define GET_SPEEDSTEP_OWNER 0 | ||
51 | #define GET_SPEEDSTEP_STATE 1 | ||
52 | #define SET_SPEEDSTEP_STATE 2 | ||
53 | #define GET_SPEEDSTEP_FREQS 4 | ||
54 | |||
55 | /* how often shall the SMI call be tried if it failed, e.g. because | ||
56 | * of DMA activity going on? */ | ||
57 | #define SMI_TRIES 5 | ||
58 | |||
59 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-smi", msg) | ||
60 | |||
61 | /** | ||
62 | * speedstep_smi_ownership | ||
63 | */ | ||
64 | static int speedstep_smi_ownership (void) | ||
65 | { | ||
66 | u32 command, result, magic; | ||
67 | u32 function = GET_SPEEDSTEP_OWNER; | ||
68 | unsigned char magic_data[] = "Copyright (c) 1999 Intel Corporation"; | ||
69 | |||
70 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
71 | magic = virt_to_phys(magic_data); | ||
72 | |||
73 | dprintk("trying to obtain ownership with command %x at port %x\n", command, smi_port); | ||
74 | |||
75 | __asm__ __volatile__( | ||
76 | "out %%al, (%%dx)\n" | ||
77 | : "=D" (result) | ||
78 | : "a" (command), "b" (function), "c" (0), "d" (smi_port), "D" (0), "S" (magic) | ||
79 | ); | ||
80 | |||
81 | dprintk("result is %x\n", result); | ||
82 | |||
83 | return result; | ||
84 | } | ||
85 | |||
86 | /** | ||
87 | * speedstep_smi_get_freqs - get SpeedStep preferred & current freq. | ||
88 | * @low: the low frequency value is placed here | ||
89 | * @high: the high frequency value is placed here | ||
90 | * | ||
91 | * Only available on later SpeedStep-enabled systems, returns false results or | ||
92 | * even hangs [cf. bugme.osdl.org # 1422] on earlier systems. Empirical testing | ||
93 | * shows that the latter occurs if !(ist_info.event & 0xFFFF). | ||
94 | */ | ||
95 | static int speedstep_smi_get_freqs (unsigned int *low, unsigned int *high) | ||
96 | { | ||
97 | u32 command, result = 0, edi, high_mhz, low_mhz; | ||
98 | u32 state=0; | ||
99 | u32 function = GET_SPEEDSTEP_FREQS; | ||
100 | |||
101 | if (!(ist_info.event & 0xFFFF)) { | ||
102 | dprintk("bug #1422 -- can't read freqs from BIOS\n", result); | ||
103 | return -ENODEV; | ||
104 | } | ||
105 | |||
106 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
107 | |||
108 | dprintk("trying to determine frequencies with command %x at port %x\n", command, smi_port); | ||
109 | |||
110 | __asm__ __volatile__("movl $0, %%edi\n" | ||
111 | "out %%al, (%%dx)\n" | ||
112 | : "=a" (result), "=b" (high_mhz), "=c" (low_mhz), "=d" (state), "=D" (edi) | ||
113 | : "a" (command), "b" (function), "c" (state), "d" (smi_port), "S" (0) | ||
114 | ); | ||
115 | |||
116 | dprintk("result %x, low_freq %u, high_freq %u\n", result, low_mhz, high_mhz); | ||
117 | |||
118 | /* abort if results are obviously incorrect... */ | ||
119 | if ((high_mhz + low_mhz) < 600) | ||
120 | return -EINVAL; | ||
121 | |||
122 | *high = high_mhz * 1000; | ||
123 | *low = low_mhz * 1000; | ||
124 | |||
125 | return result; | ||
126 | } | ||
127 | |||
128 | /** | ||
129 | * speedstep_get_state - set the SpeedStep state | ||
130 | * @state: processor frequency state (SPEEDSTEP_LOW or SPEEDSTEP_HIGH) | ||
131 | * | ||
132 | */ | ||
133 | static int speedstep_get_state (void) | ||
134 | { | ||
135 | u32 function=GET_SPEEDSTEP_STATE; | ||
136 | u32 result, state, edi, command; | ||
137 | |||
138 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
139 | |||
140 | dprintk("trying to determine current setting with command %x at port %x\n", command, smi_port); | ||
141 | |||
142 | __asm__ __volatile__("movl $0, %%edi\n" | ||
143 | "out %%al, (%%dx)\n" | ||
144 | : "=a" (result), "=b" (state), "=D" (edi) | ||
145 | : "a" (command), "b" (function), "c" (0), "d" (smi_port), "S" (0) | ||
146 | ); | ||
147 | |||
148 | dprintk("state is %x, result is %x\n", state, result); | ||
149 | |||
150 | return (state & 1); | ||
151 | } | ||
152 | |||
153 | |||
154 | /** | ||
155 | * speedstep_set_state - set the SpeedStep state | ||
156 | * @state: new processor frequency state (SPEEDSTEP_LOW or SPEEDSTEP_HIGH) | ||
157 | * | ||
158 | */ | ||
159 | static void speedstep_set_state (unsigned int state) | ||
160 | { | ||
161 | unsigned int result = 0, command, new_state; | ||
162 | unsigned long flags; | ||
163 | unsigned int function=SET_SPEEDSTEP_STATE; | ||
164 | unsigned int retry = 0; | ||
165 | |||
166 | if (state > 0x1) | ||
167 | return; | ||
168 | |||
169 | /* Disable IRQs */ | ||
170 | local_irq_save(flags); | ||
171 | |||
172 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
173 | |||
174 | dprintk("trying to set frequency to state %u with command %x at port %x\n", state, command, smi_port); | ||
175 | |||
176 | do { | ||
177 | if (retry) { | ||
178 | dprintk("retry %u, previous result %u, waiting...\n", retry, result); | ||
179 | mdelay(retry * 50); | ||
180 | } | ||
181 | retry++; | ||
182 | __asm__ __volatile__( | ||
183 | "movl $0, %%edi\n" | ||
184 | "out %%al, (%%dx)\n" | ||
185 | : "=b" (new_state), "=D" (result) | ||
186 | : "a" (command), "b" (function), "c" (state), "d" (smi_port), "S" (0) | ||
187 | ); | ||
188 | } while ((new_state != state) && (retry <= SMI_TRIES)); | ||
189 | |||
190 | /* enable IRQs */ | ||
191 | local_irq_restore(flags); | ||
192 | |||
193 | if (new_state == state) { | ||
194 | dprintk("change to %u MHz succeeded after %u tries with result %u\n", (speedstep_freqs[new_state].frequency / 1000), retry, result); | ||
195 | } else { | ||
196 | printk(KERN_ERR "cpufreq: change failed with new_state %u and result %u\n", new_state, result); | ||
197 | } | ||
198 | |||
199 | return; | ||
200 | } | ||
201 | |||
202 | |||
203 | /** | ||
204 | * speedstep_target - set a new CPUFreq policy | ||
205 | * @policy: new policy | ||
206 | * @target_freq: new freq | ||
207 | * @relation: | ||
208 | * | ||
209 | * Sets a new CPUFreq policy/freq. | ||
210 | */ | ||
211 | static int speedstep_target (struct cpufreq_policy *policy, | ||
212 | unsigned int target_freq, unsigned int relation) | ||
213 | { | ||
214 | unsigned int newstate = 0; | ||
215 | struct cpufreq_freqs freqs; | ||
216 | |||
217 | if (cpufreq_frequency_table_target(policy, &speedstep_freqs[0], target_freq, relation, &newstate)) | ||
218 | return -EINVAL; | ||
219 | |||
220 | freqs.old = speedstep_freqs[speedstep_get_state()].frequency; | ||
221 | freqs.new = speedstep_freqs[newstate].frequency; | ||
222 | freqs.cpu = 0; /* speedstep.c is UP only driver */ | ||
223 | |||
224 | if (freqs.old == freqs.new) | ||
225 | return 0; | ||
226 | |||
227 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
228 | speedstep_set_state(newstate); | ||
229 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
230 | |||
231 | return 0; | ||
232 | } | ||
233 | |||
234 | |||
235 | /** | ||
236 | * speedstep_verify - verifies a new CPUFreq policy | ||
237 | * @policy: new policy | ||
238 | * | ||
239 | * Limit must be within speedstep_low_freq and speedstep_high_freq, with | ||
240 | * at least one border included. | ||
241 | */ | ||
242 | static int speedstep_verify (struct cpufreq_policy *policy) | ||
243 | { | ||
244 | return cpufreq_frequency_table_verify(policy, &speedstep_freqs[0]); | ||
245 | } | ||
246 | |||
247 | |||
248 | static int speedstep_cpu_init(struct cpufreq_policy *policy) | ||
249 | { | ||
250 | int result; | ||
251 | unsigned int speed,state; | ||
252 | |||
253 | /* capability check */ | ||
254 | if (policy->cpu != 0) | ||
255 | return -ENODEV; | ||
256 | |||
257 | result = speedstep_smi_ownership(); | ||
258 | if (result) { | ||
259 | dprintk("fails in aquiring ownership of a SMI interface.\n"); | ||
260 | return -EINVAL; | ||
261 | } | ||
262 | |||
263 | /* detect low and high frequency */ | ||
264 | result = speedstep_smi_get_freqs(&speedstep_freqs[SPEEDSTEP_LOW].frequency, | ||
265 | &speedstep_freqs[SPEEDSTEP_HIGH].frequency); | ||
266 | if (result) { | ||
267 | /* fall back to speedstep_lib.c dection mechanism: try both states out */ | ||
268 | dprintk("could not detect low and high frequencies by SMI call.\n"); | ||
269 | result = speedstep_get_freqs(speedstep_processor, | ||
270 | &speedstep_freqs[SPEEDSTEP_LOW].frequency, | ||
271 | &speedstep_freqs[SPEEDSTEP_HIGH].frequency, | ||
272 | &speedstep_set_state); | ||
273 | |||
274 | if (result) { | ||
275 | dprintk("could not detect two different speeds -- aborting.\n"); | ||
276 | return result; | ||
277 | } else | ||
278 | dprintk("workaround worked.\n"); | ||
279 | } | ||
280 | |||
281 | /* get current speed setting */ | ||
282 | state = speedstep_get_state(); | ||
283 | speed = speedstep_freqs[state].frequency; | ||
284 | |||
285 | dprintk("currently at %s speed setting - %i MHz\n", | ||
286 | (speed == speedstep_freqs[SPEEDSTEP_LOW].frequency) ? "low" : "high", | ||
287 | (speed / 1000)); | ||
288 | |||
289 | /* cpuinfo and default policy values */ | ||
290 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; | ||
291 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
292 | policy->cur = speed; | ||
293 | |||
294 | result = cpufreq_frequency_table_cpuinfo(policy, speedstep_freqs); | ||
295 | if (result) | ||
296 | return (result); | ||
297 | |||
298 | cpufreq_frequency_table_get_attr(speedstep_freqs, policy->cpu); | ||
299 | |||
300 | return 0; | ||
301 | } | ||
302 | |||
303 | static int speedstep_cpu_exit(struct cpufreq_policy *policy) | ||
304 | { | ||
305 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
306 | return 0; | ||
307 | } | ||
308 | |||
309 | static unsigned int speedstep_get(unsigned int cpu) | ||
310 | { | ||
311 | if (cpu) | ||
312 | return -ENODEV; | ||
313 | return speedstep_get_processor_frequency(speedstep_processor); | ||
314 | } | ||
315 | |||
316 | |||
317 | static int speedstep_resume(struct cpufreq_policy *policy) | ||
318 | { | ||
319 | int result = speedstep_smi_ownership(); | ||
320 | |||
321 | if (result) | ||
322 | dprintk("fails in re-aquiring ownership of a SMI interface.\n"); | ||
323 | |||
324 | return result; | ||
325 | } | ||
326 | |||
327 | static struct freq_attr* speedstep_attr[] = { | ||
328 | &cpufreq_freq_attr_scaling_available_freqs, | ||
329 | NULL, | ||
330 | }; | ||
331 | |||
332 | static struct cpufreq_driver speedstep_driver = { | ||
333 | .name = "speedstep-smi", | ||
334 | .verify = speedstep_verify, | ||
335 | .target = speedstep_target, | ||
336 | .init = speedstep_cpu_init, | ||
337 | .exit = speedstep_cpu_exit, | ||
338 | .get = speedstep_get, | ||
339 | .resume = speedstep_resume, | ||
340 | .owner = THIS_MODULE, | ||
341 | .attr = speedstep_attr, | ||
342 | }; | ||
343 | |||
344 | /** | ||
345 | * speedstep_init - initializes the SpeedStep CPUFreq driver | ||
346 | * | ||
347 | * Initializes the SpeedStep support. Returns -ENODEV on unsupported | ||
348 | * BIOS, -EINVAL on problems during initiatization, and zero on | ||
349 | * success. | ||
350 | */ | ||
351 | static int __init speedstep_init(void) | ||
352 | { | ||
353 | speedstep_processor = speedstep_detect_processor(); | ||
354 | |||
355 | switch (speedstep_processor) { | ||
356 | case SPEEDSTEP_PROCESSOR_PIII_T: | ||
357 | case SPEEDSTEP_PROCESSOR_PIII_C: | ||
358 | case SPEEDSTEP_PROCESSOR_PIII_C_EARLY: | ||
359 | break; | ||
360 | default: | ||
361 | speedstep_processor = 0; | ||
362 | } | ||
363 | |||
364 | if (!speedstep_processor) { | ||
365 | dprintk ("No supported Intel CPU detected.\n"); | ||
366 | return -ENODEV; | ||
367 | } | ||
368 | |||
369 | dprintk("signature:0x%.8lx, command:0x%.8lx, event:0x%.8lx, perf_level:0x%.8lx.\n", | ||
370 | ist_info.signature, ist_info.command, ist_info.event, ist_info.perf_level); | ||
371 | |||
372 | |||
373 | /* Error if no IST-SMI BIOS or no PARM | ||
374 | sig= 'ISGE' aka 'Intel Speedstep Gate E' */ | ||
375 | if ((ist_info.signature != 0x47534943) && ( | ||
376 | (smi_port == 0) || (smi_cmd == 0))) | ||
377 | return -ENODEV; | ||
378 | |||
379 | if (smi_sig == 1) | ||
380 | smi_sig = 0x47534943; | ||
381 | else | ||
382 | smi_sig = ist_info.signature; | ||
383 | |||
384 | /* setup smi_port from MODLULE_PARM or BIOS */ | ||
385 | if ((smi_port > 0xff) || (smi_port < 0)) { | ||
386 | return -EINVAL; | ||
387 | } else if (smi_port == 0) { | ||
388 | smi_port = ist_info.command & 0xff; | ||
389 | } | ||
390 | |||
391 | if ((smi_cmd > 0xff) || (smi_cmd < 0)) { | ||
392 | return -EINVAL; | ||
393 | } else if (smi_cmd == 0) { | ||
394 | smi_cmd = (ist_info.command >> 16) & 0xff; | ||
395 | } | ||
396 | |||
397 | return cpufreq_register_driver(&speedstep_driver); | ||
398 | } | ||
399 | |||
400 | |||
401 | /** | ||
402 | * speedstep_exit - unregisters SpeedStep support | ||
403 | * | ||
404 | * Unregisters SpeedStep support. | ||
405 | */ | ||
406 | static void __exit speedstep_exit(void) | ||
407 | { | ||
408 | cpufreq_unregister_driver(&speedstep_driver); | ||
409 | } | ||
410 | |||
411 | module_param(smi_port, int, 0444); | ||
412 | module_param(smi_cmd, int, 0444); | ||
413 | module_param(smi_sig, uint, 0444); | ||
414 | |||
415 | MODULE_PARM_DESC(smi_port, "Override the BIOS-given IST port with this value -- Intel's default setting is 0xb2"); | ||
416 | MODULE_PARM_DESC(smi_cmd, "Override the BIOS-given IST command with this value -- Intel's default setting is 0x82"); | ||
417 | MODULE_PARM_DESC(smi_sig, "Set to 1 to fake the IST signature when using the SMI interface."); | ||
418 | |||
419 | MODULE_AUTHOR ("Hiroshi Miura"); | ||
420 | MODULE_DESCRIPTION ("Speedstep driver for IST applet SMI interface."); | ||
421 | MODULE_LICENSE ("GPL"); | ||
422 | |||
423 | module_init(speedstep_init); | ||
424 | module_exit(speedstep_exit); | ||